tests/docker: add sanitizers back to clang build
[qemu/ar7.git] / memory.c
blobb9dd6b94cac341fd04d0da266f646ee85cff9f65
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "cpu.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
38 //#define DEBUG_UNASSIGNED
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 bool global_dirty_log;
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
51 static GHashTable *flat_views;
53 typedef struct AddrRange AddrRange;
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
64 static AddrRange addrrange_make(Int128 start, Int128 size)
66 return (AddrRange) { start, size };
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
74 static Int128 addrrange_end(AddrRange r)
76 return int128_add(r.start, r.size);
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81 int128_addto(&range.start, delta);
82 return range;
85 static bool addrrange_contains(AddrRange range, Int128 addr)
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
104 enum ListenerDirection { Forward, Reverse };
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
124 break; \
125 default: \
126 abort(); \
128 } while (0)
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
148 break; \
149 default: \
150 abort(); \
152 } while (0)
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
201 return false;
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
219 bool nonvolatile;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 .nonvolatile = fr->nonvolatile,
239 static bool flatrange_equal(FlatRange *a, FlatRange *b)
241 return a->mr == b->mr
242 && addrrange_equal(a->addr, b->addr)
243 && a->offset_in_region == b->offset_in_region
244 && a->romd_mode == b->romd_mode
245 && a->readonly == b->readonly
246 && a->nonvolatile == b->nonvolatile;
249 static FlatView *flatview_new(MemoryRegion *mr_root)
251 FlatView *view;
253 view = g_new0(FlatView, 1);
254 view->ref = 1;
255 view->root = mr_root;
256 memory_region_ref(mr_root);
257 trace_flatview_new(view, mr_root);
259 return view;
262 /* Insert a range into a given position. Caller is responsible for maintaining
263 * sorting order.
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
267 if (view->nr == view->nr_allocated) {
268 view->nr_allocated = MAX(2 * view->nr, 10);
269 view->ranges = g_realloc(view->ranges,
270 view->nr_allocated * sizeof(*view->ranges));
272 memmove(view->ranges + pos + 1, view->ranges + pos,
273 (view->nr - pos) * sizeof(FlatRange));
274 view->ranges[pos] = *range;
275 memory_region_ref(range->mr);
276 ++view->nr;
279 static void flatview_destroy(FlatView *view)
281 int i;
283 trace_flatview_destroy(view, view->root);
284 if (view->dispatch) {
285 address_space_dispatch_free(view->dispatch);
287 for (i = 0; i < view->nr; i++) {
288 memory_region_unref(view->ranges[i].mr);
290 g_free(view->ranges);
291 memory_region_unref(view->root);
292 g_free(view);
295 static bool flatview_ref(FlatView *view)
297 return atomic_fetch_inc_nonzero(&view->ref) > 0;
300 void flatview_unref(FlatView *view)
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 trace_flatview_destroy_rcu(view, view->root);
304 assert(view->root);
305 call_rcu(view, flatview_destroy, rcu);
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly
319 && r1->nonvolatile == r2->nonvolatile;
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
325 unsigned i, j, k;
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
335 ++i;
336 for (k = i; k < j; k++) {
337 memory_region_unref(view->ranges[k].mr);
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
345 static bool memory_region_big_endian(MemoryRegion *mr)
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
356 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
357 switch (op & MO_SIZE) {
358 case MO_8:
359 break;
360 case MO_16:
361 *data = bswap16(*data);
362 break;
363 case MO_32:
364 *data = bswap32(*data);
365 break;
366 case MO_64:
367 *data = bswap64(*data);
368 break;
369 default:
370 g_assert_not_reached();
375 static inline void memory_region_shift_read_access(uint64_t *value,
376 signed shift,
377 uint64_t mask,
378 uint64_t tmp)
380 if (shift >= 0) {
381 *value |= (tmp & mask) << shift;
382 } else {
383 *value |= (tmp & mask) >> -shift;
387 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
388 signed shift,
389 uint64_t mask)
391 uint64_t tmp;
393 if (shift >= 0) {
394 tmp = (*value >> shift) & mask;
395 } else {
396 tmp = (*value << -shift) & mask;
399 return tmp;
402 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
404 MemoryRegion *root;
405 hwaddr abs_addr = offset;
407 abs_addr += mr->addr;
408 for (root = mr; root->container; ) {
409 root = root->container;
410 abs_addr += root->addr;
413 return abs_addr;
416 static int get_cpu_index(void)
418 if (current_cpu) {
419 return current_cpu->cpu_index;
421 return -1;
424 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
425 hwaddr addr,
426 uint64_t *value,
427 unsigned size,
428 signed shift,
429 uint64_t mask,
430 MemTxAttrs attrs)
432 uint64_t tmp;
434 tmp = mr->ops->read(mr->opaque, addr, size);
435 if (mr->subpage) {
436 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
437 } else if (mr == &io_mem_notdirty) {
438 /* Accesses to code which has previously been translated into a TB show
439 * up in the MMIO path, as accesses to the io_mem_notdirty
440 * MemoryRegion. */
441 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
442 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
443 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
444 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
446 memory_region_shift_read_access(value, shift, mask, tmp);
447 return MEMTX_OK;
450 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
451 hwaddr addr,
452 uint64_t *value,
453 unsigned size,
454 signed shift,
455 uint64_t mask,
456 MemTxAttrs attrs)
458 uint64_t tmp = 0;
459 MemTxResult r;
461 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
462 if (mr->subpage) {
463 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
464 } else if (mr == &io_mem_notdirty) {
465 /* Accesses to code which has previously been translated into a TB show
466 * up in the MMIO path, as accesses to the io_mem_notdirty
467 * MemoryRegion. */
468 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
469 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
470 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
471 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
473 memory_region_shift_read_access(value, shift, mask, tmp);
474 return r;
477 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
478 hwaddr addr,
479 uint64_t *value,
480 unsigned size,
481 signed shift,
482 uint64_t mask,
483 MemTxAttrs attrs)
485 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
487 if (mr->subpage) {
488 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
489 } else if (mr == &io_mem_notdirty) {
490 /* Accesses to code which has previously been translated into a TB show
491 * up in the MMIO path, as accesses to the io_mem_notdirty
492 * MemoryRegion. */
493 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
494 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
495 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
496 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
498 mr->ops->write(mr->opaque, addr, tmp, size);
499 return MEMTX_OK;
502 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
503 hwaddr addr,
504 uint64_t *value,
505 unsigned size,
506 signed shift,
507 uint64_t mask,
508 MemTxAttrs attrs)
510 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
512 if (mr->subpage) {
513 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
514 } else if (mr == &io_mem_notdirty) {
515 /* Accesses to code which has previously been translated into a TB show
516 * up in the MMIO path, as accesses to the io_mem_notdirty
517 * MemoryRegion. */
518 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
519 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
520 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
521 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
523 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
526 static MemTxResult access_with_adjusted_size(hwaddr addr,
527 uint64_t *value,
528 unsigned size,
529 unsigned access_size_min,
530 unsigned access_size_max,
531 MemTxResult (*access_fn)
532 (MemoryRegion *mr,
533 hwaddr addr,
534 uint64_t *value,
535 unsigned size,
536 signed shift,
537 uint64_t mask,
538 MemTxAttrs attrs),
539 MemoryRegion *mr,
540 MemTxAttrs attrs)
542 uint64_t access_mask;
543 unsigned access_size;
544 unsigned i;
545 MemTxResult r = MEMTX_OK;
547 if (!access_size_min) {
548 access_size_min = 1;
550 if (!access_size_max) {
551 access_size_max = 4;
554 /* FIXME: support unaligned access? */
555 access_size = MAX(MIN(size, access_size_max), access_size_min);
556 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
557 if (memory_region_big_endian(mr)) {
558 for (i = 0; i < size; i += access_size) {
559 r |= access_fn(mr, addr + i, value, access_size,
560 (size - access_size - i) * 8, access_mask, attrs);
562 } else {
563 for (i = 0; i < size; i += access_size) {
564 r |= access_fn(mr, addr + i, value, access_size, i * 8,
565 access_mask, attrs);
568 return r;
571 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
573 AddressSpace *as;
575 while (mr->container) {
576 mr = mr->container;
578 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
579 if (mr == as->root) {
580 return as;
583 return NULL;
586 /* Render a memory region into the global view. Ranges in @view obscure
587 * ranges in @mr.
