sheepdog: Switch to .bdrv_co_block_status()
[qemu/ar7.git] / target / i386 / arch_dump.c
blob35b55fc200407f8c0cad3ce98f455670bdc70629
1 /*
2 * i386 memory mapping
4 * Copyright Fujitsu, Corp. 2011, 2012
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "cpu.h"
16 #include "sysemu/dump.h"
17 #include "elf.h"
18 #include "sysemu/memory_mapping.h"
20 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \
21 ((DIV_ROUND_UP((hdr_size), 4) \
22 + DIV_ROUND_UP((name_size), 4) \
23 + DIV_ROUND_UP((desc_size), 4)) * 4)
25 #ifdef TARGET_X86_64
26 typedef struct {
27 target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
28 target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
29 target_ulong rip, cs, eflags;
30 target_ulong rsp, ss;
31 target_ulong fs_base, gs_base;
32 target_ulong ds, es, fs, gs;
33 } x86_64_user_regs_struct;
35 typedef struct {
36 char pad1[32];
37 uint32_t pid;
38 char pad2[76];
39 x86_64_user_regs_struct regs;
40 char pad3[8];
41 } x86_64_elf_prstatus;
43 static int x86_64_write_elf64_note(WriteCoreDumpFunction f,
44 CPUX86State *env, int id,
45 void *opaque)
47 x86_64_user_regs_struct regs;
48 Elf64_Nhdr *note;
49 char *buf;
50 int descsz, note_size, name_size = 5;
51 const char *name = "CORE";
52 int ret;
54 regs.r15 = env->regs[15];
55 regs.r14 = env->regs[14];
56 regs.r13 = env->regs[13];
57 regs.r12 = env->regs[12];
58 regs.r11 = env->regs[11];
59 regs.r10 = env->regs[10];
60 regs.r9 = env->regs[9];
61 regs.r8 = env->regs[8];
62 regs.rbp = env->regs[R_EBP];
63 regs.rsp = env->regs[R_ESP];
64 regs.rdi = env->regs[R_EDI];
65 regs.rsi = env->regs[R_ESI];
66 regs.rdx = env->regs[R_EDX];
67 regs.rcx = env->regs[R_ECX];
68 regs.rbx = env->regs[R_EBX];
69 regs.rax = env->regs[R_EAX];
70 regs.rip = env->eip;
71 regs.eflags = env->eflags;
73 regs.orig_rax = 0; /* FIXME */
74 regs.cs = env->segs[R_CS].selector;
75 regs.ss = env->segs[R_SS].selector;
76 regs.fs_base = env->segs[R_FS].base;
77 regs.gs_base = env->segs[R_GS].base;
78 regs.ds = env->segs[R_DS].selector;
79 regs.es = env->segs[R_ES].selector;
80 regs.fs = env->segs[R_FS].selector;
81 regs.gs = env->segs[R_GS].selector;
83 descsz = sizeof(x86_64_elf_prstatus);
84 note_size = ELF_NOTE_SIZE(sizeof(Elf64_Nhdr), name_size, descsz);
85 note = g_malloc0(note_size);
86 note->n_namesz = cpu_to_le32(name_size);
87 note->n_descsz = cpu_to_le32(descsz);
88 note->n_type = cpu_to_le32(NT_PRSTATUS);
89 buf = (char *)note;
90 buf += ROUND_UP(sizeof(Elf64_Nhdr), 4);
91 memcpy(buf, name, name_size);
92 buf += ROUND_UP(name_size, 4);
93 memcpy(buf + 32, &id, 4); /* pr_pid */
94 buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
95 memcpy(buf, &regs, sizeof(x86_64_user_regs_struct));
97 ret = f(note, note_size, opaque);
98 g_free(note);
99 if (ret < 0) {
100 return -1;
103 return 0;
105 #endif
107 typedef struct {
108 uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
109 unsigned short ds, __ds, es, __es;
110 unsigned short fs, __fs, gs, __gs;
111 uint32_t orig_eax, eip;
112 unsigned short cs, __cs;
113 uint32_t eflags, esp;
114 unsigned short ss, __ss;
115 } x86_user_regs_struct;
117 typedef struct {
118 char pad1[24];
119 uint32_t pid;
120 char pad2[44];
121 x86_user_regs_struct regs;
122 char pad3[4];
123 } x86_elf_prstatus;
125 static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env,
126 int id)
128 memset(prstatus, 0, sizeof(x86_elf_prstatus));
129 prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
130 prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
131 prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
132 prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
133 prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
134 prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
135 prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
136 prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
137 prstatus->regs.eip = env->eip & 0xffffffff;
