target-arm: Remove v8_ prefix from names of non-v8-specific cpreg arrays
[qemu/ar7.git] / target-arm / helper.c
blob3da0c0579c16a83a8b707e485bf0487ee098d901
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, ARMMMUIdx mmu_idx,
17 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
21 #define PMCRD 0x8
22 #define PMCRC 0x4
23 #define PMCRE 0x1
24 #endif
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 int nregs;
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 return 0;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 int nregs;
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
75 return 0;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 assert(ri->fieldoffset);
123 if (cpreg_field_is_64bit(ri)) {
124 return CPREG_FIELD64(env, ri);
125 } else {
126 return CPREG_FIELD32(env, ri);
130 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
131 uint64_t value)
133 assert(ri->fieldoffset);
134 if (cpreg_field_is_64bit(ri)) {
135 CPREG_FIELD64(env, ri) = value;
136 } else {
137 CPREG_FIELD32(env, ri) = value;
141 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
143 return (char *)env + ri->fieldoffset;
146 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
148 /* Raw read of a coprocessor register (as needed for migration, etc). */
149 if (ri->type & ARM_CP_CONST) {
150 return ri->resetvalue;
151 } else if (ri->raw_readfn) {
152 return ri->raw_readfn(env, ri);
153 } else if (ri->readfn) {
154 return ri->readfn(env, ri);
155 } else {
156 return raw_read(env, ri);
160 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
161 uint64_t v)
163 /* Raw write of a coprocessor register (as needed for migration, etc).
164 * Note that constant registers are treated as write-ignored; the
165 * caller should check for success by whether a readback gives the
166 * value written.
168 if (ri->type & ARM_CP_CONST) {
169 return;
170 } else if (ri->raw_writefn) {
171 ri->raw_writefn(env, ri, v);
172 } else if (ri->writefn) {
173 ri->writefn(env, ri, v);
174 } else {
175 raw_write(env, ri, v);
179 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
181 /* Return true if the regdef would cause an assertion if you called
182 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
183 * program bug for it not to have the NO_RAW flag).
184 * NB that returning false here doesn't necessarily mean that calling
185 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
186 * read/write access functions which are safe for raw use" from "has
187 * read/write access functions which have side effects but has forgotten
188 * to provide raw access functions".
189 * The tests here line up with the conditions in read/write_raw_cp_reg()
190 * and assertions in raw_read()/raw_write().
192 if ((ri->type & ARM_CP_CONST) ||
193 ri->fieldoffset ||
194 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
195 return false;
197 return true;
200 bool write_cpustate_to_list(ARMCPU *cpu)
202 /* Write the coprocessor state from cpu->env to the (index,value) list. */
203 int i;
204 bool ok = true;
206 for (i = 0; i < cpu->cpreg_array_len; i++) {
207 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
208 const ARMCPRegInfo *ri;
210 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
211 if (!ri) {
212 ok = false;
213 continue;
215 if (ri->type & ARM_CP_NO_RAW) {
216 continue;
218 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
220 return ok;
223 bool write_list_to_cpustate(ARMCPU *cpu)
225 int i;
226 bool ok = true;
228 for (i = 0; i < cpu->cpreg_array_len; i++) {
229 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
230 uint64_t v = cpu->cpreg_values[i];
231 const ARMCPRegInfo *ri;
233 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 if (!ri) {
235 ok = false;
236 continue;
238 if (ri->type & ARM_CP_NO_RAW) {
239 continue;
241 /* Write value and confirm it reads back as written
242 * (to catch read-only registers and partially read-only
243 * registers where the incoming migration value doesn't match)
245 write_raw_cp_reg(&cpu->env, ri, v);
246 if (read_raw_cp_reg(&cpu->env, ri) != v) {
247 ok = false;
250 return ok;
253 static void add_cpreg_to_list(gpointer key, gpointer opaque)
255 ARMCPU *cpu = opaque;
256 uint64_t regidx;
257 const ARMCPRegInfo *ri;
259 regidx = *(uint32_t *)key;
260 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
263 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
264 /* The value array need not be initialized at this point */
265 cpu->cpreg_array_len++;
269 static void count_cpreg(gpointer key, gpointer opaque)
271 ARMCPU *cpu = opaque;
272 uint64_t regidx;
273 const ARMCPRegInfo *ri;
275 regidx = *(uint32_t *)key;
276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
279 cpu->cpreg_array_len++;
283 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
285 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
286 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
288 if (aidx > bidx) {
289 return 1;
291 if (aidx < bidx) {
292 return -1;
294 return 0;
297 void init_cpreg_list(ARMCPU *cpu)
299 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
300 * Note that we require cpreg_tuples[] to be sorted by key ID.
302 GList *keys;
303 int arraylen;
305 keys = g_hash_table_get_keys(cpu->cp_regs);
306 keys = g_list_sort(keys, cpreg_key_compare);
308 cpu->cpreg_array_len = 0;
310 g_list_foreach(keys, count_cpreg, cpu);
312 arraylen = cpu->cpreg_array_len;
313 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
314 cpu->cpreg_values = g_new(uint64_t, arraylen);
315 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
316 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
317 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
318 cpu->cpreg_array_len = 0;
320 g_list_foreach(keys, add_cpreg_to_list, cpu);
322 assert(cpu->cpreg_array_len == arraylen);
324 g_list_free(keys);
327 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
329 ARMCPU *cpu = arm_env_get_cpu(env);
331 raw_write(env, ri, value);
332 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
335 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
337 ARMCPU *cpu = arm_env_get_cpu(env);
339 if (raw_read(env, ri) != value) {
340 /* Unlike real hardware the qemu TLB uses virtual addresses,
341 * not modified virtual addresses, so this causes a TLB flush.
343 tlb_flush(CPU(cpu), 1);
344 raw_write(env, ri, value);
348 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
349 uint64_t value)
351 ARMCPU *cpu = arm_env_get_cpu(env);
353 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
354 && !extended_addresses_enabled(env)) {
355 /* For VMSA (when not using the LPAE long descriptor page table
356 * format) this register includes the ASID, so do a TLB flush.
357 * For PMSA it is purely a process ID and no action is needed.
359 tlb_flush(CPU(cpu), 1);
361 raw_write(env, ri, value);
364 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
365 uint64_t value)
367 /* Invalidate all (TLBIALL) */
368 ARMCPU *cpu = arm_env_get_cpu(env);
370 tlb_flush(CPU(cpu), 1);
373 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
374 uint64_t value)
376 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
377 ARMCPU *cpu = arm_env_get_cpu(env);
379 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
382 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
383 uint64_t value)
385 /* Invalidate by ASID (TLBIASID) */
386 ARMCPU *cpu = arm_env_get_cpu(env);
388 tlb_flush(CPU(cpu), value == 0);
391 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
392 uint64_t value)
394 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
395 ARMCPU *cpu = arm_env_get_cpu(env);
397 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
400 /* IS variants of TLB operations must affect all cores */
401 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
402 uint64_t value)
404 CPUState *other_cs;
406 CPU_FOREACH(other_cs) {
407 tlb_flush(other_cs, 1);
411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
414 CPUState *other_cs;
416 CPU_FOREACH(other_cs) {
417 tlb_flush(other_cs, value == 0);
421 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
422 uint64_t value)
424 CPUState *other_cs;
426 CPU_FOREACH(other_cs) {
427 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
431 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
432 uint64_t value)
434 CPUState *other_cs;
436 CPU_FOREACH(other_cs) {
437 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
441 static const ARMCPRegInfo cp_reginfo[] = {
442 /* Define the secure and non-secure FCSE identifier CP registers
443 * separately because there is no secure bank in V8 (no _EL3). This allows
444 * the secure register to be properly reset and migrated. There is also no
445 * v8 EL1 version of the register so the non-secure instance stands alone.
447 { .name = "FCSEIDR(NS)",
448 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
449 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
450 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
451 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
452 { .name = "FCSEIDR(S)",
453 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
454 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
455 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
456 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
457 /* Define the secure and non-secure context identifier CP registers
458 * separately because there is no secure bank in V8 (no _EL3). This allows
459 * the secure register to be properly reset and migrated. In the
460 * non-secure case, the 32-bit register will have reset and migration
461 * disabled during registration as it is handled by the 64-bit instance.
463 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
464 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
465 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
466 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
467 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
468 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
469 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
470 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
471 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
472 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
473 REGINFO_SENTINEL
476 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
477 /* NB: Some of these registers exist in v8 but with more precise
478 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
480 /* MMU Domain access control / MPU write buffer control */
481 { .name = "DACR",
482 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
483 .access = PL1_RW, .resetvalue = 0,
484 .writefn = dacr_write, .raw_writefn = raw_write,
485 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
486 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
487 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
488 * For v6 and v5, these mappings are overly broad.
490 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
491 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
492 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
493 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
494 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
495 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
496 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
497 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
498 /* Cache maintenance ops; some of this space may be overridden later. */
499 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
500 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
501 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
502 REGINFO_SENTINEL
505 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
506 /* Not all pre-v6 cores implemented this WFI, so this is slightly
507 * over-broad.
509 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
510 .access = PL1_W, .type = ARM_CP_WFI },
511 REGINFO_SENTINEL
514 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
515 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
516 * is UNPREDICTABLE; we choose to NOP as most implementations do).
518 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
519 .access = PL1_W, .type = ARM_CP_WFI },
520 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
521 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
522 * OMAPCP will override this space.
524 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
525 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
526 .resetvalue = 0 },
527 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
528 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
529 .resetvalue = 0 },
530 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
531 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
532 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
533 .resetvalue = 0 },
534 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
535 * implementing it as RAZ means the "debug architecture version" bits
536 * will read as a reserved value, which should cause Linux to not try
537 * to use the debug hardware.
539 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
540 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
541 /* MMU TLB control. Note that the wildcarding means we cover not just
542 * the unified TLB ops but also the dside/iside/inner-shareable variants.
544 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
545 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
546 .type = ARM_CP_NO_RAW },
547 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
548 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
549 .type = ARM_CP_NO_RAW },
550 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
551 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
552 .type = ARM_CP_NO_RAW },
553 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
554 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
555 .type = ARM_CP_NO_RAW },
556 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
557 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
558 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
559 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
560 REGINFO_SENTINEL
563 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
564 uint64_t value)
566 uint32_t mask = 0;
568 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
569 if (!arm_feature(env, ARM_FEATURE_V8)) {
570 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
571 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
572 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
574 if (arm_feature(env, ARM_FEATURE_VFP)) {
575 /* VFP coprocessor: cp10 & cp11 [23:20] */
576 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
578 if (!arm_feature(env, ARM_FEATURE_NEON)) {
579 /* ASEDIS [31] bit is RAO/WI */
580 value |= (1 << 31);
583 /* VFPv3 and upwards with NEON implement 32 double precision
584 * registers (D0-D31).
586 if (!arm_feature(env, ARM_FEATURE_NEON) ||
587 !arm_feature(env, ARM_FEATURE_VFP3)) {
588 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
589 value |= (1 << 30);
592 value &= mask;
594 env->cp15.cpacr_el1 = value;
597 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
599 if (arm_feature(env, ARM_FEATURE_V8)) {
600 /* Check if CPACR accesses are to be trapped to EL2 */
601 if (arm_current_el(env) == 1 &&
602 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
603 return CP_ACCESS_TRAP_EL2;
604 /* Check if CPACR accesses are to be trapped to EL3 */
605 } else if (arm_current_el(env) < 3 &&
606 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
607 return CP_ACCESS_TRAP_EL3;
611 return CP_ACCESS_OK;
614 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
616 /* Check if CPTR accesses are set to trap to EL3 */
617 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
618 return CP_ACCESS_TRAP_EL3;
621 return CP_ACCESS_OK;
624 static const ARMCPRegInfo v6_cp_reginfo[] = {
625 /* prefetch by MVA in v6, NOP in v7 */
626 { .name = "MVA_prefetch",
627 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
628 .access = PL1_W, .type = ARM_CP_NOP },
629 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
630 .access = PL0_W, .type = ARM_CP_NOP },
631 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
632 .access = PL0_W, .type = ARM_CP_NOP },
633 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
634 .access = PL0_W, .type = ARM_CP_NOP },
635 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
636 .access = PL1_RW,
637 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
638 offsetof(CPUARMState, cp15.ifar_ns) },
639 .resetvalue = 0, },
640 /* Watchpoint Fault Address Register : should actually only be present
641 * for 1136, 1176, 11MPCore.
643 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
644 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
645 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
646 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
647 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
648 .resetvalue = 0, .writefn = cpacr_write },
649 REGINFO_SENTINEL
652 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
654 /* Performance monitor registers user accessibility is controlled
655 * by PMUSERENR.
