hw/sd/pl181: Replace fprintf(stderr, "*\n") with error_report()
[qemu/ar7.git] / target / arm / cpu.c
blob111579554fb944556373a7f06e26d330c7fa295e
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
73 static bool arm_cpu_has_work(CPUState *cs)
75 ARMCPU *cpu = ARM_CPU(cs);
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
89 entry->hook = hook;
90 entry->opaque = opaque;
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
100 entry->hook = hook;
101 entry->opaque = opaque;
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
126 if (!ri->fieldoffset) {
127 return;
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
158 static void arm_cpu_reset(DeviceState *dev)
160 CPUState *s = CPU(dev);
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
165 acc->parent_reset(dev);
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* and to the FP/Neon instructions */
195 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196 /* and to the SVE instructions */
197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198 /* with reasonable vector length */
199 if (cpu_isar_feature(aa64_sve, cpu)) {
200 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
207 * In sve_probe_page, we assume that this is set.
208 * Do not modify this without other changes.
210 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
211 #else
212 /* Reset into the highest available EL */
213 if (arm_feature(env, ARM_FEATURE_EL3)) {
214 env->pstate = PSTATE_MODE_EL3h;
215 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
216 env->pstate = PSTATE_MODE_EL2h;
217 } else {
218 env->pstate = PSTATE_MODE_EL1h;
220 env->pc = cpu->rvbar;
221 #endif
222 } else {
223 #if defined(CONFIG_USER_ONLY)
224 /* Userspace expects access to cp10 and cp11 for FP/Neon */
225 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
226 #endif
229 #if defined(CONFIG_USER_ONLY)
230 env->uncached_cpsr = ARM_CPU_MODE_USR;
231 /* For user mode we must enable access to coprocessors */
232 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
233 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234 env->cp15.c15_cpar = 3;
235 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
236 env->cp15.c15_cpar = 1;
238 #else
241 * If the highest available EL is EL2, AArch32 will start in Hyp
242 * mode; otherwise it starts in SVC. Note that if we start in
243 * AArch64 then these values in the uncached_cpsr will be ignored.
245 if (arm_feature(env, ARM_FEATURE_EL2) &&
246 !arm_feature(env, ARM_FEATURE_EL3)) {
247 env->uncached_cpsr = ARM_CPU_MODE_HYP;
248 } else {
249 env->uncached_cpsr = ARM_CPU_MODE_SVC;
251 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
253 if (arm_feature(env, ARM_FEATURE_M)) {
254 uint32_t initial_msp; /* Loaded from 0x0 */
255 uint32_t initial_pc; /* Loaded from 0x4 */
256 uint8_t *rom;
257 uint32_t vecbase;
259 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
260 env->v7m.secure = true;
261 } else {
262 /* This bit resets to 0 if security is supported, but 1 if
263 * it is not. The bit is not present in v7M, but we set it
264 * here so we can avoid having to make checks on it conditional
265 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
267 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269 * Set NSACR to indicate "NS access permitted to everything";
270 * this avoids having to have all the tests of it being
271 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
272 * v8.1M the guest-visible value of NSACR in a CPU without the
273 * Security Extension is 0xcff.
275 env->v7m.nsacr = 0xcff;
278 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
279 * that it resets to 1, so QEMU always does that rather than making
280 * it dependent on CPU model. In v8M it is RES1.
282 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
283 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
284 if (arm_feature(env, ARM_FEATURE_V8)) {
285 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
286 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
287 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
290 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
291 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
295 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
296 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
297 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
299 /* Unlike A/R profile, M profile defines the reset LR value */
300 env->regs[14] = 0xffffffff;
302 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
304 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
305 vecbase = env->v7m.vecbase[env->v7m.secure];
306 rom = rom_ptr(vecbase, 8);
307 if (rom) {
308 /* Address zero is covered by ROM which hasn't yet been
309 * copied into physical memory.
311 initial_msp = ldl_p(rom);
312 initial_pc = ldl_p(rom + 4);
313 } else {
314 /* Address zero not covered by a ROM blob, or the ROM blob
315 * is in non-modifiable memory and this is a second reset after
316 * it got copied into memory. In the latter case, rom_ptr
317 * will return a NULL pointer and we should use ldl_phys instead.
319 initial_msp = ldl_phys(s->as, vecbase);
320 initial_pc = ldl_phys(s->as, vecbase + 4);
323 env->regs[13] = initial_msp & 0xFFFFFFFC;
324 env->regs[15] = initial_pc & ~1;
325 env->thumb = initial_pc & 1;
328 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
329 * executing as AArch32 then check if highvecs are enabled and
330 * adjust the PC accordingly.
332 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
333 env->regs[15] = 0xFFFF0000;
336 /* M profile requires that reset clears the exclusive monitor;
337 * A profile does not, but clearing it makes more sense than having it
338 * set with an exclusive access on address zero.
340 arm_clear_exclusive(env);
342 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
343 #endif
345 if (arm_feature(env, ARM_FEATURE_PMSA)) {
346 if (cpu->pmsav7_dregion > 0) {
347 if (arm_feature(env, ARM_FEATURE_V8)) {
348 memset(env->pmsav8.rbar[M_REG_NS], 0,
349 sizeof(*env->pmsav8.rbar[M_REG_NS])
350 * cpu->pmsav7_dregion);
351 memset(env->pmsav8.rlar[M_REG_NS], 0,
352 sizeof(*env->pmsav8.rlar[M_REG_NS])
353 * cpu->pmsav7_dregion);
354 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
355 memset(env->pmsav8.rbar[M_REG_S], 0,
356 sizeof(*env->pmsav8.rbar[M_REG_S])
357 * cpu->pmsav7_dregion);
358 memset(env->pmsav8.rlar[M_REG_S], 0,
359 sizeof(*env->pmsav8.rlar[M_REG_S])
360 * cpu->pmsav7_dregion);
362 } else if (arm_feature(env, ARM_FEATURE_V7)) {
363 memset(env->pmsav7.drbar, 0,
364 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
365 memset(env->pmsav7.drsr, 0,
366 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
367 memset(env->pmsav7.dracr, 0,
368 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371 env->pmsav7.rnr[M_REG_NS] = 0;
372 env->pmsav7.rnr[M_REG_S] = 0;
373 env->pmsav8.mair0[M_REG_NS] = 0;
374 env->pmsav8.mair0[M_REG_S] = 0;
375 env->pmsav8.mair1[M_REG_NS] = 0;
376 env->pmsav8.mair1[M_REG_S] = 0;
379 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
380 if (cpu->sau_sregion > 0) {
381 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
382 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
384 env->sau.rnr = 0;
385 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
386 * the Cortex-M33 does.
388 env->sau.ctrl = 0;
391 set_flush_to_zero(1, &env->vfp.standard_fp_status);
392 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
393 set_default_nan_mode(1, &env->vfp.standard_fp_status);
394 set_float_detect_tininess(float_tininess_before_rounding,
395 &env->vfp.fp_status);
396 set_float_detect_tininess(float_tininess_before_rounding,
397 &env->vfp.standard_fp_status);
398 set_float_detect_tininess(float_tininess_before_rounding,
399 &env->vfp.fp_status_f16);
400 #ifndef CONFIG_USER_ONLY
401 if (kvm_enabled()) {
402 kvm_arm_reset_vcpu(cpu);
404 #endif
406 hw_breakpoint_update_all(cpu);
407 hw_watchpoint_update_all(cpu);
408 arm_rebuild_hflags(env);
411 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
412 unsigned int target_el,
413 unsigned int cur_el, bool secure,
414 uint64_t hcr_el2)
416 CPUARMState *env = cs->env_ptr;
417 bool pstate_unmasked;
418 bool unmasked = false;
421 * Don't take exceptions if they target a lower EL.