589 static void render_memory_region(FlatView *view,
590 MemoryRegion *mr,
591 Int128 base,
592 AddrRange clip,
593 bool readonly,
594 bool nonvolatile)
596 MemoryRegion *subregion;
597 unsigned i;
598 hwaddr offset_in_region;
599 Int128 remain;
600 Int128 now;
601 FlatRange fr;
602 AddrRange tmp;
604 if (!mr->enabled) {
605 return;
608 int128_addto(&base, int128_make64(mr->addr));
609 readonly |= mr->readonly;
610 nonvolatile |= mr->nonvolatile;
612 tmp = addrrange_make(base, mr->size);
614 if (!addrrange_intersects(tmp, clip)) {
615 return;
618 clip = addrrange_intersection(tmp, clip);
620 if (mr->alias) {
621 int128_subfrom(&base, int128_make64(mr->alias->addr));
622 int128_subfrom(&base, int128_make64(mr->alias_offset));
623 render_memory_region(view, mr->alias, base, clip,
624 readonly, nonvolatile);
625 return;
628 /* Render subregions in priority order. */
629 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
630 render_memory_region(view, subregion, base, clip,
631 readonly, nonvolatile);
634 if (!mr->terminates) {
635 return;
638 offset_in_region = int128_get64(int128_sub(clip.start, base));
639 base = clip.start;
640 remain = clip.size;
642 fr.mr = mr;
643 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
644 fr.romd_mode = mr->romd_mode;
645 fr.readonly = readonly;
646 fr.nonvolatile = nonvolatile;
648 /* Render the region itself into any gaps left by the current view. */
649 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
650 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
651 continue;
653 if (int128_lt(base, view->ranges[i].addr.start)) {
654 now = int128_min(remain,
655 int128_sub(view->ranges[i].addr.start, base));
656 fr.offset_in_region = offset_in_region;
657 fr.addr = addrrange_make(base, now);
658 flatview_insert(view, i, &fr);
659 ++i;
660 int128_addto(&base, now);
661 offset_in_region += int128_get64(now);
662 int128_subfrom(&remain, now);
664 now = int128_sub(int128_min(int128_add(base, remain),
665 addrrange_end(view->ranges[i].addr)),
666 base);
667 int128_addto(&base, now);
668 offset_in_region += int128_get64(now);
669 int128_subfrom(&remain, now);
671 if (int128_nz(remain)) {
672 fr.offset_in_region = offset_in_region;
673 fr.addr = addrrange_make(base, remain);
674 flatview_insert(view, i, &fr);
678 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
680 while (mr->enabled) {
681 if (mr->alias) {
682 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
683 /* The alias is included in its entirety. Use it as
684 * the "real" root, so that we can share more FlatViews.
686 mr = mr->alias;
687 continue;
689 } else if (!mr->terminates) {
690 unsigned int found = 0;
691 MemoryRegion *child, *next = NULL;
692 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
693 if (child->enabled) {
694 if (++found > 1) {
695 next = NULL;
696 break;
698 if (!child->addr && int128_ge(mr->size, child->size)) {
699 /* A child is included in its entirety. If it's the only
700 * enabled one, use it in the hope of finding an alias down the
701 * way. This will also let us share FlatViews.
703 next = child;
707 if (found == 0) {
708 return NULL;
710 if (next) {
711 mr = next;
712 continue;
716 return mr;
719 return NULL;
722 /* Render a memory topology into a list of disjoint absolute ranges. */
723 static FlatView *generate_memory_topology(MemoryRegion *mr)
725 int i;
726 FlatView *view;
728 view = flatview_new(mr);
730 if (mr) {
731 render_memory_region(view, mr, int128_zero(),
732 addrrange_make(int128_zero(), int128_2_64()),
733 false, false);
735 flatview_simplify(view);
737 view->dispatch = address_space_dispatch_new(view);
738 for (i = 0; i < view->nr; i++) {
739 MemoryRegionSection mrs =
740 section_from_flat_range(&view->ranges[i], view);
741 flatview_add_to_dispatch(view, &mrs);
743 address_space_dispatch_compact(view->dispatch);
744 g_hash_table_replace(flat_views, mr, view);
746 return view;
749 static void address_space_add_del_ioeventfds(AddressSpace *as,
750 MemoryRegionIoeventfd *fds_new,
751 unsigned fds_new_nb,
752 MemoryRegionIoeventfd *fds_old,
753 unsigned fds_old_nb)
755 unsigned iold, inew;
756 MemoryRegionIoeventfd *fd;
757 MemoryRegionSection section;
759 /* Generate a symmetric difference of the old and new fd sets, adding
760 * and deleting as necessary.
763 iold = inew = 0;
764 while (iold < fds_old_nb || inew < fds_new_nb) {
765 if (iold < fds_old_nb
766 && (inew == fds_new_nb
767 || memory_region_ioeventfd_before(&fds_old[iold],
768 &fds_new[inew]))) {
769 fd = &fds_old[iold];
770 section = (MemoryRegionSection) {
771 .fv = address_space_to_flatview(as),
772 .offset_within_address_space = int128_get64(fd->addr.start),
773 .size = fd->addr.size,
775 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
776 fd->match_data, fd->data, fd->e);
777 ++iold;
778 } else if (inew < fds_new_nb
779 && (iold == fds_old_nb
780 || memory_region_ioeventfd_before(&fds_new[inew],
781 &fds_old[iold]))) {
782 fd = &fds_new[inew];
783 section = (MemoryRegionSection) {
784 .fv = address_space_to_flatview(as),
785 .offset_within_address_space = int128_get64(fd->addr.start),
786 .size = fd->addr.size,
788 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
789 fd->match_data, fd->data, fd->e);
790 ++inew;
791 } else {
792 ++iold;
793 ++inew;
798 FlatView *address_space_get_flatview(AddressSpace *as)
800 FlatView *view;
802 rcu_read_lock();
803 do {
804 view = address_space_to_flatview(as);
805 /* If somebody has replaced as->current_map concurrently,
806 * flatview_ref returns false.
808 } while (!flatview_ref(view));
809 rcu_read_unlock();
810 return view;
813 static void address_space_update_ioeventfds(AddressSpace *as)
815 FlatView *view;
816 FlatRange *fr;
817 unsigned ioeventfd_nb = 0;
818 MemoryRegionIoeventfd *ioeventfds = NULL;
819 AddrRange tmp;
820 unsigned i;
822 view = address_space_get_flatview(as);
823 FOR_EACH_FLAT_RANGE(fr, view) {
824 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
825 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
826 int128_sub(fr->addr.start,
827 int128_make64(fr->offset_in_region)));
828 if (addrrange_intersects(fr->addr, tmp)) {
829 ++ioeventfd_nb;
830 ioeventfds = g_realloc(ioeventfds,
831 ioeventfd_nb * sizeof(*ioeventfds));
832 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
833 ioeventfds[ioeventfd_nb-1].addr = tmp;
838 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
839 as->ioeventfds, as->ioeventfd_nb);
841 g_free(as->ioeventfds);
842 as->ioeventfds = ioeventfds;
843 as->ioeventfd_nb = ioeventfd_nb;
844 flatview_unref(view);
848 * Notify the memory listeners about the coalesced IO change events of
849 * range `cmr'. Only the part that has intersection of the specified
850 * FlatRange will be sent.
852 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
853 CoalescedMemoryRange *cmr, bool add)
855 AddrRange tmp;
857 tmp = addrrange_shift(cmr->addr,
858 int128_sub(fr->addr.start,
859 int128_make64(fr->offset_in_region)));
860 if (!addrrange_intersects(tmp, fr->addr)) {
861 return;
863 tmp = addrrange_intersection(tmp, fr->addr);
865 if (add) {
866 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
867 int128_get64(tmp.start),
868 int128_get64(tmp.size));
869 } else {
870 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
871 int128_get64(tmp.start),
872 int128_get64(tmp.size));
876 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
878 CoalescedMemoryRange *cmr;
880 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
881 flat_range_coalesced_io_notify(fr, as, cmr, false);
885 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
887 MemoryRegion *mr = fr->mr;
888 CoalescedMemoryRange *cmr;
890 if (QTAILQ_EMPTY(&mr->coalesced)) {
891 return;
894 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
895 flat_range_coalesced_io_notify(fr, as, cmr, true);
899 static void address_space_update_topology_pass(AddressSpace *as,
900 const FlatView *old_view,
901 const FlatView *new_view,
902 bool adding)
904 unsigned iold, inew;
905 FlatRange *frold, *frnew;
907 /* Generate a symmetric difference of the old and new memory maps.
908 * Kill ranges in the old map, and instantiate ranges in the new map.
910 iold = inew = 0;
911 while (iold < old_view->nr || inew < new_view->nr) {
912 if (iold < old_view->nr) {
913 frold = &old_view->ranges[iold];
914 } else {
915 frold = NULL;
917 if (inew < new_view->nr) {
918 frnew = &new_view->ranges[inew];
919 } else {
920 frnew = NULL;
923 if (frold
924 && (!frnew
925 || int128_lt(frold->addr.start, frnew->addr.start)
926 || (int128_eq(frold->addr.start, frnew->addr.start)
927 && !flatrange_equal(frold, frnew)))) {
928 /* In old but not in new, or in both but attributes changed. */
930 if (!adding) {
931 flat_range_coalesced_io_del(frold, as);
932 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
935 ++iold;
936 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
937 /* In both and unchanged (except logging may have changed) */
939 if (adding) {
940 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
941 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
942 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
943 frold->dirty_log_mask,
944 frnew->dirty_log_mask);
946 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
947 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
948 frold->dirty_log_mask,
949 frnew->dirty_log_mask);
953 ++iold;
954 ++inew;
955 } else {
956 /* In new */
958 if (adding) {
959 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
960 flat_range_coalesced_io_add(frnew, as);
963 ++inew;
968 static void flatviews_init(void)
970 static FlatView *empty_view;
972 if (flat_views) {
973 return;
976 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
977 (GDestroyNotify) flatview_unref);
978 if (!empty_view) {
979 empty_view = generate_memory_topology(NULL);
980 /* We keep it alive forever in the global variable. */
981 flatview_ref(empty_view);
982 } else {
983 g_hash_table_replace(flat_views, NULL, empty_view);
984 flatview_ref(empty_view);
988 static void flatviews_reset(void)
990 AddressSpace *as;
992 if (flat_views) {
993 g_hash_table_unref(flat_views);
994 flat_views = NULL;
996 flatviews_init();
998 /* Render unique FVs */
999 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1000 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1002 if (g_hash_table_lookup(flat_views, physmr)) {
1003 continue;
1006 generate_memory_topology(physmr);
1010 static void address_space_set_flatview(AddressSpace *as)
1012 FlatView *old_view = address_space_to_flatview(as);
1013 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1014 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1016 assert(new_view);
1018 if (old_view == new_view) {
1019 return;
1022 if (old_view) {
1023 flatview_ref(old_view);
1026 flatview_ref(new_view);
1028 if (!QTAILQ_EMPTY(&as->listeners)) {
1029 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1031 if (!old_view2) {
1032 old_view2 = &tmpview;
1034 address_space_update_topology_pass(as, old_view2, new_view, false);
1035 address_space_update_topology_pass(as, old_view2, new_view, true);
1038 /* Writes are protected by the BQL. */
1039 atomic_rcu_set(&as->current_map, new_view);
1040 if (old_view) {
1041 flatview_unref(old_view);
1044 /* Note that all the old MemoryRegions are still alive up to this
1045 * point. This relieves most MemoryListeners from the need to
1046 * ref/unref the MemoryRegions they get---unless they use them
1047 * outside the iothread mutex, in which case precise reference
1048 * counting is necessary.
