hw/sd/pl181: Replace fprintf(stderr, "*\n") with error_report()
[qemu/ar7.git] / target / arm / vec_helper.c
blob7d76412ee0d6d55b6bfebeda6ffcdfbf0fa0b152
1 /*
2 * ARM AdvSIMD / SVE Vector Operations
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x) ((x) ^ 7)
31 #define H2(x) ((x) ^ 3)
32 #define H4(x) ((x) ^ 1)
33 #else
34 #define H1(x) (x)
35 #define H2(x) (x)
36 #define H4(x) (x)
37 #endif
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t inl_qrdmlah_s16(int16_t src1, int16_t src2,
41 int16_t src3, uint32_t *sat)
43 /* Simplify:
44 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
45 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
47 int32_t ret = (int32_t)src1 * src2;
48 ret = ((int32_t)src3 << 15) + ret + (1 << 14);
49 ret >>= 15;
50 if (ret != (int16_t)ret) {
51 *sat = 1;
52 ret = (ret < 0 ? -0x8000 : 0x7fff);
54 return ret;
57 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
58 uint32_t src2, uint32_t src3)
60 uint32_t *sat = &env->vfp.qc[0];
61 uint16_t e1 = inl_qrdmlah_s16(src1, src2, src3, sat);
62 uint16_t e2 = inl_qrdmlah_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
63 return deposit32(e1, 16, 16, e2);
66 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
67 void *vq, uint32_t desc)
69 uintptr_t opr_sz = simd_oprsz(desc);
70 int16_t *d = vd;
71 int16_t *n = vn;
72 int16_t *m = vm;
73 uintptr_t i;
75 for (i = 0; i < opr_sz / 2; ++i) {
76 d[i] = inl_qrdmlah_s16(n[i], m[i], d[i], vq);
78 clear_tail(d, opr_sz, simd_maxsz(desc));
81 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
82 static int16_t inl_qrdmlsh_s16(int16_t src1, int16_t src2,
83 int16_t src3, uint32_t *sat)
85 /* Similarly, using subtraction:
86 * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
87 * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
89 int32_t ret = (int32_t)src1 * src2;
90 ret = ((int32_t)src3 << 15) - ret + (1 << 14);
91 ret >>= 15;
92 if (ret != (int16_t)ret) {
93 *sat = 1;
94 ret = (ret < 0 ? -0x8000 : 0x7fff);
96 return ret;
99 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
100 uint32_t src2, uint32_t src3)
102 uint32_t *sat = &env->vfp.qc[0];
103 uint16_t e1 = inl_qrdmlsh_s16(src1, src2, src3, sat);
104 uint16_t e2 = inl_qrdmlsh_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
105 return deposit32(e1, 16, 16, e2);
108 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
109 void *vq, uint32_t desc)
111 uintptr_t opr_sz = simd_oprsz(desc);
112 int16_t *d = vd;
113 int16_t *n = vn;
114 int16_t *m = vm;
115 uintptr_t i;
117 for (i = 0; i < opr_sz / 2; ++i) {
118 d[i] = inl_qrdmlsh_s16(n[i], m[i], d[i], vq);
120 clear_tail(d, opr_sz, simd_maxsz(desc));
123 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
124 static int32_t inl_qrdmlah_s32(int32_t src1, int32_t src2,
125 int32_t src3, uint32_t *sat)
127 /* Simplify similarly to int_qrdmlah_s16 above. */
128 int64_t ret = (int64_t)src1 * src2;
129 ret = ((int64_t)src3 << 31) + ret + (1 << 30);
130 ret >>= 31;
131 if (ret != (int32_t)ret) {
132 *sat = 1;
133 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
135 return ret;
138 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
139 int32_t src2, int32_t src3)
141 uint32_t *sat = &env->vfp.qc[0];
142 return inl_qrdmlah_s32(src1, src2, src3, sat);
145 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
146 void *vq, uint32_t desc)
148 uintptr_t opr_sz = simd_oprsz(desc);
149 int32_t *d = vd;
150 int32_t *n = vn;
151 int32_t *m = vm;
152 uintptr_t i;
154 for (i = 0; i < opr_sz / 4; ++i) {
155 d[i] = inl_qrdmlah_s32(n[i], m[i], d[i], vq);
157 clear_tail(d, opr_sz, simd_maxsz(desc));
160 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
161 static int32_t inl_qrdmlsh_s32(int32_t src1, int32_t src2,
162 int32_t src3, uint32_t *sat)
164 /* Simplify similarly to int_qrdmlsh_s16 above. */
165 int64_t ret = (int64_t)src1 * src2;
166 ret = ((int64_t)src3 << 31) - ret + (1 << 30);
167 ret >>= 31;
168 if (ret != (int32_t)ret) {
169 *sat = 1;
170 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
172 return ret;
175 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
176 int32_t src2, int32_t src3)
178 uint32_t *sat = &env->vfp.qc[0];
179 return inl_qrdmlsh_s32(src1, src2, src3, sat);
182 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
183 void *vq, uint32_t desc)
185 uintptr_t opr_sz = simd_oprsz(desc);
186 int32_t *d = vd;
187 int32_t *n = vn;
188 int32_t *m = vm;
189 uintptr_t i;
191 for (i = 0; i < opr_sz / 4; ++i) {
192 d[i] = inl_qrdmlsh_s32(n[i], m[i], d[i], vq);
194 clear_tail(d, opr_sz, simd_maxsz(desc));
197 /* Integer 8 and 16-bit dot-product.