657 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
658 return CP_ACCESS_TRAP;
660 return CP_ACCESS_OK;
663 #ifndef CONFIG_USER_ONLY
665 static inline bool arm_ccnt_enabled(CPUARMState *env)
667 /* This does not support checking PMCCFILTR_EL0 register */
669 if (!(env->cp15.c9_pmcr & PMCRE)) {
670 return false;
673 return true;
676 void pmccntr_sync(CPUARMState *env)
678 uint64_t temp_ticks;
680 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
681 get_ticks_per_sec(), 1000000);
683 if (env->cp15.c9_pmcr & PMCRD) {
684 /* Increment once every 64 processor clock cycles */
685 temp_ticks /= 64;
688 if (arm_ccnt_enabled(env)) {
689 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
693 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 pmccntr_sync(env);
698 if (value & PMCRC) {
699 /* The counter has been reset */
700 env->cp15.c15_ccnt = 0;
703 /* only the DP, X, D and E bits are writable */
704 env->cp15.c9_pmcr &= ~0x39;
705 env->cp15.c9_pmcr |= (value & 0x39);
707 pmccntr_sync(env);
710 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
712 uint64_t total_ticks;
714 if (!arm_ccnt_enabled(env)) {
715 /* Counter is disabled, do not change value */
716 return env->cp15.c15_ccnt;
719 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
720 get_ticks_per_sec(), 1000000);
722 if (env->cp15.c9_pmcr & PMCRD) {
723 /* Increment once every 64 processor clock cycles */
724 total_ticks /= 64;
726 return total_ticks - env->cp15.c15_ccnt;
729 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
730 uint64_t value)
732 uint64_t total_ticks;
734 if (!arm_ccnt_enabled(env)) {
735 /* Counter is disabled, set the absolute value */
736 env->cp15.c15_ccnt = value;
737 return;
740 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
741 get_ticks_per_sec(), 1000000);
743 if (env->cp15.c9_pmcr & PMCRD) {
744 /* Increment once every 64 processor clock cycles */
745 total_ticks /= 64;
747 env->cp15.c15_ccnt = total_ticks - value;
750 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
751 uint64_t value)
753 uint64_t cur_val = pmccntr_read(env, NULL);
755 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
758 #else /* CONFIG_USER_ONLY */
760 void pmccntr_sync(CPUARMState *env)
764 #endif
766 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
767 uint64_t value)
769 pmccntr_sync(env);
770 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
771 pmccntr_sync(env);
774 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
775 uint64_t value)
777 value &= (1 << 31);
778 env->cp15.c9_pmcnten |= value;
781 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
782 uint64_t value)
784 value &= (1 << 31);
785 env->cp15.c9_pmcnten &= ~value;
788 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
789 uint64_t value)
791 env->cp15.c9_pmovsr &= ~value;
794 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 env->cp15.c9_pmxevtyper = value & 0xff;
800 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
801 uint64_t value)
803 env->cp15.c9_pmuserenr = value & 1;
806 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 uint64_t value)
809 /* We have no event counters so only the C bit can be changed */
810 value &= (1 << 31);
811 env->cp15.c9_pminten |= value;
814 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
815 uint64_t value)
817 value &= (1 << 31);
818 env->cp15.c9_pminten &= ~value;
821 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
822 uint64_t value)
824 /* Note that even though the AArch64 view of this register has bits
825 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
826 * architectural requirements for bits which are RES0 only in some
827 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
828 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
830 raw_write(env, ri, value & ~0x1FULL);
833 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
835 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
836 * For bits that vary between AArch32/64, code needs to check the
837 * current execution mode before directly using the feature bit.
839 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
841 if (!arm_feature(env, ARM_FEATURE_EL2)) {
842 valid_mask &= ~SCR_HCE;
844 /* On ARMv7, SMD (or SCD as it is called in v7) is only
845 * supported if EL2 exists. The bit is UNK/SBZP when
846 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
847 * when EL2 is unavailable.
848 * On ARMv8, this bit is always available.
850 if (arm_feature(env, ARM_FEATURE_V7) &&
851 !arm_feature(env, ARM_FEATURE_V8)) {
852 valid_mask &= ~SCR_SMD;
856 /* Clear all-context RES0 bits. */
857 value &= valid_mask;
858 raw_write(env, ri, value);
861 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
863 ARMCPU *cpu = arm_env_get_cpu(env);
865 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
866 * bank
868 uint32_t index = A32_BANKED_REG_GET(env, csselr,
869 ri->secure & ARM_CP_SECSTATE_S);
871 return cpu->ccsidr[index];
874 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
875 uint64_t value)
877 raw_write(env, ri, value & 0xf);
880 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
882 CPUState *cs = ENV_GET_CPU(env);
883 uint64_t ret = 0;
885 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
886 ret |= CPSR_I;
888 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
889 ret |= CPSR_F;
891 /* External aborts are not possible in QEMU so A bit is always clear */
892 return ret;
895 static const ARMCPRegInfo v7_cp_reginfo[] = {
896 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
897 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
898 .access = PL1_W, .type = ARM_CP_NOP },
899 /* Performance monitors are implementation defined in v7,
900 * but with an ARM recommended set of registers, which we
901 * follow (although we don't actually implement any counters)
903 * Performance registers fall into three categories:
904 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
905 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
906 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
907 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
908 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
910 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
911 .access = PL0_RW, .type = ARM_CP_ALIAS,
912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
913 .writefn = pmcntenset_write,
914 .accessfn = pmreg_access,
915 .raw_writefn = raw_write },
916 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
917 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
918 .access = PL0_RW, .accessfn = pmreg_access,
919 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
920 .writefn = pmcntenset_write, .raw_writefn = raw_write },
921 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
922 .access = PL0_RW,
923 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
924 .accessfn = pmreg_access,
925 .writefn = pmcntenclr_write,
926 .type = ARM_CP_ALIAS },
927 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
928 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
929 .access = PL0_RW, .accessfn = pmreg_access,
930 .type = ARM_CP_ALIAS,
931 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
932 .writefn = pmcntenclr_write },
933 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
934 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
935 .accessfn = pmreg_access,
936 .writefn = pmovsr_write,
937 .raw_writefn = raw_write },
938 /* Unimplemented so WI. */
939 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
940 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
941 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
942 * We choose to RAZ/WI.
944 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
945 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
946 .accessfn = pmreg_access },
947 #ifndef CONFIG_USER_ONLY
948 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
949 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
950 .readfn = pmccntr_read, .writefn = pmccntr_write32,
951 .accessfn = pmreg_access },
952 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
953 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
954 .access = PL0_RW, .accessfn = pmreg_access,
955 .type = ARM_CP_IO,
956 .readfn = pmccntr_read, .writefn = pmccntr_write, },
957 #endif
958 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
959 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
960 .writefn = pmccfiltr_write,
961 .access = PL0_RW, .accessfn = pmreg_access,
962 .type = ARM_CP_IO,
963 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
964 .resetvalue = 0, },
965 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
966 .access = PL0_RW,
967 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
968 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
969 .raw_writefn = raw_write },
970 /* Unimplemented, RAZ/WI. */
971 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
972 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
973 .accessfn = pmreg_access },
974 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
975 .access = PL0_R | PL1_RW,
976 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
977 .resetvalue = 0,
978 .writefn = pmuserenr_write, .raw_writefn = raw_write },
979 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
980 .access = PL1_RW,
981 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
982 .resetvalue = 0,
983 .writefn = pmintenset_write, .raw_writefn = raw_write },
984 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
985 .access = PL1_RW, .type = ARM_CP_ALIAS,
986 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
987 .resetvalue = 0, .writefn = pmintenclr_write, },
988 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
989 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
990 .access = PL1_RW, .writefn = vbar_write,
991 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
992 offsetof(CPUARMState, cp15.vbar_ns) },
993 .resetvalue = 0 },
994 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
995 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
996 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
997 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
998 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
999 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1001 offsetof(CPUARMState, cp15.csselr_ns) } },
1002 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1003 * just RAZ for all cores:
1005 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1006 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1007 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1008 /* Auxiliary fault status registers: these also are IMPDEF, and we
1009 * choose to RAZ/WI for all cores.
1011 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1012 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1013 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1014 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1015 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1016 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1017 /* MAIR can just read-as-written because we don't implement caches
1018 * and so don't need to care about memory attributes.
1020 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1021 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1022 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1023 .resetvalue = 0 },
1024 /* For non-long-descriptor page tables these are PRRR and NMRR;
1025 * regardless they still act as reads-as-written for QEMU.
1027 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1028 * allows them to assign the correct fieldoffset based on the endianness
1029 * handled in the field definitions.
1031 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1032 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1033 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1034 offsetof(CPUARMState, cp15.mair0_ns) },
1035 .resetfn = arm_cp_reset_ignore },
1036 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1037 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1038 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1039 offsetof(CPUARMState, cp15.mair1_ns) },
1040 .resetfn = arm_cp_reset_ignore },
1041 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1042 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1043 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1044 /* 32 bit ITLB invalidates */
1045 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1046 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1047 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1048 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1049 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1050 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1051 /* 32 bit DTLB invalidates */
1052 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1053 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1054 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1055 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1056 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1057 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1058 /* 32 bit TLB invalidates */
1059 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1060 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1061 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1062 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1063 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1064 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1065 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1066 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1067 REGINFO_SENTINEL
1070 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1071 /* 32 bit TLB invalidates, Inner Shareable */
1072 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1073 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1074 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1075 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1076 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1077 .type = ARM_CP_NO_RAW, .access = PL1_W,
1078 .writefn = tlbiasid_is_write },
1079 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1080 .type = ARM_CP_NO_RAW, .access = PL1_W,
1081 .writefn = tlbimvaa_is_write },
1082 REGINFO_SENTINEL
1085 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1086 uint64_t value)
1088 value &= 1;
1089 env->teecr = value;
1092 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1094 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1095 return CP_ACCESS_TRAP;
1097 return CP_ACCESS_OK;
1100 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1101 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1102 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1103 .resetvalue = 0,
1104 .writefn = teecr_write },
1105 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1106 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1107 .accessfn = teehbr_access, .resetvalue = 0 },
1108 REGINFO_SENTINEL
1111 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1112 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1113 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1114 .access = PL0_RW,
1115 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1116 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1117 .access = PL0_RW,
1118 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1119 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1120 .resetfn = arm_cp_reset_ignore },
1121 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1122 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1123 .access = PL0_R|PL1_W,
1124 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1125 .resetvalue = 0},
1126 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1127 .access = PL0_R|PL1_W,
1128 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1129 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1130 .resetfn = arm_cp_reset_ignore },
1131 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1132 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1133 .access = PL1_RW,
1134 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1135 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1136 .access = PL1_RW,
1137 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1138 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1139 .resetvalue = 0 },
1140 REGINFO_SENTINEL
1143 #ifndef CONFIG_USER_ONLY
1145 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1147 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1148 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1149 return CP_ACCESS_TRAP;
1151 return CP_ACCESS_OK;
1154 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1156 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1157 if (arm_current_el(env) == 0 &&
1158 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1159 return CP_ACCESS_TRAP;
1161 return CP_ACCESS_OK;
1164 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1166 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1167 * EL0[PV]TEN is zero.
1169 if (arm_current_el(env) == 0 &&
1170 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1171 return CP_ACCESS_TRAP;
1173 return CP_ACCESS_OK;
1176 static CPAccessResult gt_pct_access(CPUARMState *env,
1177 const ARMCPRegInfo *ri)
1179 return gt_counter_access(env, GTIMER_PHYS);
1182 static CPAccessResult gt_vct_access(CPUARMState *env,
1183 const ARMCPRegInfo *ri)
1185 return gt_counter_access(env, GTIMER_VIRT);
1188 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1190 return gt_timer_access(env, GTIMER_PHYS);
1193 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1195 return gt_timer_access(env, GTIMER_VIRT);
1198 static uint64_t gt_get_countervalue(CPUARMState *env)
1200 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1203 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1205 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1207 if (gt->ctl & 1) {
1208 /* Timer enabled: calculate and set current ISTATUS, irq, and
1209 * reset timer to when ISTATUS next has to change
1211 uint64_t count = gt_get_countervalue(&cpu->env);
1212 /* Note that this must be unsigned 64 bit arithmetic: */
1213 int istatus = count >= gt->cval;
1214 uint64_t nexttick;
1216 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1217 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1218 (istatus && !(gt->ctl & 2)));
1219 if (istatus) {
1220 /* Next transition is when count rolls back over to zero */
1221 nexttick = UINT64_MAX;
1222 } else {
1223 /* Next transition is when we hit cval */
1224 nexttick = gt->cval;
1226 /* Note that the desired next expiry time might be beyond the
1227 * signed-64-bit range of a QEMUTimer -- in this case we just
1228 * set the timer for as far in the future as possible. When the
1229 * timer expires we will reset the timer for any remaining period.
