target-i386: Reenable RDTSCP support on Opteron_G[345] CPU models CPU models
[qemu/ar7.git] / gdbstub.c
blobbfc7afb509688cd0e449f8f0b6f41e835e68b0ca
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "qemu/cutils.h"
23 #include "trace-root.h"
24 #ifdef CONFIG_USER_ONLY
25 #include "qemu.h"
26 #else
27 #include "monitor/monitor.h"
28 #include "chardev/char.h"
29 #include "chardev/char-fe.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/gdbstub.h"
32 #include "hw/cpu/cluster.h"
33 #endif
35 #define MAX_PACKET_LENGTH 4096
37 #include "qemu/sockets.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "exec/semihost.h"
41 #include "exec/exec-all.h"
43 #ifdef CONFIG_USER_ONLY
44 #define GDB_ATTACHED "0"
45 #else
46 #define GDB_ATTACHED "1"
47 #endif
49 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
50 uint8_t *buf, int len, bool is_write)
52 CPUClass *cc = CPU_GET_CLASS(cpu);
54 if (cc->memory_rw_debug) {
55 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
57 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
60 /* Return the GDB index for a given vCPU state.
62 * For user mode this is simply the thread id. In system mode GDB
63 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
65 static inline int cpu_gdb_index(CPUState *cpu)
67 #if defined(CONFIG_USER_ONLY)
68 TaskState *ts = (TaskState *) cpu->opaque;
69 return ts->ts_tid;
70 #else
71 return cpu->cpu_index + 1;
72 #endif
75 enum {
76 GDB_SIGNAL_0 = 0,
77 GDB_SIGNAL_INT = 2,
78 GDB_SIGNAL_QUIT = 3,
79 GDB_SIGNAL_TRAP = 5,
80 GDB_SIGNAL_ABRT = 6,
81 GDB_SIGNAL_ALRM = 14,
82 GDB_SIGNAL_IO = 23,
83 GDB_SIGNAL_XCPU = 24,
84 GDB_SIGNAL_UNKNOWN = 143
87 #ifdef CONFIG_USER_ONLY
89 /* Map target signal numbers to GDB protocol signal numbers and vice
90 * versa. For user emulation's currently supported systems, we can
91 * assume most signals are defined.
94 static int gdb_signal_table[] = {
96 TARGET_SIGHUP,
97 TARGET_SIGINT,
98 TARGET_SIGQUIT,
99 TARGET_SIGILL,
100 TARGET_SIGTRAP,
101 TARGET_SIGABRT,
102 -1, /* SIGEMT */
103 TARGET_SIGFPE,
104 TARGET_SIGKILL,
105 TARGET_SIGBUS,
106 TARGET_SIGSEGV,
107 TARGET_SIGSYS,
108 TARGET_SIGPIPE,
109 TARGET_SIGALRM,
110 TARGET_SIGTERM,
111 TARGET_SIGURG,
112 TARGET_SIGSTOP,
113 TARGET_SIGTSTP,
114 TARGET_SIGCONT,
115 TARGET_SIGCHLD,
116 TARGET_SIGTTIN,
117 TARGET_SIGTTOU,
118 TARGET_SIGIO,
119 TARGET_SIGXCPU,
120 TARGET_SIGXFSZ,
121 TARGET_SIGVTALRM,
122 TARGET_SIGPROF,
123 TARGET_SIGWINCH,
124 -1, /* SIGLOST */
125 TARGET_SIGUSR1,
126 TARGET_SIGUSR2,
127 #ifdef TARGET_SIGPWR
128 TARGET_SIGPWR,
129 #else
131 #endif
132 -1, /* SIGPOLL */
144 #ifdef __SIGRTMIN
145 __SIGRTMIN + 1,
146 __SIGRTMIN + 2,
147 __SIGRTMIN + 3,
148 __SIGRTMIN + 4,
149 __SIGRTMIN + 5,
150 __SIGRTMIN + 6,
151 __SIGRTMIN + 7,
152 __SIGRTMIN + 8,
153 __SIGRTMIN + 9,
154 __SIGRTMIN + 10,
155 __SIGRTMIN + 11,
156 __SIGRTMIN + 12,
157 __SIGRTMIN + 13,
158 __SIGRTMIN + 14,
159 __SIGRTMIN + 15,
160 __SIGRTMIN + 16,
161 __SIGRTMIN + 17,
162 __SIGRTMIN + 18,
163 __SIGRTMIN + 19,
164 __SIGRTMIN + 20,
165 __SIGRTMIN + 21,
166 __SIGRTMIN + 22,
167 __SIGRTMIN + 23,
168 __SIGRTMIN + 24,
169 __SIGRTMIN + 25,
170 __SIGRTMIN + 26,
171 __SIGRTMIN + 27,
172 __SIGRTMIN + 28,
173 __SIGRTMIN + 29,
174 __SIGRTMIN + 30,
175 __SIGRTMIN + 31,
176 -1, /* SIGCANCEL */
177 __SIGRTMIN,
178 __SIGRTMIN + 32,
179 __SIGRTMIN + 33,
180 __SIGRTMIN + 34,
181 __SIGRTMIN + 35,
182 __SIGRTMIN + 36,
183 __SIGRTMIN + 37,
184 __SIGRTMIN + 38,
185 __SIGRTMIN + 39,
186 __SIGRTMIN + 40,
187 __SIGRTMIN + 41,
188 __SIGRTMIN + 42,
189 __SIGRTMIN + 43,
190 __SIGRTMIN + 44,
191 __SIGRTMIN + 45,
192 __SIGRTMIN + 46,
193 __SIGRTMIN + 47,
194 __SIGRTMIN + 48,
195 __SIGRTMIN + 49,
196 __SIGRTMIN + 50,
197 __SIGRTMIN + 51,
198 __SIGRTMIN + 52,
199 __SIGRTMIN + 53,
200 __SIGRTMIN + 54,
201 __SIGRTMIN + 55,
202 __SIGRTMIN + 56,
203 __SIGRTMIN + 57,
204 __SIGRTMIN + 58,
205 __SIGRTMIN + 59,
206 __SIGRTMIN + 60,
207 __SIGRTMIN + 61,
208 __SIGRTMIN + 62,
209 __SIGRTMIN + 63,
210 __SIGRTMIN + 64,
211 __SIGRTMIN + 65,
212 __SIGRTMIN + 66,
213 __SIGRTMIN + 67,
214 __SIGRTMIN + 68,
215 __SIGRTMIN + 69,
216 __SIGRTMIN + 70,
217 __SIGRTMIN + 71,
218 __SIGRTMIN + 72,
219 __SIGRTMIN + 73,
220 __SIGRTMIN + 74,
221 __SIGRTMIN + 75,
222 __SIGRTMIN + 76,
223 __SIGRTMIN + 77,
224 __SIGRTMIN + 78,
225 __SIGRTMIN + 79,
226 __SIGRTMIN + 80,
227 __SIGRTMIN + 81,
228 __SIGRTMIN + 82,
229 __SIGRTMIN + 83,
230 __SIGRTMIN + 84,
231 __SIGRTMIN + 85,
232 __SIGRTMIN + 86,
233 __SIGRTMIN + 87,
234 __SIGRTMIN + 88,
235 __SIGRTMIN + 89,
236 __SIGRTMIN + 90,
237 __SIGRTMIN + 91,
238 __SIGRTMIN + 92,
239 __SIGRTMIN + 93,
240 __SIGRTMIN + 94,
241 __SIGRTMIN + 95,
242 -1, /* SIGINFO */
243 -1, /* UNKNOWN */
244 -1, /* DEFAULT */
251 #endif
253 #else
254 /* In system mode we only need SIGINT and SIGTRAP; other signals
255 are not yet supported. */
257 enum {
258 TARGET_SIGINT = 2,
259 TARGET_SIGTRAP = 5
262 static int gdb_signal_table[] = {
265 TARGET_SIGINT,
268 TARGET_SIGTRAP
270 #endif
272 #ifdef CONFIG_USER_ONLY
273 static int target_signal_to_gdb (int sig)
275 int i;
276 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
277 if (gdb_signal_table[i] == sig)
278 return i;
279 return GDB_SIGNAL_UNKNOWN;
281 #endif
283 static int gdb_signal_to_target (int sig)
285 if (sig < ARRAY_SIZE (gdb_signal_table))
286 return gdb_signal_table[sig];
287 else
288 return -1;
291 typedef struct GDBRegisterState {
292 int base_reg;
293 int num_regs;
294 gdb_reg_cb get_reg;
295 gdb_reg_cb set_reg;
296 const char *xml;
297 struct GDBRegisterState *next;
298 } GDBRegisterState;
300 typedef struct GDBProcess {
301 uint32_t pid;
302 bool attached;
304 char target_xml[1024];
305 } GDBProcess;
307 enum RSState {
308 RS_INACTIVE,
309 RS_IDLE,
310 RS_GETLINE,
311 RS_GETLINE_ESC,
312 RS_GETLINE_RLE,
313 RS_CHKSUM1,
314 RS_CHKSUM2,
316 typedef struct GDBState {
317 CPUState *c_cpu; /* current CPU for step/continue ops */
318 CPUState *g_cpu; /* current CPU for other ops */
319 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
320 enum RSState state; /* parsing state */
321 char line_buf[MAX_PACKET_LENGTH];
322 int line_buf_index;
323 int line_sum; /* running checksum */
324 int line_csum; /* checksum at the end of the packet */
325 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
326 int last_packet_len;
327 int signal;
328 #ifdef CONFIG_USER_ONLY
329 int fd;
330 int running_state;
331 #else
332 CharBackend chr;
333 Chardev *mon_chr;
334 #endif
335 bool multiprocess;
336 GDBProcess *processes;
337 int process_num;
338 char syscall_buf[256];
339 gdb_syscall_complete_cb current_syscall_cb;
340 } GDBState;
342 /* By default use no IRQs and no timers while single stepping so as to
343 * make single stepping like an ICE HW step.
