hw: explicitly include qemu-common.h and cpu.h
[qemu/ar7.git] / hw / timer / mc146818rtc.c
blob5e655041bcbb9b08efe40571228bd787df327e3b
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "config-target.h"
26 #include "hw/hw.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/timer/mc146818rtc.h"
30 #include "qapi/visitor.h"
31 #include "qapi-event.h"
32 #include "qmp-commands.h"
34 #ifdef TARGET_I386
35 #include "hw/i386/apic.h"
36 #endif
38 //#define DEBUG_CMOS
39 //#define DEBUG_COALESCED
41 #ifdef DEBUG_CMOS
42 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
43 #else
44 # define CMOS_DPRINTF(format, ...) do { } while (0)
45 #endif
47 #ifdef DEBUG_COALESCED
48 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
49 #else
50 # define DPRINTF_C(format, ...) do { } while (0)
51 #endif
53 #define SEC_PER_MIN 60
54 #define MIN_PER_HOUR 60
55 #define SEC_PER_HOUR 3600
56 #define HOUR_PER_DAY 24
57 #define SEC_PER_DAY 86400
59 #define RTC_REINJECT_ON_ACK_COUNT 20
60 #define RTC_CLOCK_RATE 32768
61 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
63 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
65 typedef struct RTCState {
66 ISADevice parent_obj;
68 MemoryRegion io;
69 uint8_t cmos_data[128];
70 uint8_t cmos_index;
71 int32_t base_year;
72 uint64_t base_rtc;
73 uint64_t last_update;
74 int64_t offset;
75 qemu_irq irq;
76 int it_shift;
77 /* periodic timer */
78 QEMUTimer *periodic_timer;
79 int64_t next_periodic_time;
80 /* update-ended timer */
81 QEMUTimer *update_timer;
82 uint64_t next_alarm_time;
83 uint16_t irq_reinject_on_ack_count;
84 uint32_t irq_coalesced;
85 uint32_t period;
86 QEMUTimer *coalesced_timer;
87 Notifier clock_reset_notifier;
88 LostTickPolicy lost_tick_policy;
89 Notifier suspend_notifier;
90 QLIST_ENTRY(RTCState) link;
91 } RTCState;
93 static void rtc_set_time(RTCState *s);
94 static void rtc_update_time(RTCState *s);
95 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
96 static inline int rtc_from_bcd(RTCState *s, int a);
97 static uint64_t get_next_alarm(RTCState *s);
99 static inline bool rtc_running(RTCState *s)
101 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
102 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
105 static uint64_t get_guest_rtc_ns(RTCState *s)
107 uint64_t guest_rtc;
108 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
110 guest_rtc = s->base_rtc * NANOSECONDS_PER_SECOND
111 + guest_clock - s->last_update + s->offset;
112 return guest_rtc;
115 #ifdef TARGET_I386
116 static void rtc_coalesced_timer_update(RTCState *s)
118 if (s->irq_coalesced == 0) {
119 timer_del(s->coalesced_timer);
120 } else {
121 /* divide each RTC interval to 2 - 8 smaller intervals */
122 int c = MIN(s->irq_coalesced, 7) + 1;
123 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
124 muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
125 timer_mod(s->coalesced_timer, next_clock);
129 static void rtc_coalesced_timer(void *opaque)
131 RTCState *s = opaque;
133 if (s->irq_coalesced != 0) {
134 apic_reset_irq_delivered();
135 s->cmos_data[RTC_REG_C] |= 0xc0;
136 DPRINTF_C("cmos: injecting from timer\n");
137 qemu_irq_raise(s->irq);
138 if (apic_get_irq_delivered()) {
139 s->irq_coalesced--;
140 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
141 s->irq_coalesced);
145 rtc_coalesced_timer_update(s);
147 #endif
149 /* handle periodic timer */
150 static void periodic_timer_update(RTCState *s, int64_t current_time)
152 int period_code, period;
153 int64_t cur_clock, next_irq_clock;
155 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
156 if (period_code != 0
157 && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
158 if (period_code <= 2)
159 period_code += 7;