1050 if (old_view) {
1051 flatview_unref(old_view);
1055 static void address_space_update_topology(AddressSpace *as)
1057 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1059 flatviews_init();
1060 if (!g_hash_table_lookup(flat_views, physmr)) {
1061 generate_memory_topology(physmr);
1063 address_space_set_flatview(as);
1066 void memory_region_transaction_begin(void)
1068 qemu_flush_coalesced_mmio_buffer();
1069 ++memory_region_transaction_depth;
1072 void memory_region_transaction_commit(void)
1074 AddressSpace *as;
1076 assert(memory_region_transaction_depth);
1077 assert(qemu_mutex_iothread_locked());
1079 --memory_region_transaction_depth;
1080 if (!memory_region_transaction_depth) {
1081 if (memory_region_update_pending) {
1082 flatviews_reset();
1084 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1086 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1087 address_space_set_flatview(as);
1088 address_space_update_ioeventfds(as);
1090 memory_region_update_pending = false;
1091 ioeventfd_update_pending = false;
1092 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1093 } else if (ioeventfd_update_pending) {
1094 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1095 address_space_update_ioeventfds(as);
1097 ioeventfd_update_pending = false;
1102 static void memory_region_destructor_none(MemoryRegion *mr)
1106 static void memory_region_destructor_ram(MemoryRegion *mr)
1108 qemu_ram_free(mr->ram_block);
1111 static bool memory_region_need_escape(char c)
1113 return c == '/' || c == '[' || c == '\\' || c == ']';
1116 static char *memory_region_escape_name(const char *name)
1118 const char *p;
1119 char *escaped, *q;
1120 uint8_t c;
1121 size_t bytes = 0;
1123 for (p = name; *p; p++) {
1124 bytes += memory_region_need_escape(*p) ? 4 : 1;
1126 if (bytes == p - name) {
1127 return g_memdup(name, bytes + 1);
1130 escaped = g_malloc(bytes + 1);
1131 for (p = name, q = escaped; *p; p++) {
1132 c = *p;
1133 if (unlikely(memory_region_need_escape(c))) {
1134 *q++ = '\\';
1135 *q++ = 'x';
1136 *q++ = "0123456789abcdef"[c >> 4];
1137 c = "0123456789abcdef"[c & 15];
1139 *q++ = c;
1141 *q = 0;
1142 return escaped;
1145 static void memory_region_do_init(MemoryRegion *mr,
1146 Object *owner,
1147 const char *name,
1148 uint64_t size)
1150 mr->size = int128_make64(size);
1151 if (size == UINT64_MAX) {
1152 mr->size = int128_2_64();
1154 mr->name = g_strdup(name);
1155 mr->owner = owner;
1156 mr->ram_block = NULL;
1158 if (name) {
1159 char *escaped_name = memory_region_escape_name(name);
1160 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1162 if (!owner) {
1163 owner = container_get(qdev_get_machine(), "/unattached");
1166 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1167 object_unref(OBJECT(mr));
1168 g_free(name_array);
1169 g_free(escaped_name);
1173 void memory_region_init(MemoryRegion *mr,
1174 Object *owner,
1175 const char *name,
1176 uint64_t size)
1178 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1179 memory_region_do_init(mr, owner, name, size);
1182 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1183 void *opaque, Error **errp)
1185 MemoryRegion *mr = MEMORY_REGION(obj);
1186 uint64_t value = mr->addr;
1188 visit_type_uint64(v, name, &value, errp);
1191 static void memory_region_get_container(Object *obj, Visitor *v,
1192 const char *name, void *opaque,
1193 Error **errp)
1195 MemoryRegion *mr = MEMORY_REGION(obj);
1196 gchar *path = (gchar *)"";
1198 if (mr->container) {
1199 path = object_get_canonical_path(OBJECT(mr->container));
1201 visit_type_str(v, name, &path, errp);
1202 if (mr->container) {
1203 g_free(path);
1207 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1208 const char *part)
1210 MemoryRegion *mr = MEMORY_REGION(obj);
1212 return OBJECT(mr->container);
1215 static void memory_region_get_priority(Object *obj, Visitor *v,
1216 const char *name, void *opaque,
1217 Error **errp)
1219 MemoryRegion *mr = MEMORY_REGION(obj);
1220 int32_t value = mr->priority;
1222 visit_type_int32(v, name, &value, errp);
1225 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1226 void *opaque, Error **errp)
1228 MemoryRegion *mr = MEMORY_REGION(obj);
1229 uint64_t value = memory_region_size(mr);
1231 visit_type_uint64(v, name, &value, errp);
1234 static void memory_region_initfn(Object *obj)
1236 MemoryRegion *mr = MEMORY_REGION(obj);
1237 ObjectProperty *op;
1239 mr->ops = &unassigned_mem_ops;
1240 mr->enabled = true;
1241 mr->romd_mode = true;
1242 mr->global_locking = true;
1243 mr->destructor = memory_region_destructor_none;
1244 QTAILQ_INIT(&mr->subregions);
1245 QTAILQ_INIT(&mr->coalesced);
1247 op = object_property_add(OBJECT(mr), "container",
1248 "link<" TYPE_MEMORY_REGION ">",
1249 memory_region_get_container,
1250 NULL, /* memory_region_set_container */
1251 NULL, NULL, &error_abort);
1252 op->resolve = memory_region_resolve_container;
1254 object_property_add(OBJECT(mr), "addr", "uint64",
1255 memory_region_get_addr,
1256 NULL, /* memory_region_set_addr */
1257 NULL, NULL, &error_abort);
1258 object_property_add(OBJECT(mr), "priority", "uint32",
1259 memory_region_get_priority,
1260 NULL, /* memory_region_set_priority */
1261 NULL, NULL, &error_abort);
1262 object_property_add(OBJECT(mr), "size", "uint64",
1263 memory_region_get_size,
1264 NULL, /* memory_region_set_size, */
1265 NULL, NULL, &error_abort);
1268 static void iommu_memory_region_initfn(Object *obj)
1270 MemoryRegion *mr = MEMORY_REGION(obj);
1272 mr->is_iommu = true;
1275 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1276 unsigned size)
1278 #ifdef DEBUG_UNASSIGNED
1279 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1280 #endif
1281 if (current_cpu != NULL) {
1282 bool is_exec = current_cpu->mem_io_access_type == MMU_INST_FETCH;
1283 cpu_unassigned_access(current_cpu, addr, false, is_exec, 0, size);
1285 return 0;
1288 static void unassigned_mem_write(void *opaque, hwaddr addr,
1289 uint64_t val, unsigned size)
1291 #ifdef DEBUG_UNASSIGNED
1292 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1293 #endif
1294 if (current_cpu != NULL) {
1295 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1299 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1300 unsigned size, bool is_write,
1301 MemTxAttrs attrs)
1303 return false;
1306 const MemoryRegionOps unassigned_mem_ops = {
1307 .valid.accepts = unassigned_mem_accepts,
1308 .endianness = DEVICE_NATIVE_ENDIAN,
1311 static uint64_t memory_region_ram_device_read(void *opaque,
1312 hwaddr addr, unsigned size)
1314 MemoryRegion *mr = opaque;
1315 uint64_t data = (uint64_t)~0;
1317 switch (size) {
1318 case 1:
1319 data = *(uint8_t *)(mr->ram_block->host + addr);
1320 break;
1321 case 2:
1322 data = *(uint16_t *)(mr->ram_block->host + addr);
1323 break;
1324 case 4:
1325 data = *(uint32_t *)(mr->ram_block->host + addr);
1326 break;
1327 case 8:
1328 data = *(uint64_t *)(mr->ram_block->host + addr);
1329 break;
1332 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1334 return data;
1337 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1338 uint64_t data, unsigned size)
1340 MemoryRegion *mr = opaque;
1342 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1344 switch (size) {
1345 case 1:
1346 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1347 break;
1348 case 2:
1349 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1350 break;
1351 case 4:
1352 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1353 break;
1354 case 8:
1355 *(uint64_t *)(mr->ram_block->host + addr) = data;
1356 break;
1360 static const MemoryRegionOps ram_device_mem_ops = {
1361 .read = memory_region_ram_device_read,
1362 .write = memory_region_ram_device_write,
1363 .endianness = DEVICE_HOST_ENDIAN,
1364 .valid = {
1365 .min_access_size = 1,
1366 .max_access_size = 8,
1367 .unaligned = true,
1369 .impl = {
1370 .min_access_size = 1,
1371 .max_access_size = 8,
1372 .unaligned = true,
1376 bool memory_region_access_valid(MemoryRegion *mr,
1377 hwaddr addr,
1378 unsigned size,
1379 bool is_write,
1380 MemTxAttrs attrs)
1382 int access_size_min, access_size_max;
1383 int access_size, i;
1385 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1386 return false;
1389 if (!mr->ops->valid.accepts) {
1390 return true;
1393 access_size_min = mr->ops->valid.min_access_size;
1394 if (!mr->ops->valid.min_access_size) {
1395 access_size_min = 1;
1398 access_size_max = mr->ops->valid.max_access_size;
1399 if (!mr->ops->valid.max_access_size) {
1400 access_size_max = 4;
1403 access_size = MAX(MIN(size, access_size_max), access_size_min);
1404 for (i = 0; i < size; i += access_size) {
1405 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1406 is_write, attrs)) {
1407 return false;
1411 return true;
1414 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1415 hwaddr addr,
1416 uint64_t *pval,
1417 unsigned size,