345 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
347 static GDBState *gdbserver_state;
349 bool gdb_has_xml;
351 #ifdef CONFIG_USER_ONLY
352 /* XXX: This is not thread safe. Do we care? */
353 static int gdbserver_fd = -1;
355 static int get_char(GDBState *s)
357 uint8_t ch;
358 int ret;
360 for(;;) {
361 ret = qemu_recv(s->fd, &ch, 1, 0);
362 if (ret < 0) {
363 if (errno == ECONNRESET)
364 s->fd = -1;
365 if (errno != EINTR)
366 return -1;
367 } else if (ret == 0) {
368 close(s->fd);
369 s->fd = -1;
370 return -1;
371 } else {
372 break;
375 return ch;
377 #endif
379 static enum {
380 GDB_SYS_UNKNOWN,
381 GDB_SYS_ENABLED,
382 GDB_SYS_DISABLED,
383 } gdb_syscall_mode;
385 /* Decide if either remote gdb syscalls or native file IO should be used. */
386 int use_gdb_syscalls(void)
388 SemihostingTarget target = semihosting_get_target();
389 if (target == SEMIHOSTING_TARGET_NATIVE) {
390 /* -semihosting-config target=native */
391 return false;
392 } else if (target == SEMIHOSTING_TARGET_GDB) {
393 /* -semihosting-config target=gdb */
394 return true;
397 /* -semihosting-config target=auto */
398 /* On the first call check if gdb is connected and remember. */
399 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
400 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
401 : GDB_SYS_DISABLED);
403 return gdb_syscall_mode == GDB_SYS_ENABLED;
406 /* Resume execution. */
407 static inline void gdb_continue(GDBState *s)
410 #ifdef CONFIG_USER_ONLY
411 s->running_state = 1;
412 trace_gdbstub_op_continue();
413 #else
414 if (!runstate_needs_reset()) {
415 trace_gdbstub_op_continue();
416 vm_start();
418 #endif
422 * Resume execution, per CPU actions. For user-mode emulation it's
423 * equivalent to gdb_continue.
425 static int gdb_continue_partial(GDBState *s, char *newstates)
427 CPUState *cpu;
428 int res = 0;
429 #ifdef CONFIG_USER_ONLY
431 * This is not exactly accurate, but it's an improvement compared to the
432 * previous situation, where only one CPU would be single-stepped.
434 CPU_FOREACH(cpu) {
435 if (newstates[cpu->cpu_index] == 's') {
436 trace_gdbstub_op_stepping(cpu->cpu_index);
437 cpu_single_step(cpu, sstep_flags);
440 s->running_state = 1;
441 #else
442 int flag = 0;
444 if (!runstate_needs_reset()) {
445 if (vm_prepare_start()) {
446 return 0;
449 CPU_FOREACH(cpu) {
450 switch (newstates[cpu->cpu_index]) {
451 case 0:
452 case 1:
453 break; /* nothing to do here */
454 case 's':
455 trace_gdbstub_op_stepping(cpu->cpu_index);
456 cpu_single_step(cpu, sstep_flags);
457 cpu_resume(cpu);
458 flag = 1;
459 break;
460 case 'c':
461 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
462 cpu_resume(cpu);
463 flag = 1;
464 break;
465 default:
466 res = -1;
467 break;
471 if (flag) {
472 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
474 #endif
475 return res;
478 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
480 #ifdef CONFIG_USER_ONLY
481 int ret;
483 while (len > 0) {
484 ret = send(s->fd, buf, len, 0);
485 if (ret < 0) {
486 if (errno != EINTR)
487 return;
488 } else {
489 buf += ret;
490 len -= ret;
493 #else
494 /* XXX this blocks entire thread. Rewrite to use
495 * qemu_chr_fe_write and background I/O callbacks */
496 qemu_chr_fe_write_all(&s->chr, buf, len);
497 #endif
500 static inline int fromhex(int v)
502 if (v >= '0' && v <= '9')
503 return v - '0';
504 else if (v >= 'A' && v <= 'F')
505 return v - 'A' + 10;
506 else if (v >= 'a' && v <= 'f')
507 return v - 'a' + 10;
508 else
509 return 0;
512 static inline int tohex(int v)
514 if (v < 10)
515 return v + '0';
516 else
517 return v - 10 + 'a';
520 /* writes 2*len+1 bytes in buf */
521 static void memtohex(char *buf, const uint8_t *mem, int len)
523 int i, c;
524 char *q;
525 q = buf;
526 for(i = 0; i < len; i++) {
527 c = mem[i];
528 *q++ = tohex(c >> 4);
529 *q++ = tohex(c & 0xf);
531 *q = '\0';
534 static void hextomem(uint8_t *mem, const char *buf, int len)
536 int i;
538 for(i = 0; i < len; i++) {
539 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
540 buf += 2;
544 static void hexdump(const char *buf, int len,
545 void (*trace_fn)(size_t ofs, char const *text))
547 char line_buffer[3 * 16 + 4 + 16 + 1];
549 size_t i;
550 for (i = 0; i < len || (i & 0xF); ++i) {
551 size_t byte_ofs = i & 15;
553 if (byte_ofs == 0) {
554 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
555 line_buffer[3 * 16 + 4 + 16] = 0;
558 size_t col_group = (i >> 2) & 3;
559 size_t hex_col = byte_ofs * 3 + col_group;
560 size_t txt_col = 3 * 16 + 4 + byte_ofs;
562 if (i < len) {
563 char value = buf[i];
565 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
566 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
567 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
568 ? value
569 : '.';
572 if (byte_ofs == 0xF)
573 trace_fn(i & -16, line_buffer);
577 /* return -1 if error, 0 if OK */
578 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
580 int csum, i;
581 uint8_t *p;
583 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
584 hexdump(buf, len, trace_gdbstub_io_binaryreply);
587 for(;;) {
588 p = s->last_packet;
589 *(p++) = '$';
590 memcpy(p, buf, len);
591 p += len;
592 csum = 0;
593 for(i = 0; i < len; i++) {
594 csum += buf[i];
596 *(p++) = '#';
597 *(p++) = tohex((csum >> 4) & 0xf);
598 *(p++) = tohex((csum) & 0xf);
600 s->last_packet_len = p - s->last_packet;
601 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
603 #ifdef CONFIG_USER_ONLY
604 i = get_char(s);
605 if (i < 0)
606 return -1;
607 if (i == '+')
608 break;
609 #else
610 break;
611 #endif
613 return 0;
616 /* return -1 if error, 0 if OK */
617 static int put_packet(GDBState *s, const char *buf)
619 trace_gdbstub_io_reply(buf);
621 return put_packet_binary(s, buf, strlen(buf), false);
624 /* Encode data using the encoding for 'x' packets. */
625 static int memtox(char *buf, const char *mem, int len)
627 char *p = buf;
628 char c;
630 while (len--) {
631 c = *(mem++);
632 switch (c) {
633 case '#': case '$': case '*': case '}':
634 *(p++) = '}';
635 *(p++) = c ^ 0x20;
636 break;
637 default:
638 *(p++) = c;
639 break;
642 return p - buf;
645 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
647 #ifndef CONFIG_USER_ONLY
648 gchar *path, *name = NULL;
649 Object *obj;
650 CPUClusterState *cluster;
651 uint32_t ret;
653 path = object_get_canonical_path(OBJECT(cpu));
655 if (path == NULL) {
656 /* Return the default process' PID */
657 ret = s->processes[s->process_num - 1].pid;
658 goto out;
661 name = object_get_canonical_path_component(OBJECT(cpu));
662 assert(name != NULL);
665 * Retrieve the CPU parent path by removing the last '/' and the CPU name
666 * from the CPU canonical path.
