hw: explicitly include qemu-common.h and cpu.h
[qemu/ar7.git] / hw / arm / omap1.c
blob99ed43e3bee9f805df2443e177bf3dd28ed68cab
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu-common.h"
23 #include "cpu.h"
24 #include "hw/boards.h"
25 #include "hw/hw.h"
26 #include "hw/arm/arm.h"
27 #include "hw/arm/omap.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/arm/soc_dma.h"
30 #include "sysemu/block-backend.h"
31 #include "sysemu/blockdev.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
35 /* Should signal the TCMI/GPMC */
36 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
38 uint8_t ret;
40 OMAP_8B_REG(addr);
41 cpu_physical_memory_read(addr, &ret, 1);
42 return ret;
45 void omap_badwidth_write8(void *opaque, hwaddr addr,
46 uint32_t value)
48 uint8_t val8 = value;
50 OMAP_8B_REG(addr);
51 cpu_physical_memory_write(addr, &val8, 1);
54 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
56 uint16_t ret;
58 OMAP_16B_REG(addr);
59 cpu_physical_memory_read(addr, &ret, 2);
60 return ret;
63 void omap_badwidth_write16(void *opaque, hwaddr addr,
64 uint32_t value)
66 uint16_t val16 = value;
68 OMAP_16B_REG(addr);
69 cpu_physical_memory_write(addr, &val16, 2);
72 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
74 uint32_t ret;
76 OMAP_32B_REG(addr);
77 cpu_physical_memory_read(addr, &ret, 4);
78 return ret;
81 void omap_badwidth_write32(void *opaque, hwaddr addr,
82 uint32_t value)
84 OMAP_32B_REG(addr);
85 cpu_physical_memory_write(addr, &value, 4);
88 /* MPU OS timers */
89 struct omap_mpu_timer_s {
90 MemoryRegion iomem;
91 qemu_irq irq;
92 omap_clk clk;
93 uint32_t val;
94 int64_t time;
95 QEMUTimer *timer;
96 QEMUBH *tick;
97 int64_t rate;
98 int it_ena;
100 int enable;
101 int ptv;
102 int ar;
103 int st;
104 uint32_t reset_val;
107 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
109 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
111 if (timer->st && timer->enable && timer->rate)
112 return timer->val - muldiv64(distance >> (timer->ptv + 1),
113 timer->rate, get_ticks_per_sec());
114 else
115 return timer->val;
118 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
120 timer->val = omap_timer_read(timer);
121 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
124 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
126 int64_t expires;
128 if (timer->enable && timer->st && timer->rate) {
129 timer->val = timer->reset_val; /* Should skip this on clk enable */
130 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
131 get_ticks_per_sec(), timer->rate);
133 /* If timer expiry would be sooner than in about 1 ms and
134 * auto-reload isn't set, then fire immediately. This is a hack
135 * to make systems like PalmOS run in acceptable time. PalmOS
136 * sets the interval to a very low value and polls the status bit
137 * in a busy loop when it wants to sleep just a couple of CPU
138 * ticks. */
139 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
140 timer_mod(timer->timer, timer->time + expires);
141 else
142 qemu_bh_schedule(timer->tick);
143 } else
144 timer_del(timer->timer);
147 static void omap_timer_fire(void *opaque)
149 struct omap_mpu_timer_s *timer = opaque;
151 if (!timer->ar) {
152 timer->val = 0;
153 timer->st = 0;
156 if (timer->it_ena)
157 /* Edge-triggered irq */
158 qemu_irq_pulse(timer->irq);
161 static void omap_timer_tick(void *opaque)
163 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
165 omap_timer_sync(timer);
166 omap_timer_fire(timer);
167 omap_timer_update(timer);
170 static void omap_timer_clk_update(void *opaque, int line, int on)
172 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
174 omap_timer_sync(timer);
175 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
176 omap_timer_update(timer);
179 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
181 omap_clk_adduser(timer->clk,
182 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
183 timer->rate = omap_clk_getrate(timer->clk);
186 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
187 unsigned size)
189 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
191 if (size != 4) {
192 return omap_badwidth_read32(opaque, addr);
195 switch (addr) {
196 case 0x00: /* CNTL_TIMER */
197 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
199 case 0x04: /* LOAD_TIM */
200 break;
202 case 0x08: /* READ_TIM */
203 return omap_timer_read(s);
206 OMAP_BAD_REG(addr);
207 return 0;
210 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
211 uint64_t value, unsigned size)
213 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
215 if (size != 4) {
216 omap_badwidth_write32(opaque, addr, value);
217 return;
220 switch (addr) {
221 case 0x00: /* CNTL_TIMER */
222 omap_timer_sync(s);
223 s->enable = (value >> 5) & 1;
224 s->ptv = (value >> 2) & 7;
225 s->ar = (value >> 1) & 1;
226 s->st = value & 1;
227 omap_timer_update(s);
228 return;
230 case 0x04: /* LOAD_TIM */
231 s->reset_val = value;
232 return;
234 case 0x08: /* READ_TIM */
235 OMAP_RO_REG(addr);
236 break;
238 default:
239 OMAP_BAD_REG(addr);
243 static const MemoryRegionOps omap_mpu_timer_ops = {
244 .read = omap_mpu_timer_read,
245 .write = omap_mpu_timer_write,
246 .endianness = DEVICE_LITTLE_ENDIAN,
249 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
251 timer_del(s->timer);
252 s->enable = 0;
253 s->reset_val = 31337;
254 s->val = 0;
255 s->ptv = 0;
256 s->ar = 0;
257 s->st = 0;
258 s->it_ena = 1;
261 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
262 hwaddr base,
263 qemu_irq irq, omap_clk clk)
265 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
267 s->irq = irq;
268 s->clk = clk;
269 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
270 s->tick = qemu_bh_new(omap_timer_fire, s);
271 omap_mpu_timer_reset(s);
272 omap_timer_clk_setup(s);
274 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
275 "omap-mpu-timer", 0x100);
277 memory_region_add_subregion(system_memory, base, &s->iomem);
279 return s;
282 /* Watchdog timer */
283 struct omap_watchdog_timer_s {
284 struct omap_mpu_timer_s timer;
285 MemoryRegion iomem;
286 uint8_t last_wr;
287 int mode;
288 int free;
289 int reset;
292 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
293 unsigned size)
295 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
297 if (size != 2) {
298 return omap_badwidth_read16(opaque, addr);
301 switch (addr) {
302 case 0x00: /* CNTL_TIMER */
303 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
304 (s->timer.st << 7) | (s->free << 1);
306 case 0x04: /* READ_TIMER */
307 return omap_timer_read(&s->timer);
309 case 0x08: /* TIMER_MODE */
310 return s->mode << 15;
313 OMAP_BAD_REG(addr);
314 return 0;
317 static void omap_wd_timer_write(void *opaque, hwaddr addr,
318 uint64_t value, unsigned size)
320 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
322 if (size != 2) {
323 omap_badwidth_write16(opaque, addr, value);
324 return;
327 switch (addr) {
328 case 0x00: /* CNTL_TIMER */
329 omap_timer_sync(&s->timer);
330 s->timer.ptv = (value >> 9) & 7;
331 s->timer.ar = (value >> 8) & 1;
332 s->timer.st = (value >> 7) & 1;
333 s->free = (value >> 1) & 1;
334 omap_timer_update(&s->timer);
335 break;
337 case 0x04: /* LOAD_TIMER */
338 s->timer.reset_val = value & 0xffff;
339 break;
341 case 0x08: /* TIMER_MODE */
342 if (!s->mode && ((value >> 15) & 1))
343 omap_clk_get(s->timer.clk);
344 s->mode |= (value >> 15) & 1;
345 if (s->last_wr == 0xf5) {
346 if ((value & 0xff) == 0xa0) {
347 if (s->mode) {
348 s->mode = 0;
349 omap_clk_put(s->timer.clk);
351 } else {
352 /* XXX: on T|E hardware somehow this has no effect,
353 * on Zire 71 it works as specified. */
354 s->reset = 1;
355 qemu_system_reset_request();
358 s->last_wr = value & 0xff;
359 break;
361 default:
362 OMAP_BAD_REG(addr);
366 static const MemoryRegionOps omap_wd_timer_ops = {
367 .read = omap_wd_timer_read,
368 .write = omap_wd_timer_write,
369 .endianness = DEVICE_NATIVE_ENDIAN,
372 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
374 timer_del(s->timer.timer);
375 if (!s->mode)
376 omap_clk_get(s->timer.clk);
377 s->mode = 1;
378 s->free = 1;
379 s->reset = 0;
380 s->timer.enable = 1;
381 s->timer.it_ena = 1;
382 s->timer.reset_val = 0xffff;
383 s->timer.val = 0;
384 s->timer.st = 0;
385 s->timer.ptv = 0;
386 s->timer.ar = 0;
387 omap_timer_update(&s->timer);
390 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
391 hwaddr base,
392 qemu_irq irq, omap_clk clk)
394 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
396 s->timer.irq = irq;
397 s->timer.clk = clk;
398 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
399 omap_wd_timer_reset(s);
400 omap_timer_clk_setup(&s->timer);
402 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
403 "omap-wd-timer", 0x100);
404 memory_region_add_subregion(memory, base, &s->iomem);
406 return s;
409 /* 32-kHz timer */
410 struct omap_32khz_timer_s {
411 struct omap_mpu_timer_s timer;
412 MemoryRegion iomem;
415 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
416 unsigned size)
418 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
419 int offset = addr & OMAP_MPUI_REG_MASK;
421 if (size != 4) {
422 return omap_badwidth_read32(opaque, addr);
425 switch (offset) {
426 case 0x00: /* TVR */
427 return s->timer.reset_val;
429 case 0x04: /* TCR */
430 return omap_timer_read(&s->timer);
432 case 0x08: /* CR */
433 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
435 default:
436 break;
438 OMAP_BAD_REG(addr);
439 return 0;
442 static void omap_os_timer_write(void *opaque, hwaddr addr,
443 uint64_t value, unsigned size)
445 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
446 int offset = addr & OMAP_MPUI_REG_MASK;
448 if (size != 4) {
449 omap_badwidth_write32(opaque, addr, value);
450 return;
453 switch (offset) {
454 case 0x00: /* TVR */
455 s->timer.reset_val = value & 0x00ffffff;
456 break;
458 case 0x04: /* TCR */
459 OMAP_RO_REG(addr);
460 break;
462 case 0x08: /* CR */
463 s->timer.ar = (value >> 3) & 1;
464 s->timer.it_ena = (value >> 2) & 1;
465 if (s->timer.st != (value & 1) || (value & 2)) {
466 omap_timer_sync(&s->timer);
467 s->timer.enable = value & 1;
468 s->timer.st = value & 1;
469 omap_timer_update(&s->timer);
471 break;
473 default:
474 OMAP_BAD_REG(addr);
478 static const MemoryRegionOps omap_os_timer_ops = {
479 .read = omap_os_timer_read,
480 .write = omap_os_timer_write,
481 .endianness = DEVICE_NATIVE_ENDIAN,
484 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
486 timer_del(s->timer.timer);
487 s->timer.enable = 0;
488 s->timer.it_ena = 0;
489 s->timer.reset_val = 0x00ffffff;
490 s->timer.val = 0;
491 s->timer.st = 0;
492 s->timer.ptv = 0;
493 s->timer.ar = 1;
496 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
497 hwaddr base,
498 qemu_irq irq, omap_clk clk)
500 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
502 s->timer.irq = irq;
503 s->timer.clk = clk;
504 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
505 omap_os_timer_reset(s);
506 omap_timer_clk_setup(&s->timer);
508 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
509 "omap-os-timer", 0x800);
510 memory_region_add_subregion(memory, base, &s->iomem);
512 return s;
515 /* Ultra Low-Power Device Module */
516 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
517 unsigned size)
519 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
520 uint16_t ret;
522 if (size != 2) {
523 return omap_badwidth_read16(opaque, addr);
526 switch (addr) {
527 case 0x14: /* IT_STATUS */
528 ret = s->ulpd_pm_regs[addr >> 2];
529 s->ulpd_pm_regs[addr >> 2] = 0;
530 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
531 return ret;
533 case 0x18: /* Reserved */
534 case 0x1c: /* Reserved */
535 case 0x20: /* Reserved */
536 case 0x28: /* Reserved */
537 case 0x2c: /* Reserved */
538 OMAP_BAD_REG(addr);
539 /* fall through */
540 case 0x00: /* COUNTER_32_LSB */
541 case 0x04: /* COUNTER_32_MSB */
542 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
543 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
544 case 0x10: /* GAUGING_CTRL */
545 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
546 case 0x30: /* CLOCK_CTRL */
547 case 0x34: /* SOFT_REQ */
548 case 0x38: /* COUNTER_32_FIQ */
549 case 0x3c: /* DPLL_CTRL */
550 case 0x40: /* STATUS_REQ */
551 /* XXX: check clk::usecount state for every clock */
552 case 0x48: /* LOCL_TIME */
553 case 0x4c: /* APLL_CTRL */
554 case 0x50: /* POWER_CTRL */
555 return s->ulpd_pm_regs[addr >> 2];
558 OMAP_BAD_REG(addr);
559 return 0;
562 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
563 uint16_t diff, uint16_t value)
565 if (diff & (1 << 4)) /* USB_MCLK_EN */
566 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
567 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
568 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
571 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
572 uint16_t diff, uint16_t value)
574 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
575 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
576 if (diff & (1 << 1)) /* SOFT_COM_REQ */
577 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
578 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
579 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
580 if (diff & (1 << 3)) /* SOFT_USB_REQ */