1418 MemTxAttrs attrs)
1420 *pval = 0;
1422 if (mr->ops->read) {
1423 return access_with_adjusted_size(addr, pval, size,
1424 mr->ops->impl.min_access_size,
1425 mr->ops->impl.max_access_size,
1426 memory_region_read_accessor,
1427 mr, attrs);
1428 } else {
1429 return access_with_adjusted_size(addr, pval, size,
1430 mr->ops->impl.min_access_size,
1431 mr->ops->impl.max_access_size,
1432 memory_region_read_with_attrs_accessor,
1433 mr, attrs);
1437 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1438 hwaddr addr,
1439 uint64_t *pval,
1440 MemOp op,
1441 MemTxAttrs attrs)
1443 unsigned size = memop_size(op);
1444 MemTxResult r;
1446 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1447 *pval = unassigned_mem_read(mr, addr, size);
1448 return MEMTX_DECODE_ERROR;
1451 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1452 adjust_endianness(mr, pval, op);
1453 return r;
1456 /* Return true if an eventfd was signalled */
1457 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1458 hwaddr addr,
1459 uint64_t data,
1460 unsigned size,
1461 MemTxAttrs attrs)
1463 MemoryRegionIoeventfd ioeventfd = {
1464 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1465 .data = data,
1467 unsigned i;
1469 for (i = 0; i < mr->ioeventfd_nb; i++) {
1470 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1471 ioeventfd.e = mr->ioeventfds[i].e;
1473 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1474 event_notifier_set(ioeventfd.e);
1475 return true;
1479 return false;
1482 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1483 hwaddr addr,
1484 uint64_t data,
1485 MemOp op,
1486 MemTxAttrs attrs)
1488 unsigned size = memop_size(op);
1490 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1491 unassigned_mem_write(mr, addr, data, size);
1492 return MEMTX_DECODE_ERROR;
1495 adjust_endianness(mr, &data, op);
1497 if ((!kvm_eventfds_enabled()) &&
1498 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1499 return MEMTX_OK;
1502 if (mr->ops->write) {
1503 return access_with_adjusted_size(addr, &data, size,
1504 mr->ops->impl.min_access_size,
1505 mr->ops->impl.max_access_size,
1506 memory_region_write_accessor, mr,
1507 attrs);
1508 } else {
1509 return
1510 access_with_adjusted_size(addr, &data, size,
1511 mr->ops->impl.min_access_size,
1512 mr->ops->impl.max_access_size,
1513 memory_region_write_with_attrs_accessor,
1514 mr, attrs);
1518 void memory_region_init_io(MemoryRegion *mr,
1519 Object *owner,
1520 const MemoryRegionOps *ops,
1521 void *opaque,
1522 const char *name,
1523 uint64_t size)
1525 memory_region_init(mr, owner, name, size);
1526 mr->ops = ops ? ops : &unassigned_mem_ops;
1527 mr->opaque = opaque;
1528 mr->terminates = true;
1531 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1532 Object *owner,
1533 const char *name,
1534 uint64_t size,
1535 Error **errp)
1537 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1540 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1541 Object *owner,
1542 const char *name,
1543 uint64_t size,
1544 bool share,
1545 Error **errp)
1547 Error *err = NULL;
1548 memory_region_init(mr, owner, name, size);
1549 mr->ram = true;
1550 mr->terminates = true;
1551 mr->destructor = memory_region_destructor_ram;
1552 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1553 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1554 if (err) {
1555 mr->size = int128_zero();
1556 object_unparent(OBJECT(mr));
1557 error_propagate(errp, err);
1561 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1562 Object *owner,
1563 const char *name,
1564 uint64_t size,
1565 uint64_t max_size,
1566 void (*resized)(const char*,
1567 uint64_t length,
1568 void *host),
1569 Error **errp)
1571 Error *err = NULL;
1572 memory_region_init(mr, owner, name, size);
1573 mr->ram = true;
1574 mr->terminates = true;
1575 mr->destructor = memory_region_destructor_ram;
1576 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1577 mr, &err);
1578 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1579 if (err) {
1580 mr->size = int128_zero();
1581 object_unparent(OBJECT(mr));
1582 error_propagate(errp, err);
1586 #ifdef CONFIG_POSIX
1587 void memory_region_init_ram_from_file(MemoryRegion *mr,
1588 struct Object *owner,
1589 const char *name,
1590 uint64_t size,
1591 uint64_t align,
1592 uint32_t ram_flags,
1593 const char *path,
1594 Error **errp)
1596 Error *err = NULL;
1597 memory_region_init(mr, owner, name, size);
1598 mr->ram = true;
1599 mr->terminates = true;
1600 mr->destructor = memory_region_destructor_ram;
1601 mr->align = align;
1602 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1603 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1604 if (err) {
1605 mr->size = int128_zero();
1606 object_unparent(OBJECT(mr));
1607 error_propagate(errp, err);
1611 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1612 struct Object *owner,
1613 const char *name,
1614 uint64_t size,
1615 bool share,
1616 int fd,
1617 Error **errp)
1619 Error *err = NULL;
1620 memory_region_init(mr, owner, name, size);
1621 mr->ram = true;
1622 mr->terminates = true;
1623 mr->destructor = memory_region_destructor_ram;
1624 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1625 share ? RAM_SHARED : 0,
1626 fd, &err);
1627 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1628 if (err) {
1629 mr->size = int128_zero();
1630 object_unparent(OBJECT(mr));
1631 error_propagate(errp, err);
1634 #endif
1636 void memory_region_init_ram_ptr(MemoryRegion *mr,
1637 Object *owner,
1638 const char *name,
1639 uint64_t size,
1640 void *ptr)
1642 memory_region_init(mr, owner, name, size);
1643 mr->ram = true;
1644 mr->terminates = true;
1645 mr->destructor = memory_region_destructor_ram;
1646 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1648 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1649 assert(ptr != NULL);
1650 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1653 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1654 Object *owner,
1655 const char *name,
1656 uint64_t size,
1657 void *ptr)
1659 memory_region_init(mr, owner, name, size);
1660 mr->ram = true;
1661 mr->terminates = true;
1662 mr->ram_device = true;
1663 mr->ops = &ram_device_mem_ops;
1664 mr->opaque = mr;
1665 mr->destructor = memory_region_destructor_ram;
1666 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1667 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1668 assert(ptr != NULL);
1669 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1672 void memory_region_init_alias(MemoryRegion *mr,
1673 Object *owner,
1674 const char *name,
1675 MemoryRegion *orig,
1676 hwaddr offset,
1677 uint64_t size)
1679 memory_region_init(mr, owner, name, size);
1680 mr->alias = orig;
1681 mr->alias_offset = offset;
1684 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1685 struct Object *owner,
1686 const char *name,
1687 uint64_t size,
1688 Error **errp)
1690 Error *err = NULL;
1691 memory_region_init(mr, owner, name, size);
1692 mr->ram = true;
1693 mr->readonly = true;
1694 mr->terminates = true;
1695 mr->destructor = memory_region_destructor_ram;
1696 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1697 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1698 if (err) {
1699 mr->size = int128_zero();
1700 object_unparent(OBJECT(mr));
1701 error_propagate(errp, err);
1705 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1706 Object *owner,
1707 const MemoryRegionOps *ops,
1708 void *opaque,
1709 const char *name,
1710 uint64_t size,
1711 Error **errp)
1713 Error *err = NULL;
1714 assert(ops);
1715 memory_region_init(mr, owner, name, size);
1716 mr->ops = ops;
1717 mr->opaque = opaque;
1718 mr->terminates = true;
1719 mr->rom_device = true;
1720 mr->destructor = memory_region_destructor_ram;
1721 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1722 if (err) {
1723 mr->size = int128_zero();
1724 object_unparent(OBJECT(mr));
1725 error_propagate(errp, err);
1729 void memory_region_init_iommu(void *_iommu_mr,
1730 size_t instance_size,
1731 const char *mrtypename,
1732 Object *owner,
1733 const char *name,
1734 uint64_t size)
1736 struct IOMMUMemoryRegion *iommu_mr;
1737 struct MemoryRegion *mr;
1739 object_initialize(_iommu_mr, instance_size, mrtypename);
1740 mr = MEMORY_REGION(_iommu_mr);
1741 memory_region_do_init(mr, owner, name, size);
1742 iommu_mr = IOMMU_MEMORY_REGION(mr);
1743 mr->terminates = true; /* then re-forwards */
1744 QLIST_INIT(&iommu_mr->iommu_notify);
1745 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1748 static void memory_region_finalize(Object *obj)
1750 MemoryRegion *mr = MEMORY_REGION(obj);
1752 assert(!mr->container);
1754 /* We know the region is not visible in any address space (it
1755 * does not have a container and cannot be a root either because
1756 * it has no references, so we can blindly clear mr->enabled.