1231 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1232 nexttick = INT64_MAX / GTIMER_SCALE;
1234 timer_mod(cpu->gt_timer[timeridx], nexttick);
1235 } else {
1236 /* Timer disabled: ISTATUS and timer output always clear */
1237 gt->ctl &= ~4;
1238 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1239 timer_del(cpu->gt_timer[timeridx]);
1243 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1245 ARMCPU *cpu = arm_env_get_cpu(env);
1246 int timeridx = ri->opc1 & 1;
1248 timer_del(cpu->gt_timer[timeridx]);
1251 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1253 return gt_get_countervalue(env);
1256 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1257 uint64_t value)
1259 int timeridx = ri->opc1 & 1;
1261 env->cp15.c14_timer[timeridx].cval = value;
1262 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1265 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1267 int timeridx = ri->crm & 1;
1269 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1270 gt_get_countervalue(env));
1273 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1274 uint64_t value)
1276 int timeridx = ri->crm & 1;
1278 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1279 sextract64(value, 0, 32);
1280 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1283 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1284 uint64_t value)
1286 ARMCPU *cpu = arm_env_get_cpu(env);
1287 int timeridx = ri->crm & 1;
1288 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1290 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1291 if ((oldval ^ value) & 1) {
1292 /* Enable toggled */
1293 gt_recalc_timer(cpu, timeridx);
1294 } else if ((oldval ^ value) & 2) {
1295 /* IMASK toggled: don't need to recalculate,
1296 * just set the interrupt line based on ISTATUS
1298 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1299 (oldval & 4) && !(value & 2));
1303 void arm_gt_ptimer_cb(void *opaque)
1305 ARMCPU *cpu = opaque;
1307 gt_recalc_timer(cpu, GTIMER_PHYS);
1310 void arm_gt_vtimer_cb(void *opaque)
1312 ARMCPU *cpu = opaque;
1314 gt_recalc_timer(cpu, GTIMER_VIRT);
1317 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1318 /* Note that CNTFRQ is purely reads-as-written for the benefit
1319 * of software; writing it doesn't actually change the timer frequency.
1320 * Our reset value matches the fixed frequency we implement the timer at.
1322 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1323 .type = ARM_CP_ALIAS,
1324 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1325 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1326 .resetfn = arm_cp_reset_ignore,
1328 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1329 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1330 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1331 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1332 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1334 /* overall control: mostly access permissions */
1335 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1336 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1337 .access = PL1_RW,
1338 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1339 .resetvalue = 0,
1341 /* per-timer control */
1342 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1343 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1344 .accessfn = gt_ptimer_access,
1345 .fieldoffset = offsetoflow32(CPUARMState,
1346 cp15.c14_timer[GTIMER_PHYS].ctl),
1347 .resetfn = arm_cp_reset_ignore,
1348 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1350 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1351 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1352 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1353 .accessfn = gt_ptimer_access,
1354 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1355 .resetvalue = 0,
1356 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1358 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1359 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1360 .accessfn = gt_vtimer_access,
1361 .fieldoffset = offsetoflow32(CPUARMState,
1362 cp15.c14_timer[GTIMER_VIRT].ctl),
1363 .resetfn = arm_cp_reset_ignore,
1364 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1366 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1367 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1368 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1369 .accessfn = gt_vtimer_access,
1370 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1371 .resetvalue = 0,
1372 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1374 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1375 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1376 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1377 .accessfn = gt_ptimer_access,
1378 .readfn = gt_tval_read, .writefn = gt_tval_write,
1380 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1381 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1382 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1383 .accessfn = gt_ptimer_access,
1384 .readfn = gt_tval_read, .writefn = gt_tval_write,
1386 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1387 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1388 .accessfn = gt_vtimer_access,
1389 .readfn = gt_tval_read, .writefn = gt_tval_write,
1391 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1392 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1393 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1394 .accessfn = gt_vtimer_access,
1395 .readfn = gt_tval_read, .writefn = gt_tval_write,
1397 /* The counter itself */
1398 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1399 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1400 .accessfn = gt_pct_access,
1401 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1403 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1404 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1405 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1406 .accessfn = gt_pct_access,
1407 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1409 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1410 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1411 .accessfn = gt_vct_access,
1412 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1414 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1415 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1416 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1417 .accessfn = gt_vct_access,
1418 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1420 /* Comparison value, indicating when the timer goes off */
1421 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1422 .access = PL1_RW | PL0_R,
1423 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1424 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1425 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1426 .writefn = gt_cval_write, .raw_writefn = raw_write,
1428 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1429 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1430 .access = PL1_RW | PL0_R,
1431 .type = ARM_CP_IO,
1432 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1433 .resetvalue = 0, .accessfn = gt_ptimer_access,
1434 .writefn = gt_cval_write, .raw_writefn = raw_write,
1436 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1437 .access = PL1_RW | PL0_R,
1438 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1439 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1440 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1441 .writefn = gt_cval_write, .raw_writefn = raw_write,
1443 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1444 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1445 .access = PL1_RW | PL0_R,
1446 .type = ARM_CP_IO,
1447 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1448 .resetvalue = 0, .accessfn = gt_vtimer_access,
1449 .writefn = gt_cval_write, .raw_writefn = raw_write,
1451 REGINFO_SENTINEL
1454 #else
1455 /* In user-mode none of the generic timer registers are accessible,
1456 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1457 * so instead just don't register any of them.
1459 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1460 REGINFO_SENTINEL
1463 #endif
1465 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1467 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1468 raw_write(env, ri, value);
1469 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1470 raw_write(env, ri, value & 0xfffff6ff);
1471 } else {
1472 raw_write(env, ri, value & 0xfffff1ff);
1476 #ifndef CONFIG_USER_ONLY
1477 /* get_phys_addr() isn't present for user-mode-only targets */
1479 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1481 if (ri->opc2 & 4) {
1482 /* Other states are only available with TrustZone; in
1483 * a non-TZ implementation these registers don't exist
1484 * at all, which is an Uncategorized trap. This underdecoding
1485 * is safe because the reginfo is NO_RAW.
1487 return CP_ACCESS_TRAP_UNCATEGORIZED;
1489 return CP_ACCESS_OK;
1492 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1493 int access_type, ARMMMUIdx mmu_idx)
1495 hwaddr phys_addr;
1496 target_ulong page_size;
1497 int prot;
1498 int ret;
1499 uint64_t par64;
1500 MemTxAttrs attrs = {};
1502 ret = get_phys_addr(env, value, access_type, mmu_idx,
1503 &phys_addr, &attrs, &prot, &page_size);
1504 if (extended_addresses_enabled(env)) {
1505 /* ret is a DFSR/IFSR value for the long descriptor
1506 * translation table format, but with WnR always clear.
1507 * Convert it to a 64-bit PAR.
1509 par64 = (1 << 11); /* LPAE bit always set */
1510 if (ret == 0) {
1511 par64 |= phys_addr & ~0xfffULL;
1512 if (!attrs.secure) {
1513 par64 |= (1 << 9); /* NS */
1515 /* We don't set the ATTR or SH fields in the PAR. */
1516 } else {
1517 par64 |= 1; /* F */
1518 par64 |= (ret & 0x3f) << 1; /* FS */
1519 /* Note that S2WLK and FSTAGE are always zero, because we don't
1520 * implement virtualization and therefore there can't be a stage 2
1521 * fault.
1524 } else {
1525 /* ret is a DFSR/IFSR value for the short descriptor
1526 * translation table format (with WnR always clear).
1527 * Convert it to a 32-bit PAR.
1529 if (ret == 0) {
1530 /* We do not set any attribute bits in the PAR */
1531 if (page_size == (1 << 24)
1532 && arm_feature(env, ARM_FEATURE_V7)) {
1533 par64 = (phys_addr & 0xff000000) | (1 << 1);
1534 } else {
1535 par64 = phys_addr & 0xfffff000;
1537 if (!attrs.secure) {
1538 par64 |= (1 << 9); /* NS */
1540 } else {
1541 par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) |
1542 ((ret & 0xf) << 1) | 1;
1545 return par64;
1548 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1550 int access_type = ri->opc2 & 1;
1551 uint64_t par64;
1552 ARMMMUIdx mmu_idx;
1553 int el = arm_current_el(env);
1554 bool secure = arm_is_secure_below_el3(env);
1556 switch (ri->opc2 & 6) {
1557 case 0:
1558 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1559 switch (el) {
1560 case 3:
1561 mmu_idx = ARMMMUIdx_S1E3;
1562 break;
1563 case 2:
1564 mmu_idx = ARMMMUIdx_S1NSE1;
1565 break;
1566 case 1:
1567 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1568 break;
1569 default:
1570 g_assert_not_reached();
1572 break;
1573 case 2:
1574 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1575 switch (el) {
1576 case 3:
1577 mmu_idx = ARMMMUIdx_S1SE0;
1578 break;
1579 case 2:
1580 mmu_idx = ARMMMUIdx_S1NSE0;
1581 break;
1582 case 1:
1583 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1584 break;
1585 default:
1586 g_assert_not_reached();
1588 break;
1589 case 4:
1590 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1591 mmu_idx = ARMMMUIdx_S12NSE1;
1592 break;
1593 case 6:
1594 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1595 mmu_idx = ARMMMUIdx_S12NSE0;
1596 break;
1597 default:
1598 g_assert_not_reached();
1601 par64 = do_ats_write(env, value, access_type, mmu_idx);
1603 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1606 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1607 uint64_t value)
1609 int access_type = ri->opc2 & 1;
1610 ARMMMUIdx mmu_idx;
1611 int secure = arm_is_secure_below_el3(env);
1613 switch (ri->opc2 & 6) {
1614 case 0:
1615 switch (ri->opc1) {
1616 case 0: /* AT S1E1R, AT S1E1W */
1617 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1618 break;
1619 case 4: /* AT S1E2R, AT S1E2W */
1620 mmu_idx = ARMMMUIdx_S1E2;
1621 break;
1622 case 6: /* AT S1E3R, AT S1E3W */
1623 mmu_idx = ARMMMUIdx_S1E3;
1624 break;
1625 default:
1626 g_assert_not_reached();
1628 break;
1629 case 2: /* AT S1E0R, AT S1E0W */
1630 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1631 break;
1632 case 4: /* AT S12E1R, AT S12E1W */
1633 mmu_idx = ARMMMUIdx_S12NSE1;
1634 break;
1635 case 6: /* AT S12E0R, AT S12E0W */
1636 mmu_idx = ARMMMUIdx_S12NSE0;
1637 break;
1638 default:
1639 g_assert_not_reached();
1642 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1644 #endif
1646 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1647 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1648 .access = PL1_RW, .resetvalue = 0,
1649 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1650 offsetoflow32(CPUARMState, cp15.par_ns) },
1651 .writefn = par_write },
1652 #ifndef CONFIG_USER_ONLY
1653 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1654 .access = PL1_W, .accessfn = ats_access,
1655 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1656 #endif
1657 REGINFO_SENTINEL
1660 /* Return basic MPU access permission bits. */
1661 static uint32_t simple_mpu_ap_bits(uint32_t val)
1663 uint32_t ret;
1664 uint32_t mask;
1665 int i;
1666 ret = 0;
1667 mask = 3;
1668 for (i = 0; i < 16; i += 2) {
1669 ret |= (val >> i) & mask;
1670 mask <<= 2;
1672 return ret;
1675 /* Pad basic MPU access permission bits to extended format. */
1676 static uint32_t extended_mpu_ap_bits(uint32_t val)
1678 uint32_t ret;
1679 uint32_t mask;
1680 int i;
1681 ret = 0;
1682 mask = 3;
1683 for (i = 0; i < 16; i += 2) {
1684 ret |= (val & mask) << i;
1685 mask <<= 2;
1687 return ret;
1690 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1691 uint64_t value)
1693 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1696 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1698 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1701 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1702 uint64_t value)
1704 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1707 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1709 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1712 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1713 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1714 .access = PL1_RW, .type = ARM_CP_ALIAS,
1715 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1716 .resetvalue = 0,
1717 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1718 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1719 .access = PL1_RW, .type = ARM_CP_ALIAS,
1720 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1721 .resetvalue = 0,
1722 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1723 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1724 .access = PL1_RW,
1725 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1726 .resetvalue = 0, },
1727 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1728 .access = PL1_RW,
1729 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1730 .resetvalue = 0, },
1731 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1732 .access = PL1_RW,
1733 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1734 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1735 .access = PL1_RW,
1736 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1737 /* Protection region base and size registers */
1738 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1739 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1740 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1741 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1742 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1743 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1744 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1745 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1746 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1747 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1748 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1749 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1750 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1751 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1752 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1753 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1754 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1755 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1756 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1757 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1758 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1759 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1760 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1761 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1762 REGINFO_SENTINEL
1765 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766 uint64_t value)
1768 TCR *tcr = raw_ptr(env, ri);
1769 int maskshift = extract32(value, 0, 3);
1771 if (!arm_feature(env, ARM_FEATURE_V8)) {
1772 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1773 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1774 * using Long-desciptor translation table format */
1775 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1776 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1777 /* In an implementation that includes the Security Extensions
1778 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1779 * Short-descriptor translation table format.