581 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
584 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
585 uint64_t value, unsigned size)
587 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
588 int64_t now, ticks;
589 int div, mult;
590 static const int bypass_div[4] = { 1, 2, 4, 4 };
591 uint16_t diff;
593 if (size != 2) {
594 omap_badwidth_write16(opaque, addr, value);
595 return;
598 switch (addr) {
599 case 0x00: /* COUNTER_32_LSB */
600 case 0x04: /* COUNTER_32_MSB */
601 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
602 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
603 case 0x14: /* IT_STATUS */
604 case 0x40: /* STATUS_REQ */
605 OMAP_RO_REG(addr);
606 break;
608 case 0x10: /* GAUGING_CTRL */
609 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
610 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
611 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
613 if (value & 1)
614 s->ulpd_gauge_start = now;
615 else {
616 now -= s->ulpd_gauge_start;
618 /* 32-kHz ticks */
619 ticks = muldiv64(now, 32768, get_ticks_per_sec());
620 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
621 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
622 if (ticks >> 32) /* OVERFLOW_32K */
623 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
625 /* High frequency ticks */
626 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
627 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
628 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
629 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
630 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
632 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
633 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
636 s->ulpd_pm_regs[addr >> 2] = value;
637 break;
639 case 0x18: /* Reserved */
640 case 0x1c: /* Reserved */
641 case 0x20: /* Reserved */
642 case 0x28: /* Reserved */
643 case 0x2c: /* Reserved */
644 OMAP_BAD_REG(addr);
645 /* fall through */
646 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
647 case 0x38: /* COUNTER_32_FIQ */
648 case 0x48: /* LOCL_TIME */
649 case 0x50: /* POWER_CTRL */
650 s->ulpd_pm_regs[addr >> 2] = value;
651 break;
653 case 0x30: /* CLOCK_CTRL */
654 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
655 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
656 omap_ulpd_clk_update(s, diff, value);
657 break;
659 case 0x34: /* SOFT_REQ */
660 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
661 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
662 omap_ulpd_req_update(s, diff, value);
663 break;
665 case 0x3c: /* DPLL_CTRL */
666 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
667 * omitted altogether, probably a typo. */
668 /* This register has identical semantics with DPLL(1:3) control
669 * registers, see omap_dpll_write() */
670 diff = s->ulpd_pm_regs[addr >> 2] & value;
671 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
672 if (diff & (0x3ff << 2)) {
673 if (value & (1 << 4)) { /* PLL_ENABLE */
674 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
675 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
676 } else {
677 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
678 mult = 1;
680 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
683 /* Enter the desired mode. */
684 s->ulpd_pm_regs[addr >> 2] =
685 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
686 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
688 /* Act as if the lock is restored. */
689 s->ulpd_pm_regs[addr >> 2] |= 2;
690 break;
692 case 0x4c: /* APLL_CTRL */
693 diff = s->ulpd_pm_regs[addr >> 2] & value;
694 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
695 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
696 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
697 (value & (1 << 0)) ? "apll" : "dpll4"));
698 break;
700 default:
701 OMAP_BAD_REG(addr);
705 static const MemoryRegionOps omap_ulpd_pm_ops = {
706 .read = omap_ulpd_pm_read,
707 .write = omap_ulpd_pm_write,
708 .endianness = DEVICE_NATIVE_ENDIAN,
711 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
713 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
714 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
715 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
716 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
717 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
718 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
719 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
720 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
721 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
722 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
723 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
724 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
725 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
726 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
727 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
728 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
729 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
730 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
731 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
732 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
733 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
734 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
735 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
738 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
739 hwaddr base,
740 struct omap_mpu_state_s *mpu)
742 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
743 "omap-ulpd-pm", 0x800);
744 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
745 omap_ulpd_pm_reset(mpu);
748 /* OMAP Pin Configuration */
749 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
750 unsigned size)
752 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
754 if (size != 4) {
755 return omap_badwidth_read32(opaque, addr);
758 switch (addr) {
759 case 0x00: /* FUNC_MUX_CTRL_0 */
760 case 0x04: /* FUNC_MUX_CTRL_1 */
761 case 0x08: /* FUNC_MUX_CTRL_2 */
762 return s->func_mux_ctrl[addr >> 2];
764 case 0x0c: /* COMP_MODE_CTRL_0 */
765 return s->comp_mode_ctrl[0];
767 case 0x10: /* FUNC_MUX_CTRL_3 */
768 case 0x14: /* FUNC_MUX_CTRL_4 */
769 case 0x18: /* FUNC_MUX_CTRL_5 */
770 case 0x1c: /* FUNC_MUX_CTRL_6 */
771 case 0x20: /* FUNC_MUX_CTRL_7 */
772 case 0x24: /* FUNC_MUX_CTRL_8 */
773 case 0x28: /* FUNC_MUX_CTRL_9 */
774 case 0x2c: /* FUNC_MUX_CTRL_A */
775 case 0x30: /* FUNC_MUX_CTRL_B */
776 case 0x34: /* FUNC_MUX_CTRL_C */
777 case 0x38: /* FUNC_MUX_CTRL_D */
778 return s->func_mux_ctrl[(addr >> 2) - 1];
780 case 0x40: /* PULL_DWN_CTRL_0 */
781 case 0x44: /* PULL_DWN_CTRL_1 */
782 case 0x48: /* PULL_DWN_CTRL_2 */
783 case 0x4c: /* PULL_DWN_CTRL_3 */
784 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
786 case 0x50: /* GATE_INH_CTRL_0 */
787 return s->gate_inh_ctrl[0];
789 case 0x60: /* VOLTAGE_CTRL_0 */
790 return s->voltage_ctrl[0];
792 case 0x70: /* TEST_DBG_CTRL_0 */
793 return s->test_dbg_ctrl[0];
795 case 0x80: /* MOD_CONF_CTRL_0 */
796 return s->mod_conf_ctrl[0];
799 OMAP_BAD_REG(addr);
800 return 0;
803 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
804 uint32_t diff, uint32_t value)
806 if (s->compat1509) {
807 if (diff & (1 << 9)) /* BLUETOOTH */
808 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
809 (~value >> 9) & 1);
810 if (diff & (1 << 7)) /* USB.CLKO */
811 omap_clk_onoff(omap_findclk(s, "usb.clko"),
812 (value >> 7) & 1);
816 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
817 uint32_t diff, uint32_t value)
819 if (s->compat1509) {
820 if (diff & (1U << 31)) {
821 /* MCBSP3_CLK_HIZ_DI */
822 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
824 if (diff & (1 << 1)) {
825 /* CLK32K */
826 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
831 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
832 uint32_t diff, uint32_t value)
834 if (diff & (1U << 31)) {
835 /* CONF_MOD_UART3_CLK_MODE_R */
836 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
837 omap_findclk(s, ((value >> 31) & 1) ?
838 "ck_48m" : "armper_ck"));
840 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
841 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
842 omap_findclk(s, ((value >> 30) & 1) ?
843 "ck_48m" : "armper_ck"));
844 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
845 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
846 omap_findclk(s, ((value >> 29) & 1) ?
847 "ck_48m" : "armper_ck"));
848 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
849 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
850 omap_findclk(s, ((value >> 23) & 1) ?
851 "ck_48m" : "armper_ck"));
852 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
853 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
854 omap_findclk(s, ((value >> 12) & 1) ?
855 "ck_48m" : "armper_ck"));
856 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
857 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
860 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
861 uint64_t value, unsigned size)
863 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
864 uint32_t diff;
866 if (size != 4) {
867 omap_badwidth_write32(opaque, addr, value);
868 return;
871 switch (addr) {
872 case 0x00: /* FUNC_MUX_CTRL_0 */
873 diff = s->func_mux_ctrl[addr >> 2] ^ value;
874 s->func_mux_ctrl[addr >> 2] = value;
875 omap_pin_funcmux0_update(s, diff, value);
876 return;
878 case 0x04: /* FUNC_MUX_CTRL_1 */
879 diff = s->func_mux_ctrl[addr >> 2] ^ value;
880 s->func_mux_ctrl[addr >> 2] = value;
881 omap_pin_funcmux1_update(s, diff, value);
882 return;
884 case 0x08: /* FUNC_MUX_CTRL_2 */
885 s->func_mux_ctrl[addr >> 2] = value;
886 return;
888 case 0x0c: /* COMP_MODE_CTRL_0 */
889 s->comp_mode_ctrl[0] = value;
890 s->compat1509 = (value != 0x0000eaef);
891 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
892 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
893 return;
895 case 0x10: /* FUNC_MUX_CTRL_3 */
896 case 0x14: /* FUNC_MUX_CTRL_4 */
897 case 0x18: /* FUNC_MUX_CTRL_5 */
898 case 0x1c: /* FUNC_MUX_CTRL_6 */
899 case 0x20: /* FUNC_MUX_CTRL_7 */
900 case 0x24: /* FUNC_MUX_CTRL_8 */
901 case 0x28: /* FUNC_MUX_CTRL_9 */
902 case 0x2c: /* FUNC_MUX_CTRL_A */
903 case 0x30: /* FUNC_MUX_CTRL_B */
904 case 0x34: /* FUNC_MUX_CTRL_C */
905 case 0x38: /* FUNC_MUX_CTRL_D */
906 s->func_mux_ctrl[(addr >> 2) - 1] = value;
907 return;
909 case 0x40: /* PULL_DWN_CTRL_0 */
910 case 0x44: /* PULL_DWN_CTRL_1 */
911 case 0x48: /* PULL_DWN_CTRL_2 */
912 case 0x4c: /* PULL_DWN_CTRL_3 */
913 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
914 return;
916 case 0x50: /* GATE_INH_CTRL_0 */
917 s->gate_inh_ctrl[0] = value;
918 return;
920 case 0x60: /* VOLTAGE_CTRL_0 */
921 s->voltage_ctrl[0] = value;
922 return;
924 case 0x70: /* TEST_DBG_CTRL_0 */
925 s->test_dbg_ctrl[0] = value;
926 return;
928 case 0x80: /* MOD_CONF_CTRL_0 */
929 diff = s->mod_conf_ctrl[0] ^ value;
930 s->mod_conf_ctrl[0] = value;
931 omap_pin_modconf1_update(s, diff, value);
932 return;
934 default:
935 OMAP_BAD_REG(addr);
939 static const MemoryRegionOps omap_pin_cfg_ops = {
940 .read = omap_pin_cfg_read,
941 .write = omap_pin_cfg_write,
942 .endianness = DEVICE_NATIVE_ENDIAN,
945 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
947 /* Start in Compatibility Mode. */
948 mpu->compat1509 = 1;
949 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
950 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
951 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
952 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
953 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
954 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
955 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
956 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
957 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
958 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
961 static void omap_pin_cfg_init(MemoryRegion *system_memory,
962 hwaddr base,
963 struct omap_mpu_state_s *mpu)
965 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
966 "omap-pin-cfg", 0x800);
967 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
968 omap_pin_cfg_reset(mpu);
971 /* Device Identification, Die Identification */
972 static uint64_t omap_id_read(void *opaque, hwaddr addr,
973 unsigned size)
975 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
977 if (size != 4) {
978 return omap_badwidth_read32(opaque, addr);
981 switch (addr) {
982 case 0xfffe1800: /* DIE_ID_LSB */
983 return 0xc9581f0e;
984 case 0xfffe1804: /* DIE_ID_MSB */
985 return 0xa8858bfa;
987 case 0xfffe2000: /* PRODUCT_ID_LSB */
988 return 0x00aaaafc;
989 case 0xfffe2004: /* PRODUCT_ID_MSB */
990 return 0xcafeb574;
992 case 0xfffed400: /* JTAG_ID_LSB */
993 switch (s->mpu_model) {
994 case omap310:
995 return 0x03310315;
996 case omap1510:
997 return 0x03310115;
998 default:
999 hw_error("%s: bad mpu model\n", __FUNCTION__);
1001 break;
1003 case 0xfffed404: /* JTAG_ID_MSB */
1004 switch (s->mpu_model) {
1005 case omap310:
1006 return 0xfb57402f;
1007 case omap1510:
1008 return 0xfb47002f;
1009 default:
1010 hw_error("%s: bad mpu model\n", __FUNCTION__);
1012 break;
1015 OMAP_BAD_REG(addr);
1016 return 0;
1019 static void omap_id_write(void *opaque, hwaddr addr,
1020 uint64_t value, unsigned size)
1022 if (size != 4) {
1023 omap_badwidth_write32(opaque, addr, value);
1024 return;
1027 OMAP_BAD_REG(addr);
1030 static const MemoryRegionOps omap_id_ops = {
1031 .read = omap_id_read,
1032 .write = omap_id_write,
1033 .endianness = DEVICE_NATIVE_ENDIAN,
1036 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1038 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1039 "omap-id", 0x100000000ULL);
1040 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1041 0xfffe1800, 0x800);
1042 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1043 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1044 0xfffed400, 0x100);
1045 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1046 if (!cpu_is_omap15xx(mpu)) {
1047 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1048 &mpu->id_iomem, 0xfffe2000, 0x800);
1049 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1053 /* MPUI Control (Dummy) */
1054 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1055 unsigned size)
1057 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1059 if (size != 4) {
1060 return omap_badwidth_read32(opaque, addr);
1063 switch (addr) {
1064 case 0x00: /* CTRL */
1065 return s->mpui_ctrl;
1066 case 0x04: /* DEBUG_ADDR */
1067 return 0x01ffffff;
1068 case 0x08: /* DEBUG_DATA */
1069 return 0xffffffff;
1070 case 0x0c: /* DEBUG_FLAG */
1071 return 0x00000800;
1072 case 0x10: /* STATUS */
1073 return 0x00000000;
1075 /* Not in OMAP310 */
1076 case 0x14: /* DSP_STATUS */
1077 case 0x18: /* DSP_BOOT_CONFIG */
1078 return 0x00000000;
1079 case 0x1c: /* DSP_MPUI_CONFIG */
1080 return 0x0000ffff;
1083 OMAP_BAD_REG(addr);
1084 return 0;
1087 static void omap_mpui_write(void *opaque, hwaddr addr,
1088 uint64_t value, unsigned size)
1090 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1092 if (size != 4) {
1093 omap_badwidth_write32(opaque, addr, value);
1094 return;
1097 switch (addr) {
1098 case 0x00: /* CTRL */
1099 s->mpui_ctrl = value & 0x007fffff;
1100 break;
1102 case 0x04: /* DEBUG_ADDR */
1103 case 0x08: /* DEBUG_DATA */
1104 case 0x0c: /* DEBUG_FLAG */
1105 case 0x10: /* STATUS */
1106 /* Not in OMAP310 */
1107 case 0x14: /* DSP_STATUS */
1108 OMAP_RO_REG(addr);
1109 break;
1110 case 0x18: /* DSP_BOOT_CONFIG */
1111 case 0x1c: /* DSP_MPUI_CONFIG */
1112 break;
1114 default:
1115 OMAP_BAD_REG(addr);
1119 static const MemoryRegionOps omap_mpui_ops = {
1120 .read = omap_mpui_read,
1121 .write = omap_mpui_write,
1122 .endianness = DEVICE_NATIVE_ENDIAN,
1125 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1127 s->mpui_ctrl = 0x0003ff1b;
1130 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1131 struct omap_mpu_state_s *mpu)
1133 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1134 "omap-mpui", 0x100);
1135 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1137 omap_mpui_reset(mpu);
1140 /* TIPB Bridges */
1141 struct omap_tipb_bridge_s {
1142 qemu_irq abort;
1143 MemoryRegion iomem;
1145 int width_intr;
1146 uint16_t control;
1147 uint16_t alloc;
1148 uint16_t buffer;
1149 uint16_t enh_control;
1152 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1153 unsigned size)
1155 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1157 if (size < 2) {
1158 return omap_badwidth_read16(opaque, addr);
1161 switch (addr) {
1162 case 0x00: /* TIPB_CNTL */
1163 return s->control;
1164 case 0x04: /* TIPB_BUS_ALLOC */
1165 return s->alloc;
1166 case 0x08: /* MPU_TIPB_CNTL */
1167 return s->buffer;
1168 case 0x0c: /* ENHANCED_TIPB_CNTL */
1169 return s->enh_control;
1170 case 0x10: /* ADDRESS_DBG */
1171 case 0x14: /* DATA_DEBUG_LOW */
1172 case 0x18: /* DATA_DEBUG_HIGH */
1173 return 0xffff;
1174 case 0x1c: /* DEBUG_CNTR_SIG */
1175 return 0x00f8;
1178 OMAP_BAD_REG(addr);
1179 return 0;
1182 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1183 uint64_t value, unsigned size)
1185 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1187 if (size < 2) {
1188 omap_badwidth_write16(opaque, addr, value);
1189 return;
1192 switch (addr) {
1193 case 0x00: /* TIPB_CNTL */
1194 s->control = value & 0xffff;
1195 break;
1197 case 0x04: /* TIPB_BUS_ALLOC */
1198 s->alloc = value & 0x003f;
1199 break;
1201 case 0x08: /* MPU_TIPB_CNTL */
1202 s->buffer = value & 0x0003;
1203 break;
1205 case 0x0c: /* ENHANCED_TIPB_CNTL */
1206 s->width_intr = !(value & 2);
1207 s->enh_control = value & 0x000f;
1208 break;
1210 case 0x10: /* ADDRESS_DBG */
1211 case 0x14: /* DATA_DEBUG_LOW */
1212 case 0x18: /* DATA_DEBUG_HIGH */
1213 case 0x1c: /* DEBUG_CNTR_SIG */
1214 OMAP_RO_REG(addr);
1215 break;
1217 default:
1218 OMAP_BAD_REG(addr);
1222 static const MemoryRegionOps omap_tipb_bridge_ops = {
1223 .read = omap_tipb_bridge_read,
1224 .write = omap_tipb_bridge_write,
1225 .endianness = DEVICE_NATIVE_ENDIAN,
1228 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1230 s->control = 0xffff;
1231 s->alloc = 0x0009;
1232 s->buffer = 0x0000;
1233 s->enh_control = 0x000f;
1236 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1237 MemoryRegion *memory, hwaddr base,
1238 qemu_irq abort_irq, omap_clk clk)
1240 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1242 s->abort = abort_irq;
1243 omap_tipb_bridge_reset(s);
1245 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1246 "omap-tipb-bridge", 0x100);
1247 memory_region_add_subregion(memory, base, &s->iomem);
1249 return s;
1252 /* Dummy Traffic Controller's Memory Interface */
1253 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1254 unsigned size)
1256 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1257 uint32_t ret;
1259 if (size != 4) {
1260 return omap_badwidth_read32(opaque, addr);
1263 switch (addr) {
1264 case 0x00: /* IMIF_PRIO */
1265 case 0x04: /* EMIFS_PRIO */
1266 case 0x08: /* EMIFF_PRIO */
1267 case 0x0c: /* EMIFS_CONFIG */
1268 case 0x10: /* EMIFS_CS0_CONFIG */
1269 case 0x14: /* EMIFS_CS1_CONFIG */
1270 case 0x18: /* EMIFS_CS2_CONFIG */
1271 case 0x1c: /* EMIFS_CS3_CONFIG */
1272 case 0x24: /* EMIFF_MRS */
1273 case 0x28: /* TIMEOUT1 */
1274 case 0x2c: /* TIMEOUT2 */
1275 case 0x30: /* TIMEOUT3 */
1276 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1277 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1278 return s->tcmi_regs[addr >> 2];
1280 case 0x20: /* EMIFF_SDRAM_CONFIG */
1281 ret = s->tcmi_regs[addr >> 2];
1282 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1283 /* XXX: We can try using the VGA_DIRTY flag for this */
1284 return ret;
1287 OMAP_BAD_REG(addr);
1288 return 0;
1291 static void omap_tcmi_write(void *opaque, hwaddr addr,
1292 uint64_t value, unsigned size)
1294 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1296 if (size != 4) {
1297 omap_badwidth_write32(opaque, addr, value);
1298 return;
1301 switch (addr) {
1302 case 0x00: /* IMIF_PRIO */
1303 case 0x04: /* EMIFS_PRIO */
1304 case 0x08: /* EMIFF_PRIO */
1305 case 0x10: /* EMIFS_CS0_CONFIG */
1306 case 0x14: /* EMIFS_CS1_CONFIG */
1307 case 0x18: /* EMIFS_CS2_CONFIG */
1308 case 0x1c: /* EMIFS_CS3_CONFIG */
1309 case 0x20: /* EMIFF_SDRAM_CONFIG */
1310 case 0x24: /* EMIFF_MRS */
1311 case 0x28: /* TIMEOUT1 */
1312 case 0x2c: /* TIMEOUT2 */
1313 case 0x30: /* TIMEOUT3 */
1314 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1315 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1316 s->tcmi_regs[addr >> 2] = value;
1317 break;
1318 case 0x0c: /* EMIFS_CONFIG */
1319 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1320 break;
1322 default:
1323 OMAP_BAD_REG(addr);
1327 static const MemoryRegionOps omap_tcmi_ops = {
1328 .read = omap_tcmi_read,
1329 .write = omap_tcmi_write,
1330 .endianness = DEVICE_NATIVE_ENDIAN,
1333 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1335 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1336 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1337 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1338 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1339 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1340 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1341 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1342 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1343 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1344 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1345 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1346 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1347 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1348 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1349 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1352 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1353 struct omap_mpu_state_s *mpu)
1355 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1356 "omap-tcmi", 0x100);
1357 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1358 omap_tcmi_reset(mpu);
1361 /* Digital phase-locked loops control */
1362 struct dpll_ctl_s {
1363 MemoryRegion iomem;
1364 uint16_t mode;
1365 omap_clk dpll;
1368 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1369 unsigned size)
1371 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1373 if (size != 2) {
1374 return omap_badwidth_read16(opaque, addr);
1377 if (addr == 0x00) /* CTL_REG */
1378 return s->mode;
1380 OMAP_BAD_REG(addr);
1381 return 0;
1384 static void omap_dpll_write(void *opaque, hwaddr addr,
1385 uint64_t value, unsigned size)
1387 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1388 uint16_t diff;
1389 static const int bypass_div[4] = { 1, 2, 4, 4 };
1390 int div, mult;
1392 if (size != 2) {
1393 omap_badwidth_write16(opaque, addr, value);
1394 return;
1397 if (addr == 0x00) { /* CTL_REG */
1398 /* See omap_ulpd_pm_write() too */
1399 diff = s->mode & value;
1400 s->mode = value & 0x2fff;
1401 if (diff & (0x3ff << 2)) {
1402 if (value & (1 << 4)) { /* PLL_ENABLE */
1403 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1404 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1405 } else {
1406 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1407 mult = 1;
1409 omap_clk_setrate(s->dpll, div, mult);
1412 /* Enter the desired mode. */
1413 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1415 /* Act as if the lock is restored. */
1416 s->mode |= 2;
1417 } else {
1418 OMAP_BAD_REG(addr);
1422 static const MemoryRegionOps omap_dpll_ops = {
1423 .read = omap_dpll_read,
1424 .write = omap_dpll_write,
1425 .endianness = DEVICE_NATIVE_ENDIAN,
1428 static void omap_dpll_reset(struct dpll_ctl_s *s)
1430 s->mode = 0x2002;
1431 omap_clk_setrate(s->dpll, 1, 1);
1434 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1435 hwaddr base, omap_clk clk)
1437 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1438 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1440 s->dpll = clk;
1441 omap_dpll_reset(s);
1443 memory_region_add_subregion(memory, base, &s->iomem);
1444 return s;
1447 /* MPU Clock/Reset/Power Mode Control */
1448 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1449 unsigned size)
1451 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1453 if (size != 2) {
1454 return omap_badwidth_read16(opaque, addr);
1457 switch (addr) {
1458 case 0x00: /* ARM_CKCTL */
1459 return s->clkm.arm_ckctl;
1461 case 0x04: /* ARM_IDLECT1 */
1462 return s->clkm.arm_idlect1;
1464 case 0x08: /* ARM_IDLECT2 */
1465 return s->clkm.arm_idlect2;
1467 case 0x0c: /* ARM_EWUPCT */
1468 return s->clkm.arm_ewupct;
1470 case 0x10: /* ARM_RSTCT1 */
1471 return s->clkm.arm_rstct1;
1473 case 0x14: /* ARM_RSTCT2 */
1474 return s->clkm.arm_rstct2;
1476 case 0x18: /* ARM_SYSST */
1477 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1479 case 0x1c: /* ARM_CKOUT1 */
1480 return s->clkm.arm_ckout1;
1482 case 0x20: /* ARM_CKOUT2 */
1483 break;
1486 OMAP_BAD_REG(addr);
1487 return 0;
1490 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1491 uint16_t diff, uint16_t value)
1493 omap_clk clk;
1495 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1496 if (value & (1 << 14))
1497 /* Reserved */;
1498 else {
1499 clk = omap_findclk(s, "arminth_ck");
1500 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1503 if (diff & (1 << 12)) { /* ARM_TIMXO */
1504 clk = omap_findclk(s, "armtim_ck");
1505 if (value & (1 << 12))
1506 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1507 else
1508 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1510 /* XXX: en_dspck */
1511 if (diff & (3 << 10)) { /* DSPMMUDIV */
1512 clk = omap_findclk(s, "dspmmu_ck");
1513 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1515 if (diff & (3 << 8)) { /* TCDIV */
1516 clk = omap_findclk(s, "tc_ck");
1517 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1519 if (diff & (3 << 6)) { /* DSPDIV */
1520 clk = omap_findclk(s, "dsp_ck");
1521 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1523 if (diff & (3 << 4)) { /* ARMDIV */
1524 clk = omap_findclk(s, "arm_ck");
1525 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1527 if (diff & (3 << 2)) { /* LCDDIV */
1528 clk = omap_findclk(s, "lcd_ck");
1529 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1531 if (diff & (3 << 0)) { /* PERDIV */