1757 * memory_region_set_enabled instead could trigger a transaction
1758 * and cause an infinite loop.
1760 mr->enabled = false;
1761 memory_region_transaction_begin();
1762 while (!QTAILQ_EMPTY(&mr->subregions)) {
1763 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1764 memory_region_del_subregion(mr, subregion);
1766 memory_region_transaction_commit();
1768 mr->destructor(mr);
1769 memory_region_clear_coalescing(mr);
1770 g_free((char *)mr->name);
1771 g_free(mr->ioeventfds);
1774 Object *memory_region_owner(MemoryRegion *mr)
1776 Object *obj = OBJECT(mr);
1777 return obj->parent;
1780 void memory_region_ref(MemoryRegion *mr)
1782 /* MMIO callbacks most likely will access data that belongs
1783 * to the owner, hence the need to ref/unref the owner whenever
1784 * the memory region is in use.
1786 * The memory region is a child of its owner. As long as the
1787 * owner doesn't call unparent itself on the memory region,
1788 * ref-ing the owner will also keep the memory region alive.
1789 * Memory regions without an owner are supposed to never go away;
1790 * we do not ref/unref them because it slows down DMA sensibly.
1792 if (mr && mr->owner) {
1793 object_ref(mr->owner);
1797 void memory_region_unref(MemoryRegion *mr)
1799 if (mr && mr->owner) {
1800 object_unref(mr->owner);
1804 uint64_t memory_region_size(MemoryRegion *mr)
1806 if (int128_eq(mr->size, int128_2_64())) {
1807 return UINT64_MAX;
1809 return int128_get64(mr->size);
1812 const char *memory_region_name(const MemoryRegion *mr)
1814 if (!mr->name) {
1815 ((MemoryRegion *)mr)->name =
1816 object_get_canonical_path_component(OBJECT(mr));
1818 return mr->name;
1821 bool memory_region_is_ram_device(MemoryRegion *mr)
1823 return mr->ram_device;
1826 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1828 uint8_t mask = mr->dirty_log_mask;
1829 if (global_dirty_log && mr->ram_block) {
1830 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1832 return mask;
1835 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1837 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1840 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1842 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1843 IOMMUNotifier *iommu_notifier;
1844 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1846 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1847 flags |= iommu_notifier->notifier_flags;
1850 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1851 imrc->notify_flag_changed(iommu_mr,
1852 iommu_mr->iommu_notify_flags,
1853 flags);
1856 iommu_mr->iommu_notify_flags = flags;
1859 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1860 IOMMUNotifier *n)
1862 IOMMUMemoryRegion *iommu_mr;
1864 if (mr->alias) {
1865 memory_region_register_iommu_notifier(mr->alias, n);
1866 return;
1869 /* We need to register for at least one bitfield */
1870 iommu_mr = IOMMU_MEMORY_REGION(mr);
1871 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1872 assert(n->start <= n->end);
1873 assert(n->iommu_idx >= 0 &&
1874 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1876 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1877 memory_region_update_iommu_notify_flags(iommu_mr);
1880 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1882 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1884 if (imrc->get_min_page_size) {
1885 return imrc->get_min_page_size(iommu_mr);
1887 return TARGET_PAGE_SIZE;
1890 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1892 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1893 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1894 hwaddr addr, granularity;
1895 IOMMUTLBEntry iotlb;
1897 /* If the IOMMU has its own replay callback, override */
1898 if (imrc->replay) {
1899 imrc->replay(iommu_mr, n);
1900 return;
1903 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1905 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1906 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1907 if (iotlb.perm != IOMMU_NONE) {
1908 n->notify(n, &iotlb);
1911 /* if (2^64 - MR size) < granularity, it's possible to get an
1912 * infinite loop here. This should catch such a wraparound */
1913 if ((addr + granularity) < addr) {
1914 break;
1919 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1920 IOMMUNotifier *n)
1922 IOMMUMemoryRegion *iommu_mr;
1924 if (mr->alias) {
1925 memory_region_unregister_iommu_notifier(mr->alias, n);
1926 return;
1928 QLIST_REMOVE(n, node);
1929 iommu_mr = IOMMU_MEMORY_REGION(mr);
1930 memory_region_update_iommu_notify_flags(iommu_mr);
1933 void memory_region_notify_one(IOMMUNotifier *notifier,
1934 IOMMUTLBEntry *entry)
1936 IOMMUNotifierFlag request_flags;
1937 hwaddr entry_end = entry->iova + entry->addr_mask;
1940 * Skip the notification if the notification does not overlap
1941 * with registered range.
1943 if (notifier->start > entry_end || notifier->end < entry->iova) {
1944 return;
1947 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1949 if (entry->perm & IOMMU_RW) {
1950 request_flags = IOMMU_NOTIFIER_MAP;
1951 } else {
1952 request_flags = IOMMU_NOTIFIER_UNMAP;
1955 if (notifier->notifier_flags & request_flags) {
1956 notifier->notify(notifier, entry);
1960 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1961 int iommu_idx,
1962 IOMMUTLBEntry entry)
1964 IOMMUNotifier *iommu_notifier;
1966 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1968 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1969 if (iommu_notifier->iommu_idx == iommu_idx) {
1970 memory_region_notify_one(iommu_notifier, &entry);
1975 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1976 enum IOMMUMemoryRegionAttr attr,
1977 void *data)
1979 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1981 if (!imrc->get_attr) {
1982 return -EINVAL;
1985 return imrc->get_attr(iommu_mr, attr, data);
1988 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1989 MemTxAttrs attrs)
1991 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1993 if (!imrc->attrs_to_index) {
1994 return 0;
1997 return imrc->attrs_to_index(iommu_mr, attrs);
2000 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2002 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2004 if (!imrc->num_indexes) {
2005 return 1;
2008 return imrc->num_indexes(iommu_mr);
2011 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2013 uint8_t mask = 1 << client;
2014 uint8_t old_logging;
2016 assert(client == DIRTY_MEMORY_VGA);
2017 old_logging = mr->vga_logging_count;
2018 mr->vga_logging_count += log ? 1 : -1;
2019 if (!!old_logging == !!mr->vga_logging_count) {
2020 return;
2023 memory_region_transaction_begin();
2024 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2025 memory_region_update_pending |= mr->enabled;
2026 memory_region_transaction_commit();
2029 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2030 hwaddr size)
2032 assert(mr->ram_block);
2033 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2034 size,
2035 memory_region_get_dirty_log_mask(mr));
2038 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2040 MemoryListener *listener;
2041 AddressSpace *as;
2042 FlatView *view;
2043 FlatRange *fr;
2045 /* If the same address space has multiple log_sync listeners, we
2046 * visit that address space's FlatView multiple times. But because
2047 * log_sync listeners are rare, it's still cheaper than walking each
2048 * address space once.
2050 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2051 if (!listener->log_sync) {
2052 continue;
2054 as = listener->address_space;
2055 view = address_space_get_flatview(as);
2056 FOR_EACH_FLAT_RANGE(fr, view) {
2057 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2058 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2059 listener->log_sync(listener, &mrs);
2062 flatview_unref(view);
2066 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2067 hwaddr len)
2069 MemoryRegionSection mrs;
2070 MemoryListener *listener;
2071 AddressSpace *as;
2072 FlatView *view;
2073 FlatRange *fr;
2074 hwaddr sec_start, sec_end, sec_size;
2076 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2077 if (!listener->log_clear) {
2078 continue;
2080 as = listener->address_space;
2081 view = address_space_get_flatview(as);
2082 FOR_EACH_FLAT_RANGE(fr, view) {
2083 if (!fr->dirty_log_mask || fr->mr != mr) {
2085 * Clear dirty bitmap operation only applies to those
2086 * regions whose dirty logging is at least enabled
2088 continue;
2091 mrs = section_from_flat_range(fr, view);
2093 sec_start = MAX(mrs.offset_within_region, start);
2094 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2095 sec_end = MIN(sec_end, start + len);
2097 if (sec_start >= sec_end) {
2099 * If this memory region section has no intersection
2100 * with the requested range, skip.