199 * Note that for the loops herein, host endianness does not matter
200 * with respect to the ordering of data within the 64-bit lanes.
201 * All elements are treated equally, no matter where they are.
204 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
206 intptr_t i, opr_sz = simd_oprsz(desc);
207 uint32_t *d = vd;
208 int8_t *n = vn, *m = vm;
210 for (i = 0; i < opr_sz / 4; ++i) {
211 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
212 + n[i * 4 + 1] * m[i * 4 + 1]
213 + n[i * 4 + 2] * m[i * 4 + 2]
214 + n[i * 4 + 3] * m[i * 4 + 3];
216 clear_tail(d, opr_sz, simd_maxsz(desc));
219 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
221 intptr_t i, opr_sz = simd_oprsz(desc);
222 uint32_t *d = vd;
223 uint8_t *n = vn, *m = vm;
225 for (i = 0; i < opr_sz / 4; ++i) {
226 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
227 + n[i * 4 + 1] * m[i * 4 + 1]
228 + n[i * 4 + 2] * m[i * 4 + 2]
229 + n[i * 4 + 3] * m[i * 4 + 3];
231 clear_tail(d, opr_sz, simd_maxsz(desc));
234 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
236 intptr_t i, opr_sz = simd_oprsz(desc);
237 uint64_t *d = vd;
238 int16_t *n = vn, *m = vm;
240 for (i = 0; i < opr_sz / 8; ++i) {
241 d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
242 + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
243 + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
244 + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
246 clear_tail(d, opr_sz, simd_maxsz(desc));
249 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
251 intptr_t i, opr_sz = simd_oprsz(desc);
252 uint64_t *d = vd;
253 uint16_t *n = vn, *m = vm;
255 for (i = 0; i < opr_sz / 8; ++i) {
256 d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
257 + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
258 + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
259 + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
261 clear_tail(d, opr_sz, simd_maxsz(desc));
264 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
266 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
267 intptr_t index = simd_data(desc);
268 uint32_t *d = vd;
269 int8_t *n = vn;
270 int8_t *m_indexed = (int8_t *)vm + index * 4;
272 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
273 * Otherwise opr_sz is a multiple of 16.
275 segend = MIN(4, opr_sz_4);
276 i = 0;
277 do {
278 int8_t m0 = m_indexed[i * 4 + 0];
279 int8_t m1 = m_indexed[i * 4 + 1];
280 int8_t m2 = m_indexed[i * 4 + 2];
281 int8_t m3 = m_indexed[i * 4 + 3];
283 do {
284 d[i] += n[i * 4 + 0] * m0
285 + n[i * 4 + 1] * m1
286 + n[i * 4 + 2] * m2
287 + n[i * 4 + 3] * m3;
288 } while (++i < segend);
289 segend = i + 4;
290 } while (i < opr_sz_4);
292 clear_tail(d, opr_sz, simd_maxsz(desc));
295 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
297 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
298 intptr_t index = simd_data(desc);
299 uint32_t *d = vd;
300 uint8_t *n = vn;
301 uint8_t *m_indexed = (uint8_t *)vm + index * 4;
303 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
304 * Otherwise opr_sz is a multiple of 16.
306 segend = MIN(4, opr_sz_4);
307 i = 0;
308 do {
309 uint8_t m0 = m_indexed[i * 4 + 0];
310 uint8_t m1 = m_indexed[i * 4 + 1];
311 uint8_t m2 = m_indexed[i * 4 + 2];
312 uint8_t m3 = m_indexed[i * 4 + 3];
314 do {
315 d[i] += n[i * 4 + 0] * m0
316 + n[i * 4 + 1] * m1
317 + n[i * 4 + 2] * m2
318 + n[i * 4 + 3] * m3;
319 } while (++i < segend);
320 segend = i + 4;
321 } while (i < opr_sz_4);
323 clear_tail(d, opr_sz, simd_maxsz(desc));
326 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
328 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
329 intptr_t index = simd_data(desc);
330 uint64_t *d = vd;
331 int16_t *n = vn;
332 int16_t *m_indexed = (int16_t *)vm + index * 4;
334 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
335 * Process the entire segment all at once, writing back the results
336 * only after we've consumed all of the inputs.
338 for (i = 0; i < opr_sz_8 ; i += 2) {
339 uint64_t d0, d1;
341 d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
342 d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
343 d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
344 d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
345 d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
346 d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
347 d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
348 d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
350 d[i + 0] += d0;
351 d[i + 1] += d1;
354 clear_tail(d, opr_sz, simd_maxsz(desc));
357 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
359 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
360 intptr_t index = simd_data(desc);
361 uint64_t *d = vd;
362 uint16_t *n = vn;
363 uint16_t *m_indexed = (uint16_t *)vm + index * 4;
365 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
366 * Process the entire segment all at once, writing back the results
367 * only after we've consumed all of the inputs.