1781 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1782 } else {
1783 value &= TTBCR_N;
1787 /* Update the masks corresponding to the the TCR bank being written
1788 * Note that we always calculate mask and base_mask, but
1789 * they are only used for short-descriptor tables (ie if EAE is 0);
1790 * for long-descriptor tables the TCR fields are used differently
1791 * and the mask and base_mask values are meaningless.
1793 tcr->raw_tcr = value;
1794 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1795 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1798 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1801 ARMCPU *cpu = arm_env_get_cpu(env);
1803 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1804 /* With LPAE the TTBCR could result in a change of ASID
1805 * via the TTBCR.A1 bit, so do a TLB flush.
1807 tlb_flush(CPU(cpu), 1);
1809 vmsa_ttbcr_raw_write(env, ri, value);
1812 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1814 TCR *tcr = raw_ptr(env, ri);
1816 /* Reset both the TCR as well as the masks corresponding to the bank of
1817 * the TCR being reset.
1819 tcr->raw_tcr = 0;
1820 tcr->mask = 0;
1821 tcr->base_mask = 0xffffc000u;
1824 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1827 ARMCPU *cpu = arm_env_get_cpu(env);
1828 TCR *tcr = raw_ptr(env, ri);
1830 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1831 tlb_flush(CPU(cpu), 1);
1832 tcr->raw_tcr = value;
1835 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
1838 /* 64 bit accesses to the TTBRs can change the ASID and so we
1839 * must flush the TLB.
1841 if (cpreg_field_is_64bit(ri)) {
1842 ARMCPU *cpu = arm_env_get_cpu(env);
1844 tlb_flush(CPU(cpu), 1);
1846 raw_write(env, ri, value);
1849 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1850 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1851 .access = PL1_RW, .type = ARM_CP_ALIAS,
1852 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
1853 offsetoflow32(CPUARMState, cp15.dfsr_ns) },
1854 .resetfn = arm_cp_reset_ignore, },
1855 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1856 .access = PL1_RW, .resetvalue = 0,
1857 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
1858 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1859 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1860 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1861 .access = PL1_RW,
1862 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1863 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1864 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
1865 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1866 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
1867 offsetof(CPUARMState, cp15.ttbr0_ns) } },
1868 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1869 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
1870 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
1871 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
1872 offsetof(CPUARMState, cp15.ttbr1_ns) } },
1873 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1874 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1875 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1876 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1877 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1878 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1879 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1880 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1881 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
1882 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
1883 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
1884 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1885 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1886 .resetvalue = 0, },
1887 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
1888 .access = PL1_RW, .resetvalue = 0,
1889 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
1890 offsetof(CPUARMState, cp15.dfar_ns) } },
1891 REGINFO_SENTINEL
1894 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895 uint64_t value)
1897 env->cp15.c15_ticonfig = value & 0xe7;
1898 /* The OS_TYPE bit in this register changes the reported CPUID! */
1899 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1900 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1903 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1904 uint64_t value)
1906 env->cp15.c15_threadid = value & 0xffff;
1909 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1910 uint64_t value)
1912 /* Wait-for-interrupt (deprecated) */
1913 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1916 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1917 uint64_t value)
1919 /* On OMAP there are registers indicating the max/min index of dcache lines
1920 * containing a dirty line; cache flush operations have to reset these.
1922 env->cp15.c15_i_max = 0x000;
1923 env->cp15.c15_i_min = 0xff0;
1926 static const ARMCPRegInfo omap_cp_reginfo[] = {
1927 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1928 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1929 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1930 .resetvalue = 0, },
1931 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1932 .access = PL1_RW, .type = ARM_CP_NOP },
1933 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1934 .access = PL1_RW,
1935 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1936 .writefn = omap_ticonfig_write },
1937 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1938 .access = PL1_RW,
1939 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1940 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1941 .access = PL1_RW, .resetvalue = 0xff0,
1942 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1943 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1944 .access = PL1_RW,
1945 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1946 .writefn = omap_threadid_write },
1947 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1948 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1949 .type = ARM_CP_NO_RAW,
1950 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1951 /* TODO: Peripheral port remap register:
1952 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1953 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1954 * when MMU is off.
1956 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1957 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1958 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
1959 .writefn = omap_cachemaint_write },
1960 { .name = "C9", .cp = 15, .crn = 9,
1961 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1962 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1963 REGINFO_SENTINEL
1966 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1967 uint64_t value)
1969 env->cp15.c15_cpar = value & 0x3fff;
1972 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1973 { .name = "XSCALE_CPAR",
1974 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1975 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1976 .writefn = xscale_cpar_write, },
1977 { .name = "XSCALE_AUXCR",
1978 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1979 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1980 .resetvalue = 0, },
1981 /* XScale specific cache-lockdown: since we have no cache we NOP these
1982 * and hope the guest does not really rely on cache behaviour.
1984 { .name = "XSCALE_LOCK_ICACHE_LINE",
1985 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1986 .access = PL1_W, .type = ARM_CP_NOP },
1987 { .name = "XSCALE_UNLOCK_ICACHE",
1988 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1989 .access = PL1_W, .type = ARM_CP_NOP },
1990 { .name = "XSCALE_DCACHE_LOCK",
1991 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
1992 .access = PL1_RW, .type = ARM_CP_NOP },
1993 { .name = "XSCALE_UNLOCK_DCACHE",
1994 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
1995 .access = PL1_W, .type = ARM_CP_NOP },
1996 REGINFO_SENTINEL
1999 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2000 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2001 * implementation of this implementation-defined space.
2002 * Ideally this should eventually disappear in favour of actually
2003 * implementing the correct behaviour for all cores.
2005 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2006 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2007 .access = PL1_RW,
2008 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2009 .resetvalue = 0 },
2010 REGINFO_SENTINEL
2013 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2014 /* Cache status: RAZ because we have no cache so it's always clean */
2015 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2016 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2017 .resetvalue = 0 },
2018 REGINFO_SENTINEL
2021 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2022 /* We never have a a block transfer operation in progress */
2023 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2024 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2025 .resetvalue = 0 },
2026 /* The cache ops themselves: these all NOP for QEMU */
2027 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2028 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2029 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2030 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2031 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2032 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2033 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2034 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2035 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2036 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2037 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2038 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2039 REGINFO_SENTINEL
2042 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2043 /* The cache test-and-clean instructions always return (1 << 30)
2044 * to indicate that there are no dirty cache lines.
2046 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2047 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2048 .resetvalue = (1 << 30) },
2049 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2050 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2051 .resetvalue = (1 << 30) },
2052 REGINFO_SENTINEL
2055 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2056 /* Ignore ReadBuffer accesses */
2057 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2058 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2059 .access = PL1_RW, .resetvalue = 0,
2060 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2061 REGINFO_SENTINEL
2064 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2066 CPUState *cs = CPU(arm_env_get_cpu(env));
2067 uint32_t mpidr = cs->cpu_index;
2068 /* We don't support setting cluster ID ([8..11]) (known as Aff1
2069 * in later ARM ARM versions), or any of the higher affinity level fields,
2070 * so these bits always RAZ.
2072 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2073 mpidr |= (1U << 31);
2074 /* Cores which are uniprocessor (non-coherent)
2075 * but still implement the MP extensions set
2076 * bit 30. (For instance, A9UP.) However we do
2077 * not currently model any of those cores.
2080 return mpidr;
2083 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2084 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2085 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2086 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2087 REGINFO_SENTINEL
2090 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2091 /* NOP AMAIR0/1 */
2092 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2093 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2094 .access = PL1_RW, .type = ARM_CP_CONST,
2095 .resetvalue = 0 },
2096 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2097 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2098 .access = PL1_RW, .type = ARM_CP_CONST,
2099 .resetvalue = 0 },
2100 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2101 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2103 offsetof(CPUARMState, cp15.par_ns)} },
2104 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2105 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2106 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2107 offsetof(CPUARMState, cp15.ttbr0_ns) },
2108 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2109 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2110 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2111 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2112 offsetof(CPUARMState, cp15.ttbr1_ns) },
2113 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2114 REGINFO_SENTINEL
2117 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2119 return vfp_get_fpcr(env);
2122 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2123 uint64_t value)
2125 vfp_set_fpcr(env, value);
2128 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2130 return vfp_get_fpsr(env);
2133 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2134 uint64_t value)
2136 vfp_set_fpsr(env, value);
2139 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2141 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2142 return CP_ACCESS_TRAP;
2144 return CP_ACCESS_OK;
2147 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2148 uint64_t value)
2150 env->daif = value & PSTATE_DAIF;
2153 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2154 const ARMCPRegInfo *ri)
2156 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2157 * SCTLR_EL1.UCI is set.
2159 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2160 return CP_ACCESS_TRAP;
2162 return CP_ACCESS_OK;
2165 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2166 * Page D4-1736 (DDI0487A.b)
2169 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
2170 uint64_t value)
2172 /* Invalidate by VA (AArch64 version) */
2173 ARMCPU *cpu = arm_env_get_cpu(env);
2174 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2176 tlb_flush_page(CPU(cpu), pageaddr);
2179 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
2180 uint64_t value)
2182 /* Invalidate by VA, all ASIDs (AArch64 version) */
2183 ARMCPU *cpu = arm_env_get_cpu(env);
2184 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2186 tlb_flush_page(CPU(cpu), pageaddr);
2189 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2190 uint64_t value)
2192 /* Invalidate by ASID (AArch64 version) */
2193 ARMCPU *cpu = arm_env_get_cpu(env);
2194 int asid = extract64(value, 48, 16);
2195 tlb_flush(CPU(cpu), asid == 0);
2198 static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2199 uint64_t value)
2201 CPUState *other_cs;
2202 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2204 CPU_FOREACH(other_cs) {
2205 tlb_flush_page(other_cs, pageaddr);
2209 static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2210 uint64_t value)
2212 CPUState *other_cs;
2213 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2215 CPU_FOREACH(other_cs) {
2216 tlb_flush_page(other_cs, pageaddr);
2220 static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2221 uint64_t value)
2223 CPUState *other_cs;
2224 int asid = extract64(value, 48, 16);
2226 CPU_FOREACH(other_cs) {
2227 tlb_flush(other_cs, asid == 0);
2231 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2233 /* We don't implement EL2, so the only control on DC ZVA is the
2234 * bit in the SCTLR which can prohibit access for EL0.
2236 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2237 return CP_ACCESS_TRAP;
2239 return CP_ACCESS_OK;
2242 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2244 ARMCPU *cpu = arm_env_get_cpu(env);
2245 int dzp_bit = 1 << 4;
2247 /* DZP indicates whether DC ZVA access is allowed */
2248 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2249 dzp_bit = 0;
2251 return cpu->dcz_blocksize | dzp_bit;
2254 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2256 if (!(env->pstate & PSTATE_SP)) {
2257 /* Access to SP_EL0 is undefined if it's being used as
2258 * the stack pointer.
2260 return CP_ACCESS_TRAP_UNCATEGORIZED;
2262 return CP_ACCESS_OK;
2265 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2267 return env->pstate & PSTATE_SP;
2270 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2272 update_spsel(env, val);
2275 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2276 uint64_t value)
2278 ARMCPU *cpu = arm_env_get_cpu(env);
2280 if (raw_read(env, ri) == value) {
2281 /* Skip the TLB flush if nothing actually changed; Linux likes
2282 * to do a lot of pointless SCTLR writes.
2284 return;
2287 raw_write(env, ri, value);
2288 /* ??? Lots of these bits are not implemented. */
2289 /* This may enable/disable the MMU, so do a TLB flush. */
2290 tlb_flush(CPU(cpu), 1);
2293 static const ARMCPRegInfo v8_cp_reginfo[] = {
2294 /* Minimal set of EL0-visible registers. This will need to be expanded
2295 * significantly for system emulation of AArch64 CPUs.