668 path[strlen(path) - strlen(name) - 1] = '\0';
670 obj = object_resolve_path_type(path, TYPE_CPU_CLUSTER, NULL);
672 if (obj == NULL) {
673 /* Return the default process' PID */
674 ret = s->processes[s->process_num - 1].pid;
675 goto out;
678 cluster = CPU_CLUSTER(obj);
679 ret = cluster->cluster_id + 1;
681 out:
682 g_free(name);
683 g_free(path);
685 return ret;
687 #else
688 /* TODO: In user mode, we should use the task state PID */
689 return s->processes[s->process_num - 1].pid;
690 #endif
693 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
695 int i;
697 if (!pid) {
698 /* 0 means any process, we take the first one */
699 return &s->processes[0];
702 for (i = 0; i < s->process_num; i++) {
703 if (s->processes[i].pid == pid) {
704 return &s->processes[i];
708 return NULL;
711 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
713 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
716 static CPUState *find_cpu(uint32_t thread_id)
718 CPUState *cpu;
720 CPU_FOREACH(cpu) {
721 if (cpu_gdb_index(cpu) == thread_id) {
722 return cpu;
726 return NULL;
729 static CPUState *get_first_cpu_in_process(const GDBState *s,
730 GDBProcess *process)
732 CPUState *cpu;
734 CPU_FOREACH(cpu) {
735 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
736 return cpu;
740 return NULL;
743 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
745 uint32_t pid = gdb_get_cpu_pid(s, cpu);
746 cpu = CPU_NEXT(cpu);
748 while (cpu) {
749 if (gdb_get_cpu_pid(s, cpu) == pid) {
750 break;
753 cpu = CPU_NEXT(cpu);
756 return cpu;
759 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
761 GDBProcess *process;
762 CPUState *cpu;
764 if (!tid) {
765 /* 0 means any thread, we take the first one */
766 tid = 1;
769 cpu = find_cpu(tid);
771 if (cpu == NULL) {
772 return NULL;
775 process = gdb_get_cpu_process(s, cpu);
777 if (process->pid != pid) {
778 return NULL;
781 if (!process->attached) {
782 return NULL;
785 return cpu;
788 /* Return the cpu following @cpu, while ignoring unattached processes. */
789 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
791 cpu = CPU_NEXT(cpu);
793 while (cpu) {
794 if (gdb_get_cpu_process(s, cpu)->attached) {
795 break;
798 cpu = CPU_NEXT(cpu);
801 return cpu;
804 /* Return the first attached cpu */
805 static CPUState *gdb_first_attached_cpu(const GDBState *s)
807 CPUState *cpu = first_cpu;
808 GDBProcess *process = gdb_get_cpu_process(s, cpu);
810 if (!process->attached) {
811 return gdb_next_attached_cpu(s, cpu);
814 return cpu;
817 static const char *get_feature_xml(const GDBState *s, const char *p,
818 const char **newp, GDBProcess *process)
820 size_t len;
821 int i;
822 const char *name;
823 CPUState *cpu = get_first_cpu_in_process(s, process);
824 CPUClass *cc = CPU_GET_CLASS(cpu);
826 len = 0;
827 while (p[len] && p[len] != ':')
828 len++;
829 *newp = p + len;
831 name = NULL;
832 if (strncmp(p, "target.xml", len) == 0) {
833 char *buf = process->target_xml;
834 const size_t buf_sz = sizeof(process->target_xml);
836 /* Generate the XML description for this CPU. */
837 if (!buf[0]) {
838 GDBRegisterState *r;
840 pstrcat(buf, buf_sz,
841 "<?xml version=\"1.0\"?>"
842 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
843 "<target>");
844 if (cc->gdb_arch_name) {
845 gchar *arch = cc->gdb_arch_name(cpu);
846 pstrcat(buf, buf_sz, "<architecture>");
847 pstrcat(buf, buf_sz, arch);
848 pstrcat(buf, buf_sz, "</architecture>");
849 g_free(arch);
851 pstrcat(buf, buf_sz, "<xi:include href=\"");
852 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
853 pstrcat(buf, buf_sz, "\"/>");
854 for (r = cpu->gdb_regs; r; r = r->next) {
855 pstrcat(buf, buf_sz, "<xi:include href=\"");
856 pstrcat(buf, buf_sz, r->xml);
857 pstrcat(buf, buf_sz, "\"/>");
859 pstrcat(buf, buf_sz, "</target>");
861 return buf;
863 if (cc->gdb_get_dynamic_xml) {
864 char *xmlname = g_strndup(p, len);
865 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
867 g_free(xmlname);
868 if (xml) {
869 return xml;
872 for (i = 0; ; i++) {
873 name = xml_builtin[i][0];
874 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
875 break;
877 return name ? xml_builtin[i][1] : NULL;
880 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
882 CPUClass *cc = CPU_GET_CLASS(cpu);
883 CPUArchState *env = cpu->env_ptr;
884 GDBRegisterState *r;
886 if (reg < cc->gdb_num_core_regs) {
887 return cc->gdb_read_register(cpu, mem_buf, reg);
890 for (r = cpu->gdb_regs; r; r = r->next) {
891 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
892 return r->get_reg(env, mem_buf, reg - r->base_reg);
895 return 0;
898 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
900 CPUClass *cc = CPU_GET_CLASS(cpu);
901 CPUArchState *env = cpu->env_ptr;
902 GDBRegisterState *r;
904 if (reg < cc->gdb_num_core_regs) {
905 return cc->gdb_write_register(cpu, mem_buf, reg);
908 for (r = cpu->gdb_regs; r; r = r->next) {
909 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
910 return r->set_reg(env, mem_buf, reg - r->base_reg);
913 return 0;
916 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
917 specifies the first register number and these registers are included in
918 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
919 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
922 void gdb_register_coprocessor(CPUState *cpu,
923 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
924 int num_regs, const char *xml, int g_pos)
926 GDBRegisterState *s;
927 GDBRegisterState **p;
929 p = &cpu->gdb_regs;
930 while (*p) {
931 /* Check for duplicates. */
932 if (strcmp((*p)->xml, xml) == 0)
933 return;
934 p = &(*p)->next;
937 s = g_new0(GDBRegisterState, 1);
938 s->base_reg = cpu->gdb_num_regs;
939 s->num_regs = num_regs;
940 s->get_reg = get_reg;
941 s->set_reg = set_reg;
942 s->xml = xml;
944 /* Add to end of list. */
945 cpu->gdb_num_regs += num_regs;
946 *p = s;
947 if (g_pos) {
948 if (g_pos != s->base_reg) {
949 error_report("Error: Bad gdb register numbering for '%s', "
950 "expected %d got %d", xml, g_pos, s->base_reg);
951 } else {
952 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
957 #ifndef CONFIG_USER_ONLY
958 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
959 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
961 static const int xlat[] = {
962 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
963 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
964 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 int cputype = xlat[gdbtype];
970 if (cc->gdb_stop_before_watchpoint) {
971 cputype |= BP_STOP_BEFORE_ACCESS;
973 return cputype;
975 #endif
977 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
979 CPUState *cpu;
980 int err = 0;
982 if (kvm_enabled()) {
983 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
986 switch (type) {
987 case GDB_BREAKPOINT_SW:
988 case GDB_BREAKPOINT_HW:
989 CPU_FOREACH(cpu) {
