2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 * Only host-mode and non-DMA accesses are currently supported.
23 #include "qemu-common.h"
24 #include "qemu-timer.h"
29 /* Common USB registers */
30 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
31 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
33 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
34 #define MUSB_HDRC_INTRRX 0x04
35 #define MUSB_HDRC_INTRTXE 0x06
36 #define MUSB_HDRC_INTRRXE 0x08
37 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
38 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
39 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
40 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
41 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
43 /* Per-EP registers in indexed mode */
44 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
47 #define MUSB_HDRC_FIFO 0x20
49 /* Additional Control Registers */
50 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
52 /* These are indexed */
53 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
54 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
55 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
56 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
58 /* Some more registers */
59 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
60 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
62 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
63 /* ULPI pass-through */
64 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
65 #define MUSB_HDRC_ULPI_REGDATA 0x74
66 #define MUSB_HDRC_ULPI_REGADDR 0x75
67 #define MUSB_HDRC_ULPI_REGCTL 0x76
69 /* Extended config & PHY control */
70 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
71 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
72 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
73 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
74 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
75 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
76 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
78 /* Per-EP BUSCTL registers */
79 #define MUSB_HDRC_BUSCTL 0x80
81 /* Per-EP registers in flat mode */
82 #define MUSB_HDRC_EP 0x100
84 /* offsets to registers in flat model */
85 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
86 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
87 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
88 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
89 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
90 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
91 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
92 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
93 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
94 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
95 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
96 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
97 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
98 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
99 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
101 /* "Bus control" registers */
102 #define MUSB_HDRC_TXFUNCADDR 0x00
103 #define MUSB_HDRC_TXHUBADDR 0x02
104 #define MUSB_HDRC_TXHUBPORT 0x03
106 #define MUSB_HDRC_RXFUNCADDR 0x04
107 #define MUSB_HDRC_RXHUBADDR 0x06
108 #define MUSB_HDRC_RXHUBPORT 0x07
111 * MUSBHDRC Register bit masks
115 #define MGC_M_POWER_ISOUPDATE 0x80
116 #define MGC_M_POWER_SOFTCONN 0x40
117 #define MGC_M_POWER_HSENAB 0x20
118 #define MGC_M_POWER_HSMODE 0x10
119 #define MGC_M_POWER_RESET 0x08
120 #define MGC_M_POWER_RESUME 0x04
121 #define MGC_M_POWER_SUSPENDM 0x02
122 #define MGC_M_POWER_ENSUSPEND 0x01
125 #define MGC_M_INTR_SUSPEND 0x01
126 #define MGC_M_INTR_RESUME 0x02
127 #define MGC_M_INTR_RESET 0x04
128 #define MGC_M_INTR_BABBLE 0x04
129 #define MGC_M_INTR_SOF 0x08
130 #define MGC_M_INTR_CONNECT 0x10
131 #define MGC_M_INTR_DISCONNECT 0x20
132 #define MGC_M_INTR_SESSREQ 0x40
133 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
134 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
137 #define MGC_M_DEVCTL_BDEVICE 0x80
138 #define MGC_M_DEVCTL_FSDEV 0x40
139 #define MGC_M_DEVCTL_LSDEV 0x20
140 #define MGC_M_DEVCTL_VBUS 0x18
141 #define MGC_S_DEVCTL_VBUS 3
142 #define MGC_M_DEVCTL_HM 0x04
143 #define MGC_M_DEVCTL_HR 0x02
144 #define MGC_M_DEVCTL_SESSION 0x01
147 #define MGC_M_TEST_FORCE_HOST 0x80
148 #define MGC_M_TEST_FIFO_ACCESS 0x40
149 #define MGC_M_TEST_FORCE_FS 0x20
150 #define MGC_M_TEST_FORCE_HS 0x10
151 #define MGC_M_TEST_PACKET 0x08
152 #define MGC_M_TEST_K 0x04
153 #define MGC_M_TEST_J 0x02
154 #define MGC_M_TEST_SE0_NAK 0x01
157 #define MGC_M_CSR0_FLUSHFIFO 0x0100