2102 continue;
2105 /* Valid case; shrink the section if needed */
2106 mrs.offset_within_address_space +=
2107 sec_start - mrs.offset_within_region;
2108 mrs.offset_within_region = sec_start;
2109 sec_size = sec_end - sec_start;
2110 mrs.size = int128_make64(sec_size);
2111 listener->log_clear(listener, &mrs);
2113 flatview_unref(view);
2117 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2118 hwaddr addr,
2119 hwaddr size,
2120 unsigned client)
2122 DirtyBitmapSnapshot *snapshot;
2123 assert(mr->ram_block);
2124 memory_region_sync_dirty_bitmap(mr);
2125 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2126 memory_global_after_dirty_log_sync();
2127 return snapshot;
2130 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2131 hwaddr addr, hwaddr size)
2133 assert(mr->ram_block);
2134 return cpu_physical_memory_snapshot_get_dirty(snap,
2135 memory_region_get_ram_addr(mr) + addr, size);
2138 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2140 if (mr->readonly != readonly) {
2141 memory_region_transaction_begin();
2142 mr->readonly = readonly;
2143 memory_region_update_pending |= mr->enabled;
2144 memory_region_transaction_commit();
2148 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2150 if (mr->nonvolatile != nonvolatile) {
2151 memory_region_transaction_begin();
2152 mr->nonvolatile = nonvolatile;
2153 memory_region_update_pending |= mr->enabled;
2154 memory_region_transaction_commit();
2158 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2160 if (mr->romd_mode != romd_mode) {
2161 memory_region_transaction_begin();
2162 mr->romd_mode = romd_mode;
2163 memory_region_update_pending |= mr->enabled;
2164 memory_region_transaction_commit();
2168 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2169 hwaddr size, unsigned client)
2171 assert(mr->ram_block);
2172 cpu_physical_memory_test_and_clear_dirty(
2173 memory_region_get_ram_addr(mr) + addr, size, client);
2176 int memory_region_get_fd(MemoryRegion *mr)
2178 int fd;
2180 rcu_read_lock();
2181 while (mr->alias) {
2182 mr = mr->alias;
2184 fd = mr->ram_block->fd;
2185 rcu_read_unlock();
2187 return fd;
2190 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2192 void *ptr;
2193 uint64_t offset = 0;
2195 rcu_read_lock();
2196 while (mr->alias) {
2197 offset += mr->alias_offset;
2198 mr = mr->alias;
2200 assert(mr->ram_block);
2201 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2202 rcu_read_unlock();
2204 return ptr;
2207 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2209 RAMBlock *block;
2211 block = qemu_ram_block_from_host(ptr, false, offset);
2212 if (!block) {
2213 return NULL;
2216 return block->mr;
2219 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2221 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2224 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2226 assert(mr->ram_block);
2228 qemu_ram_resize(mr->ram_block, newsize, errp);
2232 * Call proper memory listeners about the change on the newly
2233 * added/removed CoalescedMemoryRange.
2235 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2236 CoalescedMemoryRange *cmr,
2237 bool add)
2239 AddressSpace *as;
2240 FlatView *view;
2241 FlatRange *fr;
2243 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2244 view = address_space_get_flatview(as);
2245 FOR_EACH_FLAT_RANGE(fr, view) {
2246 if (fr->mr == mr) {
2247 flat_range_coalesced_io_notify(fr, as, cmr, add);
2250 flatview_unref(view);
2254 void memory_region_set_coalescing(MemoryRegion *mr)
2256 memory_region_clear_coalescing(mr);
2257 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2260 void memory_region_add_coalescing(MemoryRegion *mr,
2261 hwaddr offset,
2262 uint64_t size)
2264 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2266 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2267 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2268 memory_region_update_coalesced_range(mr, cmr, true);
2269 memory_region_set_flush_coalesced(mr);
2272 void memory_region_clear_coalescing(MemoryRegion *mr)
2274 CoalescedMemoryRange *cmr;
2276 if (QTAILQ_EMPTY(&mr->coalesced)) {
2277 return;
2280 qemu_flush_coalesced_mmio_buffer();
2281 mr->flush_coalesced_mmio = false;
2283 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2284 cmr = QTAILQ_FIRST(&mr->coalesced);
2285 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2286 memory_region_update_coalesced_range(mr, cmr, false);
2287 g_free(cmr);
2291 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2293 mr->flush_coalesced_mmio = true;
2296 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2298 qemu_flush_coalesced_mmio_buffer();
2299 if (QTAILQ_EMPTY(&mr->coalesced)) {
2300 mr->flush_coalesced_mmio = false;
2304 void memory_region_clear_global_locking(MemoryRegion *mr)
2306 mr->global_locking = false;
2309 static bool userspace_eventfd_warning;
2311 void memory_region_add_eventfd(MemoryRegion *mr,
2312 hwaddr addr,
2313 unsigned size,
2314 bool match_data,
2315 uint64_t data,
2316 EventNotifier *e)
2318 MemoryRegionIoeventfd mrfd = {
2319 .addr.start = int128_make64(addr),
2320 .addr.size = int128_make64(size),
2321 .match_data = match_data,
2322 .data = data,
2323 .e = e,
2325 unsigned i;
2327 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2328 userspace_eventfd_warning))) {
2329 userspace_eventfd_warning = true;
2330 error_report("Using eventfd without MMIO binding in KVM. "
2331 "Suboptimal performance expected");
2334 if (size) {
2335 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2337 memory_region_transaction_begin();
2338 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2339 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2340 break;
2343 ++mr->ioeventfd_nb;
2344 mr->ioeventfds = g_realloc(mr->ioeventfds,
2345 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2346 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2347 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2348 mr->ioeventfds[i] = mrfd;
2349 ioeventfd_update_pending |= mr->enabled;
2350 memory_region_transaction_commit();
2353 void memory_region_del_eventfd(MemoryRegion *mr,
2354 hwaddr addr,
2355 unsigned size,
2356 bool match_data,
2357 uint64_t data,
2358 EventNotifier *e)
2360 MemoryRegionIoeventfd mrfd = {
2361 .addr.start = int128_make64(addr),
2362 .addr.size = int128_make64(size),
2363 .match_data = match_data,
2364 .data = data,
2365 .e = e,
2367 unsigned i;
2369 if (size) {
2370 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2372 memory_region_transaction_begin();
2373 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2374 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2375 break;
2378 assert(i != mr->ioeventfd_nb);
2379 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2380 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2381 --mr->ioeventfd_nb;
2382 mr->ioeventfds = g_realloc(mr->ioeventfds,
2383 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2384 ioeventfd_update_pending |= mr->enabled;
2385 memory_region_transaction_commit();
2388 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2390 MemoryRegion *mr = subregion->container;
2391 MemoryRegion *other;
2393 memory_region_transaction_begin();
2395 memory_region_ref(subregion);
2396 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2397 if (subregion->priority >= other->priority) {
2398 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2399 goto done;
2402 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2403 done:
2404 memory_region_update_pending |= mr->enabled && subregion->enabled;
2405 memory_region_transaction_commit();
2408 static void memory_region_add_subregion_common(MemoryRegion *mr,
2409 hwaddr offset,
2410 MemoryRegion *subregion)
2412 assert(!subregion->container);
2413 subregion->container = mr;
2414 subregion->addr = offset;
2415 memory_region_update_container_subregions(subregion);
2418 void memory_region_add_subregion(MemoryRegion *mr,
2419 hwaddr offset,
2420 MemoryRegion *subregion)
2422 subregion->priority = 0;
2423 memory_region_add_subregion_common(mr, offset, subregion);
2426 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2427 hwaddr offset,
2428 MemoryRegion *subregion,
2429 int priority)
2431 subregion->priority = priority;
2432 memory_region_add_subregion_common(mr, offset, subregion);
2435 void memory_region_del_subregion(MemoryRegion *mr,
2436 MemoryRegion *subregion)
2438 memory_region_transaction_begin();
2439 assert(subregion->container == mr);
2440 subregion->container = NULL;
2441 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2442 memory_region_unref(subregion);
2443 memory_region_update_pending |= mr->enabled && subregion->enabled;
2444 memory_region_transaction_commit();
2447 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2449 if (enabled == mr->enabled) {
2450 return;
2452 memory_region_transaction_begin();
2453 mr->enabled = enabled;
2454 memory_region_update_pending = true;
2455 memory_region_transaction_commit();
2458 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2460 Int128 s = int128_make64(size);
2462 if (size == UINT64_MAX) {
2463 s = int128_2_64();
2465 if (int128_eq(s, mr->size)) {
2466 return;
2468 memory_region_transaction_begin();
2469 mr->size = s;
2470 memory_region_update_pending = true;
2471 memory_region_transaction_commit();
2474 static void memory_region_readd_subregion(MemoryRegion *mr)
2476 MemoryRegion *container = mr->container;
2478 if (container) {
2479 memory_region_transaction_begin();
2480 memory_region_ref(mr);
2481 memory_region_del_subregion(container, mr);
2482 mr->container = container;
2483 memory_region_update_container_subregions(mr);
2484 memory_region_unref(mr);
2485 memory_region_transaction_commit();
2489 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2491 if (addr != mr->addr) {
2492 mr->addr = addr;
2493 memory_region_readd_subregion(mr);
2497 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2499 assert(mr->alias);
2501 if (offset == mr->alias_offset) {
2502 return;
2505 memory_region_transaction_begin();
2506 mr->alias_offset = offset;
2507 memory_region_update_pending |= mr->enabled;
2508 memory_region_transaction_commit();
2511 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2513 return mr->align;
2516 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2518 const AddrRange *addr = addr_;
2519 const FlatRange *fr = fr_;
2521 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2522 return -1;
2523 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2524 return 1;
2526 return 0;
2529 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2531 return bsearch(&addr, view->ranges, view->nr,
2532 sizeof(FlatRange), cmp_flatrange_addr);
2535 bool memory_region_is_mapped(MemoryRegion *mr)
2537 return mr->container ? true : false;
2540 /* Same as memory_region_find, but it does not add a reference to the
2541 * returned region. It must be called from an RCU critical section.