2297 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2298 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2299 .access = PL0_RW, .type = ARM_CP_NZCV },
2300 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2301 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2302 .type = ARM_CP_NO_RAW,
2303 .access = PL0_RW, .accessfn = aa64_daif_access,
2304 .fieldoffset = offsetof(CPUARMState, daif),
2305 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2306 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2307 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2308 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2309 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2310 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2311 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2312 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2313 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2314 .access = PL0_R, .type = ARM_CP_NO_RAW,
2315 .readfn = aa64_dczid_read },
2316 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2317 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2318 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2319 #ifndef CONFIG_USER_ONLY
2320 /* Avoid overhead of an access check that always passes in user-mode */
2321 .accessfn = aa64_zva_access,
2322 #endif
2324 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2325 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2326 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2327 /* Cache ops: all NOPs since we don't emulate caches */
2328 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2329 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2330 .access = PL1_W, .type = ARM_CP_NOP },
2331 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2332 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2333 .access = PL1_W, .type = ARM_CP_NOP },
2334 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2335 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2336 .access = PL0_W, .type = ARM_CP_NOP,
2337 .accessfn = aa64_cacheop_access },
2338 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2339 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2340 .access = PL1_W, .type = ARM_CP_NOP },
2341 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2342 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2343 .access = PL1_W, .type = ARM_CP_NOP },
2344 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2345 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2346 .access = PL0_W, .type = ARM_CP_NOP,
2347 .accessfn = aa64_cacheop_access },
2348 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2349 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2350 .access = PL1_W, .type = ARM_CP_NOP },
2351 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2352 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2353 .access = PL0_W, .type = ARM_CP_NOP,
2354 .accessfn = aa64_cacheop_access },
2355 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2356 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2357 .access = PL0_W, .type = ARM_CP_NOP,
2358 .accessfn = aa64_cacheop_access },
2359 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2360 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2361 .access = PL1_W, .type = ARM_CP_NOP },
2362 /* TLBI operations */
2363 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
2364 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
2365 .access = PL2_W, .type = ARM_CP_NO_RAW,
2366 .writefn = tlbiall_write },
2367 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2368 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
2369 .access = PL2_W, .type = ARM_CP_NO_RAW,
2370 .writefn = tlbiall_write },
2371 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2373 .access = PL1_W, .type = ARM_CP_NO_RAW,
2374 .writefn = tlbiall_is_write },
2375 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2377 .access = PL1_W, .type = ARM_CP_NO_RAW,
2378 .writefn = tlbi_aa64_va_is_write },
2379 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2380 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2381 .access = PL1_W, .type = ARM_CP_NO_RAW,
2382 .writefn = tlbi_aa64_asid_is_write },
2383 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2384 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2385 .access = PL1_W, .type = ARM_CP_NO_RAW,
2386 .writefn = tlbi_aa64_vaa_is_write },
2387 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2388 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2389 .access = PL1_W, .type = ARM_CP_NO_RAW,
2390 .writefn = tlbi_aa64_va_is_write },
2391 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2393 .access = PL1_W, .type = ARM_CP_NO_RAW,
2394 .writefn = tlbi_aa64_vaa_is_write },
2395 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2397 .access = PL1_W, .type = ARM_CP_NO_RAW,
2398 .writefn = tlbiall_write },
2399 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2400 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2401 .access = PL1_W, .type = ARM_CP_NO_RAW,
2402 .writefn = tlbi_aa64_va_write },
2403 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2404 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2405 .access = PL1_W, .type = ARM_CP_NO_RAW,
2406 .writefn = tlbi_aa64_asid_write },
2407 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2408 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2409 .access = PL1_W, .type = ARM_CP_NO_RAW,
2410 .writefn = tlbi_aa64_vaa_write },
2411 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2412 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2413 .access = PL1_W, .type = ARM_CP_NO_RAW,
2414 .writefn = tlbi_aa64_va_write },
2415 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2416 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2417 .access = PL1_W, .type = ARM_CP_NO_RAW,
2418 .writefn = tlbi_aa64_vaa_write },
2419 #ifndef CONFIG_USER_ONLY
2420 /* 64 bit address translation operations */
2421 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2423 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2424 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2426 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2427 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2428 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2429 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2430 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2431 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2432 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2433 #endif
2434 /* TLB invalidate last level of translation table walk */
2435 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2437 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2438 .type = ARM_CP_NO_RAW, .access = PL1_W,
2439 .writefn = tlbimvaa_is_write },
2440 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2442 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2444 /* 32 bit cache operations */
2445 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2446 .type = ARM_CP_NOP, .access = PL1_W },
2447 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2448 .type = ARM_CP_NOP, .access = PL1_W },
2449 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2450 .type = ARM_CP_NOP, .access = PL1_W },
2451 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2452 .type = ARM_CP_NOP, .access = PL1_W },
2453 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2454 .type = ARM_CP_NOP, .access = PL1_W },
2455 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2456 .type = ARM_CP_NOP, .access = PL1_W },
2457 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2458 .type = ARM_CP_NOP, .access = PL1_W },
2459 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2460 .type = ARM_CP_NOP, .access = PL1_W },
2461 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2462 .type = ARM_CP_NOP, .access = PL1_W },
2463 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2464 .type = ARM_CP_NOP, .access = PL1_W },
2465 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2466 .type = ARM_CP_NOP, .access = PL1_W },
2467 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2468 .type = ARM_CP_NOP, .access = PL1_W },
2469 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2470 .type = ARM_CP_NOP, .access = PL1_W },
2471 /* MMU Domain access control / MPU write buffer control */
2472 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2473 .access = PL1_RW, .resetvalue = 0,
2474 .writefn = dacr_write, .raw_writefn = raw_write,
2475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2476 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2477 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2478 .type = ARM_CP_ALIAS,
2479 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2480 .access = PL1_RW,
2481 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2482 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2483 .type = ARM_CP_ALIAS,
2484 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2485 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2486 /* We rely on the access checks not allowing the guest to write to the
2487 * state field when SPSel indicates that it's being used as the stack
2488 * pointer.
2490 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2491 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2492 .access = PL1_RW, .accessfn = sp_el0_access,
2493 .type = ARM_CP_ALIAS,
2494 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2495 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2496 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2497 .access = PL2_RW, .type = ARM_CP_ALIAS,
2498 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2499 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2500 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2501 .type = ARM_CP_NO_RAW,
2502 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2503 REGINFO_SENTINEL
2506 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2507 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
2508 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2509 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2510 .access = PL2_RW,
2511 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2512 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2513 .type = ARM_CP_NO_RAW,
2514 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2515 .access = PL2_RW,
2516 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2517 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2518 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2519 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2520 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2521 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2522 .access = PL2_RW, .type = ARM_CP_CONST,
2523 .resetvalue = 0 },
2524 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2525 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2527 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
2528 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
2529 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2530 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
2531 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
2532 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2533 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
2534 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
2535 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2536 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
2537 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
2538 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2539 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
2540 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
2541 .resetvalue = 0 },
2542 REGINFO_SENTINEL
2545 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2547 ARMCPU *cpu = arm_env_get_cpu(env);
2548 uint64_t valid_mask = HCR_MASK;
2550 if (arm_feature(env, ARM_FEATURE_EL3)) {
2551 valid_mask &= ~HCR_HCD;
2552 } else {
2553 valid_mask &= ~HCR_TSC;
2556 /* Clear RES0 bits. */
2557 value &= valid_mask;
2559 /* These bits change the MMU setup:
2560 * HCR_VM enables stage 2 translation
2561 * HCR_PTW forbids certain page-table setups
2562 * HCR_DC Disables stage1 and enables stage2 translation
2564 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
2565 tlb_flush(CPU(cpu), 1);
2567 raw_write(env, ri, value);
2570 static const ARMCPRegInfo el2_cp_reginfo[] = {
2571 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2572 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2573 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
2574 .writefn = hcr_write },
2575 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
2576 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
2577 .access = PL2_RW, .resetvalue = 0,
2578 .writefn = dacr_write, .raw_writefn = raw_write,
2579 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2580 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2581 .type = ARM_CP_ALIAS,
2582 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2583 .access = PL2_RW,
2584 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2585 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2586 .type = ARM_CP_ALIAS,
2587 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2588 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2589 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
2590 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
2591 .access = PL2_RW, .resetvalue = 0,
2592 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2593 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2594 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2595 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2596 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2597 .type = ARM_CP_ALIAS,
2598 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2599 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2600 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2601 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2602 .access = PL2_RW, .writefn = vbar_write,
2603 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2604 .resetvalue = 0 },
2605 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
2606 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2607 .access = PL3_RW, .type = ARM_CP_ALIAS,
2608 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2609 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2610 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2611 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
2612 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
2613 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2614 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2615 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
2616 .resetvalue = 0 },
2617 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2618 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2619 .access = PL2_RW, .type = ARM_CP_ALIAS,
2620 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2621 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
2622 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
2623 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
2624 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2625 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
2626 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
2627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
2628 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2629 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
2630 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
2631 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
2632 .access = PL2_RW, .resetvalue = 0,
2633 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
2634 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
2635 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
2636 .access = PL2_RW, .resetvalue = 0,
2637 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
2638 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
2639 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2640 .resetvalue = 0,
2641 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
2642 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
2643 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
2644 .type = ARM_CP_NO_RAW, .access = PL2_W,
2645 .writefn = tlbiall_write },
2646 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
2647 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
2648 .type = ARM_CP_NO_RAW, .access = PL2_W,
2649 .writefn = tlbi_aa64_vaa_write },
2650 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
2651 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
2652 .type = ARM_CP_NO_RAW, .access = PL2_W,
2653 .writefn = tlbi_aa64_vaa_write },
2654 REGINFO_SENTINEL
2657 static const ARMCPRegInfo el3_cp_reginfo[] = {
2658 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
2659 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
2660 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
2661 .resetvalue = 0, .writefn = scr_write },
2662 { .name = "SCR", .type = ARM_CP_ALIAS,
2663 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
2664 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
2665 .resetfn = arm_cp_reset_ignore, .writefn = scr_write },
2666 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
2667 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
2668 .access = PL3_RW, .resetvalue = 0,
2669 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
2670 { .name = "SDER",
2671 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
2672 .access = PL3_RW, .resetvalue = 0,
2673 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
2674 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
2675 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
2676 .access = PL3_W | PL1_R, .resetvalue = 0,
2677 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
2678 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
2679 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
2680 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2681 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
2682 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
2683 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
2684 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
2685 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
2686 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
2687 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2688 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
2689 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
2690 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
2691 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
2692 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2693 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2694 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2695 .type = ARM_CP_ALIAS,
2696 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2697 .access = PL3_RW,
2698 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2699 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2700 .type = ARM_CP_ALIAS,
2701 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2702 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2703 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2704 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2705 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2706 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2707 .type = ARM_CP_ALIAS,
2708 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2709 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2710 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2711 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2712 .access = PL3_RW, .writefn = vbar_write,
2713 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2714 .resetvalue = 0 },
2715 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
2716 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
2717 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
2718 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
2719 REGINFO_SENTINEL
2722 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2724 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2725 * but the AArch32 CTR has its own reginfo struct)
2727 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2728 return CP_ACCESS_TRAP;
2730 return CP_ACCESS_OK;
2733 static const ARMCPRegInfo debug_cp_reginfo[] = {
2734 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2735 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
2736 * unlike DBGDRAR it is never accessible from EL0.
2737 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
2738 * accessor.
2740 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2741 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2742 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
2743 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
2744 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2745 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2746 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2747 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2748 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
2749 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2750 .access = PL1_RW,
2751 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2752 .resetvalue = 0 },
2753 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
2754 * We don't implement the configurable EL0 access.
2756 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
2757 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2758 .type = ARM_CP_ALIAS,
2759 .access = PL1_R,
2760 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
2761 .resetfn = arm_cp_reset_ignore },
2762 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2763 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
2764 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2765 .access = PL1_W, .type = ARM_CP_NOP },
2766 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
2767 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
2768 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
2769 .access = PL1_RW, .type = ARM_CP_NOP },
2770 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
2771 * implement vector catch debug events yet.