160 /* period in 32 Khz cycles */
161 period = 1 << (period_code - 1);
162 #ifdef TARGET_I386
163 if (period != s->period) {
164 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
165 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
167 s->period = period;
168 #endif
169 /* compute 32 khz clock */
170 cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
171 next_irq_clock = (cur_clock & ~(period - 1)) + period;
172 s->next_periodic_time =
173 muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
174 timer_mod(s->periodic_timer, s->next_periodic_time);
175 } else {
176 #ifdef TARGET_I386
177 s->irq_coalesced = 0;
178 #endif
179 timer_del(s->periodic_timer);
183 static void rtc_periodic_timer(void *opaque)
185 RTCState *s = opaque;
187 periodic_timer_update(s, s->next_periodic_time);
188 s->cmos_data[RTC_REG_C] |= REG_C_PF;
189 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
190 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
191 #ifdef TARGET_I386
192 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
193 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
194 s->irq_reinject_on_ack_count = 0;
195 apic_reset_irq_delivered();
196 qemu_irq_raise(s->irq);
197 if (!apic_get_irq_delivered()) {
198 s->irq_coalesced++;
199 rtc_coalesced_timer_update(s);
200 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
201 s->irq_coalesced);
203 } else
204 #endif
205 qemu_irq_raise(s->irq);
209 /* handle update-ended timer */
210 static void check_update_timer(RTCState *s)
212 uint64_t next_update_time;
213 uint64_t guest_nsec;
214 int next_alarm_sec;
216 /* From the data sheet: "Holding the dividers in reset prevents
217 * interrupts from operating, while setting the SET bit allows"
218 * them to occur. However, it will prevent an alarm interrupt
219 * from occurring, because the time of day is not updated.
221 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
222 timer_del(s->update_timer);
223 return;
225 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
226 (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
227 timer_del(s->update_timer);
228 return;
230 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
231 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
232 timer_del(s->update_timer);
233 return;
236 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
237 /* if UF is clear, reprogram to next second */
238 next_update_time = qemu_clock_get_ns(rtc_clock)
239 + NANOSECONDS_PER_SECOND - guest_nsec;
241 /* Compute time of next alarm. One second is already accounted
242 * for in next_update_time.
244 next_alarm_sec = get_next_alarm(s);
245 s->next_alarm_time = next_update_time +
246 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
248 if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
249 /* UF is set, but AF is clear. Program the timer to target
250 * the alarm time. */
251 next_update_time = s->next_alarm_time;
253 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
254 timer_mod(s->update_timer, next_update_time);
258 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
260 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
261 hour %= 12;
262 if (s->cmos_data[RTC_HOURS] & 0x80) {
263 hour += 12;
266 return hour;
269 static uint64_t get_next_alarm(RTCState *s)
271 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
272 int32_t hour, min, sec;
274 rtc_update_time(s);
276 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
277 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
278 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
279 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
281 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
282 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