1532 clk = omap_findclk(s, "armper_ck");
1533 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1537 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1538 uint16_t diff, uint16_t value)
1540 omap_clk clk;
1542 if (value & (1 << 11)) { /* SETARM_IDLE */
1543 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1545 if (!(value & (1 << 10))) /* WKUP_MODE */
1546 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1548 #define SET_CANIDLE(clock, bit) \
1549 if (diff & (1 << bit)) { \
1550 clk = omap_findclk(s, clock); \
1551 omap_clk_canidle(clk, (value >> bit) & 1); \
1553 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1554 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1555 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1556 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1557 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1558 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1559 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1560 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1561 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1562 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1563 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1564 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1565 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1566 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1569 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1570 uint16_t diff, uint16_t value)
1572 omap_clk clk;
1574 #define SET_ONOFF(clock, bit) \
1575 if (diff & (1 << bit)) { \
1576 clk = omap_findclk(s, clock); \
1577 omap_clk_onoff(clk, (value >> bit) & 1); \
1579 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1580 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1581 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1582 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1583 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1584 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1585 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1586 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1587 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1588 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1589 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1592 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1593 uint16_t diff, uint16_t value)
1595 omap_clk clk;
1597 if (diff & (3 << 4)) { /* TCLKOUT */
1598 clk = omap_findclk(s, "tclk_out");
1599 switch ((value >> 4) & 3) {
1600 case 1:
1601 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1602 omap_clk_onoff(clk, 1);
1603 break;
1604 case 2:
1605 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1606 omap_clk_onoff(clk, 1);
1607 break;
1608 default:
1609 omap_clk_onoff(clk, 0);
1612 if (diff & (3 << 2)) { /* DCLKOUT */
1613 clk = omap_findclk(s, "dclk_out");
1614 switch ((value >> 2) & 3) {
1615 case 0:
1616 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1617 break;
1618 case 1:
1619 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1620 break;
1621 case 2:
1622 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1623 break;
1624 case 3:
1625 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1626 break;
1629 if (diff & (3 << 0)) { /* ACLKOUT */
1630 clk = omap_findclk(s, "aclk_out");
1631 switch ((value >> 0) & 3) {
1632 case 1:
1633 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1634 omap_clk_onoff(clk, 1);
1635 break;
1636 case 2:
1637 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1638 omap_clk_onoff(clk, 1);
1639 break;
1640 case 3:
1641 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1642 omap_clk_onoff(clk, 1);
1643 break;
1644 default:
1645 omap_clk_onoff(clk, 0);
1650 static void omap_clkm_write(void *opaque, hwaddr addr,
1651 uint64_t value, unsigned size)
1653 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1654 uint16_t diff;
1655 omap_clk clk;
1656 static const char *clkschemename[8] = {
1657 "fully synchronous", "fully asynchronous", "synchronous scalable",
1658 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1661 if (size != 2) {
1662 omap_badwidth_write16(opaque, addr, value);
1663 return;
1666 switch (addr) {
1667 case 0x00: /* ARM_CKCTL */
1668 diff = s->clkm.arm_ckctl ^ value;
1669 s->clkm.arm_ckctl = value & 0x7fff;
1670 omap_clkm_ckctl_update(s, diff, value);
1671 return;
1673 case 0x04: /* ARM_IDLECT1 */
1674 diff = s->clkm.arm_idlect1 ^ value;
1675 s->clkm.arm_idlect1 = value & 0x0fff;
1676 omap_clkm_idlect1_update(s, diff, value);
1677 return;
1679 case 0x08: /* ARM_IDLECT2 */
1680 diff = s->clkm.arm_idlect2 ^ value;
1681 s->clkm.arm_idlect2 = value & 0x07ff;
1682 omap_clkm_idlect2_update(s, diff, value);
1683 return;
1685 case 0x0c: /* ARM_EWUPCT */
1686 s->clkm.arm_ewupct = value & 0x003f;
1687 return;
1689 case 0x10: /* ARM_RSTCT1 */
1690 diff = s->clkm.arm_rstct1 ^ value;
1691 s->clkm.arm_rstct1 = value & 0x0007;
1692 if (value & 9) {
1693 qemu_system_reset_request();
1694 s->clkm.cold_start = 0xa;
1696 if (diff & ~value & 4) { /* DSP_RST */
1697 omap_mpui_reset(s);
1698 omap_tipb_bridge_reset(s->private_tipb);
1699 omap_tipb_bridge_reset(s->public_tipb);
1701 if (diff & 2) { /* DSP_EN */
1702 clk = omap_findclk(s, "dsp_ck");
1703 omap_clk_canidle(clk, (~value >> 1) & 1);
1705 return;
1707 case 0x14: /* ARM_RSTCT2 */
1708 s->clkm.arm_rstct2 = value & 0x0001;
1709 return;
1711 case 0x18: /* ARM_SYSST */
1712 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1713 s->clkm.clocking_scheme = (value >> 11) & 7;
1714 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1715 clkschemename[s->clkm.clocking_scheme]);
1717 s->clkm.cold_start &= value & 0x3f;
1718 return;
1720 case 0x1c: /* ARM_CKOUT1 */
1721 diff = s->clkm.arm_ckout1 ^ value;
1722 s->clkm.arm_ckout1 = value & 0x003f;
1723 omap_clkm_ckout1_update(s, diff, value);
1724 return;
1726 case 0x20: /* ARM_CKOUT2 */
1727 default:
1728 OMAP_BAD_REG(addr);
1732 static const MemoryRegionOps omap_clkm_ops = {
1733 .read = omap_clkm_read,
1734 .write = omap_clkm_write,
1735 .endianness = DEVICE_NATIVE_ENDIAN,
1738 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1739 unsigned size)
1741 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1742 CPUState *cpu = CPU(s->cpu);
1744 if (size != 2) {
1745 return omap_badwidth_read16(opaque, addr);
1748 switch (addr) {
1749 case 0x04: /* DSP_IDLECT1 */
1750 return s->clkm.dsp_idlect1;
1752 case 0x08: /* DSP_IDLECT2 */
1753 return s->clkm.dsp_idlect2;
1755 case 0x14: /* DSP_RSTCT2 */
1756 return s->clkm.dsp_rstct2;
1758 case 0x18: /* DSP_SYSST */
1759 cpu = CPU(s->cpu);
1760 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1761 (cpu->halted << 6); /* Quite useless... */
1764 OMAP_BAD_REG(addr);
1765 return 0;
1768 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1769 uint16_t diff, uint16_t value)
1771 omap_clk clk;
1773 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1776 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1777 uint16_t diff, uint16_t value)
1779 omap_clk clk;
1781 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1784 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1785 uint64_t value, unsigned size)
1787 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1788 uint16_t diff;
1790 if (size != 2) {
1791 omap_badwidth_write16(opaque, addr, value);
1792 return;
1795 switch (addr) {
1796 case 0x04: /* DSP_IDLECT1 */
1797 diff = s->clkm.dsp_idlect1 ^ value;
1798 s->clkm.dsp_idlect1 = value & 0x01f7;
1799 omap_clkdsp_idlect1_update(s, diff, value);
1800 break;
1802 case 0x08: /* DSP_IDLECT2 */
1803 s->clkm.dsp_idlect2 = value & 0x0037;
1804 diff = s->clkm.dsp_idlect1 ^ value;
1805 omap_clkdsp_idlect2_update(s, diff, value);
1806 break;
1808 case 0x14: /* DSP_RSTCT2 */
1809 s->clkm.dsp_rstct2 = value & 0x0001;
1810 break;
1812 case 0x18: /* DSP_SYSST */
1813 s->clkm.cold_start &= value & 0x3f;
1814 break;
1816 default:
1817 OMAP_BAD_REG(addr);
1821 static const MemoryRegionOps omap_clkdsp_ops = {
1822 .read = omap_clkdsp_read,
1823 .write = omap_clkdsp_write,
1824 .endianness = DEVICE_NATIVE_ENDIAN,
1827 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1829 if (s->wdt && s->wdt->reset)
1830 s->clkm.cold_start = 0x6;
1831 s->clkm.clocking_scheme = 0;
1832 omap_clkm_ckctl_update(s, ~0, 0x3000);
1833 s->clkm.arm_ckctl = 0x3000;
1834 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1835 s->clkm.arm_idlect1 = 0x0400;
1836 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1837 s->clkm.arm_idlect2 = 0x0100;
1838 s->clkm.arm_ewupct = 0x003f;
1839 s->clkm.arm_rstct1 = 0x0000;
1840 s->clkm.arm_rstct2 = 0x0000;
1841 s->clkm.arm_ckout1 = 0x0015;
1842 s->clkm.dpll1_mode = 0x2002;
1843 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1844 s->clkm.dsp_idlect1 = 0x0040;
1845 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1846 s->clkm.dsp_idlect2 = 0x0000;
1847 s->clkm.dsp_rstct2 = 0x0000;
1850 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1851 hwaddr dsp_base, struct omap_mpu_state_s *s)
1853 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1854 "omap-clkm", 0x100);
1855 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1856 "omap-clkdsp", 0x1000);
1858 s->clkm.arm_idlect1 = 0x03ff;
1859 s->clkm.arm_idlect2 = 0x0100;
1860 s->clkm.dsp_idlect1 = 0x0002;
1861 omap_clkm_reset(s);
1862 s->clkm.cold_start = 0x3a;
1864 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1865 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1868 /* MPU I/O */
1869 struct omap_mpuio_s {
1870 qemu_irq irq;
1871 qemu_irq kbd_irq;
1872 qemu_irq *in;
1873 qemu_irq handler[16];
1874 qemu_irq wakeup;
1875 MemoryRegion iomem;
1877 uint16_t inputs;
1878 uint16_t outputs;
1879 uint16_t dir;
1880 uint16_t edge;
1881 uint16_t mask;
1882 uint16_t ints;
1884 uint16_t debounce;
1885 uint16_t latch;
1886 uint8_t event;
1888 uint8_t buttons[5];
1889 uint8_t row_latch;
1890 uint8_t cols;
1891 int kbd_mask;
1892 int clk;
1895 static void omap_mpuio_set(void *opaque, int line, int level)
1897 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1898 uint16_t prev = s->inputs;
1900 if (level)
1901 s->inputs |= 1 << line;
1902 else
1903 s->inputs &= ~(1 << line);
1905 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1906 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1907 s->ints |= 1 << line;
1908 qemu_irq_raise(s->irq);
1909 /* TODO: wakeup */
1911 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1912 (s->event >> 1) == line) /* PIN_SELECT */
1913 s->latch = s->inputs;
1917 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1919 int i;
1920 uint8_t *row, rows = 0, cols = ~s->cols;
1922 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1923 if (*row & cols)
1924 rows |= i;
1926 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1927 s->row_latch = ~rows;
1930 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1931 unsigned size)
1933 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1934 int offset = addr & OMAP_MPUI_REG_MASK;
1935 uint16_t ret;
1937 if (size != 2) {
1938 return omap_badwidth_read16(opaque, addr);
1941 switch (offset) {
1942 case 0x00: /* INPUT_LATCH */
1943 return s->inputs;
1945 case 0x04: /* OUTPUT_REG */
1946 return s->outputs;
1948 case 0x08: /* IO_CNTL */
1949 return s->dir;
1951 case 0x10: /* KBR_LATCH */
1952 return s->row_latch;
1954 case 0x14: /* KBC_REG */
1955 return s->cols;
1957 case 0x18: /* GPIO_EVENT_MODE_REG */
1958 return s->event;
1960 case 0x1c: /* GPIO_INT_EDGE_REG */
1961 return s->edge;
1963 case 0x20: /* KBD_INT */
1964 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1966 case 0x24: /* GPIO_INT */
1967 ret = s->ints;
1968 s->ints &= s->mask;
1969 if (ret)
1970 qemu_irq_lower(s->irq);
1971 return ret;
1973 case 0x28: /* KBD_MASKIT */
1974 return s->kbd_mask;
1976 case 0x2c: /* GPIO_MASKIT */
1977 return s->mask;
1979 case 0x30: /* GPIO_DEBOUNCING_REG */
1980 return s->debounce;
1982 case 0x34: /* GPIO_LATCH_REG */
1983 return s->latch;
1986 OMAP_BAD_REG(addr);
1987 return 0;
1990 static void omap_mpuio_write(void *opaque, hwaddr addr,
1991 uint64_t value, unsigned size)
1993 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1994 int offset = addr & OMAP_MPUI_REG_MASK;
1995 uint16_t diff;
1996 int ln;
1998 if (size != 2) {
1999 omap_badwidth_write16(opaque, addr, value);
2000 return;
2003 switch (offset) {
2004 case 0x04: /* OUTPUT_REG */
2005 diff = (s->outputs ^ value) & ~s->dir;
2006 s->outputs = value;
2007 while ((ln = ctz32(diff)) != 32) {
2008 if (s->handler[ln])
2009 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2010 diff &= ~(1 << ln);
2012 break;
2014 case 0x08: /* IO_CNTL */
2015 diff = s->outputs & (s->dir ^ value);
2016 s->dir = value;
2018 value = s->outputs & ~s->dir;
2019 while ((ln = ctz32(diff)) != 32) {
2020 if (s->handler[ln])
2021 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2022 diff &= ~(1 << ln);
2024 break;
2026 case 0x14: /* KBC_REG */
2027 s->cols = value;
2028 omap_mpuio_kbd_update(s);
2029 break;
2031 case 0x18: /* GPIO_EVENT_MODE_REG */
2032 s->event = value & 0x1f;
2033 break;
2035 case 0x1c: /* GPIO_INT_EDGE_REG */
2036 s->edge = value;
2037 break;
2039 case 0x28: /* KBD_MASKIT */