158 #define MGC_M_CSR0_TXPKTRDY 0x0002
159 #define MGC_M_CSR0_RXPKTRDY 0x0001
161 /* CSR0 in Peripheral mode */
162 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
163 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
164 #define MGC_M_CSR0_P_SENDSTALL 0x0020
165 #define MGC_M_CSR0_P_SETUPEND 0x0010
166 #define MGC_M_CSR0_P_DATAEND 0x0008
167 #define MGC_M_CSR0_P_SENTSTALL 0x0004
169 /* CSR0 in Host mode */
170 #define MGC_M_CSR0_H_NO_PING 0x0800
171 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
172 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
173 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
174 #define MGC_M_CSR0_H_STATUSPKT 0x0040
175 #define MGC_M_CSR0_H_REQPKT 0x0020
176 #define MGC_M_CSR0_H_ERROR 0x0010
177 #define MGC_M_CSR0_H_SETUPPKT 0x0008
178 #define MGC_M_CSR0_H_RXSTALL 0x0004
181 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
182 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
183 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
184 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
185 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
186 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
187 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
188 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
190 /* TXCSR in Peripheral and Host mode */
191 #define MGC_M_TXCSR_AUTOSET 0x8000
192 #define MGC_M_TXCSR_ISO 0x4000
193 #define MGC_M_TXCSR_MODE 0x2000
194 #define MGC_M_TXCSR_DMAENAB 0x1000
195 #define MGC_M_TXCSR_FRCDATATOG 0x0800
196 #define MGC_M_TXCSR_DMAMODE 0x0400
197 #define MGC_M_TXCSR_CLRDATATOG 0x0040
198 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
199 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
200 #define MGC_M_TXCSR_TXPKTRDY 0x0001
202 /* TXCSR in Peripheral mode */
203 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
204 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
205 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
206 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
208 /* TXCSR in Host mode */
209 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
210 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
211 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
212 #define MGC_M_TXCSR_H_RXSTALL 0x0020
213 #define MGC_M_TXCSR_H_ERROR 0x0004
215 /* RXCSR in Peripheral and Host mode */
216 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
217 #define MGC_M_RXCSR_DMAENAB 0x2000
218 #define MGC_M_RXCSR_DISNYET 0x1000
219 #define MGC_M_RXCSR_DMAMODE 0x0800
220 #define MGC_M_RXCSR_INCOMPRX 0x0100
221 #define MGC_M_RXCSR_CLRDATATOG 0x0080
222 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
223 #define MGC_M_RXCSR_DATAERROR 0x0008
224 #define MGC_M_RXCSR_FIFOFULL 0x0002
225 #define MGC_M_RXCSR_RXPKTRDY 0x0001
227 /* RXCSR in Peripheral mode */
228 #define MGC_M_RXCSR_P_ISO 0x4000
229 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
230 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
231 #define MGC_M_RXCSR_P_OVERRUN 0x0004
233 /* RXCSR in Host mode */
234 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
235 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
236 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
237 #define MGC_M_RXCSR_H_RXSTALL 0x0040
238 #define MGC_M_RXCSR_H_REQPKT 0x0020
239 #define MGC_M_RXCSR_H_ERROR 0x0004
242 #define MGC_M_HUBADDR_MULTI_TT 0x80
244 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
245 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
247 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
248 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
249 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
250 #define MGC_M_ULPI_REGCTL_REG 0x01
252 /* #define MUSB_DEBUG */
255 #define TRACE(fmt,...) fprintf(stderr, "%s@%d: " fmt "\n", __FUNCTION__, \
256 __LINE__, ##__VA_ARGS__)
262 static void musb_attach(USBPort
*port
);
263 static void musb_detach(USBPort
*port
);
264 static void musb_child_detach(USBPort
*port
, USBDevice
*child
);
265 static void musb_schedule_cb(USBPort
*port
, USBPacket
*p
);
266 static void musb_async_cancel_device(MUSBState
*s
, USBDevice
*dev
);
268 static USBPortOps musb_port_ops
= {
269 .attach
= musb_attach
,
270 .detach
= musb_detach
,
271 .child_detach
= musb_child_detach
,
272 .complete
= musb_schedule_cb
,
275 static USBBusOps musb_bus_ops
= {
278 typedef struct MUSBPacket MUSBPacket
;
279 typedef struct MUSBEndPoint MUSBEndPoint
;
287 struct MUSBEndPoint
{
298 int timeout
[2]; /* Always in microframes */
304 MUSBPacket packey
[2];
308 /* For callbacks' use */
312 USBCallback
*delayed_cb
[2];
313 QEMUTimer
*intv_timer
[2];
317 qemu_irq irqs