283 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
284 cur_hour = convert_hour(s, cur_hour);
286 if (alarm_hour == -1) {
287 alarm_hour = cur_hour;
288 if (alarm_min == -1) {
289 alarm_min = cur_min;
290 if (alarm_sec == -1) {
291 alarm_sec = cur_sec + 1;
292 } else if (cur_sec > alarm_sec) {
293 alarm_min++;
295 } else if (cur_min == alarm_min) {
296 if (alarm_sec == -1) {
297 alarm_sec = cur_sec + 1;
298 } else {
299 if (cur_sec > alarm_sec) {
300 alarm_hour++;
303 if (alarm_sec == SEC_PER_MIN) {
304 /* wrap to next hour, minutes is not in don't care mode */
305 alarm_sec = 0;
306 alarm_hour++;
308 } else if (cur_min > alarm_min) {
309 alarm_hour++;
311 } else if (cur_hour == alarm_hour) {
312 if (alarm_min == -1) {
313 alarm_min = cur_min;
314 if (alarm_sec == -1) {
315 alarm_sec = cur_sec + 1;
316 } else if (cur_sec > alarm_sec) {
317 alarm_min++;
320 if (alarm_sec == SEC_PER_MIN) {
321 alarm_sec = 0;
322 alarm_min++;
324 /* wrap to next day, hour is not in don't care mode */
325 alarm_min %= MIN_PER_HOUR;
326 } else if (cur_min == alarm_min) {
327 if (alarm_sec == -1) {
328 alarm_sec = cur_sec + 1;
330 /* wrap to next day, hours+minutes not in don't care mode */
331 alarm_sec %= SEC_PER_MIN;
335 /* values that are still don't care fire at the next min/sec */
336 if (alarm_min == -1) {
337 alarm_min = 0;
339 if (alarm_sec == -1) {
340 alarm_sec = 0;
343 /* keep values in range */
344 if (alarm_sec == SEC_PER_MIN) {
345 alarm_sec = 0;
346 alarm_min++;
348 if (alarm_min == MIN_PER_HOUR) {
349 alarm_min = 0;
350 alarm_hour++;
352 alarm_hour %= HOUR_PER_DAY;
354 hour = alarm_hour - cur_hour;
355 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
356 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
357 return sec <= 0 ? sec + SEC_PER_DAY : sec;
360 static void rtc_update_timer(void *opaque)
362 RTCState *s = opaque;
363 int32_t irqs = REG_C_UF;
364 int32_t new_irqs;
366 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
368 /* UIP might have been latched, update time and clear it. */
369 rtc_update_time(s);
370 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
372 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
373 irqs |= REG_C_AF;
374 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
375 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
379 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
380 s->cmos_data[RTC_REG_C] |= irqs;
381 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
382 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
383 qemu_irq_raise(s->irq);
385 check_update_timer(s);
388 static void cmos_ioport_write(void *opaque, hwaddr addr,
389 uint64_t data, unsigned size)
391 RTCState *s = opaque;
393 if ((addr & 1) == 0) {
394 s->cmos_index = data & 0x7f;
395 } else {
396 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
397 s->cmos_index, data);
398 switch(s->cmos_index) {
399 case RTC_SECONDS_ALARM:
400 case RTC_MINUTES_ALARM:
401 case RTC_HOURS_ALARM:
402 s->cmos_data[s->cmos_index] = data;
403 check_update_timer(s);
404 break;
405 case RTC_IBM_PS2_CENTURY_BYTE:
406 s->cmos_index = RTC_CENTURY;
407 /* fall through */
408 case RTC_CENTURY:
409 case RTC_SECONDS:
410 case RTC_MINUTES:
411 case RTC_HOURS:
412 case RTC_DAY_OF_WEEK:
413 case RTC_DAY_OF_MONTH:
414 case RTC_MONTH:
415 case RTC_YEAR:
416 s->cmos_data[s->cmos_index] = data;
417 /* if in set mode, do not update the time */
418 if (rtc_running(s)) {
419 rtc_set_time(s);
420 check_update_timer(s);
422 break;
423 case RTC_REG_A:
424 if ((data & 0x60) == 0x60) {
425 if (rtc_running(s)) {
426 rtc_update_time(s);
428 /* What happens to UIP when divider reset is enabled is
429 * unclear from the datasheet. Shouldn't matter much
430 * though.