422 * This check should catch any exceptions that would not be taken
423 * but left pending.
425 if (cur_el > target_el) {
426 return false;
429 switch (excp_idx) {
430 case EXCP_FIQ:
431 pstate_unmasked = !(env->daif & PSTATE_F);
432 break;
434 case EXCP_IRQ:
435 pstate_unmasked = !(env->daif & PSTATE_I);
436 break;
438 case EXCP_VFIQ:
439 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
440 /* VFIQs are only taken when hypervized and non-secure. */
441 return false;
443 return !(env->daif & PSTATE_F);
444 case EXCP_VIRQ:
445 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
446 /* VIRQs are only taken when hypervized and non-secure. */
447 return false;
449 return !(env->daif & PSTATE_I);
450 default:
451 g_assert_not_reached();
455 * Use the target EL, current execution state and SCR/HCR settings to
456 * determine whether the corresponding CPSR bit is used to mask the
457 * interrupt.
459 if ((target_el > cur_el) && (target_el != 1)) {
460 /* Exceptions targeting a higher EL may not be maskable */
461 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
463 * 64-bit masking rules are simple: exceptions to EL3
464 * can't be masked, and exceptions to EL2 can only be
465 * masked from Secure state. The HCR and SCR settings
466 * don't affect the masking logic, only the interrupt routing.
468 if (target_el == 3 || !secure) {
469 unmasked = true;
471 } else {
473 * The old 32-bit-only environment has a more complicated
474 * masking setup. HCR and SCR bits not only affect interrupt
475 * routing but also change the behaviour of masking.
477 bool hcr, scr;
479 switch (excp_idx) {
480 case EXCP_FIQ:
482 * If FIQs are routed to EL3 or EL2 then there are cases where
483 * we override the CPSR.F in determining if the exception is
484 * masked or not. If neither of these are set then we fall back
485 * to the CPSR.F setting otherwise we further assess the state
486 * below.
488 hcr = hcr_el2 & HCR_FMO;
489 scr = (env->cp15.scr_el3 & SCR_FIQ);
492 * When EL3 is 32-bit, the SCR.FW bit controls whether the
493 * CPSR.F bit masks FIQ interrupts when taken in non-secure
494 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
495 * when non-secure but only when FIQs are only routed to EL3.
497 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
498 break;
499 case EXCP_IRQ:
501 * When EL3 execution state is 32-bit, if HCR.IMO is set then
502 * we may override the CPSR.I masking when in non-secure state.
503 * The SCR.IRQ setting has already been taken into consideration
504 * when setting the target EL, so it does not have a further
505 * affect here.
507 hcr = hcr_el2 & HCR_IMO;
508 scr = false;
509 break;
510 default:
511 g_assert_not_reached();
514 if ((scr || hcr) && !secure) {
515 unmasked = true;
521 * The PSTATE bits only mask the interrupt if we have not overriden the
522 * ability above.
524 return unmasked || pstate_unmasked;
527 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
529 CPUClass *cc = CPU_GET_CLASS(cs);
530 CPUARMState *env = cs->env_ptr;
531 uint32_t cur_el = arm_current_el(env);
532 bool secure = arm_is_secure(env);
533 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
534 uint32_t target_el;
535 uint32_t excp_idx;
537 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
539 if (interrupt_request & CPU_INTERRUPT_FIQ) {
540 excp_idx = EXCP_FIQ;
541 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
542 if (arm_excp_unmasked(cs, excp_idx, target_el,
543 cur_el, secure, hcr_el2)) {
544 goto found;
547 if (interrupt_request & CPU_INTERRUPT_HARD) {
548 excp_idx = EXCP_IRQ;
549 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
550 if (arm_excp_unmasked(cs, excp_idx, target_el,
551 cur_el, secure, hcr_el2)) {
552 goto found;
555 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
556 excp_idx = EXCP_VIRQ;
557 target_el = 1;
558 if (arm_excp_unmasked(cs, excp_idx, target_el,
559 cur_el, secure, hcr_el2)) {
560 goto found;
563 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
564 excp_idx = EXCP_VFIQ;
565 target_el = 1;
566 if (arm_excp_unmasked(cs, excp_idx, target_el,
567 cur_el, secure, hcr_el2)) {
568 goto found;
571 return false;
573 found:
574 cs->exception_index = excp_idx;
575 env->exception.target_el = target_el;
576 cc->do_interrupt(cs);
577 return true;
580 void arm_cpu_update_virq(ARMCPU *cpu)
583 * Update the interrupt level for VIRQ, which is the logical OR of
584 * the HCR_EL2.VI bit and the input line level from the GIC.
586 CPUARMState *env = &cpu->env;
587 CPUState *cs = CPU(cpu);
589 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
590 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
592 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
593 if (new_state) {
594 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
595 } else {
596 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
601 void arm_cpu_update_vfiq(ARMCPU *cpu)
604 * Update the interrupt level for VFIQ, which is the logical OR of
605 * the HCR_EL2.VF bit and the input line level from the GIC.
607 CPUARMState *env = &cpu->env;
608 CPUState *cs = CPU(cpu);
610 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
611 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
613 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
614 if (new_state) {
615 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
616 } else {
617 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
622 #ifndef CONFIG_USER_ONLY
623 static void arm_cpu_set_irq(void *opaque, int irq, int level)
625 ARMCPU *cpu = opaque;
626 CPUARMState *env = &cpu->env;
627 CPUState *cs = CPU(cpu);
628 static const int mask[] = {
629 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
630 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
631 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
632 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
635 if (level) {
636 env->irq_line_state |= mask[irq];
637 } else {
638 env->irq_line_state &= ~mask[irq];
641 switch (irq) {
642 case ARM_CPU_VIRQ:
643 assert(arm_feature(env, ARM_FEATURE_EL2));
644 arm_cpu_update_virq(cpu);
645 break;
646 case ARM_CPU_VFIQ:
647 assert(arm_feature(env, ARM_FEATURE_EL2));
648 arm_cpu_update_vfiq(cpu);
649 break;
650 case ARM_CPU_IRQ:
651 case ARM_CPU_FIQ:
652 if (level) {
653 cpu_interrupt(cs, mask[irq]);
654 } else {
655 cpu_reset_interrupt(cs, mask[irq]);
657 break;
658 default:
659 g_assert_not_reached();
663 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
665 #ifdef CONFIG_KVM
666 ARMCPU *cpu = opaque;
667 CPUARMState *env = &cpu->env;
668 CPUState *cs = CPU(cpu);
669 uint32_t linestate_bit;
670 int irq_id;
672 switch (irq) {
673 case ARM_CPU_IRQ:
674 irq_id = KVM_ARM_IRQ_CPU_IRQ;
675 linestate_bit = CPU_INTERRUPT_HARD;
676 break;
677 case ARM_CPU_FIQ:
678 irq_id = KVM_ARM_IRQ_CPU_FIQ;
679 linestate_bit = CPU_INTERRUPT_FIQ;
680 break;
681 default:
682 g_assert_not_reached();
685 if (level) {
686 env->irq_line_state |= linestate_bit;
687 } else {
688 env->irq_line_state &= ~linestate_bit;
690 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
691 #endif
694 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
696 ARMCPU *cpu = ARM_CPU(cs);
697 CPUARMState *env = &cpu->env;
699 cpu_synchronize_state(cs);
700 return arm_cpu_data_is_big_endian(env);
703 #endif
705 static int
706 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
708 return print_insn_arm(pc | 1, info);
711 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
713 ARMCPU *ac = ARM_CPU(cpu);
714 CPUARMState *env = &ac->env;
715 bool sctlr_b;
717 if (is_a64(env)) {
718 /* We might not be compiled with the A64 disassembler
719 * because it needs a C++ compiler. Leave print_insn
720 * unset in this case to use the caller default behaviour.