[musb_irq_max
];
338 /* Duplicating the world since 2008!... probably we should have 32
339 * logical, single endpoints instead. */
343 void musb_reset(MUSBState
*s
)
349 s
->power
= MGC_M_POWER_HSENAB
;
360 memset(s
->buf
, 0, sizeof(s
->buf
));
363 s
->ep
[0].config
= MGC_M_CONFIGDATA_SOFTCONE
| MGC_M_CONFIGDATA_DYNFIFO
;
364 for (i
= 0; i
< 16; i
++) {
365 s
->ep
[i
].fifosize
= 64;
366 s
->ep
[i
].maxp
[0] = 0x40;
367 s
->ep
[i
].maxp
[1] = 0x40;
370 usb_packet_init(&s
->ep
[i
].packey
[0].p
);
371 usb_packet_init(&s
->ep
[i
].packey
[1].p
);
375 struct MUSBState
*musb_init(DeviceState
*parent_device
, int gpio_base
)
377 MUSBState
*s
= g_malloc0(sizeof(*s
));
380 for (i
= 0; i
< musb_irq_max
; i
++) {
381 s
->irqs
[i
] = qdev_get_gpio_in(parent_device
, gpio_base
+ i
);
386 usb_bus_new(&s
->bus
, &musb_bus_ops
, parent_device
);
387 usb_register_port(&s
->bus
, &s
->port
, s
, 0, &musb_port_ops
,
388 USB_SPEED_MASK_LOW
| USB_SPEED_MASK_FULL
);
393 static void musb_vbus_set(MUSBState
*s
, int level
)
396 s
->devctl
|= 3 << MGC_S_DEVCTL_VBUS
;
398 s
->devctl
&= ~MGC_M_DEVCTL_VBUS
;
400 qemu_set_irq(s
->irqs
[musb_set_vbus
], level
);
403 static void musb_intr_set(MUSBState
*s
, int line
, int level
)
406 s
->intr
&= ~(1 << line
);
407 qemu_irq_lower(s
->irqs
[line
]);
408 } else if (s
->mask
& (1 << line
)) {
409 s
->intr
|= 1 << line
;
410 qemu_irq_raise(s
->irqs
[line
]);
414 static void musb_tx_intr_set(MUSBState
*s
, int line
, int level
)
417 s
->tx_intr
&= ~(1 << line
);
419 qemu_irq_lower(s
->irqs
[musb_irq_tx
]);
420 } else if (s
->tx_mask
& (1 << line
)) {
421 s
->tx_intr
|= 1 << line
;
422 qemu_irq_raise(s
->irqs
[musb_irq_tx
]);
426 static void musb_rx_intr_set(MUSBState
*s
, int line
, int level
)
430 s
->rx_intr
&= ~(1 << line
);
432 qemu_irq_lower(s
->irqs
[musb_irq_rx
]);
433 } else if (s
->rx_mask
& (1 << line
)) {
434 s
->rx_intr
|= 1 << line
;
435 qemu_irq_raise(s
->irqs
[musb_irq_rx
]);
438 musb_tx_intr_set(s
, line
, level
);
441 uint32_t musb_core_intr_get(MUSBState
*s
)
443 return (s
->rx_intr
<< 15) | s
->tx_intr
;
446 void musb_core_intr_clear(MUSBState
*s
, uint32_t mask
)
449 s
->rx_intr
&= mask
>> 15;
451 qemu_irq_lower(s
->irqs
[musb_irq_rx
]);
455 s
->tx_intr
&= mask
& 0xffff;
457 qemu_irq_lower(s
->irqs
[musb_irq_tx
]);
461 void musb_set_size(MUSBState
*s
, int epnum
, int size
, int is_tx
)
463 s
->ep
[epnum
].ext_size
[!is_tx
] = size
;
464 s
->ep
[epnum
].fifostart
[0] = 0;
465 s
->ep
[epnum
].fifostart
[1] = 0;
466 s
->ep
[epnum
].fifolen
[0] = 0;
467 s
->ep
[epnum
].fifolen
[1] = 0;
470 static void musb_session_update(MUSBState
*s
, int prev_dev
, int prev_sess
)
472 int detect_prev
= prev_dev
&& prev_sess
;
473 int detect
= !!s
->port
.dev
&& s
->session
;
475 if (detect
&& !detect_prev
) {
476 /* Let's skip the ID pin sense and VBUS sense formalities and
477 * and signal a successful SRP directly. This should work at least
478 * for the Linux driver stack. */
479 musb_intr_set(s
, musb_irq_connect
, 1);
481 if (s
->port
.dev
->speed
== USB_SPEED_LOW
) {
482 s
->devctl
&= ~MGC_M_DEVCTL_FSDEV
;
483 s
->devctl
|= MGC_M_DEVCTL_LSDEV
;
485 s
->devctl
|= MGC_M_DEVCTL_FSDEV
;
486 s
->devctl
&= ~MGC_M_DEVCTL_LSDEV
;
490 s
->devctl
&= ~MGC_M_DEVCTL_BDEVICE
;
493 s
->devctl
|= MGC_M_DEVCTL_HM
;
497 } else if (!detect
&& detect_prev
) {
504 /* Attach or detach a device on our only port. */
505 static void musb_attach(USBPort
*port
)
507 MUSBState
*s
= (MUSBState
*) port
->opaque
;
509 musb_intr_set(s
, musb_irq_vbus_request
, 1);
510 musb_session_update(s
, 0, s
->session
);
513 static void musb_detach(USBPort
*port
)
515 MUSBState
*s
= (MUSBState
*) port
->opaque
;
517 musb_async_cancel_device(s
, port
->dev
);
519 musb_intr_set(s
, musb_irq_disconnect
, 1);
520 musb_session_update(s
, 1, s
->session
);
523 static void musb_child_detach(USBPort
*port
, USBDevice
*child
)
525 MUSBState
*s
= (MUSBState
*) port
->opaque
;
527 musb_async_cancel_device(s
, child
);
530 static void musb_cb_tick0(void *opaque
)
532 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
534 ep
->delayed_cb
[0](&ep
->packey
[0].p
, opaque
);
537 static void musb_cb_tick1(void *opaque
)
539 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
541 ep
->delayed_cb
[1](&ep
->packey
[1].p
, opaque
);
544 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
546 static void musb_schedule_cb(USBPort
*port
, USBPacket
*packey
)
548 MUSBPacket
*p
= container_of(packey
, MUSBPacket
, p
);
549 MUSBEndPoint
*ep
= p
->ep
;
553 if (ep
->status
[dir
] == USB_RET_NAK
)
554 timeout
= ep
->timeout
[dir
];
555 else if (ep
->interrupt
[dir
])
558 return musb_cb_tick(ep
);
560 if (!ep
->intv_timer
[dir
])
561 ep