432 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
433 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
434 (data & 0x70) <= 0x20) {
435 /* when the divider reset is removed, the first update cycle
436 * begins one-half second later*/
437 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
438 s->offset = 500000000;
439 rtc_set_time(s);
441 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
443 /* UIP bit is read only */
444 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
445 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
446 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
447 check_update_timer(s);
448 break;
449 case RTC_REG_B:
450 if (data & REG_B_SET) {
451 /* update cmos to when the rtc was stopping */
452 if (rtc_running(s)) {
453 rtc_update_time(s);
455 /* set mode: reset UIP mode */
456 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
457 data &= ~REG_B_UIE;
458 } else {
459 /* if disabling set mode, update the time */
460 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
461 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
462 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
463 rtc_set_time(s);
466 /* if an interrupt flag is already set when the interrupt
467 * becomes enabled, raise an interrupt immediately. */
468 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
469 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
470 qemu_irq_raise(s->irq);
471 } else {
472 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
473 qemu_irq_lower(s->irq);
475 s->cmos_data[RTC_REG_B] = data;
476 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
477 check_update_timer(s);
478 break;
479 case RTC_REG_C:
480 case RTC_REG_D:
481 /* cannot write to them */
482 break;
483 default:
484 s->cmos_data[s->cmos_index] = data;
485 break;
490 static inline int rtc_to_bcd(RTCState *s, int a)
492 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
493 return a;
494 } else {
495 return ((a / 10) << 4) | (a % 10);
499 static inline int rtc_from_bcd(RTCState *s, int a)
501 if ((a & 0xc0) == 0xc0) {
502 return -1;
504 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
505 return a;
506 } else {
507 return ((a >> 4) * 10) + (a & 0x0f);
511 static void rtc_get_time(RTCState *s, struct tm *tm)
513 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
514 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
515 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
516 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
517 tm->tm_hour %= 12;
518 if (s->cmos_data[RTC_HOURS] & 0x80) {
519 tm->tm_hour += 12;
522 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
523 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
524 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
525 tm->tm_year =
526 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
527 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
530 static QLIST_HEAD(, RTCState) rtc_devices =
531 QLIST_HEAD_INITIALIZER(rtc_devices);
533 #ifdef TARGET_I386
534 void qmp_rtc_reset_reinjection(Error **errp)
536 RTCState *s;
538 QLIST_FOREACH(s, &rtc_devices, link) {
539 s->irq_coalesced = 0;
542 #endif
544 static void rtc_set_time(RTCState *s)
546 struct tm tm;
548 rtc_get_time(s, &tm);
549 s->base_rtc = mktimegm(&tm);
550 s->last_update = qemu_clock_get_ns(rtc_clock);
552 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
555 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
557 int year;
559 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
560 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
561 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
562 /* 24 hour format */
563 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
564 } else {
565 /* 12 hour format */
566 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
567 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
568 if (tm->tm_hour >= 12)
569 s->cmos_data[RTC_HOURS] |= 0x80;
571 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
572 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
573 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
574 year = tm->tm_year + 1900 - s->base_year;
575 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
576 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
579 static void rtc_update_time(RTCState *s)
581 struct tm ret;
582 time_t guest_sec;
583 int64_t guest_nsec;
585 guest_nsec = get_guest_rtc_ns(s);
586 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
587 gmtime_r(&guest_sec, &ret);
589 /* Is SET flag of Register B disabled? */
590 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
591 rtc_set_cmos(s, &ret);
595 static int update_in_progress(RTCState *s)
597 int64_t guest_nsec;
599 if (!rtc_running(s)) {
600 return 0;
602 if (timer_pending(s->update_timer)) {
603 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
604 /* Latch UIP until the timer expires. */
605 if (qemu_clock_get_ns(rtc_clock) >=
606 (next_update_time - UIP_HOLD_LENGTH)) {
607 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
608 return 1;
612 guest_nsec = get_guest_rtc_ns(s);
613 /* UIP bit will be set at last 244us of every second. */
614 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
615 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
616 return 1;
618 return 0;
621 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
622 unsigned size)
624 RTCState *s = opaque;
625 int ret;
626 if ((addr & 1) == 0) {
627 return 0xff;
628 } else {
629 switch(s->cmos_index) {
630 case RTC_IBM_PS2_CENTURY_BYTE:
631 s->cmos_index = RTC_CENTURY;
632 /* fall through */
633 case RTC_CENTURY:
634 case RTC_SECONDS:
635 case RTC_MINUTES:
636 case RTC_HOURS:
637 case RTC_DAY_OF_WEEK:
638 case RTC_DAY_OF_MONTH:
639 case RTC_MONTH:
640 case RTC_YEAR:
641 /* if not in set mode, calibrate cmos before
642 * reading*/
643 if (rtc_running(s)) {
644 rtc_update_time(s);
646 ret = s->cmos_data[s->cmos_index];
647 break;
648 case RTC_REG_A:
649 if (update_in_progress(s)) {
650 s->cmos_data[s->cmos_index] |= REG_A_UIP;
651 } else {
652 s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
654 ret = s->cmos_data[s->cmos_index];
655 break;
656 case RTC_REG_C:
657 ret = s->cmos_data[s->cmos_index];
658 qemu_irq_lower(s->irq);
659 s->cmos_data[RTC_REG_C] = 0x00;
660 if (ret & (REG_C_UF | REG_C_AF)) {
661 check_update_timer(s);
663 #ifdef TARGET_I386
664 if(s->irq_coalesced &&
665 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
666 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
667 s->irq_reinject_on_ack_count++;
668 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
669 apic_reset_irq_delivered();
670 DPRINTF_C("cmos: injecting on ack\n");
671 qemu_irq_raise(s->irq);
672 if (apic_get_irq_delivered()) {
673 s->irq_coalesced--;
674 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
675 s->irq_coalesced);
678 #endif
679 break;
680 default:
681 ret = s->cmos_data[s->cmos_index];
682 break;
684 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
685 s->cmos_index, ret);
686 return ret;
690 void rtc_set_memory(ISADevice *dev, int addr, int val)
692 RTCState *s = MC146818_RTC(dev);
693 if (addr >= 0 && addr <= 127)
694 s->cmos_data[addr] = val;
697 int rtc_get_memory(ISADevice *dev, int addr)
699 RTCState *s = MC146818_RTC(dev);
700 assert(addr >= 0 && addr <= 127);
701 return s->cmos_data[addr];
704 static void rtc_set_date_from_host(ISADevice *dev)
706 RTCState *s = MC146818_RTC(dev);
707 struct tm tm;
709 qemu_get_timedate(&tm, 0);
711 s->base_rtc = mktimegm(&tm);
712 s->last_update = qemu_clock_get_ns(rtc_clock);
713 s->offset = 0;
715 /* set the CMOS date */
716 rtc_set_cmos(s, &tm);
719 static int rtc_post_load(void *opaque, int version_id)
721 RTCState *s = opaque;
723 if (version_id <= 2) {
724 rtc_set_time(s);
725 s->offset = 0;
726 check_update_timer(s);
729 uint64_t now = qemu_clock_get_ns(rtc_clock);
730 if (now < s->next_periodic_time ||
731 now > (s->next_periodic_time + get_max_clock_jump())) {
732 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
735 #ifdef TARGET_I386
736 if (version_id >= 2) {
737 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
738 rtc_coalesced_timer_update(s);
741 #endif
742 return 0;
745 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
747 RTCState *s = (RTCState *)opaque;
748 return s->irq_reinject_on_ack_count != 0;
751 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
752 .name = "mc146818rtc/irq_reinject_on_ack_count",
753 .version_id = 1,
754 .minimum_version_id = 1,
755 .needed = rtc_irq_reinject_on_ack_count_needed,
756 .fields = (VMStateField[]) {
757 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
758 VMSTATE_END_OF_LIST()
762 static const VMStateDescription vmstate_rtc = {
763 .name = "mc146818rtc",
764 .version_id = 3,
765 .minimum_version_id = 1,
766 .post_load = rtc_post_load,
767 .fields = (VMStateField[]) {
768 VMSTATE_BUFFER(cmos_data, RTCState),
769 VMSTATE_UINT8(cmos_index, RTCState),
770 VMSTATE_UNUSED(7*4),
771 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
772 VMSTATE_INT64(next_periodic_time, RTCState),
773 VMSTATE_UNUSED(3*8),
774 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
775 VMSTATE_UINT32_V(period, RTCState, 2),
776 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
777 VMSTATE_UINT64_V(last_update, RTCState, 3),
778 VMSTATE_INT64_V(offset, RTCState, 3),
779 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
780 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
781 VMSTATE_END_OF_LIST()
783 .subsections = (const VMStateDescription*[]) {
784 &vmstate_rtc_irq_reinject_on_ack_count,
785 NULL
789 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
791 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
792 int64_t now = *(int64_t *)data;
794 rtc_set_date_from_host(ISA_DEVICE(s));
795 periodic_timer_update(s, now);
796 check_update_timer(s);
797 #ifdef TARGET_I386
798 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
799 rtc_coalesced_timer_update(s);
801 #endif
804 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
805 BIOS will read it and start S3 resume at POST Entry */
806 static void rtc_notify_suspend(Notifier *notifier, void *data)
808 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
809 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
812 static void rtc_reset(void *opaque)
814 RTCState *s = opaque;
816 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
817 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
818 check_update_timer(s);
820 qemu_irq_lower(s->irq);
822 #ifdef TARGET_I386
823 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
824 s->irq_coalesced = 0;
825 s->irq_reinject_on_ack_count = 0;
827 #endif
830 static const MemoryRegionOps cmos_ops = {
831 .read = cmos_ioport_read,
832 .write = cmos_ioport_write,
833 .impl = {
834 .min_access_size = 1,
835 .max_access_size = 1,
837 .endianness = DEVICE_LITTLE_ENDIAN,
840 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
842 RTCState *s = MC146818_RTC(obj);
844 rtc_update_time(s);
845 rtc_get_time(s, current_tm);
848 static void rtc_realizefn(DeviceState *dev, Error **errp)
850 ISADevice *isadev = ISA_DEVICE(dev);
851 RTCState *s = MC146818_RTC(dev);
852 int base = 0x70;
854 s->cmos_data[RTC_REG_A] = 0x26;
855 s->cmos_data[RTC_REG_B] = 0x02;
856 s->cmos_data[RTC_REG_C] = 0x00;
857 s->cmos_data[RTC_REG_D] = 0x80;
859 /* This is for historical reasons. The default base year qdev property
860 * was set to 2000 for most machine types before the century byte was
861 * implemented.