990 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
991 if (err) {
992 break;
995 return err;
996 #ifndef CONFIG_USER_ONLY
997 case GDB_WATCHPOINT_WRITE:
998 case GDB_WATCHPOINT_READ:
999 case GDB_WATCHPOINT_ACCESS:
1000 CPU_FOREACH(cpu) {
1001 err = cpu_watchpoint_insert(cpu, addr, len,
1002 xlat_gdb_type(cpu, type), NULL);
1003 if (err) {
1004 break;
1007 return err;
1008 #endif
1009 default:
1010 return -ENOSYS;
1014 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1016 CPUState *cpu;
1017 int err = 0;
1019 if (kvm_enabled()) {
1020 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1023 switch (type) {
1024 case GDB_BREAKPOINT_SW:
1025 case GDB_BREAKPOINT_HW:
1026 CPU_FOREACH(cpu) {
1027 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1028 if (err) {
1029 break;
1032 return err;
1033 #ifndef CONFIG_USER_ONLY
1034 case GDB_WATCHPOINT_WRITE:
1035 case GDB_WATCHPOINT_READ:
1036 case GDB_WATCHPOINT_ACCESS:
1037 CPU_FOREACH(cpu) {
1038 err = cpu_watchpoint_remove(cpu, addr, len,
1039 xlat_gdb_type(cpu, type));
1040 if (err)
1041 break;
1043 return err;
1044 #endif
1045 default:
1046 return -ENOSYS;
1050 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1052 cpu_breakpoint_remove_all(cpu, BP_GDB);
1053 #ifndef CONFIG_USER_ONLY
1054 cpu_watchpoint_remove_all(cpu, BP_GDB);
1055 #endif
1058 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1060 CPUState *cpu = get_first_cpu_in_process(s, p);
1062 while (cpu) {
1063 gdb_cpu_breakpoint_remove_all(cpu);
1064 cpu = gdb_next_cpu_in_process(s, cpu);
1068 static void gdb_breakpoint_remove_all(void)
1070 CPUState *cpu;
1072 if (kvm_enabled()) {
1073 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1074 return;
1077 CPU_FOREACH(cpu) {
1078 gdb_cpu_breakpoint_remove_all(cpu);
1082 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1084 CPUState *cpu = s->c_cpu;
1086 cpu_synchronize_state(cpu);
1087 cpu_set_pc(cpu, pc);
1090 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1091 char *buf, size_t buf_size)
1093 if (s->multiprocess) {
1094 snprintf(buf, buf_size, "p%02x.%02x",
1095 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1096 } else {
1097 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1100 return buf;
1103 typedef enum GDBThreadIdKind {
1104 GDB_ONE_THREAD = 0,
1105 GDB_ALL_THREADS, /* One process, all threads */
1106 GDB_ALL_PROCESSES,
1107 GDB_READ_THREAD_ERR
1108 } GDBThreadIdKind;
1110 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1111 uint32_t *pid, uint32_t *tid)
1113 unsigned long p, t;
1114 int ret;
1116 if (*buf == 'p') {
1117 buf++;
1118 ret = qemu_strtoul(buf, &buf, 16, &p);
1120 if (ret) {
1121 return GDB_READ_THREAD_ERR;
1124 /* Skip '.' */
1125 buf++;
1126 } else {
1127 p = 1;
1130 ret = qemu_strtoul(buf, &buf, 16, &t);
1132 if (ret) {
1133 return GDB_READ_THREAD_ERR;
1136 *end_buf = buf;
1138 if (p == -1) {
1139 return GDB_ALL_PROCESSES;
1142 if (pid) {
1143 *pid = p;
1146 if (t == -1) {
1147 return GDB_ALL_THREADS;
1150 if (tid) {
1151 *tid = t;
1154 return GDB_ONE_THREAD;
1157 static int is_query_packet(const char *p, const char *query, char separator)
1159 unsigned int query_len = strlen(query);
1161 return strncmp(p, query, query_len) == 0 &&
1162 (p[query_len] == '\0' || p[query_len] == separator);
1166 * gdb_handle_vcont - Parses and handles a vCont packet.
1167 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1168 * a format error, 0 on success.
1170 static int gdb_handle_vcont(GDBState *s, const char *p)
1172 int res, signal = 0;
1173 char cur_action;
1174 char *newstates;
1175 unsigned long tmp;
1176 uint32_t pid, tid;
1177 GDBProcess *process;
1178 CPUState *cpu;
1179 #ifdef CONFIG_USER_ONLY
1180 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1182 CPU_FOREACH(cpu) {
1183 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1185 #endif
1186 /* uninitialised CPUs stay 0 */
1187 newstates = g_new0(char, max_cpus);
1189 /* mark valid CPUs with 1 */
1190 CPU_FOREACH(cpu) {
1191 newstates[cpu->cpu_index] = 1;
1195 * res keeps track of what error we are returning, with -ENOTSUP meaning
1196 * that the command is unknown or unsupported, thus returning an empty
1197 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1198 * or incorrect parameters passed.
1200 res = 0;
1201 while (*p) {
1202 if (*p++ != ';') {
1203 res = -ENOTSUP;
1204 goto out;
1207 cur_action = *p++;
1208 if (cur_action == 'C' || cur_action == 'S') {
1209 cur_action = qemu_tolower(cur_action);
1210 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1211 if (res) {
1212 goto out;
1214 signal = gdb_signal_to_target(tmp);
1215 } else if (cur_action != 'c' && cur_action != 's') {
1216 /* unknown/invalid/unsupported command */
1217 res = -ENOTSUP;
1218 goto out;
1221 if (*p++ != ':') {
1222 res = -ENOTSUP;
1223 goto out;
1226 switch (read_thread_id(p, &p, &pid, &tid)) {
1227 case GDB_READ_THREAD_ERR:
1228 res = -EINVAL;
1229 goto out;
1231 case GDB_ALL_PROCESSES:
1232 cpu = gdb_first_attached_cpu(s);
1233 while (cpu) {
1234 if (newstates[cpu->cpu_index] == 1) {
1235 newstates[cpu->cpu_index] = cur_action;
1238 cpu = gdb_next_attached_cpu(s, cpu);
1240 break;
1242 case GDB_ALL_THREADS:
1243 process = gdb_get_process(s, pid);
1245 if (!process->attached) {
1246 res = -EINVAL;
1247 goto out;
1250 cpu = get_first_cpu_in_process(s, process);
1251 while (cpu) {
1252 if (newstates[cpu->cpu_index] == 1) {
1253 newstates[cpu->cpu_index] = cur_action;
1256 cpu = gdb_next_cpu_in_process(s, cpu);
1258 break;
1260 case GDB_ONE_THREAD:
1261 cpu = gdb_get_cpu(s, pid, tid);
1263 /* invalid CPU/thread specified */
1264 if (!cpu) {
1265 res = -EINVAL;
1266 goto out;
1269 /* only use if no previous match occourred */
1270 if (newstates[cpu->cpu_index] == 1) {
1271 newstates[cpu->cpu_index] = cur_action;
1273 break;
1276 s->signal = signal;
1277 gdb_continue_partial(s, newstates);
1279 out:
1280 g_free(newstates);
1282 return res;
1285 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1287 CPUState *cpu;
1288 GDBProcess *process;
1289 CPUClass *cc;
1290 const char *p;
1291 uint32_t pid, tid;
1292 int ch, reg_size, type, res;
1293 uint8_t mem_buf[MAX_PACKET_LENGTH];
1294 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1295 char thread_id[16];
1296 uint8_t *registers;
1297 target_ulong addr, len;
1298 GDBThreadIdKind thread_kind;
1300 trace_gdbstub_io_command(line_buf);
1302 p = line_buf;
1303 ch = *p++;
1304 switch(ch) {
1305 case '!':
1306 put_packet(s, "OK");
1307 break;
1308 case '?':
1309 /* TODO: Make this return the correct value for user-mode. */
1310 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1311 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1312 put_packet(s, buf);
1313 /* Remove all the breakpoints when this query is issued,
1314 * because gdb is doing and initial connect and the state
1315 * should be cleaned up.