->intv_timer
[dir
] = qemu_new_timer_ns(vm_clock
, musb_cb_tick
, ep
);
563 qemu_mod_timer(ep
->intv_timer
[dir
], qemu_get_clock_ns(vm_clock
) +
564 muldiv64(timeout
, get_ticks_per_sec(), 8000));
567 static int musb_timeout(int ttype
, int speed
, int val
)
574 case USB_ENDPOINT_XFER_CONTROL
:
577 else if (speed
== USB_SPEED_HIGH
)
578 return 1 << (val
- 1);
580 return 8 << (val
- 1);
582 case USB_ENDPOINT_XFER_INT
:
583 if (speed
== USB_SPEED_HIGH
)
587 return 1 << (val
- 1);
591 case USB_ENDPOINT_XFER_BULK
:
592 case USB_ENDPOINT_XFER_ISOC
:
595 else if (speed
== USB_SPEED_HIGH
)
596 return 1 << (val
- 1);
598 return 8 << (val
- 1);
599 /* TODO: what with low-speed Bulk and Isochronous? */
602 hw_error("bad interval\n");
605 static void musb_packet(MUSBState
*s
, MUSBEndPoint
*ep
,
606 int epnum
, int pid
, int len
, USBCallback cb
, int dir
)
609 int idx
= epnum
&& dir
;
612 /* ep->type[0,1] contains:
613 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
614 * in bits 5:4 the transfer type (BULK / INT)
615 * in bits 3:0 the EP num
617 ttype
= epnum
? (ep
->type
[idx
] >> 4) & 3 : 0;
619 ep
->timeout
[dir
] = musb_timeout(ttype
,
620 ep
->type
[idx
] >> 6, ep
->interval
[idx
]);
621 ep
->interrupt
[dir
] = ttype
== USB_ENDPOINT_XFER_INT
;
622 ep
->delayed_cb
[dir
] = cb
;
624 /* A wild guess on the FADDR semantics... */
625 usb_packet_setup(&ep
->packey
[dir
].p
, pid
, ep
->faddr
[idx
],
626 ep
->type
[idx
] & 0xf);
627 usb_packet_addbuf(&ep
->packey
[dir
].p
, ep
->buf
[idx
], len
);
628 ep
->packey
[dir
].ep
= ep
;
629 ep
->packey
[dir
].dir
= dir
;
632 ret
= usb_handle_packet(s
->port
.dev
, &ep
->packey
[dir
].p
);
636 if (ret
== USB_RET_ASYNC
) {
637 ep
->status
[dir
] = len
;
641 ep
->status
[dir
] = ret
;
642 musb_schedule_cb(&s
->port
, &ep
->packey
[dir
].p
);
645 static void musb_tx_packet_complete(USBPacket
*packey
, void *opaque
)
647 /* Unfortunately we can't use packey->devep because that's the remote
648 * endpoint number and may be different than our local. */
649 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
650 int epnum
= ep
->epnum
;
651 MUSBState
*s
= ep
->musb
;
653 ep
->fifostart
[0] = 0;
656 if (ep
->status
[0] != USB_RET_NAK
) {
659 ep
->csr
[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY
| MGC_M_TXCSR_TXPKTRDY
);
661 ep
->csr
[0] &= ~MGC_M_CSR0_TXPKTRDY
;
666 /* Clear all of the error bits first */
668 ep
->csr
[0] &= ~(MGC_M_TXCSR_H_ERROR
| MGC_M_TXCSR_H_RXSTALL
|
669 MGC_M_TXCSR_H_NAKTIMEOUT
);
671 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
672 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
674 if (ep
->status
[0] == USB_RET_STALL
) {
675 /* Command not supported by target! */
679 ep
->csr
[0] |= MGC_M_TXCSR_H_RXSTALL
;
681 ep
->csr
[0] |= MGC_M_CSR0_H_RXSTALL
;
684 if (ep
->status
[0] == USB_RET_NAK
) {
687 /* NAK timeouts are only generated in Bulk transfers and
688 * Data-errors in Isochronous. */
689 if (ep
->interrupt
[0]) {
694 ep
->csr
[0] |= MGC_M_TXCSR_H_NAKTIMEOUT
;
696 ep
->csr
[0] |= MGC_M_CSR0_H_NAKTIMEOUT
;
699 if (ep
->status
[0] < 0) {
700 if (ep
->status
[0] == USB_RET_BABBLE
)
701 musb_intr_set(s
, musb_irq_rst_babble
, 1);
703 /* Pretend we've tried three times already and failed (in
704 * case of USB_TOKEN_SETUP). */
706 ep
->csr
[0] |= MGC_M_TXCSR_H_ERROR
;
708 ep
->csr
[0] |= MGC_M_CSR0_H_ERROR
;
710 musb_tx_intr_set(s
, epnum
, 1);
713 /* TODO: check len for over/underruns of an OUT packet? */
716 if (!epnum
&& ep
->packey
[0].pid
== USB_TOKEN_SETUP
)
717 s
->setup_len
= ep
->packey
[0].data
[6];
720 /* In DMA mode: if no error, assert DMA request for this EP,
721 * and skip the interrupt. */
722 musb_tx_intr_set(s
, epnum
, 1);
725 static void musb_rx_packet_complete(USBPacket
*packey
, void *opaque
)
727 /* Unfortunately we can't use packey->devep because that's the remote
728 * endpoint number and may be different than our local. */
729 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
730 int epnum
= ep
->epnum
;
731 MUSBState
*s
= ep
->musb
;
733 ep
->fifostart
[1] = 0;
737 if (ep
->status
[1] != USB_RET_NAK
) {
739 ep
->csr
[1] &= ~MGC_M_RXCSR_H_REQPKT
;
741 ep
->csr
[0] &= ~MGC_M_CSR0_H_REQPKT
;
746 /* Clear all of the imaginable error bits first */
747 ep
->csr
[1] &= ~(MGC_M_RXCSR_H_ERROR
| MGC_M_RXCSR_H_RXSTALL
|
748 MGC_M_RXCSR_DATAERROR
);
750 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
751 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
753 if (ep
->status
[1] == USB_RET_STALL
) {
757 ep
->csr
[1] |= MGC_M_RXCSR_H_RXSTALL
;
759 ep
->csr
[0] |= MGC_M_CSR0_H_RXSTALL
;
762 if (ep
->status
[1] == USB_RET_NAK
) {
765 /* NAK timeouts are only generated in Bulk transfers and