863 * This if statement means that the century byte will be always 0
864 * (at least until 2079...) for base_year = 1980, but will be set
865 * correctly for base_year = 2000.
867 if (s->base_year == 2000) {
868 s->base_year = 0;
871 rtc_set_date_from_host(isadev);
873 #ifdef TARGET_I386
874 switch (s->lost_tick_policy) {
875 case LOST_TICK_POLICY_SLEW:
876 s->coalesced_timer =
877 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
878 break;
879 case LOST_TICK_POLICY_DISCARD:
880 break;
881 default:
882 error_setg(errp, "Invalid lost tick policy.");
883 return;
885 #endif
887 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
888 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
889 check_update_timer(s);
891 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
892 qemu_clock_register_reset_notifier(rtc_clock,
893 &s->clock_reset_notifier);
895 s->suspend_notifier.notify = rtc_notify_suspend;
896 qemu_register_suspend_notifier(&s->suspend_notifier);
898 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
899 isa_register_ioport(isadev, &s->io, base);
901 qdev_set_legacy_instance_id(dev, base, 3);
902 qemu_register_reset(rtc_reset, s);
904 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
906 object_property_add_alias(qdev_get_machine(), "rtc-time",
907 OBJECT(s), "date", NULL);
910 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
912 DeviceState *dev;
913 ISADevice *isadev;
914 RTCState *s;
916 isadev = isa_create(bus, TYPE_MC146818_RTC);
917 dev = DEVICE(isadev);
918 s = MC146818_RTC(isadev);
919 qdev_prop_set_int32(dev, "base_year", base_year);
920 qdev_init_nofail(dev);
921 if (intercept_irq) {
922 s->irq = intercept_irq;
923 } else {
924 isa_init_irq(isadev, &s->irq, RTC_ISA_IRQ);
926 QLIST_INSERT_HEAD(&rtc_devices, s, link);
928 return isadev;
931 static Property mc146818rtc_properties[] = {
932 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
933 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
934 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
935 DEFINE_PROP_END_OF_LIST(),
938 static void rtc_class_initfn(ObjectClass *klass, void *data)
940 DeviceClass *dc = DEVICE_CLASS(klass);
942 dc->realize = rtc_realizefn;
943 dc->vmsd = &vmstate_rtc;
944 dc->props = mc146818rtc_properties;
945 /* Reason: needs to be wired up by rtc_init() */
946 dc->cannot_instantiate_with_device_add_yet = true;
949 static void rtc_finalize(Object *obj)
951 object_property_del(qdev_get_machine(), "rtc", NULL);
954 static const TypeInfo mc146818rtc_info = {
955 .name = TYPE_MC146818_RTC,
956 .parent = TYPE_ISA_DEVICE,
957 .instance_size = sizeof(RTCState),
958 .class_init = rtc_class_initfn,
959 .instance_finalize = rtc_finalize,
962 static void mc146818rtc_register_types(void)
964 type_register_static(&mc146818rtc_info);
967 type_init(mc146818rtc_register_types)