722 #if defined(CONFIG_ARM_A64_DIS)
723 info->print_insn = print_insn_arm_a64;
724 #endif
725 info->cap_arch = CS_ARCH_ARM64;
726 info->cap_insn_unit = 4;
727 info->cap_insn_split = 4;
728 } else {
729 int cap_mode;
730 if (env->thumb) {
731 info->print_insn = print_insn_thumb1;
732 info->cap_insn_unit = 2;
733 info->cap_insn_split = 4;
734 cap_mode = CS_MODE_THUMB;
735 } else {
736 info->print_insn = print_insn_arm;
737 info->cap_insn_unit = 4;
738 info->cap_insn_split = 4;
739 cap_mode = CS_MODE_ARM;
741 if (arm_feature(env, ARM_FEATURE_V8)) {
742 cap_mode |= CS_MODE_V8;
744 if (arm_feature(env, ARM_FEATURE_M)) {
745 cap_mode |= CS_MODE_MCLASS;
747 info->cap_arch = CS_ARCH_ARM;
748 info->cap_mode = cap_mode;
751 sctlr_b = arm_sctlr_b(env);
752 if (bswap_code(sctlr_b)) {
753 #ifdef TARGET_WORDS_BIGENDIAN
754 info->endian = BFD_ENDIAN_LITTLE;
755 #else
756 info->endian = BFD_ENDIAN_BIG;
757 #endif
759 info->flags &= ~INSN_ARM_BE32;
760 #ifndef CONFIG_USER_ONLY
761 if (sctlr_b) {
762 info->flags |= INSN_ARM_BE32;
764 #endif
767 #ifdef TARGET_AARCH64
769 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
771 ARMCPU *cpu = ARM_CPU(cs);
772 CPUARMState *env = &cpu->env;
773 uint32_t psr = pstate_read(env);
774 int i;
775 int el = arm_current_el(env);
776 const char *ns_status;
778 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
779 for (i = 0; i < 32; i++) {
780 if (i == 31) {
781 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
782 } else {
783 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
784 (i + 2) % 3 ? " " : "\n");
788 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
789 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
790 } else {
791 ns_status = "";
793 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
794 psr,
795 psr & PSTATE_N ? 'N' : '-',
796 psr & PSTATE_Z ? 'Z' : '-',
797 psr & PSTATE_C ? 'C' : '-',
798 psr & PSTATE_V ? 'V' : '-',
799 ns_status,
801 psr & PSTATE_SP ? 'h' : 't');
803 if (cpu_isar_feature(aa64_bti, cpu)) {
804 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
806 if (!(flags & CPU_DUMP_FPU)) {
807 qemu_fprintf(f, "\n");
808 return;
810 if (fp_exception_el(env, el) != 0) {
811 qemu_fprintf(f, " FPU disabled\n");
812 return;
814 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
815 vfp_get_fpcr(env), vfp_get_fpsr(env));
817 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
818 int j, zcr_len = sve_zcr_len_for_el(env, el);
820 for (i = 0; i <= FFR_PRED_NUM; i++) {
821 bool eol;
822 if (i == FFR_PRED_NUM) {
823 qemu_fprintf(f, "FFR=");
824 /* It's last, so end the line. */
825 eol = true;
826 } else {
827 qemu_fprintf(f, "P%02d=", i);
828 switch (zcr_len) {
829 case 0:
830 eol = i % 8 == 7;
831 break;
832 case 1:
833 eol = i % 6 == 5;
834 break;
835 case 2:
836 case 3:
837 eol = i % 3 == 2;
838 break;
839 default:
840 /* More than one quadword per predicate. */
841 eol = true;
842 break;
845 for (j = zcr_len / 4; j >= 0; j--) {
846 int digits;
847 if (j * 4 + 4 <= zcr_len + 1) {
848 digits = 16;
849 } else {
850 digits = (zcr_len % 4 + 1) * 4;
852 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
853 env->vfp.pregs[i].p[j],
854 j ? ":" : eol ? "\n" : " ");
858 for (i = 0; i < 32; i++) {
859 if (zcr_len == 0) {
860 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
861 i, env->vfp.zregs[i].d[1],
862 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
863 } else if (zcr_len == 1) {
864 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
865 ":%016" PRIx64 ":%016" PRIx64 "\n",
866 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
867 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
868 } else {
869 for (j = zcr_len; j >= 0; j--) {
870 bool odd = (zcr_len - j) % 2 != 0;
871 if (j == zcr_len) {
872 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
873 } else if (!odd) {
874 if (j > 0) {
875 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
876 } else {
877 qemu_fprintf(f, " [%x]=", j);
880 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
881 env->vfp.zregs[i].d[j * 2 + 1],
882 env->vfp.zregs[i].d[j * 2],
883 odd || j == 0 ? "\n" : ":");
887 } else {
888 for (i = 0; i < 32; i++) {
889 uint64_t *q = aa64_vfp_qreg(env, i);
890 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
891 i, q[1], q[0], (i & 1 ? "\n" : " "));
896 #else
898 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
900 g_assert_not_reached();
903 #endif
905 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
907 ARMCPU *cpu = ARM_CPU(cs);
908 CPUARMState *env = &cpu->env;
909 int i;
911 if (is_a64(env)) {
912 aarch64_cpu_dump_state(cs, f, flags);
913 return;
916 for (i = 0; i < 16; i++) {
917 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
918 if ((i % 4) == 3) {
919 qemu_fprintf(f, "\n");
920 } else {
921 qemu_fprintf(f, " ");
925 if (arm_feature(env, ARM_FEATURE_M)) {
926 uint32_t xpsr = xpsr_read(env);
927 const char *mode;
928 const char *ns_status = "";
930 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
931 ns_status = env->v7m.secure ? "S " : "NS ";
934 if (xpsr & XPSR_EXCP) {
935 mode = "handler";
936 } else {
937 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
938 mode = "unpriv-thread";
939 } else {
940 mode = "priv-thread";
944 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
945 xpsr,
946 xpsr & XPSR_N ? 'N' : '-',
947 xpsr & XPSR_Z ? 'Z' : '-',
948 xpsr & XPSR_C ? 'C' : '-',
949 xpsr & XPSR_V ? 'V' : '-',
950 xpsr & XPSR_T ? 'T' : 'A',
951 ns_status,
952 mode);
953 } else {
954 uint32_t psr = cpsr_read(env);
955 const char *ns_status = "";
957 if (arm_feature(env, ARM_FEATURE_EL3) &&
958 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
959 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
962 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
963 psr,
964 psr & CPSR_N ? 'N' : '-',
965 psr & CPSR_Z ? 'Z' : '-',
966 psr & CPSR_C ? 'C' : '-',
967 psr & CPSR_V ? 'V' : '-',
968 psr & CPSR_T ? 'T' : 'A',
969 ns_status,
970 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
973 if (flags & CPU_DUMP_FPU) {
974 int numvfpregs = 0;
975 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
976 numvfpregs = 32;
977 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
978 numvfpregs = 16;
980 for (i = 0; i < numvfpregs; i++) {
981 uint64_t v = *aa32_vfp_dreg(env, i);
982 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
983 i * 2, (uint32_t)v,
984 i * 2 + 1, (uint32_t)(v >> 32),
985 i, v);
987 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
991 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
993 uint32_t Aff1 = idx / clustersz;
994 uint32_t Aff0 = idx % clustersz;
995 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
998 static void cpreg_hashtable_data_destroy(gpointer data)
1001 * Destroy function for cpu->cp_regs hashtable data entries.