766 * Data-errors in Isochronous. */
767 if (ep
->interrupt
[1])
768 return musb_packet(s
, ep
, epnum
, USB_TOKEN_IN
,
769 packey
->iov
.size
, musb_rx_packet_complete
, 1);
771 ep
->csr
[1] |= MGC_M_RXCSR_DATAERROR
;
773 ep
->csr
[0] |= MGC_M_CSR0_H_NAKTIMEOUT
;
776 if (ep
->status
[1] < 0) {
777 if (ep
->status
[1] == USB_RET_BABBLE
) {
778 musb_intr_set(s
, musb_irq_rst_babble
, 1);
782 /* Pretend we've tried three times already and failed (in
783 * case of a control transfer). */
784 ep
->csr
[1] |= MGC_M_RXCSR_H_ERROR
;
786 ep
->csr
[0] |= MGC_M_CSR0_H_ERROR
;
788 musb_rx_intr_set(s
, epnum
, 1);
791 /* TODO: check len for over/underruns of an OUT packet? */
792 /* TODO: perhaps make use of e->ext_size[1] here. */
794 packey
->result
= ep
->status
[1];
796 if (!(ep
->csr
[1] & (MGC_M_RXCSR_H_RXSTALL
| MGC_M_RXCSR_DATAERROR
))) {
797 ep
->csr
[1] |= MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
;
799 ep
->csr
[0] |= MGC_M_CSR0_RXPKTRDY
;
801 ep
->rxcount
= packey
->result
; /* XXX: MIN(packey->len, ep->maxp[1]); */
802 /* In DMA mode: assert DMA request for this EP */
805 /* Only if DMA has not been asserted */
806 musb_rx_intr_set(s
, epnum
, 1);
809 static void musb_async_cancel_device(MUSBState
*s
, USBDevice
*dev
)
813 for (ep
= 0; ep
< 16; ep
++) {
814 for (dir
= 0; dir
< 2; dir
++) {
815 if (s
->ep
[ep
].packey
[dir
].p
.owner
!= dev
) {
818 usb_cancel_packet(&s
->ep
[ep
].packey
[dir
].p
);
819 /* status updates needed here? */
824 static void musb_tx_rdy(MUSBState
*s
, int epnum
)
826 MUSBEndPoint
*ep
= s
->ep
+ epnum
;
828 int total
, valid
= 0;
829 TRACE("start %d, len %d", ep
->fifostart
[0], ep
->fifolen
[0] );
830 ep
->fifostart
[0] += ep
->fifolen
[0];
833 /* XXX: how's the total size of the packet retrieved exactly in
834 * the generic case? */
835 total
= ep
->maxp
[0] & 0x3ff;
837 if (ep
->ext_size
[0]) {
838 total
= ep
->ext_size
[0];
843 /* If the packet is not fully ready yet, wait for a next segment. */
844 if (epnum
&& (ep
->fifostart
[0]) < total
)
848 total
= ep
->fifostart
[0];
851 if (!epnum
&& (ep
->csr
[0] & MGC_M_CSR0_H_SETUPPKT
)) {
852 pid
= USB_TOKEN_SETUP
;
854 TRACE("illegal SETUPPKT length of %i bytes", total
);
856 /* Controller should retry SETUP packets three times on errors
857 * but it doesn't make sense for us to do that. */
860 return musb_packet(s
, ep
, epnum
, pid
,
861 total
, musb_tx_packet_complete
, 0);
864 static void musb_rx_req(MUSBState
*s
, int epnum
)
866 MUSBEndPoint
*ep
= s
->ep
+ epnum
;
869 /* If we already have a packet, which didn't fit into the
870 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
871 if (ep
->packey
[1].p
.pid
== USB_TOKEN_IN
&& ep
->status
[1] >= 0 &&
872 (ep
->fifostart
[1]) + ep
->rxcount
<
873 ep
->packey
[1].p
.iov
.size
) {
874 TRACE("0x%08x, %d", ep
->fifostart
[1], ep
->rxcount
);
875 ep
->fifostart
[1] += ep
->rxcount
;
878 ep
->rxcount
= MIN(ep
->packey
[0].p
.iov
.size
- (ep
->fifostart
[1]),
881 ep
->csr
[1] &= ~MGC_M_RXCSR_H_REQPKT
;
883 ep
->csr
[0] &= ~MGC_M_CSR0_H_REQPKT
;
885 /* Clear all of the error bits first */
886 ep
->csr
[1] &= ~(MGC_M_RXCSR_H_ERROR
| MGC_M_RXCSR_H_RXSTALL
|
887 MGC_M_RXCSR_DATAERROR
);
889 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
890 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
892 ep
->csr
[1] |= MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
;
894 ep
->csr
[0] |= MGC_M_CSR0_RXPKTRDY
;
895 musb_rx_intr_set(s
, epnum
, 1);
899 /* The driver sets maxp[1] to 64 or less because it knows the hardware
900 * FIFO is this deep. Bigger packets get split in
901 * usb_generic_handle_packet but we can also do the splitting locally
902 * for performance. It turns out we can also have a bigger FIFO and
903 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
904 * OK with single packets of even 32KB and we avoid splitting, however
905 * usb_msd.c sometimes sends a packet bigger than what Linux expects
906 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
907 * hides this overrun from Linux. Up to 4096 everything is fine
908 * though. Currently this is disabled.
910 * XXX: mind ep->fifosize. */
911 total
= MIN(ep
->maxp
[1] & 0x3ff, sizeof(s
->buf
));
914 /* Why should *we* do that instead of Linux? */
916 if (ep
->packey
[0].p
.devaddr
== 2) {
917 total
= MIN(s
->setup_len
, 8);
919 total
= MIN(s
->setup_len
, 64);
921 s
->setup_len
-= total
;
925 return musb_packet(s
, ep
, epnum
, USB_TOKEN_IN
,
926 total
, musb_rx_packet_complete
, 1);
929 static uint8_t musb_read_fifo(MUSBEndPoint
*ep
)
932 if (ep
->fifolen
[1] >= 64) {
933 /* We have a FIFO underrun */
934 TRACE("EP%d FIFO is now empty, stop reading", ep
->epnum
);