2543 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2544 hwaddr addr, uint64_t size)
2546 MemoryRegionSection ret = { .mr = NULL };
2547 MemoryRegion *root;
2548 AddressSpace *as;
2549 AddrRange range;
2550 FlatView *view;
2551 FlatRange *fr;
2553 addr += mr->addr;
2554 for (root = mr; root->container; ) {
2555 root = root->container;
2556 addr += root->addr;
2559 as = memory_region_to_address_space(root);
2560 if (!as) {
2561 return ret;
2563 range = addrrange_make(int128_make64(addr), int128_make64(size));
2565 view = address_space_to_flatview(as);
2566 fr = flatview_lookup(view, range);
2567 if (!fr) {
2568 return ret;
2571 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2572 --fr;
2575 ret.mr = fr->mr;
2576 ret.fv = view;
2577 range = addrrange_intersection(range, fr->addr);
2578 ret.offset_within_region = fr->offset_in_region;
2579 ret.offset_within_region += int128_get64(int128_sub(range.start,
2580 fr->addr.start));
2581 ret.size = range.size;
2582 ret.offset_within_address_space = int128_get64(range.start);
2583 ret.readonly = fr->readonly;
2584 ret.nonvolatile = fr->nonvolatile;
2585 return ret;
2588 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2589 hwaddr addr, uint64_t size)
2591 MemoryRegionSection ret;
2592 rcu_read_lock();
2593 ret = memory_region_find_rcu(mr, addr, size);
2594 if (ret.mr) {
2595 memory_region_ref(ret.mr);
2597 rcu_read_unlock();
2598 return ret;
2601 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2603 MemoryRegion *mr;
2605 rcu_read_lock();
2606 mr = memory_region_find_rcu(container, addr, 1).mr;
2607 rcu_read_unlock();
2608 return mr && mr != container;
2611 void memory_global_dirty_log_sync(void)
2613 memory_region_sync_dirty_bitmap(NULL);
2616 void memory_global_after_dirty_log_sync(void)
2618 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2621 static VMChangeStateEntry *vmstate_change;
2623 void memory_global_dirty_log_start(void)
2625 if (vmstate_change) {
2626 qemu_del_vm_change_state_handler(vmstate_change);
2627 vmstate_change = NULL;
2630 global_dirty_log = true;
2632 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2634 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2635 memory_region_transaction_begin();
2636 memory_region_update_pending = true;
2637 memory_region_transaction_commit();
2640 static void memory_global_dirty_log_do_stop(void)
2642 global_dirty_log = false;
2644 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2645 memory_region_transaction_begin();
2646 memory_region_update_pending = true;
2647 memory_region_transaction_commit();
2649 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2652 static void memory_vm_change_state_handler(void *opaque, int running,
2653 RunState state)
2655 if (running) {
2656 memory_global_dirty_log_do_stop();
2658 if (vmstate_change) {
2659 qemu_del_vm_change_state_handler(vmstate_change);
2660 vmstate_change = NULL;
2665 void memory_global_dirty_log_stop(void)
2667 if (!runstate_is_running()) {
2668 if (vmstate_change) {
2669 return;
2671 vmstate_change = qemu_add_vm_change_state_handler(
2672 memory_vm_change_state_handler, NULL);
2673 return;
2676 memory_global_dirty_log_do_stop();
2679 static void listener_add_address_space(MemoryListener *listener,
2680 AddressSpace *as)
2682 FlatView *view;
2683 FlatRange *fr;
2685 if (listener->begin) {
2686 listener->begin(listener);
2688 if (global_dirty_log) {
2689 if (listener->log_global_start) {
2690 listener->log_global_start(listener);
2694 view = address_space_get_flatview(as);
2695 FOR_EACH_FLAT_RANGE(fr, view) {
2696 MemoryRegionSection section = section_from_flat_range(fr, view);
2698 if (listener->region_add) {
2699 listener->region_add(listener, &section);
2701 if (fr->dirty_log_mask && listener->log_start) {
2702 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2705 if (listener->commit) {
2706 listener->commit(listener);
2708 flatview_unref(view);
2711 static void listener_del_address_space(MemoryListener *listener,
2712 AddressSpace *as)
2714 FlatView *view;
2715 FlatRange *fr;
2717 if (listener->begin) {
2718 listener->begin(listener);
2720 view = address_space_get_flatview(as);
2721 FOR_EACH_FLAT_RANGE(fr, view) {
2722 MemoryRegionSection section = section_from_flat_range(fr, view);
2724 if (fr->dirty_log_mask && listener->log_stop) {
2725 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2727 if (listener->region_del) {
2728 listener->region_del(listener, &section);
2731 if (listener->commit) {
2732 listener->commit(listener);
2734 flatview_unref(view);
2737 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2739 MemoryListener *other = NULL;
2741 listener->address_space = as;
2742 if (QTAILQ_EMPTY(&memory_listeners)
2743 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2744 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2745 } else {
2746 QTAILQ_FOREACH(other, &memory_listeners, link) {
2747 if (listener->priority < other->priority) {
2748 break;
2751 QTAILQ_INSERT_BEFORE(other, listener, link);
2754 if (QTAILQ_EMPTY(&as->listeners)
2755 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2756 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2757 } else {
2758 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2759 if (listener->priority < other->priority) {
2760 break;
2763 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2766 listener_add_address_space(listener, as);
2769 void memory_listener_unregister(MemoryListener *listener)
2771 if (!listener->address_space) {
2772 return;
2775 listener_del_address_space(listener, listener->address_space);
2776 QTAILQ_REMOVE(&memory_listeners, listener, link);
2777 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2778 listener->address_space = NULL;
2781 void address_space_remove_listeners(AddressSpace *as)
2783 while (!QTAILQ_EMPTY(&as->listeners)) {
2784 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2788 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2790 memory_region_ref(root);
2791 as->root = root;
2792 as->current_map = NULL;
2793 as->ioeventfd_nb = 0;
2794 as->ioeventfds = NULL;
2795 QTAILQ_INIT(&as->listeners);
2796 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2797 as->name = g_strdup(name ? name : "anonymous");
2798 address_space_update_topology(as);
2799 address_space_update_ioeventfds(as);
2802 static void do_address_space_destroy(AddressSpace *as)
2804 assert(QTAILQ_EMPTY(&as->listeners));
2806 flatview_unref(as->current_map);
2807 g_free(as->name);
2808 g_free(as->ioeventfds);
2809 memory_region_unref(as->root);
2812 void address_space_destroy(AddressSpace *as)
2814 MemoryRegion *root = as->root;
2816 /* Flush out anything from MemoryListeners listening in on this */
2817 memory_region_transaction_begin();
2818 as->root = NULL;
2819 memory_region_transaction_commit();
2820 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2822 /* At this point, as->dispatch and as->current_map are dummy
2823 * entries that the guest should never use. Wait for the old
2824 * values to expire before freeing the data.
2826 as->root = root;
2827 call_rcu(as, do_address_space_destroy, rcu);
2830 static const char *memory_region_type(MemoryRegion *mr)
2832 if (memory_region_is_ram_device(mr)) {
2833 return "ramd";
2834 } else if (memory_region_is_romd(mr)) {
2835 return "romd";
2836 } else if (memory_region_is_rom(mr)) {
2837 return "rom";
2838 } else if (memory_region_is_ram(mr)) {
2839 return "ram";
2840 } else {
2841 return "i/o";
2845 typedef struct MemoryRegionList MemoryRegionList;
2847 struct MemoryRegionList {
2848 const MemoryRegion *mr;
2849 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2852 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2854 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2855 int128_sub((size), int128_one())) : 0)
2856 #define MTREE_INDENT " "
2858 static void mtree_expand_owner(const char *label, Object *obj)
2860 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2862 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2863 if (dev && dev->id) {
2864 qemu_printf(" id=%s", dev->id);
2865 } else {
2866 gchar *canonical_path = object_get_canonical_path(obj);
2867 if (canonical_path) {
2868 qemu_printf(" path=%s", canonical_path);
2869 g_free(canonical_path);
2870 } else {
2871 qemu_printf(" type=%s", object_get_typename(obj));
2874 qemu_printf("}");
2877 static void mtree_print_mr_owner(const MemoryRegion *mr)
2879 Object *owner = mr->owner;
2880 Object *parent = memory_region_owner((MemoryRegion *)mr);
2882 if (!owner && !parent) {
2883 qemu_printf(" orphan");
2884 return;
2886 if (owner) {
2887 mtree_expand_owner("owner", owner);
2889 if (parent && parent != owner) {
2890 mtree_expand_owner("parent", parent);
2894 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2895 hwaddr base,
2896 MemoryRegionListHead *alias_print_queue,
2897 bool owner)
2899 MemoryRegionList *new_ml, *ml, *next_ml;
2900 MemoryRegionListHead submr_print_queue;
2901 const MemoryRegion *submr;
2902 unsigned int i;
2903 hwaddr cur_start, cur_end;
2905 if (!mr) {
2906 return;
2909 for (i = 0; i < level; i++) {
2910 qemu_printf(MTREE_INDENT);
2913 cur_start = base + mr->addr;
2914 cur_end = cur_start + MR_SIZE(mr->size);
2917 * Try to detect overflow of memory region. This should never
2918 * happen normally. When it happens, we dump something to warn the
2919 * user who is observing this.