369 for (i = 0; i < opr_sz_8 ; i += 2) {
370 uint64_t d0, d1;
372 d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
373 d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
374 d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
375 d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
376 d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
377 d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
378 d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
379 d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
381 d[i + 0] += d0;
382 d[i + 1] += d1;
385 clear_tail(d, opr_sz, simd_maxsz(desc));
388 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
389 void *vfpst, uint32_t desc)
391 uintptr_t opr_sz = simd_oprsz(desc);
392 float16 *d = vd;
393 float16 *n = vn;
394 float16 *m = vm;
395 float_status *fpst = vfpst;
396 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
397 uint32_t neg_imag = neg_real ^ 1;
398 uintptr_t i;
400 /* Shift boolean to the sign bit so we can xor to negate. */
401 neg_real <<= 15;
402 neg_imag <<= 15;
404 for (i = 0; i < opr_sz / 2; i += 2) {
405 float16 e0 = n[H2(i)];
406 float16 e1 = m[H2(i + 1)] ^ neg_imag;
407 float16 e2 = n[H2(i + 1)];
408 float16 e3 = m[H2(i)] ^ neg_real;
410 d[H2(i)] = float16_add(e0, e1, fpst);
411 d[H2(i + 1)] = float16_add(e2, e3, fpst);
413 clear_tail(d, opr_sz, simd_maxsz(desc));
416 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
417 void *vfpst, uint32_t desc)
419 uintptr_t opr_sz = simd_oprsz(desc);
420 float32 *d = vd;
421 float32 *n = vn;
422 float32 *m = vm;
423 float_status *fpst = vfpst;
424 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
425 uint32_t neg_imag = neg_real ^ 1;
426 uintptr_t i;
428 /* Shift boolean to the sign bit so we can xor to negate. */
429 neg_real <<= 31;
430 neg_imag <<= 31;
432 for (i = 0; i < opr_sz / 4; i += 2) {
433 float32 e0 = n[H4(i)];
434 float32 e1 = m[H4(i + 1)] ^ neg_imag;
435 float32 e2 = n[H4(i + 1)];
436 float32 e3 = m[H4(i)] ^ neg_real;
438 d[H4(i)] = float32_add(e0, e1, fpst);
439 d[H4(i + 1)] = float32_add(e2, e3, fpst);
441 clear_tail(d, opr_sz, simd_maxsz(desc));
444 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
445 void *vfpst, uint32_t desc)
447 uintptr_t opr_sz = simd_oprsz(desc);
448 float64 *d = vd;
449 float64 *n = vn;
450 float64 *m = vm;
451 float_status *fpst = vfpst;
452 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
453 uint64_t neg_imag = neg_real ^ 1;
454 uintptr_t i;
456 /* Shift boolean to the sign bit so we can xor to negate. */
457 neg_real <<= 63;
458 neg_imag <<= 63;
460 for (i = 0; i < opr_sz / 8; i += 2) {
461 float64 e0 = n[i];
462 float64 e1 = m[i + 1] ^ neg_imag;
463 float64 e2 = n[i + 1];
464 float64 e3 = m[i] ^ neg_real;
466 d[i] = float64_add(e0, e1, fpst);
467 d[i + 1] = float64_add(e2, e3, fpst);
469 clear_tail(d, opr_sz, simd_maxsz(desc));
472 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
473 void *vfpst, uint32_t desc)
475 uintptr_t opr_sz = simd_oprsz(desc);
476 float16 *d = vd;
477 float16 *n = vn;
478 float16 *m = vm;
479 float_status *fpst = vfpst;
480 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
481 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
482 uint32_t neg_real = flip ^ neg_imag;
483 uintptr_t i;
485 /* Shift boolean to the sign bit so we can xor to negate. */
486 neg_real <<= 15;
487 neg_imag <<= 15;
489 for (i = 0; i < opr_sz / 2; i += 2) {
490 float16 e2 = n[H2(i + flip)];
491 float16 e1 = m[H2(i + flip)] ^ neg_real;
492 float16 e4 = e2;
493 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
495 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
496 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
498 clear_tail(d, opr_sz, simd_maxsz(desc));
501 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
502 void *vfpst, uint32_t desc)
504 uintptr_t opr_sz = simd_oprsz(desc);
505 float16 *d = vd;
506 float16 *n = vn;
507 float16 *m = vm;
508 float_status *fpst = vfpst;
509 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
510 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
511 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
512 uint32_t neg_real = flip ^ neg_imag;
513 intptr_t elements = opr_sz / sizeof(float16);
514 intptr_t eltspersegment = 16 / sizeof(float16);
515 intptr_t i, j;
517 /* Shift boolean to the sign bit so we can xor to negate. */
518 neg_real <<= 15;
519 neg_imag <<= 15;
521 for (i = 0; i < elements; i += eltspersegment) {
522 float16 mr = m[H2(i + 2 * index + 0)];
523 float16 mi = m[H2(i + 2 * index + 1)];
524 float16 e1 = neg_real ^ (flip ? mi : mr);
525 float16 e3 = neg_imag ^ (flip ? mr : mi);
527 for (j = i; j < i + eltspersegment; j += 2) {
528 float16 e2 = n[H2(j + flip)];
529 float16 e4 = e2;
531 d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
532 d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
535 clear_tail(d, opr_sz, simd_maxsz(desc));
538 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
539 void *vfpst, uint32_t desc)
541 uintptr_t opr_sz = simd_oprsz(desc);
542 float32 *d = vd;
543 float32 *n = vn;
544 float32 *m = vm;
545 float_status *fpst = vfpst;
546 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
547 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
548 uint32_t neg_real = flip ^ neg_imag;
549 uintptr_t i;
551 /* Shift boolean to the sign bit so we can xor to negate. */
552 neg_real <<= 31;