1002 * We must free the name string because it was g_strdup()ed in
1003 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1004 * from r->name because we know we definitely allocated it.
1006 ARMCPRegInfo *r = data;
1008 g_free((void *)r->name);
1009 g_free(r);
1012 static void arm_cpu_initfn(Object *obj)
1014 ARMCPU *cpu = ARM_CPU(obj);
1016 cpu_set_cpustate_pointers(cpu);
1017 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1018 g_free, cpreg_hashtable_data_destroy);
1020 QLIST_INIT(&cpu->pre_el_change_hooks);
1021 QLIST_INIT(&cpu->el_change_hooks);
1023 #ifndef CONFIG_USER_ONLY
1024 /* Our inbound IRQ and FIQ lines */
1025 if (kvm_enabled()) {
1026 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1027 * the same interface as non-KVM CPUs.
1029 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1030 } else {
1031 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1034 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1035 ARRAY_SIZE(cpu->gt_timer_outputs));
1037 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1038 "gicv3-maintenance-interrupt", 1);
1039 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1040 "pmu-interrupt", 1);
1041 #endif
1043 /* DTB consumers generally don't in fact care what the 'compatible'
1044 * string is, so always provide some string and trust that a hypothetical
1045 * picky DTB consumer will also provide a helpful error message.
1047 cpu->dtb_compatible = "qemu,unknown";
1048 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1049 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1051 if (tcg_enabled()) {
1052 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1056 static Property arm_cpu_gt_cntfrq_property =
1057 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1058 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1060 static Property arm_cpu_reset_cbar_property =
1061 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1063 static Property arm_cpu_reset_hivecs_property =
1064 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1066 static Property arm_cpu_rvbar_property =
1067 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1069 #ifndef CONFIG_USER_ONLY
1070 static Property arm_cpu_has_el2_property =
1071 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1073 static Property arm_cpu_has_el3_property =
1074 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1075 #endif
1077 static Property arm_cpu_cfgend_property =
1078 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1080 static Property arm_cpu_has_vfp_property =
1081 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1083 static Property arm_cpu_has_neon_property =
1084 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1086 static Property arm_cpu_has_dsp_property =
1087 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1089 static Property arm_cpu_has_mpu_property =
1090 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1092 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1093 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1094 * the right value for that particular CPU type, and we don't want
1095 * to override that with an incorrect constant value.
1097 static Property arm_cpu_pmsav7_dregion_property =
1098 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1099 pmsav7_dregion,
1100 qdev_prop_uint32, uint32_t);
1102 static bool arm_get_pmu(Object *obj, Error **errp)
1104 ARMCPU *cpu = ARM_CPU(obj);
1106 return cpu->has_pmu;
1109 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1111 ARMCPU *cpu = ARM_CPU(obj);
1113 if (value) {
1114 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1115 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1116 return;
1118 set_feature(&cpu->env, ARM_FEATURE_PMU);
1119 } else {
1120 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1122 cpu->has_pmu = value;
1125 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1128 * The exact approach to calculating guest ticks is:
1130 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1131 * NANOSECONDS_PER_SECOND);
1133 * We don't do that. Rather we intentionally use integer division
1134 * truncation below and in the caller for the conversion of host monotonic
1135 * time to guest ticks to provide the exact inverse for the semantics of
1136 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1137 * it loses precision when representing frequencies where
1138 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1139 * provide an exact inverse leads to scheduling timers with negative
1140 * periods, which in turn leads to sticky behaviour in the guest.
1142 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1143 * cannot become zero.
1145 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1146 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1149 void arm_cpu_post_init(Object *obj)
1151 ARMCPU *cpu = ARM_CPU(obj);
1153 /* M profile implies PMSA. We have to do this here rather than
1154 * in realize with the other feature-implication checks because
1155 * we look at the PMSA bit to see if we should add some properties.
1157 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1158 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1161 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1162 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1163 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1166 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1167 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1170 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1171 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1174 #ifndef CONFIG_USER_ONLY
1175 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1176 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1177 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1179 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1181 object_property_add_link(obj, "secure-memory",
1182 TYPE_MEMORY_REGION,
1183 (Object **)&cpu->secure_memory,
1184 qdev_prop_allow_set_link_before_realize,
1185 OBJ_PROP_LINK_STRONG);
1188 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1189 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1191 #endif
1193 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1194 cpu->has_pmu = true;
1195 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1199 * Allow user to turn off VFP and Neon support, but only for TCG --
1200 * KVM does not currently allow us to lie to the guest about its
1201 * ID/feature registers, so the guest always sees what the host has.
1203 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1204 ? cpu_isar_feature(aa64_fp_simd, cpu)
1205 : cpu_isar_feature(aa32_vfp, cpu)) {
1206 cpu->has_vfp = true;
1207 if (!kvm_enabled()) {
1208 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1212 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1213 cpu->has_neon = true;
1214 if (!kvm_enabled()) {
1215 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1219 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1220 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1221 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1224 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1225 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1226 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1227 qdev_property_add_static(DEVICE(obj),
1228 &arm_cpu_pmsav7_dregion_property);
1232 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1233 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1234 qdev_prop_allow_set_link_before_realize,
1235 OBJ_PROP_LINK_STRONG);
1237 * M profile: initial value of the Secure VTOR. We can't just use
1238 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1239 * the property to be set after realize.
1241 object_property_add_uint32_ptr(obj, "init-svtor",
1242 &cpu->init_svtor,
1243 OBJ_PROP_FLAG_READWRITE);
1246 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1248 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1249 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1252 if (kvm_enabled()) {
1253 kvm_arm_add_vcpu_properties(obj);
1256 #ifndef CONFIG_USER_ONLY
1257 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1258 cpu_isar_feature(aa64_mte, cpu)) {
1259 object_property_add_link(obj, "tag-memory",
1260 TYPE_MEMORY_REGION,
1261 (Object **)&cpu->tag_memory,
1262 qdev_prop_allow_set_link_before_realize,
1263 OBJ_PROP_LINK_STRONG);
1265 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1266 object_property_add_link(obj, "secure-tag-memory",
1267 TYPE_MEMORY_REGION,
1268 (Object **)&cpu->secure_tag_memory,
1269 qdev_prop_allow_set_link_before_realize,
1270 OBJ_PROP_LINK_STRONG);
1273 #endif
1276 static void arm_cpu_finalizefn(Object *obj)
1278 ARMCPU *cpu = ARM_CPU(obj);
1279 ARMELChangeHook *hook, *next;
1281 g_hash_table_destroy(cpu->cp_regs);
1283 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1284 QLIST_REMOVE(hook, node);
1285 g_free(hook);
1287 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1288 QLIST_REMOVE(hook, node);
1289 g_free(hook);
1291 #ifndef CONFIG_USER_ONLY
1292 if (cpu->pmu_timer) {
1293 timer_del(cpu->pmu_timer);
1294 timer_deinit(cpu->pmu_timer);
1295 timer_free(cpu->pmu_timer);
1297 #endif
1300 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1302 Error *local_err = NULL;
1304 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1305 arm_cpu_sve_finalize(cpu, &local_err);
1306 if (local_err != NULL) {
1307 error_propagate(errp, local_err);
1308 return;
1313 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1315 CPUState *cs = CPU(dev);
1316 ARMCPU *cpu = ARM_CPU(dev);
1317 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1318 CPUARMState *env = &cpu->env;
1319 int pagebits;
1320 Error *local_err = NULL;
1321 bool no_aa32 = false;
1323 /* If we needed to query the host kernel for the CPU features
1324 * then it's possible that might have failed in the initfn, but
1325 * this is the first point where we can report it.