2040 s->kbd_mask = value & 1;
2041 omap_mpuio_kbd_update(s);
2042 break;
2044 case 0x2c: /* GPIO_MASKIT */
2045 s->mask = value;
2046 break;
2048 case 0x30: /* GPIO_DEBOUNCING_REG */
2049 s->debounce = value & 0x1ff;
2050 break;
2052 case 0x00: /* INPUT_LATCH */
2053 case 0x10: /* KBR_LATCH */
2054 case 0x20: /* KBD_INT */
2055 case 0x24: /* GPIO_INT */
2056 case 0x34: /* GPIO_LATCH_REG */
2057 OMAP_RO_REG(addr);
2058 return;
2060 default:
2061 OMAP_BAD_REG(addr);
2062 return;
2066 static const MemoryRegionOps omap_mpuio_ops = {
2067 .read = omap_mpuio_read,
2068 .write = omap_mpuio_write,
2069 .endianness = DEVICE_NATIVE_ENDIAN,
2072 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2074 s->inputs = 0;
2075 s->outputs = 0;
2076 s->dir = ~0;
2077 s->event = 0;
2078 s->edge = 0;
2079 s->kbd_mask = 0;
2080 s->mask = 0;
2081 s->debounce = 0;
2082 s->latch = 0;
2083 s->ints = 0;
2084 s->row_latch = 0x1f;
2085 s->clk = 1;
2088 static void omap_mpuio_onoff(void *opaque, int line, int on)
2090 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2092 s->clk = on;
2093 if (on)
2094 omap_mpuio_kbd_update(s);
2097 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2098 hwaddr base,
2099 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2100 omap_clk clk)
2102 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2104 s->irq = gpio_int;
2105 s->kbd_irq = kbd_int;
2106 s->wakeup = wakeup;
2107 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2108 omap_mpuio_reset(s);
2110 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2111 "omap-mpuio", 0x800);
2112 memory_region_add_subregion(memory, base, &s->iomem);
2114 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2116 return s;
2119 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2121 return s->in;
2124 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2126 if (line >= 16 || line < 0)
2127 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2128 s->handler[line] = handler;
2131 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2133 if (row >= 5 || row < 0)
2134 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2136 if (down)
2137 s->buttons[row] |= 1 << col;
2138 else
2139 s->buttons[row] &= ~(1 << col);
2141 omap_mpuio_kbd_update(s);
2144 /* MicroWire Interface */
2145 struct omap_uwire_s {
2146 MemoryRegion iomem;
2147 qemu_irq txirq;
2148 qemu_irq rxirq;
2149 qemu_irq txdrq;
2151 uint16_t txbuf;
2152 uint16_t rxbuf;
2153 uint16_t control;
2154 uint16_t setup[5];
2156 uWireSlave *chip[4];
2159 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2161 int chipselect = (s->control >> 10) & 3; /* INDEX */
2162 uWireSlave *slave = s->chip[chipselect];
2164 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2165 if (s->control & (1 << 12)) /* CS_CMD */
2166 if (slave && slave->send)
2167 slave->send(slave->opaque,
2168 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2169 s->control &= ~(1 << 14); /* CSRB */
2170 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2171 * a DRQ. When is the level IRQ supposed to be reset? */
2174 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2175 if (s->control & (1 << 12)) /* CS_CMD */
2176 if (slave && slave->receive)
2177 s->rxbuf = slave->receive(slave->opaque);
2178 s->control |= 1 << 15; /* RDRB */
2179 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2180 * a DRQ. When is the level IRQ supposed to be reset? */
2184 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2185 unsigned size)
2187 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2188 int offset = addr & OMAP_MPUI_REG_MASK;
2190 if (size != 2) {
2191 return omap_badwidth_read16(opaque, addr);
2194 switch (offset) {
2195 case 0x00: /* RDR */
2196 s->control &= ~(1 << 15); /* RDRB */
2197 return s->rxbuf;
2199 case 0x04: /* CSR */
2200 return s->control;
2202 case 0x08: /* SR1 */
2203 return s->setup[0];
2204 case 0x0c: /* SR2 */
2205 return s->setup[1];
2206 case 0x10: /* SR3 */
2207 return s->setup[2];
2208 case 0x14: /* SR4 */
2209 return s->setup[3];
2210 case 0x18: /* SR5 */
2211 return s->setup[4];
2214 OMAP_BAD_REG(addr);
2215 return 0;
2218 static void omap_uwire_write(void *opaque, hwaddr addr,
2219 uint64_t value, unsigned size)
2221 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2222 int offset = addr & OMAP_MPUI_REG_MASK;
2224 if (size != 2) {
2225 omap_badwidth_write16(opaque, addr, value);
2226 return;
2229 switch (offset) {
2230 case 0x00: /* TDR */
2231 s->txbuf = value; /* TD */
2232 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2233 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2234 (s->control & (1 << 12)))) { /* CS_CMD */
2235 s->control |= 1 << 14; /* CSRB */
2236 omap_uwire_transfer_start(s);
2238 break;
2240 case 0x04: /* CSR */
2241 s->control = value & 0x1fff;
2242 if (value & (1 << 13)) /* START */
2243 omap_uwire_transfer_start(s);
2244 break;
2246 case 0x08: /* SR1 */
2247 s->setup[0] = value & 0x003f;
2248 break;
2250 case 0x0c: /* SR2 */
2251 s->setup[1] = value & 0x0fc0;
2252 break;
2254 case 0x10: /* SR3 */
2255 s->setup[2] = value & 0x0003;
2256 break;
2258 case 0x14: /* SR4 */
2259 s->setup[3] = value & 0x0001;
2260 break;
2262 case 0x18: /* SR5 */
2263 s->setup[4] = value & 0x000f;
2264 break;
2266 default:
2267 OMAP_BAD_REG(addr);
2268 return;
2272 static const MemoryRegionOps omap_uwire_ops = {
2273 .read = omap_uwire_read,
2274 .write = omap_uwire_write,
2275 .endianness = DEVICE_NATIVE_ENDIAN,
2278 static void omap_uwire_reset(struct omap_uwire_s *s)
2280 s->control = 0;
2281 s->setup[0] = 0;
2282 s->setup[1] = 0;
2283 s->setup[2] = 0;
2284 s->setup[3] = 0;
2285 s->setup[4] = 0;
2288 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2289 hwaddr base,
2290 qemu_irq txirq, qemu_irq rxirq,
2291 qemu_irq dma,
2292 omap_clk clk)
2294 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2296 s->txirq = txirq;
2297 s->rxirq = rxirq;
2298 s->txdrq = dma;
2299 omap_uwire_reset(s);
2301 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2302 memory_region_add_subregion(system_memory, base, &s->iomem);
2304 return s;
2307 void omap_uwire_attach(struct omap_uwire_s *s,
2308 uWireSlave *slave, int chipselect)
2310 if (chipselect < 0 || chipselect > 3) {
2311 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2312 exit(-1);
2315 s->chip[chipselect] = slave;
2318 /* Pseudonoise Pulse-Width Light Modulator */
2319 struct omap_pwl_s {
2320 MemoryRegion iomem;
2321 uint8_t output;
2322 uint8_t level;
2323 uint8_t enable;
2324 int clk;
2327 static void omap_pwl_update(struct omap_pwl_s *s)
2329 int output = (s->clk && s->enable) ? s->level : 0;
2331 if (output != s->output) {
2332 s->output = output;
2333 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2337 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2338 unsigned size)
2340 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2341 int offset = addr & OMAP_MPUI_REG_MASK;
2343 if (size != 1) {
2344 return omap_badwidth_read8(opaque, addr);
2347 switch (offset) {
2348 case 0x00: /* PWL_LEVEL */
2349 return s->level;
2350 case 0x04: /* PWL_CTRL */
2351 return s->enable;
2353 OMAP_BAD_REG(addr);
2354 return 0;
2357 static void omap_pwl_write(void *opaque, hwaddr addr,
2358 uint64_t value, unsigned size)
2360 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2361 int offset = addr & OMAP_MPUI_REG_MASK;
2363 if (size != 1) {
2364 omap_badwidth_write8(opaque, addr, value);
2365 return;
2368 switch (offset) {
2369 case 0x00: /* PWL_LEVEL */
2370 s->level = value;
2371 omap_pwl_update(s);
2372 break;
2373 case 0x04: /* PWL_CTRL */
2374 s->enable = value & 1;
2375 omap_pwl_update(s);
2376 break;
2377 default:
2378 OMAP_BAD_REG(addr);
2379 return;
2383 static const MemoryRegionOps omap_pwl_ops = {
2384 .read = omap_pwl_read,
2385 .write = omap_pwl_write,
2386 .endianness = DEVICE_NATIVE_ENDIAN,
2389 static void omap_pwl_reset(struct omap_pwl_s *s)
2391 s->output = 0;
2392 s->level = 0;
2393 s->enable = 0;
2394 s->clk = 1;
2395 omap_pwl_update(s);
2398 static void omap_pwl_clk_update(void *opaque, int line, int on)
2400 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2402 s->clk = on;
2403 omap_pwl_update(s);
2406 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2407 hwaddr base,
2408 omap_clk clk)
2410 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2412 omap_pwl_reset(s);
2414 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2415 "omap-pwl", 0x800);
2416 memory_region_add_subregion(system_memory, base, &s->iomem);
2418 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2419 return s;
2422 /* Pulse-Width Tone module */
2423 struct omap_pwt_s {
2424 MemoryRegion iomem;
2425 uint8_t frc;
2426 uint8_t vrc;
2427 uint8_t gcr;
2428 omap_clk clk;
2431 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2432 unsigned size)
2434 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2435 int offset = addr & OMAP_MPUI_REG_MASK;
2437 if (size != 1) {
2438 return omap_badwidth_read8(opaque, addr);
2441 switch (offset) {
2442 case 0x00: /* FRC */
2443 return s->frc;
2444 case 0x04: /* VCR */
2445 return s->vrc;
2446 case 0x08: /* GCR */
2447 return s->gcr;
2449 OMAP_BAD_REG(addr);
2450 return 0;
2453 static void omap_pwt_write(void *opaque, hwaddr addr,
2454 uint64_t value, unsigned size)
2456 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2457 int offset = addr & OMAP_MPUI_REG_MASK;
2459 if (size != 1) {
2460 omap_badwidth_write8(opaque, addr, value);
2461 return;
2464 switch (offset) {
2465 case 0x00: /* FRC */
2466 s->frc = value & 0x3f;
2467 break;
2468 case 0x04: /* VRC */
2469 if ((value ^ s->vrc) & 1) {
2470 if (value & 1)
2471 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2472 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2473 ((omap_clk_getrate(s->clk) >> 3) /
2474 /* Pre-multiplexer divider */
2475 ((s->gcr & 2) ? 1 : 154) /
2476 /* Octave multiplexer */
2477 (2 << (value & 3)) *
2478 /* 101/107 divider */
2479 ((value & (1 << 2)) ? 101 : 107) *
2480 /* 49/55 divider */
2481 ((value & (1 << 3)) ? 49 : 55) *
2482 /* 50/63 divider */
2483 ((value & (1 << 4)) ? 50 : 63) *
2484 /* 80/127 divider */
2485 ((value & (1 << 5)) ? 80 : 127) /
2486 (107 * 55 * 63 * 127)));
2487 else
2488 printf("%s: silence!\n", __FUNCTION__);
2490 s->vrc = value & 0x7f;
2491 break;
2492 case 0x08: /* GCR */
2493 s->gcr = value & 3;
2494 break;
2495 default:
2496 OMAP_BAD_REG(addr);
2497 return;
2501 static const MemoryRegionOps omap_pwt_ops = {
2502 .read =omap_pwt_read,
2503 .write = omap_pwt_write,
2504 .endianness = DEVICE_NATIVE_ENDIAN,
2507 static void omap_pwt_reset(struct omap_pwt_s *s)
2509 s->frc = 0;
2510 s->vrc = 0;
2511 s->gcr = 0;
2514 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2515 hwaddr base,
2516 omap_clk clk)
2518 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2519 s->clk = clk;
2520 omap_pwt_reset(s);
2522 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2523 "omap-pwt", 0x800);
2524 memory_region_add_subregion(system_memory, base, &s->iomem);
2525 return s;
2528 /* Real-time Clock module */
2529 struct omap_rtc_s {
2530 MemoryRegion iomem;
2531 qemu_irq irq;
2532 qemu_irq alarm;
2533 QEMUTimer *clk;
2535 uint8_t interrupts;
2536 uint8_t status;
2537 int16_t comp_reg;
2538 int running;
2539 int pm_am;
2540 int auto_comp;
2541 int round;
2542 struct tm alarm_tm;
2543 time_t alarm_ti;
2545 struct tm current_tm;
2546 time_t ti;
2547 uint64_t tick;
2550 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2552 /* s->alarm is level-triggered */
2553 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2556 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2558 s->alarm_ti = mktimegm(&s->alarm_tm);
2559 if (s->alarm_ti == -1)
2560 printf("%s: conversion failed\n", __FUNCTION__);
2563 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2564 unsigned size)
2566 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2567 int offset = addr & OMAP_MPUI_REG_MASK;
2568 uint8_t i;
2570 if (size != 1) {
2571 return omap_badwidth_read8(opaque, addr);
2574 switch (offset) {
2575 case 0x00: /* SECONDS_REG */
2576 return to_bcd(s->current_tm.tm_sec);
2578 case 0x04: /* MINUTES_REG */
2579 return to_bcd(s->current_tm.tm_min);
2581 case 0x08: /* HOURS_REG */
2582 if (s->pm_am)
2583 return ((s->current_tm.tm_hour > 11) << 7) |
2584 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2585 else
2586 return to_bcd(s->current_tm.tm_hour);
2588 case 0x0c: /* DAYS_REG */
2589 return to_bcd(s->current_tm.tm_mday);
2591 case 0x10: /* MONTHS_REG */
2592 return to_bcd(s->current_tm.tm_mon + 1);
2594 case 0x14: /* YEARS_REG */
2595 return to_bcd(s->current_tm.tm_year % 100);
2597 case 0x18: /* WEEK_REG */
2598 return s->current_tm.tm_wday;
2600 case 0x20: /* ALARM_SECONDS_REG */
2601 return to_bcd(s->alarm_tm.tm_sec);
2603 case 0x24: /* ALARM_MINUTES_REG */
2604 return to_bcd(s->alarm_tm.tm_min);
2606 case 0x28: /* ALARM_HOURS_REG */
2607 if (s->pm_am)
2608 return ((s->alarm_tm.tm_hour > 11) << 7) |
2609 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2610 else
2611 return to_bcd(s->alarm_tm.tm_hour);
2613 case 0x2c: /* ALARM_DAYS_REG */
2614 return to_bcd(s->alarm_tm.tm_mday);
2616 case 0x30: /* ALARM_MONTHS_REG */
2617 return to_bcd(s->alarm_tm.tm_mon + 1);