553 neg_imag <<= 31;
555 for (i = 0; i < opr_sz / 4; i += 2) {
556 float32 e2 = n[H4(i + flip)];
557 float32 e1 = m[H4(i + flip)] ^ neg_real;
558 float32 e4 = e2;
559 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
561 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
562 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
564 clear_tail(d, opr_sz, simd_maxsz(desc));
567 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
568 void *vfpst, uint32_t desc)
570 uintptr_t opr_sz = simd_oprsz(desc);
571 float32 *d = vd;
572 float32 *n = vn;
573 float32 *m = vm;
574 float_status *fpst = vfpst;
575 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
576 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
577 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
578 uint32_t neg_real = flip ^ neg_imag;
579 intptr_t elements = opr_sz / sizeof(float32);
580 intptr_t eltspersegment = 16 / sizeof(float32);
581 intptr_t i, j;
583 /* Shift boolean to the sign bit so we can xor to negate. */
584 neg_real <<= 31;
585 neg_imag <<= 31;
587 for (i = 0; i < elements; i += eltspersegment) {
588 float32 mr = m[H4(i + 2 * index + 0)];
589 float32 mi = m[H4(i + 2 * index + 1)];
590 float32 e1 = neg_real ^ (flip ? mi : mr);
591 float32 e3 = neg_imag ^ (flip ? mr : mi);
593 for (j = i; j < i + eltspersegment; j += 2) {
594 float32 e2 = n[H4(j + flip)];
595 float32 e4 = e2;
597 d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
598 d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
601 clear_tail(d, opr_sz, simd_maxsz(desc));
604 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
605 void *vfpst, uint32_t desc)
607 uintptr_t opr_sz = simd_oprsz(desc);
608 float64 *d = vd;
609 float64 *n = vn;
610 float64 *m = vm;
611 float_status *fpst = vfpst;
612 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
613 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
614 uint64_t neg_real = flip ^ neg_imag;
615 uintptr_t i;
617 /* Shift boolean to the sign bit so we can xor to negate. */
618 neg_real <<= 63;
619 neg_imag <<= 63;
621 for (i = 0; i < opr_sz / 8; i += 2) {
622 float64 e2 = n[i + flip];
623 float64 e1 = m[i + flip] ^ neg_real;
624 float64 e4 = e2;
625 float64 e3 = m[i + 1 - flip] ^ neg_imag;
627 d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
628 d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
630 clear_tail(d, opr_sz, simd_maxsz(desc));
633 #define DO_2OP(NAME, FUNC, TYPE) \
634 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
636 intptr_t i, oprsz = simd_oprsz(desc); \
637 TYPE *d = vd, *n = vn; \
638 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
639 d[i] = FUNC(n[i], stat); \
641 clear_tail(d, oprsz, simd_maxsz(desc)); \
644 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
645 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
646 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
648 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
649 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
650 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
652 #undef DO_2OP
654 /* Floating-point trigonometric starting value.
655 * See the ARM ARM pseudocode function FPTrigSMul.
657 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
659 float16 result = float16_mul(op1, op1, stat);
660 if (!float16_is_any_nan(result)) {
661 result = float16_set_sign(result, op2 & 1);
663 return result;
666 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
668 float32 result = float32_mul(op1, op1, stat);
669 if (!float32_is_any_nan(result)) {
670 result = float32_set_sign(result, op2 & 1);
672 return result;
675 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
677 float64 result = float64_mul(op1, op1, stat);
678 if (!float64_is_any_nan(result)) {
679 result = float64_set_sign(result, op2 & 1);
681 return result;
684 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
686 return float32_abs(float32_sub(op1, op2, stat));
689 #define DO_3OP(NAME, FUNC, TYPE) \
690 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
692 intptr_t i, oprsz = simd_oprsz(desc); \
693 TYPE *d = vd, *n = vn, *m = vm; \
694 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
695 d[i] = FUNC(n[i], m[i], stat); \
697 clear_tail(d, oprsz, simd_maxsz(desc)); \
700 DO_3OP(gvec_fadd_h, float16_add, float16)
701 DO_3OP(gvec_fadd_s, float32_add, float32)
702 DO_3OP(gvec_fadd_d, float64_add, float64)
704 DO_3OP(gvec_fsub_h, float16_sub, float16)
705 DO_3OP(gvec_fsub_s, float32_sub, float32)
706 DO_3OP(gvec_fsub_d, float64_sub, float64)
708 DO_3OP(gvec_fmul_h, float16_mul, float16)
709 DO_3OP(gvec_fmul_s, float32_mul, float32)
710 DO_3OP(gvec_fmul_d, float64_mul, float64)
712 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
713 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
714 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
716 DO_3OP(gvec_fabd_s, float32_abd, float32)
718 #ifdef TARGET_AARCH64
720 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
721 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
722 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
724 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
725 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
726 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
728 #endif
729 #undef DO_3OP
731 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
732 * For AdvSIMD, there is of course only one such vector segment.