1327 if (cpu->host_cpu_probe_failed) {
1328 if (!kvm_enabled()) {
1329 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1330 } else {
1331 error_setg(errp, "Failed to retrieve host CPU features");
1333 return;
1336 #ifndef CONFIG_USER_ONLY
1337 /* The NVIC and M-profile CPU are two halves of a single piece of
1338 * hardware; trying to use one without the other is a command line
1339 * error and will result in segfaults if not caught here.
1341 if (arm_feature(env, ARM_FEATURE_M)) {
1342 if (!env->nvic) {
1343 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1344 return;
1346 } else {
1347 if (env->nvic) {
1348 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1349 return;
1354 uint64_t scale;
1356 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1357 if (!cpu->gt_cntfrq_hz) {
1358 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1359 cpu->gt_cntfrq_hz);
1360 return;
1362 scale = gt_cntfrq_period_ns(cpu);
1363 } else {
1364 scale = GTIMER_SCALE;
1367 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1368 arm_gt_ptimer_cb, cpu);
1369 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1370 arm_gt_vtimer_cb, cpu);
1371 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1372 arm_gt_htimer_cb, cpu);
1373 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1374 arm_gt_stimer_cb, cpu);
1375 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1376 arm_gt_hvtimer_cb, cpu);
1378 #endif
1380 cpu_exec_realizefn(cs, &local_err);
1381 if (local_err != NULL) {
1382 error_propagate(errp, local_err);
1383 return;
1386 arm_cpu_finalize_features(cpu, &local_err);
1387 if (local_err != NULL) {
1388 error_propagate(errp, local_err);
1389 return;
1392 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1393 cpu->has_vfp != cpu->has_neon) {
1395 * This is an architectural requirement for AArch64; AArch32 is
1396 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1398 error_setg(errp,
1399 "AArch64 CPUs must have both VFP and Neon or neither");
1400 return;
1403 if (!cpu->has_vfp) {
1404 uint64_t t;
1405 uint32_t u;
1407 t = cpu->isar.id_aa64isar1;
1408 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1409 cpu->isar.id_aa64isar1 = t;
1411 t = cpu->isar.id_aa64pfr0;
1412 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1413 cpu->isar.id_aa64pfr0 = t;
1415 u = cpu->isar.id_isar6;
1416 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1417 cpu->isar.id_isar6 = u;
1419 u = cpu->isar.mvfr0;
1420 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1421 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1422 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1423 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1424 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1425 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1426 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1427 cpu->isar.mvfr0 = u;
1429 u = cpu->isar.mvfr1;
1430 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1431 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1432 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1433 cpu->isar.mvfr1 = u;
1435 u = cpu->isar.mvfr2;
1436 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1437 cpu->isar.mvfr2 = u;
1440 if (!cpu->has_neon) {
1441 uint64_t t;
1442 uint32_t u;
1444 unset_feature(env, ARM_FEATURE_NEON);
1446 t = cpu->isar.id_aa64isar0;
1447 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1448 cpu->isar.id_aa64isar0 = t;
1450 t = cpu->isar.id_aa64isar1;
1451 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1452 cpu->isar.id_aa64isar1 = t;
1454 t = cpu->isar.id_aa64pfr0;
1455 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1456 cpu->isar.id_aa64pfr0 = t;
1458 u = cpu->isar.id_isar5;
1459 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1460 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1461 cpu->isar.id_isar5 = u;
1463 u = cpu->isar.id_isar6;
1464 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1465 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1466 cpu->isar.id_isar6 = u;
1468 u = cpu->isar.mvfr1;
1469 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1470 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1471 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1472 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1473 cpu->isar.mvfr1 = u;
1475 u = cpu->isar.mvfr2;
1476 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1477 cpu->isar.mvfr2 = u;
1480 if (!cpu->has_neon && !cpu->has_vfp) {
1481 uint64_t t;
1482 uint32_t u;
1484 t = cpu->isar.id_aa64isar0;
1485 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1486 cpu->isar.id_aa64isar0 = t;
1488 t = cpu->isar.id_aa64isar1;
1489 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1490 cpu->isar.id_aa64isar1 = t;
1492 u = cpu->isar.mvfr0;
1493 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1494 cpu->isar.mvfr0 = u;
1496 /* Despite the name, this field covers both VFP and Neon */
1497 u = cpu->isar.mvfr1;
1498 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1499 cpu->isar.mvfr1 = u;
1502 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1503 uint32_t u;
1505 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1507 u = cpu->isar.id_isar1;
1508 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1509 cpu->isar.id_isar1 = u;
1511 u = cpu->isar.id_isar2;
1512 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1513 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1514 cpu->isar.id_isar2 = u;
1516 u = cpu->isar.id_isar3;
1517 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1518 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1519 cpu->isar.id_isar3 = u;
1522 /* Some features automatically imply others: */
1523 if (arm_feature(env, ARM_FEATURE_V8)) {
1524 if (arm_feature(env, ARM_FEATURE_M)) {
1525 set_feature(env, ARM_FEATURE_V7);
1526 } else {
1527 set_feature(env, ARM_FEATURE_V7VE);
1532 * There exist AArch64 cpus without AArch32 support. When KVM
1533 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1534 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1535 * As a general principle, we also do not make ID register
1536 * consistency checks anywhere unless using TCG, because only
1537 * for TCG would a consistency-check failure be a QEMU bug.
1539 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1540 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1543 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1544 /* v7 Virtualization Extensions. In real hardware this implies
1545 * EL2 and also the presence of the Security Extensions.
1546 * For QEMU, for backwards-compatibility we implement some
1547 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1548 * include the various other features that V7VE implies.
1549 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1550 * Security Extensions is ARM_FEATURE_EL3.
1552 assert(!tcg_enabled() || no_aa32 ||
1553 cpu_isar_feature(aa32_arm_div, cpu));
1554 set_feature(env, ARM_FEATURE_LPAE);
1555 set_feature(env, ARM_FEATURE_V7);
1557 if (arm_feature(env, ARM_FEATURE_V7)) {
1558 set_feature(env, ARM_FEATURE_VAPA);
1559 set_feature(env, ARM_FEATURE_THUMB2);
1560 set_feature(env, ARM_FEATURE_MPIDR);
1561 if (!arm_feature(env, ARM_FEATURE_M)) {
1562 set_feature(env, ARM_FEATURE_V6K);
1563 } else {
1564 set_feature(env, ARM_FEATURE_V6);
1567 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1568 * non-EL3 configs. This is needed by some legacy boards.
1570 set_feature(env, ARM_FEATURE_VBAR);
1572 if (arm_feature(env, ARM_FEATURE_V6K)) {
1573 set_feature(env, ARM_FEATURE_V6);
1574 set_feature(env, ARM_FEATURE_MVFR);
1576 if (arm_feature(env, ARM_FEATURE_V6)) {
1577 set_feature(env, ARM_FEATURE_V5);
1578 if (!arm_feature(env, ARM_FEATURE_M)) {
1579 assert(!tcg_enabled() || no_aa32 ||
1580 cpu_isar_feature(aa32_jazelle, cpu));
1581 set_feature(env, ARM_FEATURE_AUXCR);
1584 if (arm_feature(env, ARM_FEATURE_V5)) {
1585 set_feature(env, ARM_FEATURE_V4T);
1587 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1588 set_feature(env, ARM_FEATURE_V7MP);
1589 set_feature(env, ARM_FEATURE_PXN);
1591 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1592 set_feature(env, ARM_FEATURE_CBAR);
1594 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1595 !arm_feature(env, ARM_FEATURE_M)) {
1596 set_feature(env, ARM_FEATURE_THUMB_DSP);
1600 * We rely on no XScale CPU having VFP so we can use the same bits in the
1601 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1603 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1604 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1605 !arm_feature(env, ARM_FEATURE_XSCALE));
1607 if (arm_feature(env, ARM_FEATURE_V7) &&
1608 !arm_feature(env, ARM_FEATURE_M) &&
1609 !arm_feature(env, ARM_FEATURE_PMSA)) {
1610 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1611 * can use 4K pages.