2619 case 0x34: /* ALARM_YEARS_REG */
2620 return to_bcd(s->alarm_tm.tm_year % 100);
2622 case 0x40: /* RTC_CTRL_REG */
2623 return (s->pm_am << 3) | (s->auto_comp << 2) |
2624 (s->round << 1) | s->running;
2626 case 0x44: /* RTC_STATUS_REG */
2627 i = s->status;
2628 s->status &= ~0x3d;
2629 return i;
2631 case 0x48: /* RTC_INTERRUPTS_REG */
2632 return s->interrupts;
2634 case 0x4c: /* RTC_COMP_LSB_REG */
2635 return ((uint16_t) s->comp_reg) & 0xff;
2637 case 0x50: /* RTC_COMP_MSB_REG */
2638 return ((uint16_t) s->comp_reg) >> 8;
2641 OMAP_BAD_REG(addr);
2642 return 0;
2645 static void omap_rtc_write(void *opaque, hwaddr addr,
2646 uint64_t value, unsigned size)
2648 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2649 int offset = addr & OMAP_MPUI_REG_MASK;
2650 struct tm new_tm;
2651 time_t ti[2];
2653 if (size != 1) {
2654 omap_badwidth_write8(opaque, addr, value);
2655 return;
2658 switch (offset) {
2659 case 0x00: /* SECONDS_REG */
2660 #ifdef ALMDEBUG
2661 printf("RTC SEC_REG <-- %02x\n", value);
2662 #endif
2663 s->ti -= s->current_tm.tm_sec;
2664 s->ti += from_bcd(value);
2665 return;
2667 case 0x04: /* MINUTES_REG */
2668 #ifdef ALMDEBUG
2669 printf("RTC MIN_REG <-- %02x\n", value);
2670 #endif
2671 s->ti -= s->current_tm.tm_min * 60;
2672 s->ti += from_bcd(value) * 60;
2673 return;
2675 case 0x08: /* HOURS_REG */
2676 #ifdef ALMDEBUG
2677 printf("RTC HRS_REG <-- %02x\n", value);
2678 #endif
2679 s->ti -= s->current_tm.tm_hour * 3600;
2680 if (s->pm_am) {
2681 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2682 s->ti += ((value >> 7) & 1) * 43200;
2683 } else
2684 s->ti += from_bcd(value & 0x3f) * 3600;
2685 return;
2687 case 0x0c: /* DAYS_REG */
2688 #ifdef ALMDEBUG
2689 printf("RTC DAY_REG <-- %02x\n", value);
2690 #endif
2691 s->ti -= s->current_tm.tm_mday * 86400;
2692 s->ti += from_bcd(value) * 86400;
2693 return;
2695 case 0x10: /* MONTHS_REG */
2696 #ifdef ALMDEBUG
2697 printf("RTC MTH_REG <-- %02x\n", value);
2698 #endif
2699 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2700 new_tm.tm_mon = from_bcd(value);
2701 ti[0] = mktimegm(&s->current_tm);
2702 ti[1] = mktimegm(&new_tm);
2704 if (ti[0] != -1 && ti[1] != -1) {
2705 s->ti -= ti[0];
2706 s->ti += ti[1];
2707 } else {
2708 /* A less accurate version */
2709 s->ti -= s->current_tm.tm_mon * 2592000;
2710 s->ti += from_bcd(value) * 2592000;
2712 return;
2714 case 0x14: /* YEARS_REG */
2715 #ifdef ALMDEBUG
2716 printf("RTC YRS_REG <-- %02x\n", value);
2717 #endif
2718 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2719 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2720 ti[0] = mktimegm(&s->current_tm);
2721 ti[1] = mktimegm(&new_tm);
2723 if (ti[0] != -1 && ti[1] != -1) {
2724 s->ti -= ti[0];
2725 s->ti += ti[1];
2726 } else {
2727 /* A less accurate version */
2728 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2729 s->ti += (time_t)from_bcd(value) * 31536000;
2731 return;
2733 case 0x18: /* WEEK_REG */
2734 return; /* Ignored */
2736 case 0x20: /* ALARM_SECONDS_REG */
2737 #ifdef ALMDEBUG
2738 printf("ALM SEC_REG <-- %02x\n", value);
2739 #endif
2740 s->alarm_tm.tm_sec = from_bcd(value);
2741 omap_rtc_alarm_update(s);
2742 return;
2744 case 0x24: /* ALARM_MINUTES_REG */
2745 #ifdef ALMDEBUG
2746 printf("ALM MIN_REG <-- %02x\n", value);
2747 #endif
2748 s->alarm_tm.tm_min = from_bcd(value);
2749 omap_rtc_alarm_update(s);
2750 return;
2752 case 0x28: /* ALARM_HOURS_REG */
2753 #ifdef ALMDEBUG
2754 printf("ALM HRS_REG <-- %02x\n", value);
2755 #endif
2756 if (s->pm_am)
2757 s->alarm_tm.tm_hour =
2758 ((from_bcd(value & 0x3f)) % 12) +
2759 ((value >> 7) & 1) * 12;
2760 else
2761 s->alarm_tm.tm_hour = from_bcd(value);
2762 omap_rtc_alarm_update(s);
2763 return;
2765 case 0x2c: /* ALARM_DAYS_REG */
2766 #ifdef ALMDEBUG
2767 printf("ALM DAY_REG <-- %02x\n", value);
2768 #endif
2769 s->alarm_tm.tm_mday = from_bcd(value);
2770 omap_rtc_alarm_update(s);
2771 return;
2773 case 0x30: /* ALARM_MONTHS_REG */
2774 #ifdef ALMDEBUG
2775 printf("ALM MON_REG <-- %02x\n", value);
2776 #endif
2777 s->alarm_tm.tm_mon = from_bcd(value);
2778 omap_rtc_alarm_update(s);
2779 return;
2781 case 0x34: /* ALARM_YEARS_REG */
2782 #ifdef ALMDEBUG
2783 printf("ALM YRS_REG <-- %02x\n", value);
2784 #endif
2785 s->alarm_tm.tm_year = from_bcd(value);
2786 omap_rtc_alarm_update(s);
2787 return;
2789 case 0x40: /* RTC_CTRL_REG */
2790 #ifdef ALMDEBUG
2791 printf("RTC CONTROL <-- %02x\n", value);
2792 #endif
2793 s->pm_am = (value >> 3) & 1;
2794 s->auto_comp = (value >> 2) & 1;
2795 s->round = (value >> 1) & 1;
2796 s->running = value & 1;
2797 s->status &= 0xfd;
2798 s->status |= s->running << 1;
2799 return;
2801 case 0x44: /* RTC_STATUS_REG */
2802 #ifdef ALMDEBUG
2803 printf("RTC STATUSL <-- %02x\n", value);
2804 #endif
2805 s->status &= ~((value & 0xc0) ^ 0x80);
2806 omap_rtc_interrupts_update(s);
2807 return;
2809 case 0x48: /* RTC_INTERRUPTS_REG */
2810 #ifdef ALMDEBUG
2811 printf("RTC INTRS <-- %02x\n", value);
2812 #endif
2813 s->interrupts = value;
2814 return;
2816 case 0x4c: /* RTC_COMP_LSB_REG */
2817 #ifdef ALMDEBUG
2818 printf("RTC COMPLSB <-- %02x\n", value);
2819 #endif
2820 s->comp_reg &= 0xff00;
2821 s->comp_reg |= 0x00ff & value;
2822 return;
2824 case 0x50: /* RTC_COMP_MSB_REG */
2825 #ifdef ALMDEBUG
2826 printf("RTC COMPMSB <-- %02x\n", value);
2827 #endif
2828 s->comp_reg &= 0x00ff;
2829 s->comp_reg |= 0xff00 & (value << 8);
2830 return;
2832 default:
2833 OMAP_BAD_REG(addr);
2834 return;
2838 static const MemoryRegionOps omap_rtc_ops = {
2839 .read = omap_rtc_read,
2840 .write = omap_rtc_write,
2841 .endianness = DEVICE_NATIVE_ENDIAN,
2844 static void omap_rtc_tick(void *opaque)
2846 struct omap_rtc_s *s = opaque;
2848 if (s->round) {
2849 /* Round to nearest full minute. */
2850 if (s->current_tm.tm_sec < 30)
2851 s->ti -= s->current_tm.tm_sec;
2852 else
2853 s->ti += 60 - s->current_tm.tm_sec;
2855 s->round = 0;
2858 localtime_r(&s->ti, &s->current_tm);
2860 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2861 s->status |= 0x40;
2862 omap_rtc_interrupts_update(s);
2865 if (s->interrupts & 0x04)
2866 switch (s->interrupts & 3) {
2867 case 0:
2868 s->status |= 0x04;
2869 qemu_irq_pulse(s->irq);
2870 break;
2871 case 1:
2872 if (s->current_tm.tm_sec)
2873 break;
2874 s->status |= 0x08;
2875 qemu_irq_pulse(s->irq);
2876 break;
2877 case 2:
2878 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2879 break;
2880 s->status |= 0x10;
2881 qemu_irq_pulse(s->irq);
2882 break;
2883 case 3:
2884 if (s->current_tm.tm_sec ||
2885 s->current_tm.tm_min || s->current_tm.tm_hour)
2886 break;
2887 s->status |= 0x20;
2888 qemu_irq_pulse(s->irq);
2889 break;
2892 /* Move on */
2893 if (s->running)
2894 s->ti ++;
2895 s->tick += 1000;
2898 * Every full hour add a rough approximation of the compensation
2899 * register to the 32kHz Timer (which drives the RTC) value.
2901 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2902 s->tick += s->comp_reg * 1000 / 32768;
2904 timer_mod(s->clk, s->tick);
2907 static void omap_rtc_reset(struct omap_rtc_s *s)
2909 struct tm tm;
2911 s->interrupts = 0;
2912 s->comp_reg = 0;
2913 s->running = 0;
2914 s->pm_am = 0;
2915 s->auto_comp = 0;
2916 s->round = 0;
2917 s->tick = qemu_clock_get_ms(rtc_clock);
2918 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2919 s->alarm_tm.tm_mday = 0x01;
2920 s->status = 1 << 7;
2921 qemu_get_timedate(&tm, 0);
2922 s->ti = mktimegm(&tm);
2924 omap_rtc_alarm_update(s);
2925 omap_rtc_tick(s);
2928 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2929 hwaddr base,
2930 qemu_irq timerirq, qemu_irq alarmirq,
2931 omap_clk clk)
2933 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2935 s->irq = timerirq;
2936 s->alarm = alarmirq;
2937 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2939 omap_rtc_reset(s);
2941 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2942 "omap-rtc", 0x800);
2943 memory_region_add_subregion(system_memory, base, &s->iomem);
2945 return s;
2948 /* Multi-channel Buffered Serial Port interfaces */
2949 struct omap_mcbsp_s {
2950 MemoryRegion iomem;
2951 qemu_irq txirq;
2952 qemu_irq rxirq;
2953 qemu_irq txdrq;
2954 qemu_irq rxdrq;
2956 uint16_t spcr[2];
2957 uint16_t rcr[2];
2958 uint16_t xcr[2];
2959 uint16_t srgr[2];
2960 uint16_t mcr[2];
2961 uint16_t pcr;
2962 uint16_t rcer[8];
2963 uint16_t xcer[8];
2964 int tx_rate;
2965 int rx_rate;
2966 int tx_req;
2967 int rx_req;
2969 I2SCodec *codec;
2970 QEMUTimer *source_timer;
2971 QEMUTimer *sink_timer;
2974 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2976 int irq;
2978 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2979 case 0:
2980 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2981 break;
2982 case 3:
2983 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2984 break;
2985 default:
2986 irq = 0;
2987 break;
2990 if (irq)
2991 qemu_irq_pulse(s->rxirq);
2993 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2994 case 0:
2995 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2996 break;
2997 case 3:
2998 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2999 break;
3000 default:
3001 irq = 0;
3002 break;
3005 if (irq)
3006 qemu_irq_pulse(s->txirq);
3009 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3011 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3012 s->spcr[0] |= 1 << 2; /* RFULL */
3013 s->spcr[0] |= 1 << 1; /* RRDY */
3014 qemu_irq_raise(s->rxdrq);
3015 omap_mcbsp_intr_update(s);
3018 static void omap_mcbsp_source_tick(void *opaque)
3020 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3021 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3023 if (!s->rx_rate)
3024 return;
3025 if (s->rx_req)
3026 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3028 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3030 omap_mcbsp_rx_newdata(s);
3031 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3032 get_ticks_per_sec());
3035 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3037 if (!s->codec || !s->codec->rts)
3038 omap_mcbsp_source_tick(s);
3039 else if (s->codec->in.len) {
3040 s->rx_req = s->codec->in.len;
3041 omap_mcbsp_rx_newdata(s);
3045 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3047 timer_del(s->source_timer);
3050 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3052 s->spcr[0] &= ~(1 << 1); /* RRDY */
3053 qemu_irq_lower(s->rxdrq);
3054 omap_mcbsp_intr_update(s);
3057 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3059 s->spcr[1] |= 1 << 1; /* XRDY */
3060 qemu_irq_raise(s->txdrq);
3061 omap_mcbsp_intr_update(s);
3064 static void omap_mcbsp_sink_tick(void *opaque)
3066 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3067 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3069 if (!s->tx_rate)
3070 return;
3071 if (s->tx_req)
3072 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3074 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3076 omap_mcbsp_tx_newdata(s);
3077 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3078 get_ticks_per_sec());
3081 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3083 if (!s->codec || !s->codec->cts)
3084 omap_mcbsp_sink_tick(s);
3085 else if (s->codec->out.size) {
3086 s->tx_req = s->codec->out.size;
3087 omap_mcbsp_tx_newdata(s);
3091 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3093 s->spcr[1] &= ~(1 << 1); /* XRDY */
3094 qemu_irq_lower(s->txdrq);
3095 omap_mcbsp_intr_update(s);
3096 if (s->codec && s->codec->cts)
3097 s->codec->tx_swallow(s->codec->opaque);
3100 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3102 s->tx_req = 0;
3103 omap_mcbsp_tx_done(s);
3104 timer_del(s->sink_timer);
3107 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3109 int prev_rx_rate, prev_tx_rate;
3110 int rx_rate = 0, tx_rate = 0;
3111 int cpu_rate = 1500000; /* XXX */
3113 /* TODO: check CLKSTP bit */
3114 if (s->spcr[1] & (1 << 6)) { /* GRST */
3115 if (s->spcr[0] & (1 << 0)) { /* RRST */
3116 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3117 (s->pcr & (1 << 8))) { /* CLKRM */
3118 if (~s->pcr & (1 << 7)) /* SCLKME */
3119 rx_rate = cpu_rate /
3120 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3121 } else
3122 if (s->codec)
3123 rx_rate = s->codec->rx_rate;
3126 if (s->spcr[1] & (1 << 0)) { /* XRST */
3127 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3128 (s->pcr & (1 << 9))) { /* CLKXM */
3129 if (~s->pcr & (1 << 7)) /* SCLKME */
3130 tx_rate = cpu_rate /
3131 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3132 } else
3133 if (s->codec)
3134 tx_rate = s->codec->tx_rate;
3137 prev_tx_rate = s->tx_rate;
3138 prev_rx_rate = s->rx_rate;
3139 s->tx_rate = tx_rate;
3140 s->rx_rate = rx_rate;
3142 if (s->codec)
3143 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3145 if (!prev_tx_rate && tx_rate)
3146 omap_mcbsp_tx_start(s);
3147 else if (s->tx_rate && !tx_rate)
3148 omap_mcbsp_tx_stop(s);
3150 if (!prev_rx_rate && rx_rate)
3151 omap_mcbsp_rx_start(s);
3152 else if (prev_tx_rate && !tx_rate)
3153 omap_mcbsp_rx_stop(s);
3156 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3157 unsigned size)
3159 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3160 int offset = addr & OMAP_MPUI_REG_MASK;
3161 uint16_t ret;
3163 if (size != 2) {