735 #define DO_MUL_IDX(NAME, TYPE, H) \
736 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
738 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
739 intptr_t idx = simd_data(desc); \
740 TYPE *d = vd, *n = vn, *m = vm; \
741 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
742 TYPE mm = m[H(i + idx)]; \
743 for (j = 0; j < segment; j++) { \
744 d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
747 clear_tail(d, oprsz, simd_maxsz(desc)); \
750 DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
751 DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
752 DO_MUL_IDX(gvec_fmul_idx_d, float64, )
754 #undef DO_MUL_IDX
756 #define DO_FMLA_IDX(NAME, TYPE, H) \
757 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
758 void *stat, uint32_t desc) \
760 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
761 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
762 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
763 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
764 op1_neg <<= (8 * sizeof(TYPE) - 1); \
765 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
766 TYPE mm = m[H(i + idx)]; \
767 for (j = 0; j < segment; j++) { \
768 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
769 mm, a[i + j], 0, stat); \
772 clear_tail(d, oprsz, simd_maxsz(desc)); \
775 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
776 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
777 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
779 #undef DO_FMLA_IDX
781 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
782 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
784 intptr_t i, oprsz = simd_oprsz(desc); \
785 TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
786 bool q = false; \
787 for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
788 WTYPE dd = (WTYPE)n[i] OP m[i]; \
789 if (dd < MIN) { \
790 dd = MIN; \
791 q = true; \
792 } else if (dd > MAX) { \
793 dd = MAX; \
794 q = true; \
796 d[i] = dd; \
798 if (q) { \
799 uint32_t *qc = vq; \
800 qc[0] = 1; \
802 clear_tail(d, oprsz, simd_maxsz(desc)); \
805 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
806 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
807 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
809 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
810 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
811 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
813 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
814 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
815 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
817 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
818 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
819 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
821 #undef DO_SAT
823 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
824 void *vm, uint32_t desc)
826 intptr_t i, oprsz = simd_oprsz(desc);
827 uint64_t *d = vd, *n = vn, *m = vm;
828 bool q = false;
830 for (i = 0; i < oprsz / 8; i++) {
831 uint64_t nn = n[i], mm = m[i], dd = nn + mm;
832 if (dd < nn) {
833 dd = UINT64_MAX;
834 q = true;
836 d[i] = dd;
838 if (q) {
839 uint32_t *qc = vq;
840 qc[0] = 1;
842 clear_tail(d, oprsz, simd_maxsz(desc));
845 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
846 void *vm, uint32_t desc)
848 intptr_t i, oprsz = simd_oprsz(desc);
849 uint64_t *d = vd, *n = vn, *m = vm;
850 bool q = false;
852 for (i = 0; i < oprsz / 8; i++) {
853 uint64_t nn = n[i], mm = m[i], dd = nn - mm;
854 if (nn < mm) {
855 dd = 0;
856 q = true;
858 d[i] = dd;
860 if (q) {
861 uint32_t *qc = vq;
862 qc[0] = 1;
864 clear_tail(d, oprsz, simd_maxsz(desc));
867 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
868 void *vm, uint32_t desc)
870 intptr_t i, oprsz = simd_oprsz(desc);
871 int64_t *d = vd, *n = vn, *m = vm;
872 bool q = false;
874 for (i = 0; i < oprsz / 8; i++) {
875 int64_t nn = n[i], mm = m[i], dd = nn + mm;
876 if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
877 dd = (nn >> 63) ^ ~INT64_MIN;
878 q = true;
880 d[i] = dd;
882 if (q) {
883 uint32_t *qc = vq;
884 qc[0] = 1;
886 clear_tail(d, oprsz, simd_maxsz(desc));
889 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
890 void *vm, uint32_t desc)
892 intptr_t i, oprsz = simd_oprsz(desc);
893 int64_t *d = vd, *n = vn, *m = vm;
894 bool q = false;
896 for (i = 0; i < oprsz / 8; i++) {
897 int64_t nn = n[i], mm = m[i], dd = nn - mm;
898 if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
899 dd = (nn >> 63) ^ ~INT64_MIN;
900 q = true;
902 d[i] = dd;
904 if (q) {
905 uint32_t *qc = vq;
906 qc[0] = 1;
908 clear_tail(d, oprsz, simd_maxsz(desc));
912 #define DO_SRA(NAME, TYPE) \