2773 { .name = "DBGVCR",
2774 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2775 .access = PL1_RW, .type = ARM_CP_NOP },
2776 REGINFO_SENTINEL
2779 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
2780 /* 64 bit access versions of the (dummy) debug registers */
2781 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
2782 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2783 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
2784 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
2785 REGINFO_SENTINEL
2788 void hw_watchpoint_update(ARMCPU *cpu, int n)
2790 CPUARMState *env = &cpu->env;
2791 vaddr len = 0;
2792 vaddr wvr = env->cp15.dbgwvr[n];
2793 uint64_t wcr = env->cp15.dbgwcr[n];
2794 int mask;
2795 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
2797 if (env->cpu_watchpoint[n]) {
2798 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
2799 env->cpu_watchpoint[n] = NULL;
2802 if (!extract64(wcr, 0, 1)) {
2803 /* E bit clear : watchpoint disabled */
2804 return;
2807 switch (extract64(wcr, 3, 2)) {
2808 case 0:
2809 /* LSC 00 is reserved and must behave as if the wp is disabled */
2810 return;
2811 case 1:
2812 flags |= BP_MEM_READ;
2813 break;
2814 case 2:
2815 flags |= BP_MEM_WRITE;
2816 break;
2817 case 3:
2818 flags |= BP_MEM_ACCESS;
2819 break;
2822 /* Attempts to use both MASK and BAS fields simultaneously are
2823 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
2824 * thus generating a watchpoint for every byte in the masked region.
2826 mask = extract64(wcr, 24, 4);
2827 if (mask == 1 || mask == 2) {
2828 /* Reserved values of MASK; we must act as if the mask value was
2829 * some non-reserved value, or as if the watchpoint were disabled.
2830 * We choose the latter.
2832 return;
2833 } else if (mask) {
2834 /* Watchpoint covers an aligned area up to 2GB in size */
2835 len = 1ULL << mask;
2836 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
2837 * whether the watchpoint fires when the unmasked bits match; we opt
2838 * to generate the exceptions.
2840 wvr &= ~(len - 1);
2841 } else {
2842 /* Watchpoint covers bytes defined by the byte address select bits */
2843 int bas = extract64(wcr, 5, 8);
2844 int basstart;
2846 if (bas == 0) {
2847 /* This must act as if the watchpoint is disabled */
2848 return;
2851 if (extract64(wvr, 2, 1)) {
2852 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
2853 * ignored, and BAS[3:0] define which bytes to watch.
2855 bas &= 0xf;
2857 /* The BAS bits are supposed to be programmed to indicate a contiguous
2858 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
2859 * we fire for each byte in the word/doubleword addressed by the WVR.
2860 * We choose to ignore any non-zero bits after the first range of 1s.
2862 basstart = ctz32(bas);
2863 len = cto32(bas >> basstart);
2864 wvr += basstart;
2867 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
2868 &env->cpu_watchpoint[n]);
2871 void hw_watchpoint_update_all(ARMCPU *cpu)
2873 int i;
2874 CPUARMState *env = &cpu->env;
2876 /* Completely clear out existing QEMU watchpoints and our array, to
2877 * avoid possible stale entries following migration load.
2879 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
2880 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
2882 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
2883 hw_watchpoint_update(cpu, i);
2887 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2888 uint64_t value)
2890 ARMCPU *cpu = arm_env_get_cpu(env);
2891 int i = ri->crm;
2893 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
2894 * register reads and behaves as if values written are sign extended.
2895 * Bits [1:0] are RES0.
2897 value = sextract64(value, 0, 49) & ~3ULL;
2899 raw_write(env, ri, value);
2900 hw_watchpoint_update(cpu, i);
2903 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904 uint64_t value)
2906 ARMCPU *cpu = arm_env_get_cpu(env);
2907 int i = ri->crm;
2909 raw_write(env, ri, value);
2910 hw_watchpoint_update(cpu, i);
2913 void hw_breakpoint_update(ARMCPU *cpu, int n)
2915 CPUARMState *env = &cpu->env;
2916 uint64_t bvr = env->cp15.dbgbvr[n];
2917 uint64_t bcr = env->cp15.dbgbcr[n];
2918 vaddr addr;
2919 int bt;
2920 int flags = BP_CPU;
2922 if (env->cpu_breakpoint[n]) {
2923 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
2924 env->cpu_breakpoint[n] = NULL;
2927 if (!extract64(bcr, 0, 1)) {
2928 /* E bit clear : watchpoint disabled */
2929 return;
2932 bt = extract64(bcr, 20, 4);
2934 switch (bt) {
2935 case 4: /* unlinked address mismatch (reserved if AArch64) */
2936 case 5: /* linked address mismatch (reserved if AArch64) */
2937 qemu_log_mask(LOG_UNIMP,
2938 "arm: address mismatch breakpoint types not implemented");
2939 return;
2940 case 0: /* unlinked address match */
2941 case 1: /* linked address match */
2943 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
2944 * we behave as if the register was sign extended. Bits [1:0] are
2945 * RES0. The BAS field is used to allow setting breakpoints on 16
2946 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
2947 * a bp will fire if the addresses covered by the bp and the addresses
2948 * covered by the insn overlap but the insn doesn't start at the
2949 * start of the bp address range. We choose to require the insn and
2950 * the bp to have the same address. The constraints on writing to
2951 * BAS enforced in dbgbcr_write mean we have only four cases:
2952 * 0b0000 => no breakpoint
2953 * 0b0011 => breakpoint on addr
2954 * 0b1100 => breakpoint on addr + 2
2955 * 0b1111 => breakpoint on addr
2956 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
2958 int bas = extract64(bcr, 5, 4);
2959 addr = sextract64(bvr, 0, 49) & ~3ULL;
2960 if (bas == 0) {
2961 return;
2963 if (bas == 0xc) {
2964 addr += 2;
2966 break;
2968 case 2: /* unlinked context ID match */
2969 case 8: /* unlinked VMID match (reserved if no EL2) */
2970 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
2971 qemu_log_mask(LOG_UNIMP,
2972 "arm: unlinked context breakpoint types not implemented");
2973 return;
2974 case 9: /* linked VMID match (reserved if no EL2) */
2975 case 11: /* linked context ID and VMID match (reserved if no EL2) */
2976 case 3: /* linked context ID match */
2977 default:
2978 /* We must generate no events for Linked context matches (unless
2979 * they are linked to by some other bp/wp, which is handled in
2980 * updates for the linking bp/wp). We choose to also generate no events
2981 * for reserved values.
2983 return;
2986 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
2989 void hw_breakpoint_update_all(ARMCPU *cpu)
2991 int i;
2992 CPUARMState *env = &cpu->env;
2994 /* Completely clear out existing QEMU breakpoints and our array, to
2995 * avoid possible stale entries following migration load.
2997 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
2998 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3000 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3001 hw_breakpoint_update(cpu, i);
3005 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3006 uint64_t value)
3008 ARMCPU *cpu = arm_env_get_cpu(env);
3009 int i = ri->crm;
3011 raw_write(env, ri, value);
3012 hw_breakpoint_update(cpu, i);
3015 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3018 ARMCPU *cpu = arm_env_get_cpu(env);
3019 int i = ri->crm;
3021 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3022 * copy of BAS[0].
3024 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3025 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3027 raw_write(env, ri, value);
3028 hw_breakpoint_update(cpu, i);
3031 static void define_debug_regs(ARMCPU *cpu)
3033 /* Define v7 and v8 architectural debug registers.
3034 * These are just dummy implementations for now.
3036 int i;
3037 int wrps, brps, ctx_cmps;
3038 ARMCPRegInfo dbgdidr = {
3039 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3040 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3043 /* Note that all these register fields hold "number of Xs minus 1". */
3044 brps = extract32(cpu->dbgdidr, 24, 4);
3045 wrps = extract32(cpu->dbgdidr, 28, 4);
3046 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3048 assert(ctx_cmps <= brps);
3050 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3051 * of the debug registers such as number of breakpoints;
3052 * check that if they both exist then they agree.
3054 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3055 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3056 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3057 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3060 define_one_arm_cp_reg(cpu, &dbgdidr);
3061 define_arm_cp_regs(cpu, debug_cp_reginfo);
3063 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3064 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3067 for (i = 0; i < brps + 1; i++) {
3068 ARMCPRegInfo dbgregs[] = {
3069 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3070 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3071 .access = PL1_RW,
3072 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3073 .writefn = dbgbvr_write, .raw_writefn = raw_write
3075 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3076 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3077 .access = PL1_RW,
3078 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3079 .writefn = dbgbcr_write, .raw_writefn = raw_write
3081 REGINFO_SENTINEL
3083 define_arm_cp_regs(cpu, dbgregs);
3086 for (i = 0; i < wrps + 1; i++) {
3087 ARMCPRegInfo dbgregs[] = {
3088 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3089 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3090 .access = PL1_RW,
3091 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3092 .writefn = dbgwvr_write, .raw_writefn = raw_write
3094 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3095 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3096 .access = PL1_RW,
3097 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3098 .writefn = dbgwcr_write, .raw_writefn = raw_write
3100 REGINFO_SENTINEL
3102 define_arm_cp_regs(cpu, dbgregs);
3106 void register_cp_regs_for_features(ARMCPU *cpu)
3108 /* Register all the coprocessor registers based on feature bits */
3109 CPUARMState *env = &cpu->env;
3110 if (arm_feature(env, ARM_FEATURE_M)) {
3111 /* M profile has no coprocessor registers */
3112 return;
3115 define_arm_cp_regs(cpu, cp_reginfo);
3116 if (!arm_feature(env, ARM_FEATURE_V8)) {
3117 /* Must go early as it is full of wildcards that may be
3118 * overridden by later definitions.
3120 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3123 if (arm_feature(env, ARM_FEATURE_V6)) {
3124 /* The ID registers all have impdef reset values */
3125 ARMCPRegInfo v6_idregs[] = {
3126 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3128 .access = PL1_R, .type = ARM_CP_CONST,
3129 .resetvalue = cpu->id_pfr0 },
3130 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3132 .access = PL1_R, .type = ARM_CP_CONST,
3133 .resetvalue = cpu->id_pfr1 },
3134 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3136 .access = PL1_R, .type = ARM_CP_CONST,
3137 .resetvalue = cpu->id_dfr0 },
3138 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3139 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3140 .access = PL1_R, .type = ARM_CP_CONST,
3141 .resetvalue = cpu->id_afr0 },
3142 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3144 .access = PL1_R, .type = ARM_CP_CONST,
3145 .resetvalue = cpu->id_mmfr0 },
3146 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3148 .access = PL1_R, .type = ARM_CP_CONST,
3149 .resetvalue = cpu->id_mmfr1 },
3150 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3152 .access = PL1_R, .type = ARM_CP_CONST,
3153 .resetvalue = cpu->id_mmfr2 },
3154 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3156 .access = PL1_R, .type = ARM_CP_CONST,
3157 .resetvalue = cpu->id_mmfr3 },
3158 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3160 .access = PL1_R, .type = ARM_CP_CONST,
3161 .resetvalue = cpu->id_isar0 },
3162 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3164 .access = PL1_R, .type = ARM_CP_CONST,
3165 .resetvalue = cpu->id_isar1 },
3166 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3168 .access = PL1_R, .type = ARM_CP_CONST,
3169 .resetvalue = cpu->id_isar2 },
3170 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3172 .access = PL1_R, .type = ARM_CP_CONST,
3173 .resetvalue = cpu->id_isar3 },
3174 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3176 .access = PL1_R, .type = ARM_CP_CONST,
3177 .resetvalue = cpu->id_isar4 },
3178 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3180 .access = PL1_R, .type = ARM_CP_CONST,
3181 .resetvalue = cpu->id_isar5 },
3182 /* 6..7 are as yet unallocated and must RAZ */
3183 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3184 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3185 .resetvalue = 0 },
3186 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3187 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3188 .resetvalue = 0 },
3189 REGINFO_SENTINEL
3191 define_arm_cp_regs(cpu, v6_idregs);
3192 define_arm_cp_regs(cpu, v6_cp_reginfo);
3193 } else {
3194 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3196 if (arm_feature(env, ARM_FEATURE_V6K)) {
3197 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3199 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3200 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3202 if (arm_feature(env, ARM_FEATURE_V7)) {
3203 /* v7 performance monitor control register: same implementor
3204 * field as main ID register, and we implement only the cycle
3205 * count register.