3164 return omap_badwidth_read16(opaque, addr);
3167 switch (offset) {
3168 case 0x00: /* DRR2 */
3169 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3170 return 0x0000;
3171 /* Fall through. */
3172 case 0x02: /* DRR1 */
3173 if (s->rx_req < 2) {
3174 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3175 omap_mcbsp_rx_done(s);
3176 } else {
3177 s->tx_req -= 2;
3178 if (s->codec && s->codec->in.len >= 2) {
3179 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3180 ret |= s->codec->in.fifo[s->codec->in.start ++];
3181 s->codec->in.len -= 2;
3182 } else
3183 ret = 0x0000;
3184 if (!s->tx_req)
3185 omap_mcbsp_rx_done(s);
3186 return ret;
3188 return 0x0000;
3190 case 0x04: /* DXR2 */
3191 case 0x06: /* DXR1 */
3192 return 0x0000;
3194 case 0x08: /* SPCR2 */
3195 return s->spcr[1];
3196 case 0x0a: /* SPCR1 */
3197 return s->spcr[0];
3198 case 0x0c: /* RCR2 */
3199 return s->rcr[1];
3200 case 0x0e: /* RCR1 */
3201 return s->rcr[0];
3202 case 0x10: /* XCR2 */
3203 return s->xcr[1];
3204 case 0x12: /* XCR1 */
3205 return s->xcr[0];
3206 case 0x14: /* SRGR2 */
3207 return s->srgr[1];
3208 case 0x16: /* SRGR1 */
3209 return s->srgr[0];
3210 case 0x18: /* MCR2 */
3211 return s->mcr[1];
3212 case 0x1a: /* MCR1 */
3213 return s->mcr[0];
3214 case 0x1c: /* RCERA */
3215 return s->rcer[0];
3216 case 0x1e: /* RCERB */
3217 return s->rcer[1];
3218 case 0x20: /* XCERA */
3219 return s->xcer[0];
3220 case 0x22: /* XCERB */
3221 return s->xcer[1];
3222 case 0x24: /* PCR0 */
3223 return s->pcr;
3224 case 0x26: /* RCERC */
3225 return s->rcer[2];
3226 case 0x28: /* RCERD */
3227 return s->rcer[3];
3228 case 0x2a: /* XCERC */
3229 return s->xcer[2];
3230 case 0x2c: /* XCERD */
3231 return s->xcer[3];
3232 case 0x2e: /* RCERE */
3233 return s->rcer[4];
3234 case 0x30: /* RCERF */
3235 return s->rcer[5];
3236 case 0x32: /* XCERE */
3237 return s->xcer[4];
3238 case 0x34: /* XCERF */
3239 return s->xcer[5];
3240 case 0x36: /* RCERG */
3241 return s->rcer[6];
3242 case 0x38: /* RCERH */
3243 return s->rcer[7];
3244 case 0x3a: /* XCERG */
3245 return s->xcer[6];
3246 case 0x3c: /* XCERH */
3247 return s->xcer[7];
3250 OMAP_BAD_REG(addr);
3251 return 0;
3254 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3255 uint32_t value)
3257 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3258 int offset = addr & OMAP_MPUI_REG_MASK;
3260 switch (offset) {
3261 case 0x00: /* DRR2 */
3262 case 0x02: /* DRR1 */
3263 OMAP_RO_REG(addr);
3264 return;
3266 case 0x04: /* DXR2 */
3267 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3268 return;
3269 /* Fall through. */
3270 case 0x06: /* DXR1 */
3271 if (s->tx_req > 1) {
3272 s->tx_req -= 2;
3273 if (s->codec && s->codec->cts) {
3274 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3275 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3277 if (s->tx_req < 2)
3278 omap_mcbsp_tx_done(s);
3279 } else
3280 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3281 return;
3283 case 0x08: /* SPCR2 */
3284 s->spcr[1] &= 0x0002;
3285 s->spcr[1] |= 0x03f9 & value;
3286 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3287 if (~value & 1) /* XRST */
3288 s->spcr[1] &= ~6;
3289 omap_mcbsp_req_update(s);
3290 return;
3291 case 0x0a: /* SPCR1 */
3292 s->spcr[0] &= 0x0006;
3293 s->spcr[0] |= 0xf8f9 & value;
3294 if (value & (1 << 15)) /* DLB */
3295 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3296 if (~value & 1) { /* RRST */
3297 s->spcr[0] &= ~6;
3298 s->rx_req = 0;
3299 omap_mcbsp_rx_done(s);
3301 omap_mcbsp_req_update(s);
3302 return;
3304 case 0x0c: /* RCR2 */
3305 s->rcr[1] = value & 0xffff;
3306 return;
3307 case 0x0e: /* RCR1 */
3308 s->rcr[0] = value & 0x7fe0;
3309 return;
3310 case 0x10: /* XCR2 */
3311 s->xcr[1] = value & 0xffff;
3312 return;
3313 case 0x12: /* XCR1 */
3314 s->xcr[0] = value & 0x7fe0;
3315 return;
3316 case 0x14: /* SRGR2 */
3317 s->srgr[1] = value & 0xffff;
3318 omap_mcbsp_req_update(s);
3319 return;
3320 case 0x16: /* SRGR1 */
3321 s->srgr[0] = value & 0xffff;
3322 omap_mcbsp_req_update(s);
3323 return;
3324 case 0x18: /* MCR2 */
3325 s->mcr[1] = value & 0x03e3;
3326 if (value & 3) /* XMCM */
3327 printf("%s: Tx channel selection mode enable attempt\n",
3328 __FUNCTION__);
3329 return;
3330 case 0x1a: /* MCR1 */
3331 s->mcr[0] = value & 0x03e1;
3332 if (value & 1) /* RMCM */
3333 printf("%s: Rx channel selection mode enable attempt\n",
3334 __FUNCTION__);
3335 return;
3336 case 0x1c: /* RCERA */
3337 s->rcer[0] = value & 0xffff;
3338 return;
3339 case 0x1e: /* RCERB */
3340 s->rcer[1] = value & 0xffff;
3341 return;
3342 case 0x20: /* XCERA */
3343 s->xcer[0] = value & 0xffff;
3344 return;
3345 case 0x22: /* XCERB */
3346 s->xcer[1] = value & 0xffff;
3347 return;
3348 case 0x24: /* PCR0 */
3349 s->pcr = value & 0x7faf;
3350 return;
3351 case 0x26: /* RCERC */
3352 s->rcer[2] = value & 0xffff;
3353 return;
3354 case 0x28: /* RCERD */
3355 s->rcer[3] = value & 0xffff;
3356 return;
3357 case 0x2a: /* XCERC */
3358 s->xcer[2] = value & 0xffff;
3359 return;
3360 case 0x2c: /* XCERD */
3361 s->xcer[3] = value & 0xffff;
3362 return;
3363 case 0x2e: /* RCERE */
3364 s->rcer[4] = value & 0xffff;
3365 return;
3366 case 0x30: /* RCERF */
3367 s->rcer[5] = value & 0xffff;
3368 return;
3369 case 0x32: /* XCERE */
3370 s->xcer[4] = value & 0xffff;
3371 return;
3372 case 0x34: /* XCERF */
3373 s->xcer[5] = value & 0xffff;
3374 return;
3375 case 0x36: /* RCERG */
3376 s->rcer[6] = value & 0xffff;
3377 return;
3378 case 0x38: /* RCERH */
3379 s->rcer[7] = value & 0xffff;
3380 return;
3381 case 0x3a: /* XCERG */
3382 s->xcer[6] = value & 0xffff;
3383 return;
3384 case 0x3c: /* XCERH */
3385 s->xcer[7] = value & 0xffff;
3386 return;
3389 OMAP_BAD_REG(addr);
3392 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3393 uint32_t value)
3395 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3396 int offset = addr & OMAP_MPUI_REG_MASK;
3398 if (offset == 0x04) { /* DXR */
3399 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3400 return;
3401 if (s->tx_req > 3) {
3402 s->tx_req -= 4;
3403 if (s->codec && s->codec->cts) {
3404 s->codec->out.fifo[s->codec->out.len ++] =
3405 (value >> 24) & 0xff;
3406 s->codec->out.fifo[s->codec->out.len ++] =
3407 (value >> 16) & 0xff;
3408 s->codec->out.fifo[s->codec->out.len ++] =
3409 (value >> 8) & 0xff;
3410 s->codec->out.fifo[s->codec->out.len ++] =
3411 (value >> 0) & 0xff;
3413 if (s->tx_req < 4)
3414 omap_mcbsp_tx_done(s);
3415 } else
3416 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3417 return;
3420 omap_badwidth_write16(opaque, addr, value);
3423 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3424 uint64_t value, unsigned size)
3426 switch (size) {
3427 case 2:
3428 omap_mcbsp_writeh(opaque, addr, value);
3429 break;
3430 case 4:
3431 omap_mcbsp_writew(opaque, addr, value);
3432 break;
3433 default:
3434 omap_badwidth_write16(opaque, addr, value);
3438 static const MemoryRegionOps omap_mcbsp_ops = {
3439 .read = omap_mcbsp_read,
3440 .write = omap_mcbsp_write,
3441 .endianness = DEVICE_NATIVE_ENDIAN,
3444 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3446 memset(&s->spcr, 0, sizeof(s->spcr));
3447 memset(&s->rcr, 0, sizeof(s->rcr));
3448 memset(&s->xcr, 0, sizeof(s->xcr));
3449 s->srgr[0] = 0x0001;
3450 s->srgr[1] = 0x2000;
3451 memset(&s->mcr, 0, sizeof(s->mcr));
3452 memset(&s->pcr, 0, sizeof(s->pcr));
3453 memset(&s->rcer, 0, sizeof(s->rcer));
3454 memset(&s->xcer, 0, sizeof(s->xcer));
3455 s->tx_req = 0;
3456 s->rx_req = 0;
3457 s->tx_rate = 0;
3458 s->rx_rate = 0;
3459 timer_del(s->source_timer);
3460 timer_del(s->sink_timer);
3463 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3464 hwaddr base,
3465 qemu_irq txirq, qemu_irq rxirq,
3466 qemu_irq *dma, omap_clk clk)
3468 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3470 s->txirq = txirq;
3471 s->rxirq = rxirq;
3472 s->txdrq = dma[0];
3473 s->rxdrq = dma[1];
3474 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3475 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3476 omap_mcbsp_reset(s);
3478 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3479 memory_region_add_subregion(system_memory, base, &s->iomem);
3481 return s;
3484 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3486 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3488 if (s->rx_rate) {
3489 s->rx_req = s->codec->in.len;
3490 omap_mcbsp_rx_newdata(s);
3494 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3496 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3498 if (s->tx_rate) {
3499 s->tx_req = s->codec->out.size;
3500 omap_mcbsp_tx_newdata(s);
3504 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3506 s->codec = slave;
3507 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3508 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3511 /* LED Pulse Generators */
3512 struct omap_lpg_s {
3513 MemoryRegion iomem;
3514 QEMUTimer *tm;
3516 uint8_t control;
3517 uint8_t power;
3518 int64_t on;
3519 int64_t period;
3520 int clk;
3521 int cycle;
3524 static void omap_lpg_tick(void *opaque)
3526 struct omap_lpg_s *s = opaque;
3528 if (s->cycle)
3529 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3530 else
3531 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3533 s->cycle = !s->cycle;
3534 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3537 static void omap_lpg_update(struct omap_lpg_s *s)
3539 int64_t on, period = 1, ticks = 1000;
3540 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3542 if (~s->control & (1 << 6)) /* LPGRES */
3543 on = 0;
3544 else if (s->control & (1 << 7)) /* PERM_ON */
3545 on = period;
3546 else {
3547 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3548 256 / 32);
3549 on = (s->clk && s->power) ? muldiv64(ticks,
3550 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3553 timer_del(s->tm);
3554 if (on == period && s->on < s->period)
3555 printf("%s: LED is on\n", __FUNCTION__);
3556 else if (on == 0 && s->on)
3557 printf("%s: LED is off\n", __FUNCTION__);
3558 else if (on && (on != s->on || period != s->period)) {
3559 s->cycle = 0;
3560 s->on = on;
3561 s->period = period;
3562 omap_lpg_tick(s);
3563 return;
3566 s->on = on;
3567 s->period = period;
3570 static void omap_lpg_reset(struct omap_lpg_s *s)
3572 s->control = 0x00;
3573 s->power = 0x00;
3574 s->clk = 1;
3575 omap_lpg_update(s);
3578 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3579 unsigned size)
3581 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3582 int offset = addr & OMAP_MPUI_REG_MASK;
3584 if (size != 1) {
3585 return omap_badwidth_read8(opaque, addr);
3588 switch (offset) {
3589 case 0x00: /* LCR */
3590 return s->control;
3592 case 0x04: /* PMR */
3593 return s->power;
3596 OMAP_BAD_REG(addr);
3597 return 0;
3600 static void omap_lpg_write(void *opaque, hwaddr addr,
3601 uint64_t value, unsigned size)
3603 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3604 int offset = addr & OMAP_MPUI_REG_MASK;
3606 if (size != 1) {
3607 omap_badwidth_write8(opaque, addr, value);
3608 return;
3611 switch (offset) {
3612 case 0x00: /* LCR */
3613 if (~value & (1 << 6)) /* LPGRES */
3614 omap_lpg_reset(s);
3615 s->control = value & 0xff;
3616 omap_lpg_update(s);
3617 return;
3619 case 0x04: /* PMR */
3620 s->power = value & 0x01;
3621 omap_lpg_update(s);
3622 return;
3624 default:
3625 OMAP_BAD_REG(addr);
3626 return;
3630 static const MemoryRegionOps omap_lpg_ops = {
3631 .read = omap_lpg_read,
3632 .write = omap_lpg_write,
3633 .endianness = DEVICE_NATIVE_ENDIAN,
3636 static void omap_lpg_clk_update(void *opaque, int line, int on)
3638 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3640 s->clk = on;
3641 omap_lpg_update(s);
3644 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3645 hwaddr base, omap_clk clk)
3647 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3649 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3651 omap_lpg_reset(s);
3653 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3654 memory_region_add_subregion(system_memory, base, &s->iomem);
3656 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3658 return s;
3661 /* MPUI Peripheral Bridge configuration */
3662 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3663 unsigned size)
3665 if (size != 2) {
3666 return omap_badwidth_read16(opaque, addr);
3669 if (addr == OMAP_MPUI_BASE) /* CMR */
3670 return 0xfe4d;
3672 OMAP_BAD_REG(addr);
3673 return 0;
3676 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3677 uint64_t value, unsigned size)
3679 /* FIXME: infinite loop */
3680 omap_badwidth_write16(opaque, addr, value);
3683 static const MemoryRegionOps omap_mpui_io_ops = {
3684 .read = omap_mpui_io_read,
3685 .write = omap_mpui_io_write,
3686 .endianness = DEVICE_NATIVE_ENDIAN,
3689 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3690 struct omap_mpu_state_s *mpu)
3692 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3693 "omap-mpui-io", 0x7fff);
3694 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3695 &mpu->mpui_io_iomem);
3698 /* General chip reset */
3699 static void omap1_mpu_reset(void *opaque)
3701 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3703 omap_dma_reset(mpu->dma);
3704 omap_mpu_timer_reset(mpu->timer[0]);
3705 omap_mpu_timer_reset(mpu->timer[1]);