913 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
915 intptr_t i, oprsz = simd_oprsz(desc); \
916 int shift = simd_data(desc); \
917 TYPE *d = vd, *n = vn; \
918 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
919 d[i] += n[i] >> shift; \
921 clear_tail(d, oprsz, simd_maxsz(desc)); \
924 DO_SRA(gvec_ssra_b, int8_t)
925 DO_SRA(gvec_ssra_h, int16_t)
926 DO_SRA(gvec_ssra_s, int32_t)
927 DO_SRA(gvec_ssra_d, int64_t)
929 DO_SRA(gvec_usra_b, uint8_t)
930 DO_SRA(gvec_usra_h, uint16_t)
931 DO_SRA(gvec_usra_s, uint32_t)
932 DO_SRA(gvec_usra_d, uint64_t)
934 #undef DO_SRA
936 #define DO_RSHR(NAME, TYPE) \
937 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
939 intptr_t i, oprsz = simd_oprsz(desc); \
940 int shift = simd_data(desc); \
941 TYPE *d = vd, *n = vn; \
942 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
943 TYPE tmp = n[i] >> (shift - 1); \
944 d[i] = (tmp >> 1) + (tmp & 1); \
946 clear_tail(d, oprsz, simd_maxsz(desc)); \
949 DO_RSHR(gvec_srshr_b, int8_t)
950 DO_RSHR(gvec_srshr_h, int16_t)
951 DO_RSHR(gvec_srshr_s, int32_t)
952 DO_RSHR(gvec_srshr_d, int64_t)
954 DO_RSHR(gvec_urshr_b, uint8_t)
955 DO_RSHR(gvec_urshr_h, uint16_t)
956 DO_RSHR(gvec_urshr_s, uint32_t)
957 DO_RSHR(gvec_urshr_d, uint64_t)
959 #undef DO_RSHR
961 #define DO_RSRA(NAME, TYPE) \
962 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
964 intptr_t i, oprsz = simd_oprsz(desc); \
965 int shift = simd_data(desc); \
966 TYPE *d = vd, *n = vn; \
967 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
968 TYPE tmp = n[i] >> (shift - 1); \
969 d[i] += (tmp >> 1) + (tmp & 1); \
971 clear_tail(d, oprsz, simd_maxsz(desc)); \
974 DO_RSRA(gvec_srsra_b, int8_t)
975 DO_RSRA(gvec_srsra_h, int16_t)
976 DO_RSRA(gvec_srsra_s, int32_t)
977 DO_RSRA(gvec_srsra_d, int64_t)
979 DO_RSRA(gvec_ursra_b, uint8_t)
980 DO_RSRA(gvec_ursra_h, uint16_t)
981 DO_RSRA(gvec_ursra_s, uint32_t)
982 DO_RSRA(gvec_ursra_d, uint64_t)
984 #undef DO_RSRA
986 #define DO_SRI(NAME, TYPE) \
987 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
989 intptr_t i, oprsz = simd_oprsz(desc); \
990 int shift = simd_data(desc); \
991 TYPE *d = vd, *n = vn; \
992 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
993 d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
995 clear_tail(d, oprsz, simd_maxsz(desc)); \
998 DO_SRI(gvec_sri_b, uint8_t)
999 DO_SRI(gvec_sri_h, uint16_t)
1000 DO_SRI(gvec_sri_s, uint32_t)
1001 DO_SRI(gvec_sri_d, uint64_t)
1003 #undef DO_SRI
1005 #define DO_SLI(NAME, TYPE) \
1006 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1008 intptr_t i, oprsz = simd_oprsz(desc); \
1009 int shift = simd_data(desc); \
1010 TYPE *d = vd, *n = vn; \
1011 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
1012 d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1014 clear_tail(d, oprsz, simd_maxsz(desc)); \
1017 DO_SLI(gvec_sli_b, uint8_t)
1018 DO_SLI(gvec_sli_h, uint16_t)
1019 DO_SLI(gvec_sli_s, uint32_t)
1020 DO_SLI(gvec_sli_d, uint64_t)
1022 #undef DO_SLI
1025 * Convert float16 to float32, raising no exceptions and
1026 * preserving exceptional values, including SNaN.
1027 * This is effectively an unpack+repack operation.
1029 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1031 const int f16_bias = 15;
1032 const int f32_bias = 127;
1033 uint32_t sign = extract32(f16, 15, 1);
1034 uint32_t exp = extract32(f16, 10, 5);
1035 uint32_t frac = extract32(f16, 0, 10);
1037 if (exp == 0x1f) {
1038 /* Inf or NaN */
1039 exp = 0xff;
1040 } else if (exp == 0) {
1041 /* Zero or denormal. */
1042 if (frac != 0) {
1043 if (fz16) {
1044 frac = 0;
1045 } else {
1047 * Denormal; these are all normal float32.
1048 * Shift the fraction so that the msb is at bit 11,
1049 * then remove bit 11 as the implicit bit of the
1050 * normalized float32. Note that we still go through
1051 * the shift for normal numbers below, to put the
1052 * float32 fraction at the right place.
1054 int shift = clz32(frac) - 21;
1055 frac = (frac << shift) & 0x3ff;
1056 exp = f32_bias - f16_bias - shift + 1;
1059 } else {
1060 /* Normal number; adjust the bias. */
1061 exp += f32_bias - f16_bias;
1063 sign <<= 31;
1064 exp <<= 23;
1065 frac <<= 23 - 10;
1067 return sign | exp | frac;
1070 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1073 * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1074 * Load the 2nd qword iff is_q & is_2.
1075 * Shift to the 2nd dword iff !is_q & is_2.
1076 * For !is_q & !is_2, the upper bits of the result are garbage.
1078 return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1082 * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1083 * as there is not yet SVE versions that might use blocking.