1613 pagebits = 12;
1614 } else {
1615 /* For CPUs which might have tiny 1K pages, or which have an
1616 * MPU and might have small region sizes, stick with 1K pages.
1618 pagebits = 10;
1620 if (!set_preferred_target_page_bits(pagebits)) {
1621 /* This can only ever happen for hotplugging a CPU, or if
1622 * the board code incorrectly creates a CPU which it has
1623 * promised via minimum_page_size that it will not.
1625 error_setg(errp, "This CPU requires a smaller page size than the "
1626 "system is using");
1627 return;
1630 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1631 * We don't support setting cluster ID ([16..23]) (known as Aff2
1632 * in later ARM ARM versions), or any of the higher affinity level fields,
1633 * so these bits always RAZ.
1635 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1636 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1637 ARM_DEFAULT_CPUS_PER_CLUSTER);
1640 if (cpu->reset_hivecs) {
1641 cpu->reset_sctlr |= (1 << 13);
1644 if (cpu->cfgend) {
1645 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1646 cpu->reset_sctlr |= SCTLR_EE;
1647 } else {
1648 cpu->reset_sctlr |= SCTLR_B;
1652 if (!cpu->has_el3) {
1653 /* If the has_el3 CPU property is disabled then we need to disable the
1654 * feature.
1656 unset_feature(env, ARM_FEATURE_EL3);
1658 /* Disable the security extension feature bits in the processor feature
1659 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1661 cpu->id_pfr1 &= ~0xf0;
1662 cpu->isar.id_aa64pfr0 &= ~0xf000;
1665 if (!cpu->has_el2) {
1666 unset_feature(env, ARM_FEATURE_EL2);
1669 if (!cpu->has_pmu) {
1670 unset_feature(env, ARM_FEATURE_PMU);
1672 if (arm_feature(env, ARM_FEATURE_PMU)) {
1673 pmu_init(cpu);
1675 if (!kvm_enabled()) {
1676 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1677 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1680 #ifndef CONFIG_USER_ONLY
1681 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1682 cpu);
1683 #endif
1684 } else {
1685 cpu->isar.id_aa64dfr0 =
1686 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1687 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1688 cpu->pmceid0 = 0;
1689 cpu->pmceid1 = 0;
1692 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1693 /* Disable the hypervisor feature bits in the processor feature
1694 * registers if we don't have EL2. These are id_pfr1[15:12] and
1695 * id_aa64pfr0_el1[11:8].
1697 cpu->isar.id_aa64pfr0 &= ~0xf00;
1698 cpu->id_pfr1 &= ~0xf000;
1701 #ifndef CONFIG_USER_ONLY
1702 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1704 * Disable the MTE feature bits if we do not have tag-memory
1705 * provided by the machine.
1707 cpu->isar.id_aa64pfr1 =
1708 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1710 #endif
1712 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1713 * to false or by setting pmsav7-dregion to 0.
1715 if (!cpu->has_mpu) {
1716 cpu->pmsav7_dregion = 0;
1718 if (cpu->pmsav7_dregion == 0) {
1719 cpu->has_mpu = false;
1722 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1723 arm_feature(env, ARM_FEATURE_V7)) {
1724 uint32_t nr = cpu->pmsav7_dregion;
1726 if (nr > 0xff) {
1727 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1728 return;
1731 if (nr) {
1732 if (arm_feature(env, ARM_FEATURE_V8)) {
1733 /* PMSAv8 */
1734 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1735 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1736 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1737 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1738 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1740 } else {
1741 env->pmsav7.drbar = g_new0(uint32_t, nr);
1742 env->pmsav7.drsr = g_new0(uint32_t, nr);
1743 env->pmsav7.dracr = g_new0(uint32_t, nr);
1748 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1749 uint32_t nr = cpu->sau_sregion;
1751 if (nr > 0xff) {
1752 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1753 return;
1756 if (nr) {
1757 env->sau.rbar = g_new0(uint32_t, nr);
1758 env->sau.rlar = g_new0(uint32_t, nr);
1762 if (arm_feature(env, ARM_FEATURE_EL3)) {
1763 set_feature(env, ARM_FEATURE_VBAR);
1766 register_cp_regs_for_features(cpu);
1767 arm_cpu_register_gdb_regs_for_features(cpu);
1769 init_cpreg_list(cpu);
1771 #ifndef CONFIG_USER_ONLY
1772 MachineState *ms = MACHINE(qdev_get_machine());
1773 unsigned int smp_cpus = ms->smp.cpus;
1774 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1777 * We must set cs->num_ases to the final value before
1778 * the first call to cpu_address_space_init.
1780 if (cpu->tag_memory != NULL) {
1781 cs->num_ases = 3 + has_secure;
1782 } else {
1783 cs->num_ases = 1 + has_secure;
1786 if (has_secure) {
1787 if (!cpu->secure_memory) {
1788 cpu->secure_memory = cs->memory;
1790 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1791 cpu->secure_memory);
1794 if (cpu->tag_memory != NULL) {
1795 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1796 cpu->tag_memory);
1797 if (has_secure) {
1798 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1799 cpu->secure_tag_memory);
1803 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1805 /* No core_count specified, default to smp_cpus. */
1806 if (cpu->core_count == -1) {
1807 cpu->core_count = smp_cpus;
1809 #endif
1811 if (tcg_enabled()) {
1812 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1815 * We only support DCZ blocklen that fits on one page.
1817 * Architectually this is always true. However TARGET_PAGE_SIZE
1818 * is variable and, for compatibility with -machine virt-2.7,
1819 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1820 * But even then, while the largest architectural DCZ blocklen
1821 * is 2KiB, no cpu actually uses such a large blocklen.
1823 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1826 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1827 * both nibbles of each byte storing tag data may be written at once.
1828 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1830 if (cpu_isar_feature(aa64_mte, cpu)) {
1831 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1835 qemu_init_vcpu(cs);
1836 cpu_reset(cs);
1838 acc->parent_realize(dev, errp);
1841 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1843 ObjectClass *oc;
1844 char *typename;
1845 char **cpuname;
1846 const char *cpunamestr;
1848 cpuname = g_strsplit(cpu_model, ",", 1);
1849 cpunamestr = cpuname[0];
1850 #ifdef CONFIG_USER_ONLY
1851 /* For backwards compatibility usermode emulation allows "-cpu any",
1852 * which has the same semantics as "-cpu max".