1317 gdb_breakpoint_remove_all();
1318 break;
1319 case 'c':
1320 if (*p != '\0') {
1321 addr = strtoull(p, (char **)&p, 16);
1322 gdb_set_cpu_pc(s, addr);
1324 s->signal = 0;
1325 gdb_continue(s);
1326 return RS_IDLE;
1327 case 'C':
1328 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1329 if (s->signal == -1)
1330 s->signal = 0;
1331 gdb_continue(s);
1332 return RS_IDLE;
1333 case 'v':
1334 if (strncmp(p, "Cont", 4) == 0) {
1335 p += 4;
1336 if (*p == '?') {
1337 put_packet(s, "vCont;c;C;s;S");
1338 break;
1341 res = gdb_handle_vcont(s, p);
1343 if (res) {
1344 if ((res == -EINVAL) || (res == -ERANGE)) {
1345 put_packet(s, "E22");
1346 break;
1348 goto unknown_command;
1350 break;
1351 } else if (strncmp(p, "Attach;", 7) == 0) {
1352 unsigned long pid;
1354 p += 7;
1356 if (qemu_strtoul(p, &p, 16, &pid)) {
1357 put_packet(s, "E22");
1358 break;
1361 process = gdb_get_process(s, pid);
1363 if (process == NULL) {
1364 put_packet(s, "E22");
1365 break;
1368 cpu = get_first_cpu_in_process(s, process);
1370 if (cpu == NULL) {
1371 /* Refuse to attach an empty process */
1372 put_packet(s, "E22");
1373 break;
1376 process->attached = true;
1378 s->g_cpu = cpu;
1379 s->c_cpu = cpu;
1381 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1382 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1384 put_packet(s, buf);
1385 break;
1386 } else {
1387 goto unknown_command;
1389 case 'k':
1390 /* Kill the target */
1391 error_report("QEMU: Terminated via GDBstub");
1392 exit(0);
1393 case 'D':
1394 /* Detach packet */
1395 pid = 1;
1397 if (s->multiprocess) {
1398 unsigned long lpid;
1399 if (*p != ';') {
1400 put_packet(s, "E22");
1401 break;
1404 if (qemu_strtoul(p + 1, &p, 16, &lpid)) {
1405 put_packet(s, "E22");
1406 break;
1409 pid = lpid;
1412 process = gdb_get_process(s, pid);
1413 gdb_process_breakpoint_remove_all(s, process);
1414 process->attached = false;
1416 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1417 s->c_cpu = gdb_first_attached_cpu(s);
1420 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1421 s->g_cpu = gdb_first_attached_cpu(s);
1424 if (s->c_cpu == NULL) {
1425 /* No more process attached */
1426 gdb_syscall_mode = GDB_SYS_DISABLED;
1427 gdb_continue(s);
1429 put_packet(s, "OK");
1430 break;
1431 case 's':
1432 if (*p != '\0') {
1433 addr = strtoull(p, (char **)&p, 16);
1434 gdb_set_cpu_pc(s, addr);
1436 cpu_single_step(s->c_cpu, sstep_flags);
1437 gdb_continue(s);
1438 return RS_IDLE;
1439 case 'F':
1441 target_ulong ret;
1442 target_ulong err;
1444 ret = strtoull(p, (char **)&p, 16);
1445 if (*p == ',') {
1446 p++;
1447 err = strtoull(p, (char **)&p, 16);
1448 } else {
1449 err = 0;
1451 if (*p == ',')
1452 p++;
1453 type = *p;
1454 if (s->current_syscall_cb) {
1455 s->current_syscall_cb(s->c_cpu, ret, err);
1456 s->current_syscall_cb = NULL;
1458 if (type == 'C') {
1459 put_packet(s, "T02");
1460 } else {
1461 gdb_continue(s);
1464 break;
1465 case 'g':
1466 cpu_synchronize_state(s->g_cpu);
1467 len = 0;
1468 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1469 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1470 len += reg_size;
1472 memtohex(buf, mem_buf, len);
1473 put_packet(s, buf);
1474 break;
1475 case 'G':
1476 cpu_synchronize_state(s->g_cpu);
1477 registers = mem_buf;
1478 len = strlen(p) / 2;
1479 hextomem((uint8_t *)registers, p, len);
1480 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs && len > 0; addr++) {
1481 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1482 len -= reg_size;
1483 registers += reg_size;
1485 put_packet(s, "OK");
1486 break;
1487 case 'm':
1488 addr = strtoull(p, (char **)&p, 16);
1489 if (*p == ',')
1490 p++;
1491 len = strtoull(p, NULL, 16);
1493 /* memtohex() doubles the required space */
1494 if (len > MAX_PACKET_LENGTH / 2) {
1495 put_packet (s, "E22");
1496 break;
1499 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, false) != 0) {
1500 put_packet (s, "E14");
1501 } else {
1502 memtohex(buf, mem_buf, len);
1503 put_packet(s, buf);
1505 break;
1506 case 'M':
1507 addr = strtoull(p, (char **)&p, 16);
1508 if (*p == ',')
1509 p++;
1510 len = strtoull(p, (char **)&p, 16);
1511 if (*p == ':')
1512 p++;
1514 /* hextomem() reads 2*len bytes */
1515 if (len > strlen(p) / 2) {
1516 put_packet (s, "E22");
1517 break;
1519 hextomem(mem_buf, p, len);
1520 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len,
1521 true) != 0) {
1522 put_packet(s, "E14");
1523 } else {
1524 put_packet(s, "OK");
1526 break;
1527 case 'p':
1528 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1529 This works, but can be very slow. Anything new enough to
1530 understand XML also knows how to use this properly. */
1531 if (!gdb_has_xml)
1532 goto unknown_command;
1533 addr = strtoull(p, (char **)&p, 16);
1534 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1535 if (reg_size) {
1536 memtohex(buf, mem_buf, reg_size);
1537 put_packet(s, buf);
1538 } else {
1539 put_packet(s, "E14");
1541 break;
1542 case 'P':
1543 if (!gdb_has_xml)
1544 goto unknown_command;
1545 addr = strtoull(p, (char **)&p, 16);
1546 if (*p == '=')
1547 p++;
1548 reg_size = strlen(p) / 2;
1549 hextomem(mem_buf, p, reg_size);
1550 gdb_write_register(s->g_cpu, mem_buf, addr);
1551 put_packet(s, "OK");
1552 break;
1553 case 'Z':
1554 case 'z':
1555 type = strtoul(p, (char **)&p, 16);
1556 if (*p == ',')
1557 p++;
1558 addr = strtoull(p, (char **)&p, 16);
1559 if (*p == ',')
1560 p++;
1561 len = strtoull(p, (char **)&p, 16);
1562 if (ch == 'Z')
1563 res = gdb_breakpoint_insert(addr, len, type);
1564 else
1565 res = gdb_breakpoint_remove(addr, len, type);
1566 if (res >= 0)
1567 put_packet(s, "OK");
1568 else if (res == -ENOSYS)
1569 put_packet(s, "");
1570 else
1571 put_packet(s, "E22");
1572 break;
1573 case 'H':
1574 type = *p++;
1576 thread_kind = read_thread_id(p, &p, &pid, &tid);
1577 if (thread_kind == GDB_READ_THREAD_ERR) {
1578 put_packet(s, "E22");
1579 break;
1582 if (thread_kind != GDB_ONE_THREAD) {
1583 put_packet(s, "OK");
1584 break;
1586 cpu = gdb_get_cpu(s, pid, tid);
1587 if (cpu == NULL) {
1588 put_packet(s, "E22");
1589 break;
1591 switch (type) {
1592 case 'c':
1593 s->c_cpu = cpu;
1594 put_packet(s, "OK");
1595 break;
1596 case 'g':
1597 s->g_cpu = cpu;
1598 put_packet(s, "OK");
1599 break;
1600 default:
1601 put_packet(s, "E22");
1602 break;
1604 break;
1605 case 'T':
1606 thread_kind = read_thread_id(p, &p, &pid, &tid);
1607 if (thread_kind == GDB_READ_THREAD_ERR) {
1608 put_packet(s, "E22");
1609 break;
1611 cpu = gdb_get_cpu(s, pid, tid);
1613 if (cpu != NULL) {
1614 put_packet(s, "OK");
1615 } else {
1616 put_packet(s, "E22");
1618 break;
1619 case 'q':
1620 case 'Q':
1621 /* parse any 'q' packets here */
1622 if (!strcmp(p,"qemu.sstepbits")) {
1623 /* Query Breakpoint bit definitions */
1624 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1625 SSTEP_ENABLE,
1626 SSTEP_NOIRQ,
1627 SSTEP_NOTIMER);
1628 put_packet(s, buf);
1629 break;
1630 } else if (is_query_packet(p, "qemu.sstep", '=')) {
1631 /* Display or change the sstep_flags */
1632 p += 10;
1633 if (*p != '=') {
1634 /* Display current setting */
1635 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1636 put_packet(s, buf);
1637 break;
1639 p++;
1640 type = strtoul(p, (char **)&p, 16);
1641 sstep_flags = type;
1642 put_packet(s, "OK");
1643 break;
1644 } else if (strcmp(p,"C") == 0) {
1646 * "Current thread" remains vague in the spec, so always return
1647 * the first thread of the current process (gdb returns the
1648 * first thread).