1086 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1087 uint32_t desc, bool fz16)
1089 intptr_t i, oprsz = simd_oprsz(desc);
1090 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1091 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1092 int is_q = oprsz == 16;
1093 uint64_t n_4, m_4;
1095 /* Pre-load all of the f16 data, avoiding overlap issues. */
1096 n_4 = load4_f16(vn, is_q, is_2);
1097 m_4 = load4_f16(vm, is_q, is_2);
1099 /* Negate all inputs for FMLSL at once. */
1100 if (is_s) {
1101 n_4 ^= 0x8000800080008000ull;
1104 for (i = 0; i < oprsz / 4; i++) {
1105 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1106 float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1107 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1109 clear_tail(d, oprsz, simd_maxsz(desc));
1112 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1113 void *venv, uint32_t desc)
1115 CPUARMState *env = venv;
1116 do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1117 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1120 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1121 void *venv, uint32_t desc)
1123 CPUARMState *env = venv;
1124 do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1125 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1128 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1129 uint32_t desc, bool fz16)
1131 intptr_t i, oprsz = simd_oprsz(desc);
1132 int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1133 int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1134 int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1135 int is_q = oprsz == 16;
1136 uint64_t n_4;
1137 float32 m_1;
1139 /* Pre-load all of the f16 data, avoiding overlap issues. */
1140 n_4 = load4_f16(vn, is_q, is_2);
1142 /* Negate all inputs for FMLSL at once. */
1143 if (is_s) {
1144 n_4 ^= 0x8000800080008000ull;
1147 m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1149 for (i = 0; i < oprsz / 4; i++) {
1150 float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1151 d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1153 clear_tail(d, oprsz, simd_maxsz(desc));
1156 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1157 void *venv, uint32_t desc)
1159 CPUARMState *env = venv;
1160 do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1161 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1164 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1165 void *venv, uint32_t desc)
1167 CPUARMState *env = venv;
1168 do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1169 get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1172 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1174 intptr_t i, opr_sz = simd_oprsz(desc);
1175 int8_t *d = vd, *n = vn, *m = vm;
1177 for (i = 0; i < opr_sz; ++i) {
1178 int8_t mm = m[i];
1179 int8_t nn = n[i];
1180 int8_t res = 0;
1181 if (mm >= 0) {
1182 if (mm < 8) {
1183 res = nn << mm;
1185 } else {
1186 res = nn >> (mm > -8 ? -mm : 7);
1188 d[i] = res;
1190 clear_tail(d, opr_sz, simd_maxsz(desc));
1193 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1195 intptr_t i, opr_sz = simd_oprsz(desc);
1196 int16_t *d = vd, *n = vn, *m = vm;
1198 for (i = 0; i < opr_sz / 2; ++i) {
1199 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1200 int16_t nn = n[i];
1201 int16_t res = 0;
1202 if (mm >= 0) {
1203 if (mm < 16) {
1204 res = nn << mm;
1206 } else {
1207 res = nn >> (mm > -16 ? -mm : 15);
1209 d[i] = res;
1211 clear_tail(d, opr_sz, simd_maxsz(desc));
1214 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1216 intptr_t i, opr_sz = simd_oprsz(desc);
1217 uint8_t *d = vd, *n = vn, *m = vm;
1219 for (i = 0; i < opr_sz; ++i) {
1220 int8_t mm = m[i];
1221 uint8_t nn = n[i];
1222 uint8_t res = 0;
1223 if (mm >= 0) {
1224 if (mm < 8) {
1225 res = nn << mm;
1227 } else {
1228 if (mm > -8) {
1229 res = nn >> -mm;
1232 d[i] = res;
1234 clear_tail(d, opr_sz, simd_maxsz(desc));
1237 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1239 intptr_t i, opr_sz = simd_oprsz(desc);
1240 uint16_t *d = vd, *n = vn, *m = vm;
1242 for (i = 0; i < opr_sz / 2; ++i) {
1243 int8_t mm = m[i]; /* only 8 bits of shift are significant */
1244 uint16_t nn = n[i];
1245 uint16_t res = 0;
1246 if (mm >= 0) {
1247 if (mm < 16) {
1248 res = nn << mm;
1250 } else {
1251 if (mm > -16) {
1252 res = nn >> -mm;
1255 d[i] = res;
1257 clear_tail(d, opr_sz, simd_maxsz(desc));
1261 * 8x8->8 polynomial multiply.
1263 * Polynomial multiplication is like integer multiplication except the
1264 * partial products are XORed, not added.
1266 * TODO: expose this as a generic vector operation, as it is a common
1267 * crypto building block.
1269 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1271 intptr_t i, j, opr_sz = simd_oprsz(desc);
1272 uint64_t *d = vd, *n = vn, *m = vm;
1274 for (i = 0; i < opr_sz / 8; ++i) {
1275 uint64_t nn = n[i];
1276 uint64_t mm = m[i];
1277 uint64_t rr = 0;
1279 for (j = 0; j < 8; ++j) {
1280 uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1281 rr ^= mm & mask;
1282 mm = (mm << 1) & 0xfefefefefefefefeull;
1283 nn >>= 1;
1285 d[i] = rr;
1287 clear_tail(d, opr_sz, simd_maxsz(desc));
1291 * 64x64->128 polynomial multiply.