3706 omap_mpu_timer_reset(mpu->timer[2]);
3707 omap_wd_timer_reset(mpu->wdt);
3708 omap_os_timer_reset(mpu->os_timer);
3709 omap_lcdc_reset(mpu->lcd);
3710 omap_ulpd_pm_reset(mpu);
3711 omap_pin_cfg_reset(mpu);
3712 omap_mpui_reset(mpu);
3713 omap_tipb_bridge_reset(mpu->private_tipb);
3714 omap_tipb_bridge_reset(mpu->public_tipb);
3715 omap_dpll_reset(mpu->dpll[0]);
3716 omap_dpll_reset(mpu->dpll[1]);
3717 omap_dpll_reset(mpu->dpll[2]);
3718 omap_uart_reset(mpu->uart[0]);
3719 omap_uart_reset(mpu->uart[1]);
3720 omap_uart_reset(mpu->uart[2]);
3721 omap_mmc_reset(mpu->mmc);
3722 omap_mpuio_reset(mpu->mpuio);
3723 omap_uwire_reset(mpu->microwire);
3724 omap_pwl_reset(mpu->pwl);
3725 omap_pwt_reset(mpu->pwt);
3726 omap_rtc_reset(mpu->rtc);
3727 omap_mcbsp_reset(mpu->mcbsp1);
3728 omap_mcbsp_reset(mpu->mcbsp2);
3729 omap_mcbsp_reset(mpu->mcbsp3);
3730 omap_lpg_reset(mpu->led[0]);
3731 omap_lpg_reset(mpu->led[1]);
3732 omap_clkm_reset(mpu);
3733 cpu_reset(CPU(mpu->cpu));
3736 static const struct omap_map_s {
3737 hwaddr phys_dsp;
3738 hwaddr phys_mpu;
3739 uint32_t size;
3740 const char *name;
3741 } omap15xx_dsp_mm[] = {
3742 /* Strobe 0 */
3743 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3744 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3745 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3746 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3747 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3748 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3749 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3750 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3751 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3752 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3753 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3754 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3755 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3756 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3757 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3758 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3759 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3760 /* Strobe 1 */
3761 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3763 { 0 }
3766 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3767 const struct omap_map_s *map)
3769 MemoryRegion *io;
3771 for (; map->phys_dsp; map ++) {
3772 io = g_new(MemoryRegion, 1);
3773 memory_region_init_alias(io, NULL, map->name,
3774 system_memory, map->phys_mpu, map->size);
3775 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3779 void omap_mpu_wakeup(void *opaque, int irq, int req)
3781 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3782 CPUState *cpu = CPU(mpu->cpu);
3784 if (cpu->halted) {
3785 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3789 static const struct dma_irq_map omap1_dma_irq_map[] = {
3790 { 0, OMAP_INT_DMA_CH0_6 },
3791 { 0, OMAP_INT_DMA_CH1_7 },
3792 { 0, OMAP_INT_DMA_CH2_8 },
3793 { 0, OMAP_INT_DMA_CH3 },
3794 { 0, OMAP_INT_DMA_CH4 },
3795 { 0, OMAP_INT_DMA_CH5 },
3796 { 1, OMAP_INT_1610_DMA_CH6 },
3797 { 1, OMAP_INT_1610_DMA_CH7 },
3798 { 1, OMAP_INT_1610_DMA_CH8 },
3799 { 1, OMAP_INT_1610_DMA_CH9 },
3800 { 1, OMAP_INT_1610_DMA_CH10 },
3801 { 1, OMAP_INT_1610_DMA_CH11 },
3802 { 1, OMAP_INT_1610_DMA_CH12 },
3803 { 1, OMAP_INT_1610_DMA_CH13 },
3804 { 1, OMAP_INT_1610_DMA_CH14 },
3805 { 1, OMAP_INT_1610_DMA_CH15 }
3808 /* DMA ports for OMAP1 */
3809 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3810 hwaddr addr)
3812 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3815 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3816 hwaddr addr)
3818 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3819 addr);
3822 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3823 hwaddr addr)
3825 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3828 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3829 hwaddr addr)
3831 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3834 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3835 hwaddr addr)
3837 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3840 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3841 hwaddr addr)
3843 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3846 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3847 unsigned long sdram_size,
3848 const char *core)
3850 int i;
3851 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3852 qemu_irq dma_irqs[6];
3853 DriveInfo *dinfo;
3854 SysBusDevice *busdev;
3856 if (!core)
3857 core = "ti925t";
3859 /* Core */
3860 s->mpu_model = omap310;
3861 s->cpu = cpu_arm_init(core);
3862 if (s->cpu == NULL) {
3863 fprintf(stderr, "Unable to find CPU definition\n");
3864 exit(1);
3866 s->sdram_size = sdram_size;
3867 s->sram_size = OMAP15XX_SRAM_SIZE;
3869 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3871 /* Clocks */
3872 omap_clk_init(s);
3874 /* Memory-mapped stuff */
3875 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3876 s->sdram_size);
3877 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3878 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3879 &error_fatal);
3880 vmstate_register_ram_global(&s->imif_ram);
3881 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3883 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3885 s->ih[0] = qdev_create(NULL, "omap-intc");
3886 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3887 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3888 qdev_init_nofail(s->ih[0]);
3889 busdev = SYS_BUS_DEVICE(s->ih[0]);
3890 sysbus_connect_irq(busdev, 0,
3891 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3892 sysbus_connect_irq(busdev, 1,
3893 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3894 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3895 s->ih[1] = qdev_create(NULL, "omap-intc");
3896 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3897 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3898 qdev_init_nofail(s->ih[1]);
3899 busdev = SYS_BUS_DEVICE(s->ih[1]);
3900 sysbus_connect_irq(busdev, 0,
3901 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3902 /* The second interrupt controller's FIQ output is not wired up */
3903 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3905 for (i = 0; i < 6; i++) {
3906 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3907 omap1_dma_irq_map[i].intr);
3909 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3910 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3911 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3913 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3914 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3915 s->port[imif ].addr_valid = omap_validate_imif_addr;
3916 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3917 s->port[local ].addr_valid = omap_validate_local_addr;
3918 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3920 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3921 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3922 OMAP_EMIFF_BASE, s->sdram_size);
3923 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3924 OMAP_IMIF_BASE, s->sram_size);
3926 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3927 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3928 omap_findclk(s, "mputim_ck"));
3929 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3930 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3931 omap_findclk(s, "mputim_ck"));
3932 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3934 omap_findclk(s, "mputim_ck"));
3936 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3937 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3938 omap_findclk(s, "armwdt_ck"));
3940 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3941 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3942 omap_findclk(s, "clk32-kHz"));
3944 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3945 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3946 omap_dma_get_lcdch(s->dma),
3947 omap_findclk(s, "lcd_ck"));
3949 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3950 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3951 omap_id_init(system_memory, s);
3953 omap_mpui_init(system_memory, 0xfffec900, s);
3955 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3956 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3957 omap_findclk(s, "tipb_ck"));
3958 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3959 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3960 omap_findclk(s, "tipb_ck"));
3962 omap_tcmi_init(system_memory, 0xfffecc00, s);
3964 s->uart[0] = omap_uart_init(0xfffb0000,
3965 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3966 omap_findclk(s, "uart1_ck"),
3967 omap_findclk(s, "uart1_ck"),
3968 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3969 "uart1",
3970 serial_hds[0]);
3971 s->uart[1] = omap_uart_init(0xfffb0800,
3972 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3973 omap_findclk(s, "uart2_ck"),
3974 omap_findclk(s, "uart2_ck"),
3975 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3976 "uart2",
3977 serial_hds[0] ? serial_hds[1] : NULL);
3978 s->uart[2] = omap_uart_init(0xfffb9800,
3979 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3980 omap_findclk(s, "uart3_ck"),
3981 omap_findclk(s, "uart3_ck"),
3982 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3983 "uart3",
3984 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3986 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3987 omap_findclk(s, "dpll1"));
3988 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3989 omap_findclk(s, "dpll2"));
3990 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3991 omap_findclk(s, "dpll3"));
3993 dinfo = drive_get(IF_SD, 0, 0);
3994 if (!dinfo) {
3995 fprintf(stderr, "qemu: missing SecureDigital device\n");
3996 exit(1);
3998 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3999 blk_by_legacy_dinfo(dinfo),
4000 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4001 &s->drq[OMAP_DMA_MMC_TX],
4002 omap_findclk(s, "mmc_ck"));
4004 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4005 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4006 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4007 s->wakeup, omap_findclk(s, "clk32-kHz"));
4009 s->gpio = qdev_create(NULL, "omap-gpio");
4010 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4011 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4012 qdev_init_nofail(s->gpio);
4013 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4014 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4015 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4017 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4018 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4019 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4020 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4022 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4023 omap_findclk(s, "armxor_ck"));
4024 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4025 omap_findclk(s, "armxor_ck"));
4027 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4028 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4029 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4030 qdev_init_nofail(s->i2c[0]);
4031 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4032 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4033 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4034 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4035 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4037 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4038 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4040 omap_findclk(s, "clk32-kHz"));
4042 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4045 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4046 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4047 qdev_get_gpio_in(s->ih[0],
4048 OMAP_INT_310_McBSP2_TX),
4049 qdev_get_gpio_in(s->ih[0],
4050 OMAP_INT_310_McBSP2_RX),
4051 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4052 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4053 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4054 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4055 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4057 s->led[0] = omap_lpg_init(system_memory,
4058 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4059 s->led[1] = omap_lpg_init(system_memory,
4060 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4062 /* Register mappings not currenlty implemented:
4063 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4064 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4065 * USB W2FC fffb4000 - fffb47ff
4066 * Camera Interface fffb6800 - fffb6fff
4067 * USB Host fffba000 - fffba7ff
4068 * FAC fffba800 - fffbafff
4069 * HDQ/1-Wire fffbc000 - fffbc7ff
4070 * TIPB switches fffbc800 - fffbcfff
4071 * Mailbox fffcf000 - fffcf7ff
4072 * Local bus IF fffec100 - fffec1ff
4073 * Local bus MMU fffec200 - fffec2ff
4074 * DSP MMU fffed200 - fffed2ff
4077 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4078 omap_setup_mpui_io(system_memory, s);
4080 qemu_register_reset(omap1_mpu_reset, s);
4082 return s;