3207 #ifndef CONFIG_USER_ONLY
3208 ARMCPRegInfo pmcr = {
3209 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3210 .access = PL0_RW,
3211 .type = ARM_CP_IO | ARM_CP_ALIAS,
3212 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3213 .accessfn = pmreg_access, .writefn = pmcr_write,
3214 .raw_writefn = raw_write,
3216 ARMCPRegInfo pmcr64 = {
3217 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3218 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3219 .access = PL0_RW, .accessfn = pmreg_access,
3220 .type = ARM_CP_IO,
3221 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3222 .resetvalue = cpu->midr & 0xff000000,
3223 .writefn = pmcr_write, .raw_writefn = raw_write,
3225 define_one_arm_cp_reg(cpu, &pmcr);
3226 define_one_arm_cp_reg(cpu, &pmcr64);
3227 #endif
3228 ARMCPRegInfo clidr = {
3229 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3230 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3231 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3233 define_one_arm_cp_reg(cpu, &clidr);
3234 define_arm_cp_regs(cpu, v7_cp_reginfo);
3235 define_debug_regs(cpu);
3236 } else {
3237 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3239 if (arm_feature(env, ARM_FEATURE_V8)) {
3240 /* AArch64 ID registers, which all have impdef reset values */
3241 ARMCPRegInfo v8_idregs[] = {
3242 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3244 .access = PL1_R, .type = ARM_CP_CONST,
3245 .resetvalue = cpu->id_aa64pfr0 },
3246 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3248 .access = PL1_R, .type = ARM_CP_CONST,
3249 .resetvalue = cpu->id_aa64pfr1},
3250 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3252 .access = PL1_R, .type = ARM_CP_CONST,
3253 /* We mask out the PMUVer field, because we don't currently
3254 * implement the PMU. Not advertising it prevents the guest
3255 * from trying to use it and getting UNDEFs on registers we
3256 * don't implement.
3258 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3259 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3261 .access = PL1_R, .type = ARM_CP_CONST,
3262 .resetvalue = cpu->id_aa64dfr1 },
3263 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3265 .access = PL1_R, .type = ARM_CP_CONST,
3266 .resetvalue = cpu->id_aa64afr0 },
3267 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3269 .access = PL1_R, .type = ARM_CP_CONST,
3270 .resetvalue = cpu->id_aa64afr1 },
3271 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3273 .access = PL1_R, .type = ARM_CP_CONST,
3274 .resetvalue = cpu->id_aa64isar0 },
3275 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3277 .access = PL1_R, .type = ARM_CP_CONST,
3278 .resetvalue = cpu->id_aa64isar1 },
3279 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3281 .access = PL1_R, .type = ARM_CP_CONST,
3282 .resetvalue = cpu->id_aa64mmfr0 },
3283 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3285 .access = PL1_R, .type = ARM_CP_CONST,
3286 .resetvalue = cpu->id_aa64mmfr1 },
3287 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3289 .access = PL1_R, .type = ARM_CP_CONST,
3290 .resetvalue = cpu->mvfr0 },
3291 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3293 .access = PL1_R, .type = ARM_CP_CONST,
3294 .resetvalue = cpu->mvfr1 },
3295 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3297 .access = PL1_R, .type = ARM_CP_CONST,
3298 .resetvalue = cpu->mvfr2 },
3299 REGINFO_SENTINEL
3301 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3302 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3303 !arm_feature(env, ARM_FEATURE_EL2)) {
3304 ARMCPRegInfo rvbar = {
3305 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3306 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3307 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3309 define_one_arm_cp_reg(cpu, &rvbar);
3311 define_arm_cp_regs(cpu, v8_idregs);
3312 define_arm_cp_regs(cpu, v8_cp_reginfo);
3314 if (arm_feature(env, ARM_FEATURE_EL2)) {
3315 define_arm_cp_regs(cpu, el2_cp_reginfo);
3316 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3317 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3318 ARMCPRegInfo rvbar = {
3319 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3320 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3321 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3323 define_one_arm_cp_reg(cpu, &rvbar);
3325 } else {
3326 /* If EL2 is missing but higher ELs are enabled, we need to
3327 * register the no_el2 reginfos.
3329 if (arm_feature(env, ARM_FEATURE_EL3)) {
3330 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
3333 if (arm_feature(env, ARM_FEATURE_EL3)) {
3334 define_arm_cp_regs(cpu, el3_cp_reginfo);
3335 ARMCPRegInfo rvbar = {
3336 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3338 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3340 define_one_arm_cp_reg(cpu, &rvbar);
3342 if (arm_feature(env, ARM_FEATURE_MPU)) {
3343 /* These are the MPU registers prior to PMSAv6. Any new
3344 * PMSA core later than the ARM946 will require that we
3345 * implement the PMSAv6 or PMSAv7 registers, which are
3346 * completely different.
3348 assert(!arm_feature(env, ARM_FEATURE_V6));
3349 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3350 } else {
3351 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3353 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3354 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3356 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3357 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3359 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3360 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3362 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3363 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3365 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3366 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3368 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3369 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3371 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3372 define_arm_cp_regs(cpu, omap_cp_reginfo);
3374 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3375 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3377 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3378 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3380 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3381 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3383 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3384 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3386 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3387 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3388 * be read-only (ie write causes UNDEF exception).
3391 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3392 /* Pre-v8 MIDR space.
3393 * Note that the MIDR isn't a simple constant register because
3394 * of the TI925 behaviour where writes to another register can
3395 * cause the MIDR value to change.
3397 * Unimplemented registers in the c15 0 0 0 space default to
3398 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
3399 * and friends override accordingly.
3401 { .name = "MIDR",
3402 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3403 .access = PL1_R, .resetvalue = cpu->midr,
3404 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3405 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
3406 .type = ARM_CP_OVERRIDE },
3407 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
3408 { .name = "DUMMY",
3409 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
3410 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3411 { .name = "DUMMY",
3412 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
3413 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3414 { .name = "DUMMY",
3415 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
3416 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3417 { .name = "DUMMY",
3418 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
3419 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3420 { .name = "DUMMY",
3421 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
3422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3423 REGINFO_SENTINEL
3425 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
3426 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
3427 * variable-MIDR TI925 behaviour. Instead we have a single
3428 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
3430 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
3431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
3432 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3433 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
3434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3435 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3436 REGINFO_SENTINEL
3438 ARMCPRegInfo id_cp_reginfo[] = {
3439 /* These are common to v8 and pre-v8 */
3440 { .name = "CTR",
3441 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
3442 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3443 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
3444 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
3445 .access = PL0_R, .accessfn = ctr_el0_access,
3446 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
3447 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
3448 { .name = "TCMTR",
3449 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
3450 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3451 { .name = "TLBTR",
3452 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
3453 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3454 REGINFO_SENTINEL
3456 ARMCPRegInfo crn0_wi_reginfo = {
3457 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
3458 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
3459 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
3461 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
3462 arm_feature(env, ARM_FEATURE_STRONGARM)) {
3463 ARMCPRegInfo *r;
3464 /* Register the blanket "writes ignored" value first to cover the
3465 * whole space. Then update the specific ID registers to allow write
3466 * access, so that they ignore writes rather than causing them to
3467 * UNDEF.
3469 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3470 for (r = id_pre_v8_midr_cp_reginfo;
3471 r->type != ARM_CP_SENTINEL; r++) {
3472 r->access = PL1_RW;
3474 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
3475 r->access = PL1_RW;
3478 if (arm_feature(env, ARM_FEATURE_V8)) {
3479 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
3480 } else {
3481 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
3483 define_arm_cp_regs(cpu, id_cp_reginfo);
3486 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
3487 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
3490 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
3491 ARMCPRegInfo auxcr = {
3492 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
3493 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3494 .access = PL1_RW, .type = ARM_CP_CONST,
3495 .resetvalue = cpu->reset_auxcr
3497 define_one_arm_cp_reg(cpu, &auxcr);
3500 if (arm_feature(env, ARM_FEATURE_CBAR)) {
3501 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3502 /* 32 bit view is [31:18] 0...0 [43:32]. */
3503 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
3504 | extract64(cpu->reset_cbar, 32, 12);
3505 ARMCPRegInfo cbar_reginfo[] = {
3506 { .name = "CBAR",
3507 .type = ARM_CP_CONST,
3508 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3509 .access = PL1_R, .resetvalue = cpu->reset_cbar },
3510 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
3511 .type = ARM_CP_CONST,
3512 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
3513 .access = PL1_R, .resetvalue = cbar32 },
3514 REGINFO_SENTINEL
3516 /* We don't implement a r/w 64 bit CBAR currently */
3517 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
3518 define_arm_cp_regs(cpu, cbar_reginfo);
3519 } else {
3520 ARMCPRegInfo cbar = {
3521 .name = "CBAR",
3522 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
3523 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
3524 .fieldoffset = offsetof(CPUARMState,
3525 cp15.c15_config_base_address)
3527 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
3528 cbar.access = PL1_R;
3529 cbar.fieldoffset = 0;
3530 cbar.type = ARM_CP_CONST;
3532 define_one_arm_cp_reg(cpu, &cbar);
3536 /* Generic registers whose values depend on the implementation */
3538 ARMCPRegInfo sctlr = {
3539 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3540 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3541 .access = PL1_RW,
3542 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
3543 offsetof(CPUARMState, cp15.sctlr_ns) },
3544 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
3545 .raw_writefn = raw_write,
3547 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3548 /* Normally we would always end the TB on an SCTLR write, but Linux
3549 * arch/arm/mach-pxa/sleep.S expects two instructions following
3550 * an MMU enable to execute from cache. Imitate this behaviour.
3552 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
3554 define_one_arm_cp_reg(cpu, &sctlr);
3558 ARMCPU *cpu_arm_init(const char *cpu_model)
3560 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3563 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
3565 CPUState *cs = CPU(cpu);
3566 CPUARMState *env = &cpu->env;
3568 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
3569 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
3570 aarch64_fpu_gdb_set_reg,
3571 34, "aarch64-fpu.xml", 0);
3572 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3573 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3574 51, "arm-neon.xml", 0);
3575 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3576 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3577 35, "arm-vfp3.xml", 0);
3578 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3579 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
3580 19, "arm-vfp.xml", 0);
3584 /* Sort alphabetically by type name, except for "any". */
3585 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
3587 ObjectClass *class_a = (ObjectClass *)a;
3588 ObjectClass *class_b = (ObjectClass *)b;
3589 const char *name_a, *name_b;
3591 name_a = object_class_get_name(class_a);
3592 name_b = object_class_get_name(class_b);
3593 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3594 return 1;
3595 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3596 return -1;
3597 } else {
3598 return strcmp(name_a, name_b);
3602 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
3604 ObjectClass *oc = data;
3605 CPUListState *s = user_data;
3606 const char *typename;
3607 char *name;
3609 typename = object_class_get_name(oc);
3610 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3611 (*s->cpu_fprintf)(s->file, " %s\n",
3612 name);
3613 g_free(name);
3616 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
3618 CPUListState s = {
3619 .file = f,
3620 .cpu_fprintf = cpu_fprintf,
3622 GSList *list;
3624 list = object_class_get_list(TYPE_ARM_CPU, false);
3625 list = g_slist_sort(list, arm_cpu_list_compare);
3626 (*cpu_fprintf)(f, "Available CPUs:\n");
3627 g_slist_foreach(list, arm_cpu_list_entry, &s);
3628 g_slist_free(list);
3629 #ifdef CONFIG_KVM
3630 /* The 'host' CPU type is dynamically registered only if KVM is
3631 * enabled, so we have to special-case it here:
3633 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
3634 #endif
3637 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
3639 ObjectClass *oc = data;
3640 CpuDefinitionInfoList **cpu_list = user_data;
3641 CpuDefinitionInfoList *entry;
3642 CpuDefinitionInfo *info;
3643 const char *typename;
3645 typename = object_class_get_name(oc);
3646 info = g_malloc0(sizeof(*info));
3647 info->name = g_strndup(typename,
3648 strlen(typename) - strlen("-" TYPE_ARM_CPU));
3650 entry = g_malloc0(sizeof(*entry));
3651 entry->value = info;
3652 entry->next = *cpu_list;
3653 *cpu_list = entry;
3656 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
3658 CpuDefinitionInfoList *cpu_list = NULL;
3659 GSList *list;
3661 list = object_class_get_list(TYPE_ARM_CPU, false);
3662 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
3663 g_slist_free(list);
3665 return cpu_list;
3668 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3669 void *opaque, int state, int secstate,
3670 int crm, int opc1, int opc2)
3672 /* Private utility function for define_one_arm_cp_reg_with_opaque():
3673 * add a single reginfo struct to the hash table.
3675 uint32_t *key = g_new(uint32_t, 1);
3676 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
3677 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3678 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
3680 /* Reset the secure state to the specific incoming state. This is
3681 * necessary as the register may have been defined with both states.
3683 r2->secure = secstate;
3685 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3686 /* Register is banked (using both entries in array).
3687 * Overwriting fieldoffset as the array is only used to define
3688 * banked registers but later only fieldoffset is used.
3690 r2->fieldoffset = r->bank_fieldoffsets[ns];
3693 if (state == ARM_CP_STATE_AA32) {
3694 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
3695 /* If the register is banked then we don't need to migrate or
3696 * reset the 32-bit instance in certain cases:
3698 * 1) If the register has both 32-bit and 64-bit instances then we
3699 * can count on the 64-bit instance taking care of the
3700 * non-secure bank.