1650 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
1651 snprintf(buf, sizeof(buf), "QC%s",
1652 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1653 put_packet(s, buf);
1654 break;
1655 } else if (strcmp(p,"fThreadInfo") == 0) {
1656 s->query_cpu = gdb_first_attached_cpu(s);
1657 goto report_cpuinfo;
1658 } else if (strcmp(p,"sThreadInfo") == 0) {
1659 report_cpuinfo:
1660 if (s->query_cpu) {
1661 snprintf(buf, sizeof(buf), "m%s",
1662 gdb_fmt_thread_id(s, s->query_cpu,
1663 thread_id, sizeof(thread_id)));
1664 put_packet(s, buf);
1665 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
1666 } else
1667 put_packet(s, "l");
1668 break;
1669 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1670 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
1671 put_packet(s, "E22");
1672 break;
1674 cpu = gdb_get_cpu(s, pid, tid);
1675 if (cpu != NULL) {
1676 cpu_synchronize_state(cpu);
1678 if (s->multiprocess && (s->process_num > 1)) {
1679 /* Print the CPU model and name in multiprocess mode */
1680 ObjectClass *oc = object_get_class(OBJECT(cpu));
1681 const char *cpu_model = object_class_get_name(oc);
1682 char *cpu_name =
1683 object_get_canonical_path_component(OBJECT(cpu));
1684 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1685 "%s %s [%s]", cpu_model, cpu_name,
1686 cpu->halted ? "halted " : "running");
1687 g_free(cpu_name);
1688 } else {
1689 /* memtohex() doubles the required space */
1690 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1691 "CPU#%d [%s]", cpu->cpu_index,
1692 cpu->halted ? "halted " : "running");
1694 trace_gdbstub_op_extra_info((char *)mem_buf);
1695 memtohex(buf, mem_buf, len);
1696 put_packet(s, buf);
1698 break;
1700 #ifdef CONFIG_USER_ONLY
1701 else if (strcmp(p, "Offsets") == 0) {
1702 TaskState *ts = s->c_cpu->opaque;
1704 snprintf(buf, sizeof(buf),
1705 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1706 ";Bss=" TARGET_ABI_FMT_lx,
1707 ts->info->code_offset,
1708 ts->info->data_offset,
1709 ts->info->data_offset);
1710 put_packet(s, buf);
1711 break;
1713 #else /* !CONFIG_USER_ONLY */
1714 else if (strncmp(p, "Rcmd,", 5) == 0) {
1715 int len = strlen(p + 5);
1717 if ((len % 2) != 0) {
1718 put_packet(s, "E01");
1719 break;
1721 len = len / 2;
1722 hextomem(mem_buf, p + 5, len);
1723 mem_buf[len++] = 0;
1724 qemu_chr_be_write(s->mon_chr, mem_buf, len);
1725 put_packet(s, "OK");
1726 break;
1728 #endif /* !CONFIG_USER_ONLY */
1729 if (is_query_packet(p, "Supported", ':')) {
1730 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1731 cc = CPU_GET_CLASS(first_cpu);
1732 if (cc->gdb_core_xml_file != NULL) {
1733 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1736 if (strstr(p, "multiprocess+")) {
1737 s->multiprocess = true;
1739 pstrcat(buf, sizeof(buf), ";multiprocess+");
1741 put_packet(s, buf);
1742 break;
1744 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1745 const char *xml;
1746 target_ulong total_len;
1748 process = gdb_get_cpu_process(s, s->g_cpu);
1749 cc = CPU_GET_CLASS(s->g_cpu);
1750 if (cc->gdb_core_xml_file == NULL) {
1751 goto unknown_command;
1754 gdb_has_xml = true;
1755 p += 19;
1756 xml = get_feature_xml(s, p, &p, process);
1757 if (!xml) {
1758 snprintf(buf, sizeof(buf), "E00");
1759 put_packet(s, buf);
1760 break;
1763 if (*p == ':')
1764 p++;
1765 addr = strtoul(p, (char **)&p, 16);
1766 if (*p == ',')
1767 p++;
1768 len = strtoul(p, (char **)&p, 16);
1770 total_len = strlen(xml);
1771 if (addr > total_len) {
1772 snprintf(buf, sizeof(buf), "E00");
1773 put_packet(s, buf);
1774 break;
1776 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1777 len = (MAX_PACKET_LENGTH - 5) / 2;
1778 if (len < total_len - addr) {
1779 buf[0] = 'm';
1780 len = memtox(buf + 1, xml + addr, len);
1781 } else {
1782 buf[0] = 'l';
1783 len = memtox(buf + 1, xml + addr, total_len - addr);
1785 put_packet_binary(s, buf, len + 1, true);
1786 break;
1788 if (is_query_packet(p, "Attached", ':')) {
1789 put_packet(s, GDB_ATTACHED);
1790 break;
1792 /* Unrecognised 'q' command. */
1793 goto unknown_command;
1795 default:
1796 unknown_command:
1797 /* put empty packet */
1798 buf[0] = '\0';
1799 put_packet(s, buf);
1800 break;
1802 return RS_IDLE;
1805 void gdb_set_stop_cpu(CPUState *cpu)
1807 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
1809 if (!p->attached) {
1811 * Having a stop CPU corresponding to a process that is not attached
1812 * confuses GDB. So we ignore the request.
1814 return;
1817 gdbserver_state->c_cpu = cpu;
1818 gdbserver_state->g_cpu = cpu;
1821 #ifndef CONFIG_USER_ONLY
1822 static void gdb_vm_state_change(void *opaque, int running, RunState state)
1824 GDBState *s = gdbserver_state;
1825 CPUState *cpu = s->c_cpu;
1826 char buf[256];
1827 char thread_id[16];
1828 const char *type;
1829 int ret;
1831 if (running || s->state == RS_INACTIVE) {
1832 return;
1834 /* Is there a GDB syscall waiting to be sent? */
1835 if (s->current_syscall_cb) {
1836 put_packet(s, s->syscall_buf);
1837 return;
1840 if (cpu == NULL) {
1841 /* No process attached */
1842 return;
1845 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
1847 switch (state) {
1848 case RUN_STATE_DEBUG:
1849 if (cpu->watchpoint_hit) {
1850 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
1851 case BP_MEM_READ:
1852 type = "r";
1853 break;
1854 case BP_MEM_ACCESS:
1855 type = "a";
1856 break;
1857 default:
1858 type = "";
1859 break;
1861 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
1862 (target_ulong)cpu->watchpoint_hit->vaddr);
1863 snprintf(buf, sizeof(buf),
1864 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
1865 GDB_SIGNAL_TRAP, thread_id, type,
1866 (target_ulong)cpu->watchpoint_hit->vaddr);
1867 cpu->watchpoint_hit = NULL;
1868 goto send_packet;
1869 } else {
1870 trace_gdbstub_hit_break();
1872 tb_flush(cpu);
1873 ret = GDB_SIGNAL_TRAP;
1874 break;
1875 case RUN_STATE_PAUSED:
1876 trace_gdbstub_hit_paused();
1877 ret = GDB_SIGNAL_INT;
1878 break;
1879 case RUN_STATE_SHUTDOWN:
1880 trace_gdbstub_hit_shutdown();
1881 ret = GDB_SIGNAL_QUIT;
1882 break;
1883 case RUN_STATE_IO_ERROR:
1884 trace_gdbstub_hit_io_error();
1885 ret = GDB_SIGNAL_IO;
1886 break;
1887 case RUN_STATE_WATCHDOG:
1888 trace_gdbstub_hit_watchdog();
1889 ret = GDB_SIGNAL_ALRM;
1890 break;
1891 case RUN_STATE_INTERNAL_ERROR:
1892 trace_gdbstub_hit_internal_error();
1893 ret = GDB_SIGNAL_ABRT;
1894 break;
1895 case RUN_STATE_SAVE_VM:
1896 case RUN_STATE_RESTORE_VM:
1897 return;
1898 case RUN_STATE_FINISH_MIGRATE:
1899 ret = GDB_SIGNAL_XCPU;
1900 break;
1901 default:
1902 trace_gdbstub_hit_unknown(state);
1903 ret = GDB_SIGNAL_UNKNOWN;
1904 break;
1906 gdb_set_stop_cpu(cpu);
1907 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
1909 send_packet:
1910 put_packet(s, buf);
1912 /* disable single step if it was enabled */
1913 cpu_single_step(cpu, 0);
1915 #endif
1917 /* Send a gdb syscall request.
1918 This accepts limited printf-style format specifiers, specifically:
1919 %x - target_ulong argument printed in hex.
1920 %lx - 64-bit argument printed in hex.
1921 %s - string pointer (target_ulong) and length (int) pair. */
1922 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
1924 char *p;
1925 char *p_end;
1926 target_ulong addr;
1927 uint64_t i64;
1928 GDBState *s;
1930 s = gdbserver_state;
1931 if (!s)
1932 return;
1933 s->current_syscall_cb = cb;
1934 #ifndef CONFIG_USER_ONLY
1935 vm_stop(RUN_STATE_DEBUG);
1936 #endif
1937 p = s->syscall_buf;
1938 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
1939 *(p++) = 'F';
1940 while (*fmt) {
1941 if (*fmt == '%') {
1942 fmt++;
1943 switch (*fmt++) {
1944 case 'x':
1945 addr = va_arg(va, target_ulong);
1946 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
1947 break;
1948 case 'l':
1949 if (*(fmt++) != 'x')
1950 goto bad_format;
1951 i64 = va_arg(va, uint64_t);
1952 p += snprintf(p, p_end - p, "%" PRIx64, i64);
1953 break;
1954 case 's':
1955 addr = va_arg(va, target_ulong);
1956 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
1957 addr, va_arg(va, int));
1958 break;
1959 default:
1960 bad_format:
1961 error_report("gdbstub: Bad syscall format string '%s'",
1962 fmt - 1);
1963 break;
1965 } else {
1966 *(p++) = *(fmt++);
1969 *p = 0;
1970 #ifdef CONFIG_USER_ONLY
1971 put_packet(s, s->syscall_buf);
1972 /* Return control to gdb for it to process the syscall request.