138 prstatus->regs.eflags = env->eflags & 0xffffffff;
140 prstatus->regs.cs = env->segs[R_CS].selector;
141 prstatus->regs.ss = env->segs[R_SS].selector;
142 prstatus->regs.ds = env->segs[R_DS].selector;
143 prstatus->regs.es = env->segs[R_ES].selector;
144 prstatus->regs.fs = env->segs[R_FS].selector;
145 prstatus->regs.gs = env->segs[R_GS].selector;
147 prstatus->pid = id;
150 static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env,
151 int id, void *opaque)
153 x86_elf_prstatus prstatus;
154 Elf64_Nhdr *note;
155 char *buf;
156 int descsz, note_size, name_size = 5;
157 const char *name = "CORE";
158 int ret;
160 x86_fill_elf_prstatus(&prstatus, env, id);
161 descsz = sizeof(x86_elf_prstatus);
162 note_size = ELF_NOTE_SIZE(sizeof(Elf64_Nhdr), name_size, descsz);
163 note = g_malloc0(note_size);
164 note->n_namesz = cpu_to_le32(name_size);
165 note->n_descsz = cpu_to_le32(descsz);
166 note->n_type = cpu_to_le32(NT_PRSTATUS);
167 buf = (char *)note;
168 buf += ROUND_UP(sizeof(Elf64_Nhdr), 4);
169 memcpy(buf, name, name_size);
170 buf += ROUND_UP(name_size, 4);
171 memcpy(buf, &prstatus, sizeof(prstatus));
173 ret = f(note, note_size, opaque);
174 g_free(note);
175 if (ret < 0) {
176 return -1;
179 return 0;
182 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
183 int cpuid, void *opaque)
185 X86CPU *cpu = X86_CPU(cs);
186 int ret;
187 #ifdef TARGET_X86_64
188 X86CPU *first_x86_cpu = X86_CPU(first_cpu);
189 bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
191 if (lma) {
192 ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque);
193 } else {
194 #endif
195 ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque);
196 #ifdef TARGET_X86_64
198 #endif
200 return ret;
203 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
204 int cpuid, void *opaque)
206 X86CPU *cpu = X86_CPU(cs);
207 x86_elf_prstatus prstatus;
208 Elf32_Nhdr *note;
209 char *buf;
210 int descsz, note_size, name_size = 5;
211 const char *name = "CORE";
212 int ret;
214 x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid);
215 descsz = sizeof(x86_elf_prstatus);
216 note_size = ELF_NOTE_SIZE(sizeof(Elf32_Nhdr), name_size, descsz);
217 note = g_malloc0(note_size);
218 note->n_namesz = cpu_to_le32(name_size);
219 note->n_descsz = cpu_to_le32(descsz);
220 note->n_type = cpu_to_le32(NT_PRSTATUS);
221 buf = (char *)note;
222 buf += ROUND_UP(sizeof(Elf32_Nhdr), 4);
223 memcpy(buf, name, name_size);
224 buf += ROUND_UP(name_size, 4);
225 memcpy(buf, &prstatus, sizeof(prstatus));
227 ret = f(note, note_size, opaque);
228 g_free(note);
229 if (ret < 0) {
230 return -1;
233 return 0;
237 * please count up QEMUCPUSTATE_VERSION if you have changed definition of
238 * QEMUCPUState, and modify the tools using this information accordingly.
240 #define QEMUCPUSTATE_VERSION (1)
242 struct QEMUCPUSegment {
243 uint32_t selector;
244 uint32_t limit;
245 uint32_t flags;
246 uint32_t pad;
247 uint64_t base;
250 typedef struct QEMUCPUSegment QEMUCPUSegment;
252 struct QEMUCPUState {
253 uint32_t version;
254 uint32_t size;
255 uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
256 uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
257 uint64_t rip, rflags;
258 QEMUCPUSegment cs, ds, es, fs, gs, ss;
259 QEMUCPUSegment ldt, tr, gdt, idt;
260 uint64_t cr[5];
263 typedef struct QEMUCPUState QEMUCPUState;
265 static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
267 d->pad = 0;
268 d->selector = s->selector;
269 d->limit = s->limit;
270 d->flags = s->flags;
271 d->base = s->base;
274 static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env)
276 memset(s, 0, sizeof(QEMUCPUState));
278 s->version = QEMUCPUSTATE_VERSION;
279 s->size = sizeof(QEMUCPUState);
281 s->rax = env->regs[R_EAX];
282 s->rbx = env->regs[R_EBX];
283 s->rcx = env->regs[R_ECX];
284 s->rdx = env->regs[R_EDX];
285 s->rsi = env->regs[R_ESI];
286 s->rdi = env->regs[R_EDI];
287 s->rsp = env->regs[R_ESP];
288 s->rbp = env->regs[R_EBP];