937 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
938 * (if AUTOREQ is set) */
940 ep
->csr
[1] &= ~MGC_M_RXCSR_FIFOFULL
;
941 value
=ep
->buf
[1][ep
->fifostart
[1] + ep
->fifolen
[1] ++];
942 TRACE("EP%d 0x%02x, %d", ep
->epnum
, value
, ep
->fifolen
[1] );
946 static void musb_write_fifo(MUSBEndPoint
*ep
, uint8_t value
)
948 TRACE("EP%d = %02x", ep
->epnum
, value
);
949 if (ep
->fifolen
[0] >= 64) {
950 /* We have a FIFO overrun */
951 TRACE("EP%d FIFO exceeded 64 bytes, stop feeding data", ep
->epnum
);
955 ep
->buf
[0][ep
->fifostart
[0] + ep
->fifolen
[0] ++] = value
;
956 ep
->csr
[0] |= MGC_M_TXCSR_FIFONOTEMPTY
;
959 static void musb_ep_frame_cancel(MUSBEndPoint
*ep
, int dir
)
961 if (ep
->intv_timer
[dir
])
962 qemu_del_timer(ep
->intv_timer
[dir
]);
966 static uint8_t musb_busctl_readb(void *opaque
, int ep
, int addr
)
968 MUSBState
*s
= (MUSBState
*) opaque
;
971 /* For USB2.0 HS hubs only */
972 case MUSB_HDRC_TXHUBADDR
:
973 return s
->ep
[ep
].haddr
[0];
974 case MUSB_HDRC_TXHUBPORT
:
975 return s
->ep
[ep
].hport
[0];
976 case MUSB_HDRC_RXHUBADDR
:
977 return s
->ep
[ep
].haddr
[1];
978 case MUSB_HDRC_RXHUBPORT
:
979 return s
->ep
[ep
].hport
[1];
982 TRACE("unknown register 0x%02x", addr
);
987 static void musb_busctl_writeb(void *opaque
, int ep
, int addr
, uint8_t value
)
989 MUSBState
*s
= (MUSBState
*) opaque
;
992 case MUSB_HDRC_TXFUNCADDR
:
993 s
->ep
[ep
].faddr
[0] = value
;
995 case MUSB_HDRC_RXFUNCADDR
:
996 s
->ep
[ep
].faddr
[1] = value
;
998 case MUSB_HDRC_TXHUBADDR
:
999 s
->ep
[ep
].haddr
[0] = value
;
1001 case MUSB_HDRC_TXHUBPORT
:
1002 s
->ep
[ep
].hport
[0] = value
;
1004 case MUSB_HDRC_RXHUBADDR
:
1005 s
->ep
[ep
].haddr
[1] = value
;
1007 case MUSB_HDRC_RXHUBPORT
:
1008 s
->ep
[ep
].hport
[1] = value
;
1012 TRACE("unknown register 0x%02x", addr
);
1017 static uint16_t musb_busctl_readh(void *opaque
, int ep
, int addr
)
1019 MUSBState
*s
= (MUSBState
*) opaque
;
1022 case MUSB_HDRC_TXFUNCADDR
:
1023 return s
->ep
[ep
].faddr
[0];
1024 case MUSB_HDRC_RXFUNCADDR
:
1025 return s
->ep
[ep
].faddr
[1];
1028 return musb_busctl_readb(s
, ep
, addr
) |
1029 (musb_busctl_readb(s
, ep
, addr
| 1) << 8);
1033 static void musb_busctl_writeh(void *opaque
, int ep
, int addr
, uint16_t value
)
1035 MUSBState
*s
= (MUSBState
*) opaque
;
1038 case MUSB_HDRC_TXFUNCADDR
:
1039 s
->ep
[ep
].faddr
[0] = value
;
1041 case MUSB_HDRC_RXFUNCADDR
:
1042 s
->ep
[ep
].faddr
[1] = value
;
1046 musb_busctl_writeb(s
, ep
, addr
, value
& 0xff);
1047 musb_busctl_writeb(s
, ep
, addr
| 1, value
>> 8);
1051 /* Endpoint control */
1052 static uint8_t musb_ep_readb(void *opaque
, int ep
, int addr
)
1054 MUSBState
*s
= (MUSBState
*) opaque
;
1057 case MUSB_HDRC_TXTYPE
:
1058 return s
->ep
[ep
].type
[0];
1059 case MUSB_HDRC_TXINTERVAL
:
1060 return s
->ep
[ep
].interval
[0];
1061 case MUSB_HDRC_RXTYPE
:
1062 return s
->ep
[ep
].type
[1];
1063 case MUSB_HDRC_RXINTERVAL
:
1064 return s
->ep
[ep
].interval
[1];
1065 case (MUSB_HDRC_FIFOSIZE
& ~1):
1067 case MUSB_HDRC_FIFOSIZE
:
1068 return ep
? s
->ep
[ep
].fifosize
: s
->ep
[ep
].config
;
1069 case MUSB_HDRC_RXCOUNT
:
1070 return s
->ep
[ep
].rxcount
;
1073 TRACE("unknown register 0x%02x", addr
);
1078 static void musb_ep_writeb(void *opaque
, int ep
, int addr
, uint8_t value
)
1080 MUSBState
*s
= (MUSBState
*) opaque
;
1083 case MUSB_HDRC_TXTYPE
:
1084 s
->ep
[ep
].type
[0] = value
;
1086 case MUSB_HDRC_TXINTERVAL
:
1087 s
->ep
[ep
].interval
[0] = value
;
1088 musb_ep_frame_cancel(&s
->ep
[ep
], 0);
1090 case MUSB_HDRC_RXTYPE
:
1091 s
->ep
[ep
].type
[1] = value
;
1093 case MUSB_HDRC_RXINTERVAL
:
1094 s
->ep
[ep
].interval
[1] = value
;
1095 musb_ep_frame_cancel(&s
->ep
[ep
], 1);
1097 case (MUSB_HDRC_FIFOSIZE
& ~1):
1099 case MUSB_HDRC_FIFOSIZE
:
1100 TRACE("somebody messes with fifosize (now %i bytes)", value
);
1101 s
->ep
[ep
].fifosize
= value
;
1104 TRACE("unknown register 0x%02x", addr
);
1109 static uint16_t musb_ep_readh(void *opaque
, int ep
, int addr
)
1111 MUSBState
*s
= (MUSBState
*) opaque
;
1115 case MUSB_HDRC_TXMAXP
:
1116 return s
->ep
[ep
].maxp
[0];
1117 case MUSB_HDRC_TXCSR
:
1118 return s
->ep
[ep
].csr
[0];
1119 case MUSB_HDRC_RXMAXP
:
1120 return s
->ep
[ep
].maxp
[1];
1121 case MUSB_HDRC_RXCSR
:
1122 ret
= s
->ep
[ep
].csr
[1];
1124 /* TODO: This and other bits probably depend on
1125 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1126 if (s
->ep
[ep
].csr
[1] & MGC_M_RXCSR_AUTOCLEAR
)
1127 s
->ep
[ep
].csr
[1] &= ~MGC_M_RXCSR_RXPKTRDY
;
1130 case MUSB_HDRC_RXCOUNT
:
1131 return s
->ep
[ep
].rxcount
;
1134 return musb_ep_readb(s
, ep
, addr
) |
1135 (musb_ep_readb(s
, ep
, addr
| 1) << 8);
1139 static void musb_ep_writeh(void *opaque