1292 * Because of the lanes are not accessed in strict columns,
1293 * this probably cannot be turned into a generic helper.
1295 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1297 intptr_t i, j, opr_sz = simd_oprsz(desc);
1298 intptr_t hi = simd_data(desc);
1299 uint64_t *d = vd, *n = vn, *m = vm;
1301 for (i = 0; i < opr_sz / 8; i += 2) {
1302 uint64_t nn = n[i + hi];
1303 uint64_t mm = m[i + hi];
1304 uint64_t rhi = 0;
1305 uint64_t rlo = 0;
1307 /* Bit 0 can only influence the low 64-bit result. */
1308 if (nn & 1) {
1309 rlo = mm;
1312 for (j = 1; j < 64; ++j) {
1313 uint64_t mask = -((nn >> j) & 1);
1314 rlo ^= (mm << j) & mask;
1315 rhi ^= (mm >> (64 - j)) & mask;
1317 d[i] = rlo;
1318 d[i + 1] = rhi;
1320 clear_tail(d, opr_sz, simd_maxsz(desc));
1324 * 8x8->16 polynomial multiply.
1326 * The byte inputs are expanded to (or extracted from) half-words.
1327 * Note that neon and sve2 get the inputs from different positions.
1328 * This allows 4 bytes to be processed in parallel with uint64_t.
1331 static uint64_t expand_byte_to_half(uint64_t x)
1333 return (x & 0x000000ff)
1334 | ((x & 0x0000ff00) << 8)
1335 | ((x & 0x00ff0000) << 16)
1336 | ((x & 0xff000000) << 24);
1339 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1341 uint64_t result = 0;
1342 int i;
1344 for (i = 0; i < 8; ++i) {
1345 uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1346 result ^= op2 & mask;
1347 op1 >>= 1;
1348 op2 <<= 1;
1350 return result;
1353 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1355 int hi = simd_data(desc);
1356 uint64_t *d = vd, *n = vn, *m = vm;
1357 uint64_t nn = n[hi], mm = m[hi];
1359 d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1360 nn >>= 32;
1361 mm >>= 32;
1362 d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1364 clear_tail(d, 16, simd_maxsz(desc));
1367 #ifdef TARGET_AARCH64
1368 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1370 int shift = simd_data(desc) * 8;
1371 intptr_t i, opr_sz = simd_oprsz(desc);
1372 uint64_t *d = vd, *n = vn, *m = vm;
1374 for (i = 0; i < opr_sz / 8; ++i) {
1375 uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1376 uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1378 d[i] = pmull_h(nn, mm);
1381 #endif
1383 #define DO_CMP0(NAME, TYPE, OP) \
1384 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1386 intptr_t i, opr_sz = simd_oprsz(desc); \
1387 for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
1388 TYPE nn = *(TYPE *)(vn + i); \
1389 *(TYPE *)(vd + i) = -(nn OP 0); \
1391 clear_tail(vd, opr_sz, simd_maxsz(desc)); \
1394 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1395 DO_CMP0(gvec_clt0_b, int8_t, <)
1396 DO_CMP0(gvec_cle0_b, int8_t, <=)
1397 DO_CMP0(gvec_cgt0_b, int8_t, >)
1398 DO_CMP0(gvec_cge0_b, int8_t, >=)
1400 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1401 DO_CMP0(gvec_clt0_h, int16_t, <)
1402 DO_CMP0(gvec_cle0_h, int16_t, <=)
1403 DO_CMP0(gvec_cgt0_h, int16_t, >)
1404 DO_CMP0(gvec_cge0_h, int16_t, >=)
1406 #undef DO_CMP0
1408 #define DO_ABD(NAME, TYPE) \
1409 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1411 intptr_t i, opr_sz = simd_oprsz(desc); \
1412 TYPE *d = vd, *n = vn, *m = vm; \
1414 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1415 d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1417 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1420 DO_ABD(gvec_sabd_b, int8_t)
1421 DO_ABD(gvec_sabd_h, int16_t)
1422 DO_ABD(gvec_sabd_s, int32_t)
1423 DO_ABD(gvec_sabd_d, int64_t)
1425 DO_ABD(gvec_uabd_b, uint8_t)
1426 DO_ABD(gvec_uabd_h, uint16_t)
1427 DO_ABD(gvec_uabd_s, uint32_t)
1428 DO_ABD(gvec_uabd_d, uint64_t)
1430 #undef DO_ABD
1432 #define DO_ABA(NAME, TYPE) \
1433 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1435 intptr_t i, opr_sz = simd_oprsz(desc); \
1436 TYPE *d = vd, *n = vn, *m = vm; \
1438 for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
1439 d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
1441 clear_tail(d, opr_sz, simd_maxsz(desc)); \
1444 DO_ABA(gvec_saba_b, int8_t)
1445 DO_ABA(gvec_saba_h, int16_t)
1446 DO_ABA(gvec_saba_s, int32_t)
1447 DO_ABA(gvec_saba_d, int64_t)
1449 DO_ABA(gvec_uaba_b, uint8_t)
1450 DO_ABA(gvec_uaba_h, uint16_t)
1451 DO_ABA(gvec_uaba_s, uint32_t)
1452 DO_ABA(gvec_uaba_d, uint64_t)
1454 #undef DO_ABA