1854 if (!strcmp(cpunamestr, "any")) {
1855 cpunamestr = "max";
1857 #endif
1858 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1859 oc = object_class_by_name(typename);
1860 g_strfreev(cpuname);
1861 g_free(typename);
1862 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1863 object_class_is_abstract(oc)) {
1864 return NULL;
1866 return oc;
1869 /* CPU models. These are not needed for the AArch64 linux-user build. */
1870 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1872 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1873 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1874 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1875 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1876 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1877 REGINFO_SENTINEL
1880 static void cortex_a8_initfn(Object *obj)
1882 ARMCPU *cpu = ARM_CPU(obj);
1884 cpu->dtb_compatible = "arm,cortex-a8";
1885 set_feature(&cpu->env, ARM_FEATURE_V7);
1886 set_feature(&cpu->env, ARM_FEATURE_NEON);
1887 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1888 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1889 set_feature(&cpu->env, ARM_FEATURE_EL3);
1890 cpu->midr = 0x410fc080;
1891 cpu->reset_fpsid = 0x410330c0;
1892 cpu->isar.mvfr0 = 0x11110222;
1893 cpu->isar.mvfr1 = 0x00011111;
1894 cpu->ctr = 0x82048004;
1895 cpu->reset_sctlr = 0x00c50078;
1896 cpu->id_pfr0 = 0x1031;
1897 cpu->id_pfr1 = 0x11;
1898 cpu->isar.id_dfr0 = 0x400;
1899 cpu->id_afr0 = 0;
1900 cpu->isar.id_mmfr0 = 0x31100003;
1901 cpu->isar.id_mmfr1 = 0x20000000;
1902 cpu->isar.id_mmfr2 = 0x01202000;
1903 cpu->isar.id_mmfr3 = 0x11;
1904 cpu->isar.id_isar0 = 0x00101111;
1905 cpu->isar.id_isar1 = 0x12112111;
1906 cpu->isar.id_isar2 = 0x21232031;
1907 cpu->isar.id_isar3 = 0x11112131;
1908 cpu->isar.id_isar4 = 0x00111142;
1909 cpu->isar.dbgdidr = 0x15141000;
1910 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1911 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1912 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1913 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1914 cpu->reset_auxcr = 2;
1915 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1918 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1919 /* power_control should be set to maximum latency. Again,
1920 * default to 0 and set by private hook
1922 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1923 .access = PL1_RW, .resetvalue = 0,
1924 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1925 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1926 .access = PL1_RW, .resetvalue = 0,
1927 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1928 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1929 .access = PL1_RW, .resetvalue = 0,
1930 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1931 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1932 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1933 /* TLB lockdown control */
1934 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1935 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1936 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1937 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1938 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1939 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1940 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1941 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1942 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1943 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1944 REGINFO_SENTINEL
1947 static void cortex_a9_initfn(Object *obj)
1949 ARMCPU *cpu = ARM_CPU(obj);
1951 cpu->dtb_compatible = "arm,cortex-a9";
1952 set_feature(&cpu->env, ARM_FEATURE_V7);
1953 set_feature(&cpu->env, ARM_FEATURE_NEON);
1954 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1955 set_feature(&cpu->env, ARM_FEATURE_EL3);
1956 /* Note that A9 supports the MP extensions even for
1957 * A9UP and single-core A9MP (which are both different
1958 * and valid configurations; we don't model A9UP).
1960 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1961 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1962 cpu->midr = 0x410fc090;
1963 cpu->reset_fpsid = 0x41033090;
1964 cpu->isar.mvfr0 = 0x11110222;
1965 cpu->isar.mvfr1 = 0x01111111;
1966 cpu->ctr = 0x80038003;
1967 cpu->reset_sctlr = 0x00c50078;
1968 cpu->id_pfr0 = 0x1031;
1969 cpu->id_pfr1 = 0x11;
1970 cpu->isar.id_dfr0 = 0x000;
1971 cpu->id_afr0 = 0;
1972 cpu->isar.id_mmfr0 = 0x00100103;
1973 cpu->isar.id_mmfr1 = 0x20000000;
1974 cpu->isar.id_mmfr2 = 0x01230000;
1975 cpu->isar.id_mmfr3 = 0x00002111;
1976 cpu->isar.id_isar0 = 0x00101111;
1977 cpu->isar.id_isar1 = 0x13112111;
1978 cpu->isar.id_isar2 = 0x21232041;
1979 cpu->isar.id_isar3 = 0x11112131;
1980 cpu->isar.id_isar4 = 0x00111142;
1981 cpu->isar.dbgdidr = 0x35141000;
1982 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1983 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1984 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1985 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1988 #ifndef CONFIG_USER_ONLY
1989 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1991 MachineState *ms = MACHINE(qdev_get_machine());
1993 /* Linux wants the number of processors from here.
1994 * Might as well set the interrupt-controller bit too.
1996 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
1998 #endif
2000 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2001 #ifndef CONFIG_USER_ONLY
2002 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2003 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2004 .writefn = arm_cp_write_ignore, },
2005 #endif
2006 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2008 REGINFO_SENTINEL
2011 static void cortex_a7_initfn(Object *obj)
2013 ARMCPU *cpu = ARM_CPU(obj);
2015 cpu->dtb_compatible = "arm,cortex-a7";
2016 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2017 set_feature(&cpu->env, ARM_FEATURE_NEON);
2018 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2019 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2020 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2021 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2022 set_feature(&cpu->env, ARM_FEATURE_EL2);
2023 set_feature(&cpu->env, ARM_FEATURE_EL3);
2024 set_feature(&cpu->env, ARM_FEATURE_PMU);
2025 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2026 cpu->midr = 0x410fc075;
2027 cpu->reset_fpsid = 0x41023075;
2028 cpu->isar.mvfr0 = 0x10110222;
2029 cpu->isar.mvfr1 = 0x11111111;
2030 cpu->ctr = 0x84448003;
2031 cpu->reset_sctlr = 0x00c50078;
2032 cpu->id_pfr0 = 0x00001131;
2033 cpu->id_pfr1 = 0x00011011;
2034 cpu->isar.id_dfr0 = 0x02010555;
2035 cpu->id_afr0 = 0x00000000;
2036 cpu->isar.id_mmfr0 = 0x10101105;
2037 cpu->isar.id_mmfr1 = 0x40000000;
2038 cpu->isar.id_mmfr2 = 0x01240000;
2039 cpu->isar.id_mmfr3 = 0x02102211;
2040 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2041 * table 4-41 gives 0x02101110, which includes the arm div insns.
2043 cpu->isar.id_isar0 = 0x02101110;
2044 cpu->isar.id_isar1 = 0x13112111;
2045 cpu->isar.id_isar2 = 0x21232041;
2046 cpu->isar.id_isar3 = 0x11112131;
2047 cpu->isar.id_isar4 = 0x10011142;
2048 cpu->isar.dbgdidr = 0x3515f005;
2049 cpu->clidr = 0x0a200023;
2050 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2051 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2052 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2053 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2056 static void cortex_a15_initfn(Object *obj)
2058 ARMCPU *cpu = ARM_CPU(obj);
2060 cpu->dtb_compatible = "arm,cortex-a15";
2061 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2062 set_feature(&cpu->env, ARM_FEATURE_NEON);
2063 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2064 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2065 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2066 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2067 set_feature(&cpu->env, ARM_FEATURE_EL2);
2068 set_feature(&cpu->env, ARM_FEATURE_EL3);
2069 set_feature(&cpu->env, ARM_FEATURE_PMU);
2070 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2071 cpu->midr = 0x412fc0f1;
2072 cpu->reset_fpsid = 0x410430f0;
2073 cpu->isar.mvfr0 = 0x10110222;
2074 cpu->isar.mvfr1 = 0x11111111;
2075 cpu->ctr = 0x8444c004;
2076 cpu->reset_sctlr = 0x00c50078;
2077 cpu->id_pfr0 = 0x00001131;
2078 cpu->id_pfr1 = 0x00011011;
2079 cpu->isar.id_dfr0 = 0x02010555;
2080 cpu->id_afr0 = 0x00000000;
2081 cpu->isar.id_mmfr0 = 0x10201105;
2082 cpu->isar.id_mmfr1 = 0x20000000;
2083 cpu->isar.id_mmfr2 = 0x01240000;
2084 cpu->isar.id_mmfr3 = 0x02102211;
2085 cpu->isar.id_isar0 = 0x02101110;
2086 cpu->isar.id_isar1 = 0x13112111;
2087 cpu->isar.id_isar2 = 0x21232041;
2088 cpu->isar.id_isar3 = 0x11112131;
2089 cpu->isar.id_isar4 = 0x10011142;
2090 cpu->isar.dbgdidr = 0x3515f021;
2091 cpu->clidr = 0x0a200023;
2092 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2093 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2094 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2095 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2098 #ifndef TARGET_AARCH64
2099 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2100 * otherwise, a CPU with as many features enabled as our emulation supports.