, int ep
, int addr
, uint16_t value
)
1141 MUSBState
*s
= (MUSBState
*) opaque
;
1144 case MUSB_HDRC_TXMAXP
:
1145 s
->ep
[ep
].maxp
[0] = value
;
1147 case MUSB_HDRC_TXCSR
:
1149 s
->ep
[ep
].csr
[0] &= value
& 0xa6;
1150 s
->ep
[ep
].csr
[0] |= value
& 0xff59;
1152 s
->ep
[ep
].csr
[0] &= value
& 0x85;
1153 s
->ep
[ep
].csr
[0] |= value
& 0xf7a;
1156 musb_ep_frame_cancel(&s
->ep
[ep
], 0);
1158 if ((ep
&& (value
& MGC_M_TXCSR_FLUSHFIFO
)) ||
1159 (!ep
&& (value
& MGC_M_CSR0_FLUSHFIFO
))) {
1160 s
->ep
[ep
].fifolen
[0] = 0;
1161 s
->ep
[ep
].fifostart
[0] = 0;
1164 ~(MGC_M_TXCSR_FIFONOTEMPTY
| MGC_M_TXCSR_TXPKTRDY
);
1167 ~(MGC_M_CSR0_TXPKTRDY
| MGC_M_CSR0_RXPKTRDY
);
1172 (value
& MGC_M_TXCSR_TXPKTRDY
) &&
1173 !(value
& MGC_M_TXCSR_H_NAKTIMEOUT
)) ||
1175 (value
& MGC_M_TXCSR_TXPKTRDY
)) ||
1179 (value
& MGC_M_CSR0_TXPKTRDY
) &&
1180 !(value
& MGC_M_CSR0_H_NAKTIMEOUT
)))
1182 (value
& MGC_M_CSR0_TXPKTRDY
)))
1186 (value
& MGC_M_CSR0_H_REQPKT
) &&
1188 !(value
& (MGC_M_CSR0_H_NAKTIMEOUT
|
1189 MGC_M_CSR0_RXPKTRDY
)))
1191 !(value
& MGC_M_CSR0_RXPKTRDY
))
1196 case MUSB_HDRC_RXMAXP
:
1197 s
->ep
[ep
].maxp
[1] = value
;
1199 case MUSB_HDRC_RXCSR
:
1200 /* (DMA mode only) */
1202 (value
& MGC_M_RXCSR_H_AUTOREQ
) &&
1203 !(value
& MGC_M_RXCSR_RXPKTRDY
) &&
1204 (s
->ep
[ep
].csr
[1] & MGC_M_RXCSR_RXPKTRDY
))
1205 value
|= MGC_M_RXCSR_H_REQPKT
;
1207 s
->ep
[ep
].csr
[1] &= 0x102 | (value
& 0x4d);
1208 s
->ep
[ep
].csr
[1] |= value
& 0xfeb0;
1210 musb_ep_frame_cancel(&s
->ep
[ep
], 1);
1212 if (value
& MGC_M_RXCSR_FLUSHFIFO
) {
1213 s
->ep
[ep
].fifolen
[1] = 0;
1214 s
->ep
[ep
].fifostart
[1] = 0;
1215 s
->ep
[ep
].csr
[1] &= ~(MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
);
1216 /* If double buffering and we have two packets ready, flush
1217 * only the first one and set up the fifo at the second packet. */
1220 if ((value
& MGC_M_RXCSR_H_REQPKT
) && !(value
& MGC_M_RXCSR_DATAERROR
))
1222 if (value
& MGC_M_RXCSR_H_REQPKT
)
1226 case MUSB_HDRC_RXCOUNT
:
1227 s
->ep
[ep
].rxcount
= value
;
1231 musb_ep_writeb(s
, ep
, addr
, value
& 0xff);
1232 musb_ep_writeb(s
, ep
, addr
| 1, value
>> 8);
1236 /* Generic control */
1237 static uint32_t musb_readb(void *opaque
, target_phys_addr_t addr
)
1239 MUSBState
*s
= (MUSBState
*) opaque
;
1244 case MUSB_HDRC_FADDR
:
1246 case MUSB_HDRC_POWER
:
1248 case MUSB_HDRC_INTRUSB
:
1250 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1252 musb_intr_set(s
, i
, 0);
1254 case MUSB_HDRC_INTRUSBE
:
1256 case MUSB_HDRC_INDEX
:
1258 case MUSB_HDRC_TESTMODE
:
1261 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1262 return musb_ep_readb(s
, s
->idx
, addr
& 0xf);
1264 case MUSB_HDRC_DEVCTL
:
1267 case MUSB_HDRC_TXFIFOSZ
:
1268 case MUSB_HDRC_RXFIFOSZ
:
1269 case MUSB_HDRC_VCTRL
:
1273 case MUSB_HDRC_HWVERS
:
1274 return (1 << 10) | 400;
1276 case (MUSB_HDRC_VCTRL
| 1):
1277 case (MUSB_HDRC_HWVERS
| 1):
1278 case (MUSB_HDRC_DEVCTL
| 1):
1281 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1282 ep
= (addr
>> 3) & 0xf;
1283 return musb_busctl_readb(s
, ep
, addr
& 0x7);
1285 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1286 ep
= (addr
>> 4) & 0xf;
1287 return musb_ep_readb(s
, ep
, addr
& 0xf);
1289 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1290 ep
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1291 return musb_read_fifo(s
->ep
+ ep
);
1294 TRACE("unknown register 0x%02x", (int) addr
);
1299 static void musb_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1301 MUSBState
*s
= (MUSBState
*) opaque
;
1305 case MUSB_HDRC_FADDR
:
1306 s
->faddr
= value
& 0x7f;
1308 case MUSB_HDRC_POWER
:
1309 s
->power
= (value
& 0xef) | (s
->power
& 0x10);
1310 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1311 if ((value
& MGC_M_POWER_RESET
) && s
->port
.dev
) {
1312 usb_send_msg(s
->port
.dev
, USB_MSG_RESET
);
1313 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1314 if ((value
& MGC_M_POWER_HSENAB
) &&
1315 s
->port
.dev
->speed
== USB_SPEED_HIGH
)
1316 s
->power
|= MGC_M_POWER_HSMODE
; /* Success */
1317 /* Restart frame counting. */
1319 if (value
& MGC_M_POWER_SUSPENDM
) {
1320 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1321 * is set, also go into low power mode. Frame counting stops. */
1322 /* XXX: Cleared when the interrupt register is read */
1324 if (value
& MGC_M_POWER_RESUME
) {
1325 /* Wait 20ms and signal resuming on the bus. Frame counting
1329 case MUSB_HDRC_INTRUSB
:
1331 case MUSB_HDRC_INTRUSBE
:
1332 s
->mask
= value
& 0xff;
1334 case MUSB_HDRC_INDEX
:
1335 s
->idx
= value
& 0xf;
1337 case MUSB_HDRC_TESTMODE
:
1340 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1341 musb_ep_writeb(s