1973 * Since the protocol requires that gdb hands control back to us
1974 * using a "here are the results" F packet, we don't need to check
1975 * gdb_handlesig's return value (which is the signal to deliver if
1976 * execution was resumed via a continue packet).
1978 gdb_handlesig(s->c_cpu, 0);
1979 #else
1980 /* In this case wait to send the syscall packet until notification that
1981 the CPU has stopped. This must be done because if the packet is sent
1982 now the reply from the syscall request could be received while the CPU
1983 is still in the running state, which can cause packets to be dropped
1984 and state transition 'T' packets to be sent while the syscall is still
1985 being processed. */
1986 qemu_cpu_kick(s->c_cpu);
1987 #endif
1990 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1992 va_list va;
1994 va_start(va, fmt);
1995 gdb_do_syscallv(cb, fmt, va);
1996 va_end(va);
1999 static void gdb_read_byte(GDBState *s, int ch)
2001 uint8_t reply;
2003 #ifndef CONFIG_USER_ONLY
2004 if (s->last_packet_len) {
2005 /* Waiting for a response to the last packet. If we see the start
2006 of a new command then abandon the previous response. */
2007 if (ch == '-') {
2008 trace_gdbstub_err_got_nack();
2009 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2010 } else if (ch == '+') {
2011 trace_gdbstub_io_got_ack();
2012 } else {
2013 trace_gdbstub_io_got_unexpected((uint8_t)ch);
2016 if (ch == '+' || ch == '$')
2017 s->last_packet_len = 0;
2018 if (ch != '$')
2019 return;
2021 if (runstate_is_running()) {
2022 /* when the CPU is running, we cannot do anything except stop
2023 it when receiving a char */
2024 vm_stop(RUN_STATE_PAUSED);
2025 } else
2026 #endif
2028 switch(s->state) {
2029 case RS_IDLE:
2030 if (ch == '$') {
2031 /* start of command packet */
2032 s->line_buf_index = 0;
2033 s->line_sum = 0;
2034 s->state = RS_GETLINE;
2035 } else {
2036 trace_gdbstub_err_garbage((uint8_t)ch);
2038 break;
2039 case RS_GETLINE:
2040 if (ch == '}') {
2041 /* start escape sequence */
2042 s->state = RS_GETLINE_ESC;
2043 s->line_sum += ch;
2044 } else if (ch == '*') {
2045 /* start run length encoding sequence */
2046 s->state = RS_GETLINE_RLE;
2047 s->line_sum += ch;
2048 } else if (ch == '#') {
2049 /* end of command, start of checksum*/
2050 s->state = RS_CHKSUM1;
2051 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2052 trace_gdbstub_err_overrun();
2053 s->state = RS_IDLE;
2054 } else {
2055 /* unescaped command character */
2056 s->line_buf[s->line_buf_index++] = ch;
2057 s->line_sum += ch;
2059 break;
2060 case RS_GETLINE_ESC:
2061 if (ch == '#') {
2062 /* unexpected end of command in escape sequence */
2063 s->state = RS_CHKSUM1;
2064 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2065 /* command buffer overrun */
2066 trace_gdbstub_err_overrun();
2067 s->state = RS_IDLE;
2068 } else {
2069 /* parse escaped character and leave escape state */
2070 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2071 s->line_sum += ch;
2072 s->state = RS_GETLINE;
2074 break;
2075 case RS_GETLINE_RLE:
2076 if (ch < ' ') {
2077 /* invalid RLE count encoding */
2078 trace_gdbstub_err_invalid_repeat((uint8_t)ch);
2079 s->state = RS_GETLINE;
2080 } else {
2081 /* decode repeat length */
2082 int repeat = (unsigned char)ch - ' ' + 3;
2083 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2084 /* that many repeats would overrun the command buffer */
2085 trace_gdbstub_err_overrun();
2086 s->state = RS_IDLE;
2087 } else if (s->line_buf_index < 1) {
2088 /* got a repeat but we have nothing to repeat */
2089 trace_gdbstub_err_invalid_rle();
2090 s->state = RS_GETLINE;
2091 } else {
2092 /* repeat the last character */
2093 memset(s->line_buf + s->line_buf_index,
2094 s->line_buf[s->line_buf_index - 1], repeat);
2095 s->line_buf_index += repeat;
2096 s->line_sum += ch;
2097 s->state = RS_GETLINE;
2100 break;
2101 case RS_CHKSUM1:
2102 /* get high hex digit of checksum */
2103 if (!isxdigit(ch)) {
2104 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2105 s->state = RS_GETLINE;
2106 break;
2108 s->line_buf[s->line_buf_index] = '\0';
2109 s->line_csum = fromhex(ch) << 4;
2110 s->state = RS_CHKSUM2;
2111 break;
2112 case RS_CHKSUM2:
2113 /* get low hex digit of checksum */
2114 if (!isxdigit(ch)) {
2115 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2116 s->state = RS_GETLINE;
2117 break;
2119 s->line_csum |= fromhex(ch);
2121 if (s->line_csum != (s->line_sum & 0xff)) {
2122 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2123 /* send NAK reply */
2124 reply = '-';
2125 put_buffer(s, &reply, 1);
2126 s->state = RS_IDLE;
2127 } else {
2128 /* send ACK reply */
2129 reply = '+';
2130 put_buffer(s, &reply, 1);
2131 s->state = gdb_handle_packet(s, s->line_buf);
2133 break;
2134 default:
2135 abort();
2140 /* Tell the remote gdb that the process has exited. */
2141 void gdb_exit(CPUArchState *env, int code)
2143 GDBState *s;
2144 char buf[4];
2146 s = gdbserver_state;
2147 if (!s) {
2148 return;
2150 #ifdef CONFIG_USER_ONLY
2151 if (gdbserver_fd < 0 || s->fd < 0) {
2152 return;
2154 #endif
2156 trace_gdbstub_op_exiting((uint8_t)code);
2158 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2159 put_packet(s, buf);
2161 #ifndef CONFIG_USER_ONLY
2162 qemu_chr_fe_deinit(&s->chr, true);
2163 #endif
2167 * Create the process that will contain all the "orphan" CPUs (that are not
2168 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2169 * be attachable and thus will be invisible to the user.