2101 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2102 * this only needs to handle 32 bits.
2104 static void arm_max_initfn(Object *obj)
2106 ARMCPU *cpu = ARM_CPU(obj);
2108 if (kvm_enabled()) {
2109 kvm_arm_set_cpu_features_from_host(cpu);
2110 } else {
2111 cortex_a15_initfn(obj);
2113 /* old-style VFP short-vector support */
2114 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2116 #ifdef CONFIG_USER_ONLY
2117 /* We don't set these in system emulation mode for the moment,
2118 * since we don't correctly set (all of) the ID registers to
2119 * advertise them.
2121 set_feature(&cpu->env, ARM_FEATURE_V8);
2123 uint32_t t;
2125 t = cpu->isar.id_isar5;
2126 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2127 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2128 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2129 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2130 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2131 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2132 cpu->isar.id_isar5 = t;
2134 t = cpu->isar.id_isar6;
2135 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2136 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2137 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2138 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2139 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2140 cpu->isar.id_isar6 = t;
2142 t = cpu->isar.mvfr1;
2143 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2144 cpu->isar.mvfr1 = t;
2146 t = cpu->isar.mvfr2;
2147 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2148 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2149 cpu->isar.mvfr2 = t;
2151 t = cpu->isar.id_mmfr3;
2152 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2153 cpu->isar.id_mmfr3 = t;
2155 t = cpu->isar.id_mmfr4;
2156 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2157 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2158 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2159 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2160 cpu->isar.id_mmfr4 = t;
2162 #endif
2165 #endif
2167 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2169 static const ARMCPUInfo arm_cpus[] = {
2170 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2171 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2172 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2173 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2174 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2175 #ifndef TARGET_AARCH64
2176 { .name = "max", .initfn = arm_max_initfn },
2177 #endif
2178 #ifdef CONFIG_USER_ONLY
2179 { .name = "any", .initfn = arm_max_initfn },
2180 #endif
2181 #endif
2184 static Property arm_cpu_properties[] = {
2185 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2186 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2187 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2188 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2189 mp_affinity, ARM64_AFFINITY_INVALID),
2190 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2191 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2192 DEFINE_PROP_END_OF_LIST()
2195 static gchar *arm_gdb_arch_name(CPUState *cs)
2197 ARMCPU *cpu = ARM_CPU(cs);
2198 CPUARMState *env = &cpu->env;
2200 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2201 return g_strdup("iwmmxt");
2203 return g_strdup("arm");
2206 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2208 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2209 CPUClass *cc = CPU_CLASS(acc);
2210 DeviceClass *dc = DEVICE_CLASS(oc);
2212 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2213 &acc->parent_realize);
2215 device_class_set_props(dc, arm_cpu_properties);
2216 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2218 cc->class_by_name = arm_cpu_class_by_name;
2219 cc->has_work = arm_cpu_has_work;
2220 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2221 cc->dump_state = arm_cpu_dump_state;
2222 cc->set_pc = arm_cpu_set_pc;
2223 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2224 cc->gdb_read_register = arm_cpu_gdb_read_register;
2225 cc->gdb_write_register = arm_cpu_gdb_write_register;
2226 #ifndef CONFIG_USER_ONLY
2227 cc->do_interrupt = arm_cpu_do_interrupt;
2228 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2229 cc->asidx_from_attrs = arm_asidx_from_attrs;
2230 cc->vmsd = &vmstate_arm_cpu;
2231 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2232 cc->write_elf64_note = arm_cpu_write_elf64_note;
2233 cc->write_elf32_note = arm_cpu_write_elf32_note;
2234 #endif
2235 cc->gdb_num_core_regs = 26;
2236 cc->gdb_core_xml_file = "arm-core.xml";
2237 cc->gdb_arch_name = arm_gdb_arch_name;
2238 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2239 cc->gdb_stop_before_watchpoint = true;
2240 cc->disas_set_info = arm_disas_set_info;
2241 #ifdef CONFIG_TCG
2242 cc->tcg_initialize = arm_translate_init;
2243 cc->tlb_fill = arm_cpu_tlb_fill;
2244 cc->debug_excp_handler = arm_debug_excp_handler;
2245 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2246 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2247 #if !defined(CONFIG_USER_ONLY)
2248 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2249 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2250 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2251 #endif
2254 #ifdef CONFIG_KVM
2255 static void arm_host_initfn(Object *obj)
2257 ARMCPU *cpu = ARM_CPU(obj);
2259 kvm_arm_set_cpu_features_from_host(cpu);
2260 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2261 aarch64_add_sve_properties(obj);
2263 arm_cpu_post_init(obj);
2266 static const TypeInfo host_arm_cpu_type_info = {
2267 .name = TYPE_ARM_HOST_CPU,
2268 #ifdef TARGET_AARCH64
2269 .parent = TYPE_AARCH64_CPU,
2270 #else
2271 .parent = TYPE_ARM_CPU,
2272 #endif
2273 .instance_init = arm_host_initfn,
2276 #endif
2278 static void arm_cpu_instance_init(Object *obj)
2280 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2282 acc->info->initfn(obj);
2283 arm_cpu_post_init(obj);
2286 static void cpu_register_class_init(ObjectClass *oc, void *data)
2288 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2290 acc->info = data;
2293 void arm_cpu_register(const ARMCPUInfo *info)
2295 TypeInfo type_info = {
2296 .parent = TYPE_ARM_CPU,
2297 .instance_size = sizeof(ARMCPU),
2298 .instance_init = arm_cpu_instance_init,
2299 .class_size = sizeof(ARMCPUClass),
2300 .class_init = info->class_init ?: cpu_register_class_init,
2301 .class_data = (void *)info,
2304 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2305 type_register(&type_info);
2306 g_free((void *)type_info.name);
2309 static const TypeInfo arm_cpu_type_info = {
2310 .name = TYPE_ARM_CPU,
2311 .parent = TYPE_CPU,
2312 .instance_size = sizeof(ARMCPU),
2313 .instance_init = arm_cpu_initfn,
2314 .instance_finalize = arm_cpu_finalizefn,
2315 .abstract = true,
2316 .class_size = sizeof(ARMCPUClass),
2317 .class_init = arm_cpu_class_init,
2320 static const TypeInfo idau_interface_type_info = {
2321 .name = TYPE_IDAU_INTERFACE,
2322 .parent = TYPE_INTERFACE,
2323 .class_size = sizeof(IDAUInterfaceClass),
2326 static void arm_cpu_register_types(void)
2328 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2330 type_register_static(&arm_cpu_type_info);
2332 #ifdef CONFIG_KVM
2333 type_register_static(&host_arm_cpu_type_info);
2334 #endif
2336 if (cpu_count) {
2337 size_t i;
2339 type_register_static(&idau_interface_type_info);
2340 for (i = 0; i < cpu_count; ++i) {
2341 arm_cpu_register(&arm_cpus[i]);
2346 type_init(arm_cpu_register_types)