2921 if (cur_start < base || cur_end < cur_start) {
2922 qemu_printf("[DETECTED OVERFLOW!] ");
2925 if (mr->alias) {
2926 MemoryRegionList *ml;
2927 bool found = false;
2929 /* check if the alias is already in the queue */
2930 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2931 if (ml->mr == mr->alias) {
2932 found = true;
2936 if (!found) {
2937 ml = g_new(MemoryRegionList, 1);
2938 ml->mr = mr->alias;
2939 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2941 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2942 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2943 "-" TARGET_FMT_plx "%s",
2944 cur_start, cur_end,
2945 mr->priority,
2946 mr->nonvolatile ? "nv-" : "",
2947 memory_region_type((MemoryRegion *)mr),
2948 memory_region_name(mr),
2949 memory_region_name(mr->alias),
2950 mr->alias_offset,
2951 mr->alias_offset + MR_SIZE(mr->size),
2952 mr->enabled ? "" : " [disabled]");
2953 if (owner) {
2954 mtree_print_mr_owner(mr);
2956 } else {
2957 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2958 " (prio %d, %s%s): %s%s",
2959 cur_start, cur_end,
2960 mr->priority,
2961 mr->nonvolatile ? "nv-" : "",
2962 memory_region_type((MemoryRegion *)mr),
2963 memory_region_name(mr),
2964 mr->enabled ? "" : " [disabled]");
2965 if (owner) {
2966 mtree_print_mr_owner(mr);
2969 qemu_printf("\n");
2971 QTAILQ_INIT(&submr_print_queue);
2973 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2974 new_ml = g_new(MemoryRegionList, 1);
2975 new_ml->mr = submr;
2976 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2977 if (new_ml->mr->addr < ml->mr->addr ||
2978 (new_ml->mr->addr == ml->mr->addr &&
2979 new_ml->mr->priority > ml->mr->priority)) {
2980 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2981 new_ml = NULL;
2982 break;
2985 if (new_ml) {
2986 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2990 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2991 mtree_print_mr(ml->mr, level + 1, cur_start,
2992 alias_print_queue, owner);
2995 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2996 g_free(ml);
3000 struct FlatViewInfo {
3001 int counter;
3002 bool dispatch_tree;
3003 bool owner;
3004 AccelClass *ac;
3005 const char *ac_name;
3008 static void mtree_print_flatview(gpointer key, gpointer value,
3009 gpointer user_data)
3011 FlatView *view = key;
3012 GArray *fv_address_spaces = value;
3013 struct FlatViewInfo *fvi = user_data;
3014 FlatRange *range = &view->ranges[0];
3015 MemoryRegion *mr;
3016 int n = view->nr;
3017 int i;
3018 AddressSpace *as;
3020 qemu_printf("FlatView #%d\n", fvi->counter);
3021 ++fvi->counter;
3023 for (i = 0; i < fv_address_spaces->len; ++i) {
3024 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3025 qemu_printf(" AS \"%s\", root: %s",
3026 as->name, memory_region_name(as->root));
3027 if (as->root->alias) {
3028 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3030 qemu_printf("\n");
3033 qemu_printf(" Root memory region: %s\n",
3034 view->root ? memory_region_name(view->root) : "(none)");
3036 if (n <= 0) {
3037 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3038 return;
3041 while (n--) {
3042 mr = range->mr;
3043 if (range->offset_in_region) {
3044 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3045 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3046 int128_get64(range->addr.start),
3047 int128_get64(range->addr.start)
3048 + MR_SIZE(range->addr.size),
3049 mr->priority,
3050 range->nonvolatile ? "nv-" : "",
3051 range->readonly ? "rom" : memory_region_type(mr),
3052 memory_region_name(mr),
3053 range->offset_in_region);
3054 } else {
3055 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3056 " (prio %d, %s%s): %s",
3057 int128_get64(range->addr.start),
3058 int128_get64(range->addr.start)
3059 + MR_SIZE(range->addr.size),
3060 mr->priority,
3061 range->nonvolatile ? "nv-" : "",
3062 range->readonly ? "rom" : memory_region_type(mr),
3063 memory_region_name(mr));
3065 if (fvi->owner) {
3066 mtree_print_mr_owner(mr);
3069 if (fvi->ac) {
3070 for (i = 0; i < fv_address_spaces->len; ++i) {
3071 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3072 if (fvi->ac->has_memory(current_machine, as,
3073 int128_get64(range->addr.start),
3074 MR_SIZE(range->addr.size) + 1)) {
3075 qemu_printf(" %s", fvi->ac_name);
3079 qemu_printf("\n");
3080 range++;
3083 #if !defined(CONFIG_USER_ONLY)
3084 if (fvi->dispatch_tree && view->root) {
3085 mtree_print_dispatch(view->dispatch, view->root);
3087 #endif
3089 qemu_printf("\n");
3092 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3093 gpointer user_data)
3095 FlatView *view = key;
3096 GArray *fv_address_spaces = value;
3098 g_array_unref(fv_address_spaces);
3099 flatview_unref(view);
3101 return true;
3104 void mtree_info(bool flatview, bool dispatch_tree, bool owner)
3106 MemoryRegionListHead ml_head;
3107 MemoryRegionList *ml, *ml2;
3108 AddressSpace *as;
3110 if (flatview) {
3111 FlatView *view;
3112 struct FlatViewInfo fvi = {
3113 .counter = 0,
3114 .dispatch_tree = dispatch_tree,
3115 .owner = owner,
3117 GArray *fv_address_spaces;
3118 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3119 AccelClass *ac = ACCEL_GET_CLASS(current_machine->accelerator);
3121 if (ac->has_memory) {
3122 fvi.ac = ac;
3123 fvi.ac_name = current_machine->accel ? current_machine->accel :
3124 object_class_get_name(OBJECT_CLASS(ac));
3127 /* Gather all FVs in one table */
3128 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3129 view = address_space_get_flatview(as);
3131 fv_address_spaces = g_hash_table_lookup(views, view);
3132 if (!fv_address_spaces) {
3133 fv_address_spaces = g_array_new(false, false, sizeof(as));
3134 g_hash_table_insert(views, view, fv_address_spaces);
3137 g_array_append_val(fv_address_spaces, as);
3140 /* Print */
3141 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3143 /* Free */
3144 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3145 g_hash_table_unref(views);
3147 return;
3150 QTAILQ_INIT(&ml_head);
3152 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3153 qemu_printf("address-space: %s\n", as->name);
3154 mtree_print_mr(as->root, 1, 0, &ml_head, owner);
3155 qemu_printf("\n");
3158 /* print aliased regions */
3159 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3160 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3161 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner);
3162 qemu_printf("\n");
3165 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3166 g_free(ml);
3170 void memory_region_init_ram(MemoryRegion *mr,
3171 struct Object *owner,
3172 const char *name,
3173 uint64_t size,
3174 Error **errp)
3176 DeviceState *owner_dev;
3177 Error *err = NULL;
3179 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3180 if (err) {
3181 error_propagate(errp, err);
3182 return;
3184 /* This will assert if owner is neither NULL nor a DeviceState.
3185 * We only want the owner here for the purposes of defining a
3186 * unique name for migration. TODO: Ideally we should implement
3187 * a naming scheme for Objects which are not DeviceStates, in
3188 * which case we can relax this restriction.
3190 owner_dev = DEVICE(owner);
3191 vmstate_register_ram(mr, owner_dev);
3194 void memory_region_init_rom(MemoryRegion *mr,
3195 struct Object *owner,
3196 const char *name,
3197 uint64_t size,
3198 Error **errp)
3200 DeviceState *owner_dev;
3201 Error *err = NULL;
3203 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3204 if (err) {
3205 error_propagate(errp, err);
3206 return;
3208 /* This will assert if owner is neither NULL nor a DeviceState.
3209 * We only want the owner here for the purposes of defining a
3210 * unique name for migration. TODO: Ideally we should implement
3211 * a naming scheme for Objects which are not DeviceStates, in
3212 * which case we can relax this restriction.
3214 owner_dev = DEVICE(owner);
3215 vmstate_register_ram(mr, owner_dev);
3218 void memory_region_init_rom_device(MemoryRegion *mr,
3219 struct Object *owner,
3220 const MemoryRegionOps *ops,
3221 void *opaque,
3222 const char *name,
3223 uint64_t size,
3224 Error **errp)
3226 DeviceState *owner_dev;
3227 Error *err = NULL;
3229 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3230 name, size, &err);
3231 if (err) {
3232 error_propagate(errp, err);
3233 return;
3235 /* This will assert if owner is neither NULL nor a DeviceState.
3236 * We only want the owner here for the purposes of defining a
3237 * unique name for migration. TODO: Ideally we should implement
3238 * a naming scheme for Objects which are not DeviceStates, in
3239 * which case we can relax this restriction.
3241 owner_dev = DEVICE(owner);
3242 vmstate_register_ram(mr, owner_dev);
3245 static const TypeInfo memory_region_info = {
3246 .parent = TYPE_OBJECT,
3247 .name = TYPE_MEMORY_REGION,
3248 .class_size = sizeof(MemoryRegionClass),
3249 .instance_size = sizeof(MemoryRegion),
3250 .instance_init = memory_region_initfn,
3251 .instance_finalize = memory_region_finalize,
3254 static const TypeInfo iommu_memory_region_info = {
3255 .parent = TYPE_MEMORY_REGION,
3256 .name = TYPE_IOMMU_MEMORY_REGION,
3257 .class_size = sizeof(IOMMUMemoryRegionClass),
3258 .instance_size = sizeof(IOMMUMemoryRegion),
3259 .instance_init = iommu_memory_region_initfn,
3260 .abstract = true,
3263 static void memory_register_types(void)
3265 type_register_static(&memory_region_info);
3266 type_register_static(&iommu_memory_region_info);
3269 type_init(memory_register_types)