, s
->idx
, addr
& 0xf, value
);
1344 case MUSB_HDRC_DEVCTL
:
1345 s
->session
= !!(value
& MGC_M_DEVCTL_SESSION
);
1346 musb_session_update(s
,
1348 !!(s
->devctl
& MGC_M_DEVCTL_SESSION
));
1350 /* It seems this is the only R/W bit in this register? */
1351 s
->devctl
&= ~MGC_M_DEVCTL_SESSION
;
1352 s
->devctl
|= value
& MGC_M_DEVCTL_SESSION
;
1355 case MUSB_HDRC_TXFIFOSZ
:
1356 case MUSB_HDRC_RXFIFOSZ
:
1357 case MUSB_HDRC_VCTRL
:
1361 case (MUSB_HDRC_VCTRL
| 1):
1362 case (MUSB_HDRC_DEVCTL
| 1):
1365 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1366 ep
= (addr
>> 3) & 0xf;
1367 musb_busctl_writeb(s
, ep
, addr
& 0x7, value
);
1370 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1371 ep
= (addr
>> 4) & 0xf;
1372 musb_ep_writeb(s
, ep
, addr
& 0xf, value
);
1375 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1376 ep
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1377 musb_write_fifo(s
->ep
+ ep
, value
& 0xff);
1381 TRACE("unknown register 0x%02x", (int) addr
);
1386 static uint32_t musb_readh(void *opaque
, target_phys_addr_t addr
)
1388 MUSBState
*s
= (MUSBState
*) opaque
;
1393 case MUSB_HDRC_INTRTX
:
1396 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1398 musb_tx_intr_set(s
, i
, 0);
1400 case MUSB_HDRC_INTRRX
:
1403 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1405 musb_rx_intr_set(s
, i
, 0);
1407 case MUSB_HDRC_INTRTXE
:
1409 case MUSB_HDRC_INTRRXE
:
1412 case MUSB_HDRC_FRAME
:
1415 case MUSB_HDRC_TXFIFOADDR
:
1416 return s
->ep
[s
->idx
].fifoaddr
[0];
1417 case MUSB_HDRC_RXFIFOADDR
:
1418 return s
->ep
[s
->idx
].fifoaddr
[1];
1420 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1421 return musb_ep_readh(s
, s
->idx
, addr
& 0xf);
1423 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1424 ep
= (addr
>> 3) & 0xf;
1425 return musb_busctl_readh(s
, ep
, addr
& 0x7);
1427 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1428 ep
= (addr
>> 4) & 0xf;
1429 return musb_ep_readh(s
, ep
, addr
& 0xf);
1431 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1432 ep
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1433 return (musb_read_fifo(s
->ep
+ ep
) | musb_read_fifo(s
->ep
+ ep
) << 8);
1436 return musb_readb(s
, addr
) | (musb_readb(s
, addr
| 1) << 8);
1440 static void musb_writeh(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1442 MUSBState
*s
= (MUSBState
*) opaque
;
1446 case MUSB_HDRC_INTRTXE
:
1448 /* XXX: the masks seem to apply on the raising edge like with
1449 * edge-triggered interrupts, thus no need to update. I may be
1452 case MUSB_HDRC_INTRRXE
:
1456 case MUSB_HDRC_FRAME
:
1459 case MUSB_HDRC_TXFIFOADDR
:
1460 s
->ep
[s
->idx
].fifoaddr
[0] = value
;
1461 s
->ep
[s
->idx
].buf
[0] =
1462 s
->buf
+ ((value
<< 3) & 0x7ff );
1464 case MUSB_HDRC_RXFIFOADDR
:
1465 s
->ep
[s
->idx
].fifoaddr
[1] = value
;
1466 s
->ep
[s
->idx
].buf
[1] =
1467 s
->buf
+ ((value
<< 3) & 0x7ff);
1470 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1471 musb_ep_writeh(s
, s
->idx
, addr
& 0xf, value
);
1474 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1475 ep
= (addr
>> 3) & 0xf;
1476 musb_busctl_writeh(s
, ep
, addr
& 0x7, value
);
1479 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1480 ep
= (addr
>> 4) & 0xf;
1481 musb_ep_writeh(s
, ep
, addr
& 0xf, value
);
1484 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1485 ep
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1486 musb_write_fifo(s
->ep
+ ep
, value
& 0xff);
1487 musb_write_fifo(s
->ep
+ ep
, (value
>> 8) & 0xff);
1491 musb_writeb(s
, addr
, value
& 0xff);
1492 musb_writeb(s
, addr
| 1, value
>> 8);
1496 static uint32_t musb_readw(void *opaque
, target_phys_addr_t addr
)
1498 MUSBState
*s
= (MUSBState
*) opaque
;
1502 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1503 ep
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1504 return ( musb_read_fifo(s
->ep
+ ep
) |
1505 musb_read_fifo(s
->ep
+ ep
) << 8 |
1506 musb_read_fifo(s
->ep
+ ep
) << 16 |
1507 musb_read_fifo(s
->ep
+ ep
) << 24 );
1509 TRACE("unknown register 0x%02x", (int) addr
);
1514 static void musb_writew(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1516 MUSBState
*s
= (MUSBState
*) opaque
;
1520 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1521 ep
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1522 musb_write_fifo(s
->ep
+ ep
, value
& 0xff);
1523 musb_write_fifo(s
->ep
+ ep
, (value
>> 8 ) & 0xff);
1524 musb_write_fifo(s
->ep
+ ep
, (value
>> 16) & 0xff);
1525 musb_write_fifo(s
->ep
+ ep
, (value
>> 24) & 0xff);
1528 TRACE("unknown register 0x%02x", (int) addr
);
1533 CPUReadMemoryFunc
* const musb_read
[] = {
1539 CPUWriteMemoryFunc
* const musb_write
[] = {