289 #ifdef TARGET_X86_64
290 s->r8 = env->regs[8];
291 s->r9 = env->regs[9];
292 s->r10 = env->regs[10];
293 s->r11 = env->regs[11];
294 s->r12 = env->regs[12];
295 s->r13 = env->regs[13];
296 s->r14 = env->regs[14];
297 s->r15 = env->regs[15];
298 #endif
299 s->rip = env->eip;
300 s->rflags = env->eflags;
302 copy_segment(&s->cs, &env->segs[R_CS]);
303 copy_segment(&s->ds, &env->segs[R_DS]);
304 copy_segment(&s->es, &env->segs[R_ES]);
305 copy_segment(&s->fs, &env->segs[R_FS]);
306 copy_segment(&s->gs, &env->segs[R_GS]);
307 copy_segment(&s->ss, &env->segs[R_SS]);
308 copy_segment(&s->ldt, &env->ldt);
309 copy_segment(&s->tr, &env->tr);
310 copy_segment(&s->gdt, &env->gdt);
311 copy_segment(&s->idt, &env->idt);
313 s->cr[0] = env->cr[0];
314 s->cr[1] = env->cr[1];
315 s->cr[2] = env->cr[2];
316 s->cr[3] = env->cr[3];
317 s->cr[4] = env->cr[4];
320 static inline int cpu_write_qemu_note(WriteCoreDumpFunction f,
321 CPUX86State *env,
322 void *opaque,
323 int type)
325 QEMUCPUState state;
326 Elf64_Nhdr *note64;
327 Elf32_Nhdr *note32;
328 void *note;
329 char *buf;
330 int descsz, note_size, name_size = 5, note_head_size;
331 const char *name = "QEMU";
332 int ret;
334 qemu_get_cpustate(&state, env);
336 descsz = sizeof(state);
337 if (type == 0) {
338 note_head_size = sizeof(Elf32_Nhdr);
339 } else {
340 note_head_size = sizeof(Elf64_Nhdr);
342 note_size = (DIV_ROUND_UP(note_head_size, 4) + DIV_ROUND_UP(name_size, 4) +
343 DIV_ROUND_UP(descsz, 4)) * 4;
344 note = g_malloc0(note_size);
345 if (type == 0) {
346 note32 = note;
347 note32->n_namesz = cpu_to_le32(name_size);
348 note32->n_descsz = cpu_to_le32(descsz);
349 note32->n_type = 0;
350 } else {
351 note64 = note;
352 note64->n_namesz = cpu_to_le32(name_size);
353 note64->n_descsz = cpu_to_le32(descsz);
354 note64->n_type = 0;
356 buf = note;
357 buf += ROUND_UP(note_head_size, 4);
358 memcpy(buf, name, name_size);
359 buf += ROUND_UP(name_size, 4);
360 memcpy(buf, &state, sizeof(state));
362 ret = f(note, note_size, opaque);
363 g_free(note);
364 if (ret < 0) {
365 return -1;
368 return 0;
371 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs,
372 void *opaque)
374 X86CPU *cpu = X86_CPU(cs);
376 return cpu_write_qemu_note(f, &cpu->env, opaque, 1);
379 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs,
380 void *opaque)
382 X86CPU *cpu = X86_CPU(cs);
384 return cpu_write_qemu_note(f, &cpu->env, opaque, 0);
387 int cpu_get_dump_info(ArchDumpInfo *info,
388 const GuestPhysBlockList *guest_phys_blocks)
390 bool lma = false;
391 GuestPhysBlock *block;
393 #ifdef TARGET_X86_64
394 X86CPU *first_x86_cpu = X86_CPU(first_cpu);
395 lma = first_cpu && (first_x86_cpu->env.hflags & HF_LMA_MASK);
396 #endif
398 if (lma) {
399 info->d_machine = EM_X86_64;
400 } else {
401 info->d_machine = EM_386;
403 info->d_endian = ELFDATA2LSB;
405 if (lma) {
406 info->d_class = ELFCLASS64;
407 } else {
408 info->d_class = ELFCLASS32;
410 QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
411 if (block->target_end > UINT_MAX) {
412 /* The memory size is greater than 4G */
413 info->d_class = ELFCLASS64;
414 break;
419 return 0;
422 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
424 int name_size = 5; /* "CORE" or "QEMU" */
425 size_t elf_note_size = 0;
426 size_t qemu_note_size = 0;
427 int elf_desc_size = 0;
428 int qemu_desc_size = 0;
429 int note_head_size;
431 if (class == ELFCLASS32) {
432 note_head_size = sizeof(Elf32_Nhdr);
433 } else {
434 note_head_size = sizeof(Elf64_Nhdr);
437 if (machine == EM_386) {
438 elf_desc_size = sizeof(x86_elf_prstatus);
440 #ifdef TARGET_X86_64
441 else {
442 elf_desc_size = sizeof(x86_64_elf_prstatus);
444 #endif
445 qemu_desc_size = sizeof(QEMUCPUState);
447 elf_note_size = ELF_NOTE_SIZE(note_head_size, name_size, elf_desc_size);
448 qemu_note_size = ELF_NOTE_SIZE(note_head_size, name_size, qemu_desc_size);
450 return (elf_note_size + qemu_note_size) * nr_cpus;