2171 static void create_default_process(GDBState *s)
2173 GDBProcess *process;
2174 int max_pid = 0;
2176 if (s->process_num) {
2177 max_pid = s->processes[s->process_num - 1].pid;
2180 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2181 process = &s->processes[s->process_num - 1];
2183 /* We need an available PID slot for this process */
2184 assert(max_pid < UINT32_MAX);
2186 process->pid = max_pid + 1;
2187 process->attached = false;
2188 process->target_xml[0] = '\0';
2191 #ifdef CONFIG_USER_ONLY
2193 gdb_handlesig(CPUState *cpu, int sig)
2195 GDBState *s;
2196 char buf[256];
2197 int n;
2199 s = gdbserver_state;
2200 if (gdbserver_fd < 0 || s->fd < 0) {
2201 return sig;
2204 /* disable single step if it was enabled */
2205 cpu_single_step(cpu, 0);
2206 tb_flush(cpu);
2208 if (sig != 0) {
2209 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2210 put_packet(s, buf);
2212 /* put_packet() might have detected that the peer terminated the
2213 connection. */
2214 if (s->fd < 0) {
2215 return sig;
2218 sig = 0;
2219 s->state = RS_IDLE;
2220 s->running_state = 0;
2221 while (s->running_state == 0) {
2222 n = read(s->fd, buf, 256);
2223 if (n > 0) {
2224 int i;
2226 for (i = 0; i < n; i++) {
2227 gdb_read_byte(s, buf[i]);
2229 } else {
2230 /* XXX: Connection closed. Should probably wait for another
2231 connection before continuing. */
2232 if (n == 0) {
2233 close(s->fd);
2235 s->fd = -1;
2236 return sig;
2239 sig = s->signal;
2240 s->signal = 0;
2241 return sig;
2244 /* Tell the remote gdb that the process has exited due to SIG. */
2245 void gdb_signalled(CPUArchState *env, int sig)
2247 GDBState *s;
2248 char buf[4];
2250 s = gdbserver_state;
2251 if (gdbserver_fd < 0 || s->fd < 0) {
2252 return;
2255 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2256 put_packet(s, buf);
2259 static bool gdb_accept(void)
2261 GDBState *s;
2262 struct sockaddr_in sockaddr;
2263 socklen_t len;
2264 int fd;
2266 for(;;) {
2267 len = sizeof(sockaddr);
2268 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2269 if (fd < 0 && errno != EINTR) {
2270 perror("accept");
2271 return false;
2272 } else if (fd >= 0) {
2273 qemu_set_cloexec(fd);
2274 break;
2278 /* set short latency */
2279 if (socket_set_nodelay(fd)) {
2280 perror("setsockopt");
2281 close(fd);
2282 return false;
2285 s = g_malloc0(sizeof(GDBState));
2286 create_default_process(s);
2287 s->processes[0].attached = true;
2288 s->c_cpu = gdb_first_attached_cpu(s);
2289 s->g_cpu = s->c_cpu;
2290 s->fd = fd;
2291 gdb_has_xml = false;
2293 gdbserver_state = s;
2294 return true;
2297 static int gdbserver_open(int port)
2299 struct sockaddr_in sockaddr;
2300 int fd, ret;
2302 fd = socket(PF_INET, SOCK_STREAM, 0);
2303 if (fd < 0) {
2304 perror("socket");
2305 return -1;
2307 qemu_set_cloexec(fd);
2309 socket_set_fast_reuse(fd);
2311 sockaddr.sin_family = AF_INET;
2312 sockaddr.sin_port = htons(port);
2313 sockaddr.sin_addr.s_addr = 0;
2314 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2315 if (ret < 0) {
2316 perror("bind");
2317 close(fd);
2318 return -1;
2320 ret = listen(fd, 1);
2321 if (ret < 0) {
2322 perror("listen");
2323 close(fd);
2324 return -1;
2326 return fd;
2329 int gdbserver_start(int port)
2331 gdbserver_fd = gdbserver_open(port);
2332 if (gdbserver_fd < 0)
2333 return -1;
2334 /* accept connections */
2335 if (!gdb_accept()) {
2336 close(gdbserver_fd);
2337 gdbserver_fd = -1;
2338 return -1;
2340 return 0;
2343 /* Disable gdb stub for child processes. */
2344 void gdbserver_fork(CPUState *cpu)
2346 GDBState *s = gdbserver_state;
2348 if (gdbserver_fd < 0 || s->fd < 0) {
2349 return;
2351 close(s->fd);
2352 s->fd = -1;
2353 cpu_breakpoint_remove_all(cpu, BP_GDB);
2354 cpu_watchpoint_remove_all(cpu, BP_GDB);
2356 #else
2357 static int gdb_chr_can_receive(void *opaque)
2359 /* We can handle an arbitrarily large amount of data.
2360 Pick the maximum packet size, which is as good as anything. */
2361 return MAX_PACKET_LENGTH;
2364 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2366 int i;
2368 for (i = 0; i < size; i++) {
2369 gdb_read_byte(gdbserver_state, buf[i]);
2373 static void gdb_chr_event(void *opaque, int event)
2375 int i;
2376 GDBState *s = (GDBState *) opaque;
2378 switch (event) {
2379 case CHR_EVENT_OPENED:
2380 /* Start with first process attached, others detached */
2381 for (i = 0; i < s->process_num; i++) {
2382 s->processes[i].attached = !i;
2385 s->c_cpu = gdb_first_attached_cpu(s);
2386 s->g_cpu = s->c_cpu;
2388 vm_stop(RUN_STATE_PAUSED);
2389 gdb_has_xml = false;
2390 break;
2391 default:
2392 break;
2396 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2398 char buf[MAX_PACKET_LENGTH];
2400 buf[0] = 'O';
2401 if (len > (MAX_PACKET_LENGTH/2) - 1)
2402 len = (MAX_PACKET_LENGTH/2) - 1;
2403 memtohex(buf + 1, (uint8_t *)msg, len);
2404 put_packet(s, buf);
2407 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2409 const char *p = (const char *)buf;
2410 int max_sz;
2412 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2413 for (;;) {
2414 if (len <= max_sz) {
2415 gdb_monitor_output(gdbserver_state, p, len);
2416 break;
2418 gdb_monitor_output(gdbserver_state, p, max_sz);
2419 p += max_sz;
2420 len -= max_sz;
2422 return len;
2425 #ifndef _WIN32
2426 static void gdb_sigterm_handler(int signal)
2428 if (runstate_is_running()) {
2429 vm_stop(RUN_STATE_PAUSED);
2432 #endif
2434 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2435 bool *be_opened, Error **errp)
2437 *be_opened = false;
2440 static void char_gdb_class_init(ObjectClass *oc, void *data)
2442 ChardevClass *cc = CHARDEV_CLASS(oc);
2444 cc->internal = true;
2445 cc->open = gdb_monitor_open;
2446 cc->chr_write = gdb_monitor_write;
2449 #define TYPE_CHARDEV_GDB "chardev-gdb"
2451 static const TypeInfo char_gdb_type_info = {
2452 .name = TYPE_CHARDEV_GDB,
2453 .parent = TYPE_CHARDEV,
2454 .class_init = char_gdb_class_init,
2457 static int find_cpu_clusters(Object *child, void *opaque)
2459 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2460 GDBState *s = (GDBState *) opaque;
2461 CPUClusterState *cluster = CPU_CLUSTER(child);
2462 GDBProcess *process;
2464 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2466 process = &s->processes[s->process_num - 1];
2469 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2470 * runtime, we enforce here that the machine does not use a cluster ID
2471 * that would lead to PID 0.
2473 assert(cluster->cluster_id != UINT32_MAX);
2474 process->pid = cluster->cluster_id + 1;
2475 process->attached = false;
2476 process->target_xml[0] = '\0';
2478 return 0;
2481 return object_child_foreach(child, find_cpu_clusters, opaque);
2484 static int pid_order(const void *a, const void *b)
2486 GDBProcess *pa = (GDBProcess *) a;
2487 GDBProcess *pb = (GDBProcess *) b;
2489 if (pa->pid < pb->pid) {
2490 return -1;
2491 } else if (pa->pid > pb->pid) {
2492 return 1;
2493 } else {
2494 return 0;
2498 static void create_processes(GDBState *s)
2500 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2502 if (s->processes) {
2503 /* Sort by PID */
2504 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2507 create_default_process(s);
2510 static void cleanup_processes(GDBState *s)
2512 g_free(s->processes);
2513 s->process_num = 0;
2514 s->processes = NULL;
2517 int gdbserver_start(const char *device)
2519 trace_gdbstub_op_start(device);
2521 GDBState *s;
2522 char gdbstub_device_name[128];
2523 Chardev *chr = NULL;
2524 Chardev *mon_chr;
2526 if (!first_cpu) {
2527 error_report("gdbstub: meaningless to attach gdb to a "
2528 "machine without any CPU.");
2529 return -1;
2532 if (!device)
2533 return -1;
2534 if (strcmp(device, "none") != 0) {
2535 if (strstart(device, "tcp:", NULL)) {
2536 /* enforce required TCP attributes */
2537 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2538 "%s,nowait,nodelay,server", device);
2539 device = gdbstub_device_name;
2541 #ifndef _WIN32
2542 else if (strcmp(device, "stdio") == 0) {
2543 struct sigaction act;
2545 memset(&act, 0, sizeof(act));
2546 act.sa_handler = gdb_sigterm_handler;
2547 sigaction(SIGINT, &act, NULL);
2549 #endif
2551 * FIXME: it's a bit weird to allow using a mux chardev here
2552 * and implicitly setup a monitor. We may want to break this.
2554 chr = qemu_chr_new_noreplay("gdb", device, true);
2555 if (!chr)
2556 return -1;
2559 s = gdbserver_state;
2560 if (!s) {
2561 s = g_malloc0(sizeof(GDBState));
2562 gdbserver_state = s;
2564 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2566 /* Initialize a monitor terminal for gdb */
2567 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
2568 NULL, &error_abort);
2569 monitor_init(mon_chr, 0);
2570 } else {
2571 qemu_chr_fe_deinit(&s->chr, true);
2572 mon_chr = s->mon_chr;
2573 cleanup_processes(s);
2574 memset(s, 0, sizeof(GDBState));
2575 s->mon_chr = mon_chr;
2578 create_processes(s);
2580 if (chr) {
2581 qemu_chr_fe_init(&s->chr, chr, &error_abort);
2582 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
2583 gdb_chr_event, NULL, s, NULL, true);
2585 s->state = chr ? RS_IDLE : RS_INACTIVE;
2586 s->mon_chr = mon_chr;
2587 s->current_syscall_cb = NULL;
2589 return 0;
2592 void gdbserver_cleanup(void)
2594 if (gdbserver_state) {
2595 put_packet(gdbserver_state, "W00");
2599 static void register_types(void)
2601 type_register_static(&char_gdb_type_info);
2604 type_init(register_types);
2605 #endif