3701 * 2) If ARMv8 is enabled then we can count on a 64-bit version
3702 * taking care of the secure bank. This requires that separate
3703 * 32 and 64-bit definitions are provided.
3705 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
3706 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3707 r2->type |= ARM_CP_ALIAS;
3708 r2->resetfn = arm_cp_reset_ignore;
3710 } else if ((secstate != r->secure) && !ns) {
3711 /* The register is not banked so we only want to allow migration of
3712 * the non-secure instance.
3714 r2->type |= ARM_CP_ALIAS;
3715 r2->resetfn = arm_cp_reset_ignore;
3718 if (r->state == ARM_CP_STATE_BOTH) {
3719 /* We assume it is a cp15 register if the .cp field is left unset.
3721 if (r2->cp == 0) {
3722 r2->cp = 15;
3725 #ifdef HOST_WORDS_BIGENDIAN
3726 if (r2->fieldoffset) {
3727 r2->fieldoffset += sizeof(uint32_t);
3729 #endif
3732 if (state == ARM_CP_STATE_AA64) {
3733 /* To allow abbreviation of ARMCPRegInfo
3734 * definitions, we treat cp == 0 as equivalent to
3735 * the value for "standard guest-visible sysreg".
3736 * STATE_BOTH definitions are also always "standard
3737 * sysreg" in their AArch64 view (the .cp value may
3738 * be non-zero for the benefit of the AArch32 view).
3740 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3741 r2->cp = CP_REG_ARM64_SYSREG_CP;
3743 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
3744 r2->opc0, opc1, opc2);
3745 } else {
3746 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3748 if (opaque) {
3749 r2->opaque = opaque;
3751 /* reginfo passed to helpers is correct for the actual access,
3752 * and is never ARM_CP_STATE_BOTH:
3754 r2->state = state;
3755 /* Make sure reginfo passed to helpers for wildcarded regs
3756 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
3758 r2->crm = crm;
3759 r2->opc1 = opc1;
3760 r2->opc2 = opc2;
3761 /* By convention, for wildcarded registers only the first
3762 * entry is used for migration; the others are marked as
3763 * ALIAS so we don't try to transfer the register
3764 * multiple times. Special registers (ie NOP/WFI) are
3765 * never migratable and not even raw-accessible.
3767 if ((r->type & ARM_CP_SPECIAL)) {
3768 r2->type |= ARM_CP_NO_RAW;
3770 if (((r->crm == CP_ANY) && crm != 0) ||
3771 ((r->opc1 == CP_ANY) && opc1 != 0) ||
3772 ((r->opc2 == CP_ANY) && opc2 != 0)) {
3773 r2->type |= ARM_CP_ALIAS;
3776 /* Check that raw accesses are either forbidden or handled. Note that
3777 * we can't assert this earlier because the setup of fieldoffset for
3778 * banked registers has to be done first.
3780 if (!(r2->type & ARM_CP_NO_RAW)) {
3781 assert(!raw_accessors_invalid(r2));
3784 /* Overriding of an existing definition must be explicitly
3785 * requested.
3787 if (!(r->type & ARM_CP_OVERRIDE)) {
3788 ARMCPRegInfo *oldreg;
3789 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
3790 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
3791 fprintf(stderr, "Register redefined: cp=%d %d bit "
3792 "crn=%d crm=%d opc1=%d opc2=%d, "
3793 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
3794 r2->crn, r2->crm, r2->opc1, r2->opc2,
3795 oldreg->name, r2->name);
3796 g_assert_not_reached();
3799 g_hash_table_insert(cpu->cp_regs, key, r2);
3803 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
3804 const ARMCPRegInfo *r, void *opaque)
3806 /* Define implementations of coprocessor registers.
3807 * We store these in a hashtable because typically
3808 * there are less than 150 registers in a space which
3809 * is 16*16*16*8*8 = 262144 in size.
3810 * Wildcarding is supported for the crm, opc1 and opc2 fields.
3811 * If a register is defined twice then the second definition is
3812 * used, so this can be used to define some generic registers and
3813 * then override them with implementation specific variations.
3814 * At least one of the original and the second definition should
3815 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
3816 * against accidental use.
3818 * The state field defines whether the register is to be
3819 * visible in the AArch32 or AArch64 execution state. If the
3820 * state is set to ARM_CP_STATE_BOTH then we synthesise a
3821 * reginfo structure for the AArch32 view, which sees the lower
3822 * 32 bits of the 64 bit register.
3824 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
3825 * be wildcarded. AArch64 registers are always considered to be 64
3826 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
3827 * the register, if any.
3829 int crm, opc1, opc2, state;
3830 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
3831 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
3832 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
3833 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
3834 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
3835 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
3836 /* 64 bit registers have only CRm and Opc1 fields */
3837 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3838 /* op0 only exists in the AArch64 encodings */
3839 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
3840 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
3841 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
3842 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
3843 * encodes a minimum access level for the register. We roll this
3844 * runtime check into our general permission check code, so check
3845 * here that the reginfo's specified permissions are strict enough
3846 * to encompass the generic architectural permission check.
3848 if (r->state != ARM_CP_STATE_AA32) {
3849 int mask = 0;
3850 switch (r->opc1) {
3851 case 0: case 1: case 2:
3852 /* min_EL EL1 */
3853 mask = PL1_RW;
3854 break;
3855 case 3:
3856 /* min_EL EL0 */
3857 mask = PL0_RW;
3858 break;
3859 case 4:
3860 /* min_EL EL2 */
3861 mask = PL2_RW;
3862 break;
3863 case 5:
3864 /* unallocated encoding, so not possible */
3865 assert(false);
3866 break;
3867 case 6:
3868 /* min_EL EL3 */
3869 mask = PL3_RW;
3870 break;
3871 case 7:
3872 /* min_EL EL1, secure mode only (we don't check the latter) */
3873 mask = PL1_RW;
3874 break;
3875 default:
3876 /* broken reginfo with out-of-range opc1 */
3877 assert(false);
3878 break;
3880 /* assert our permissions are not too lax (stricter is fine) */
3881 assert((r->access & ~mask) == 0);
3884 /* Check that the register definition has enough info to handle
3885 * reads and writes if they are permitted.
3887 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
3888 if (r->access & PL3_R) {
3889 assert((r->fieldoffset ||
3890 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3891 r->readfn);
3893 if (r->access & PL3_W) {
3894 assert((r->fieldoffset ||
3895 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
3896 r->writefn);
3899 /* Bad type field probably means missing sentinel at end of reg list */
3900 assert(cptype_valid(r->type));
3901 for (crm = crmmin; crm <= crmmax; crm++) {
3902 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
3903 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3904 for (state = ARM_CP_STATE_AA32;
3905 state <= ARM_CP_STATE_AA64; state++) {
3906 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
3907 continue;
3909 if (state == ARM_CP_STATE_AA32) {
3910 /* Under AArch32 CP registers can be common
3911 * (same for secure and non-secure world) or banked.
3913 switch (r->secure) {
3914 case ARM_CP_SECSTATE_S:
3915 case ARM_CP_SECSTATE_NS:
3916 add_cpreg_to_hashtable(cpu, r, opaque, state,
3917 r->secure, crm, opc1, opc2);
3918 break;
3919 default:
3920 add_cpreg_to_hashtable(cpu, r, opaque, state,
3921 ARM_CP_SECSTATE_S,
3922 crm, opc1, opc2);
3923 add_cpreg_to_hashtable(cpu, r, opaque, state,
3924 ARM_CP_SECSTATE_NS,
3925 crm, opc1, opc2);
3926 break;
3928 } else {
3929 /* AArch64 registers get mapped to non-secure instance
3930 * of AArch32 */
3931 add_cpreg_to_hashtable(cpu, r, opaque, state,
3932 ARM_CP_SECSTATE_NS,
3933 crm, opc1, opc2);
3941 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
3942 const ARMCPRegInfo *regs, void *opaque)
3944 /* Define a whole list of registers */
3945 const ARMCPRegInfo *r;
3946 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
3947 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
3951 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3953 return g_hash_table_lookup(cpregs, &encoded_cp);
3956 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
3957 uint64_t value)
3959 /* Helper coprocessor write function for write-ignore registers */
3962 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3964 /* Helper coprocessor write function for read-as-zero registers */
3965 return 0;
3968 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
3970 /* Helper coprocessor reset function for do-nothing-on-reset registers */
3973 static int bad_mode_switch(CPUARMState *env, int mode)
3975 /* Return true if it is not valid for us to switch to
3976 * this CPU mode (ie all the UNPREDICTABLE cases in
3977 * the ARM ARM CPSRWriteByInstr pseudocode).
3979 switch (mode) {
3980 case ARM_CPU_MODE_USR:
3981 case ARM_CPU_MODE_SYS:
3982 case ARM_CPU_MODE_SVC:
3983 case ARM_CPU_MODE_ABT:
3984 case ARM_CPU_MODE_UND:
3985 case ARM_CPU_MODE_IRQ:
3986 case ARM_CPU_MODE_FIQ:
3987 return 0;
3988 case ARM_CPU_MODE_MON:
3989 return !arm_is_secure(env);
3990 default:
3991 return 1;
3995 uint32_t cpsr_read(CPUARMState *env)
3997 int ZF;
3998 ZF = (env->ZF == 0);
3999 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4000 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4001 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4002 | ((env->condexec_bits & 0xfc) << 8)
4003 | (env->GE << 16) | (env->daif & CPSR_AIF);
4006 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4008 uint32_t changed_daif;
4010 if (mask & CPSR_NZCV) {
4011 env->ZF = (~val) & CPSR_Z;
4012 env->NF = val;
4013 env->CF = (val >> 29) & 1;
4014 env->VF = (val << 3) & 0x80000000;
4016 if (mask & CPSR_Q)
4017 env->QF = ((val & CPSR_Q) != 0);
4018 if (mask & CPSR_T)
4019 env->thumb = ((val & CPSR_T) != 0);
4020 if (mask & CPSR_IT_0_1) {
4021 env->condexec_bits &= ~3;
4022 env->condexec_bits |= (val >> 25) & 3;
4024 if (mask & CPSR_IT_2_7) {
4025 env->condexec_bits &= 3;
4026 env->condexec_bits |= (val >> 8) & 0xfc;
4028 if (mask & CPSR_GE) {
4029 env->GE = (val >> 16) & 0xf;
4032 /* In a V7 implementation that includes the security extensions but does
4033 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4034 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4035 * bits respectively.
4037 * In a V8 implementation, it is permitted for privileged software to
4038 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4040 if (!arm_feature(env, ARM_FEATURE_V8) &&
4041 arm_feature(env, ARM_FEATURE_EL3) &&
4042 !arm_feature(env, ARM_FEATURE_EL2) &&
4043 !arm_is_secure(env)) {
4045 changed_daif = (env->daif ^ val) & mask;
4047 if (changed_daif & CPSR_A) {
4048 /* Check to see if we are allowed to change the masking of async
4049 * abort exceptions from a non-secure state.
4051 if (!(env->cp15.scr_el3 & SCR_AW)) {
4052 qemu_log_mask(LOG_GUEST_ERROR,
4053 "Ignoring attempt to switch CPSR_A flag from "
4054 "non-secure world with SCR.AW bit clear\n");
4055 mask &= ~CPSR_A;
4059 if (changed_daif & CPSR_F) {
4060 /* Check to see if we are allowed to change the masking of FIQ
4061 * exceptions from a non-secure state.
4063 if (!(env->cp15.scr_el3 & SCR_FW)) {
4064 qemu_log_mask(LOG_GUEST_ERROR,
4065 "Ignoring attempt to switch CPSR_F flag from "
4066 "non-secure world with SCR.FW bit clear\n");
4067 mask &= ~CPSR_F;
4070 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4071 * If this bit is set software is not allowed to mask
4072 * FIQs, but is allowed to set CPSR_F to 0.
4074 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4075 (val & CPSR_F)) {
4076 qemu_log_mask(LOG_GUEST_ERROR,
4077 "Ignoring attempt to enable CPSR_F flag "
4078 "(non-maskable FIQ [NMFI] support enabled)\n");
4079 mask &= ~CPSR_F;
4084 env->daif &= ~(CPSR_AIF & mask);
4085 env->daif |= val & CPSR_AIF & mask;
4087 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4088 if (bad_mode_switch(env, val & CPSR_M)) {
4089 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4090 * We choose to ignore the attempt and leave the CPSR M field
4091 * untouched.
4093 mask &= ~CPSR_M;
4094 } else {
4095 switch_mode(env, val & CPSR_M);
4098 mask &= ~CACHED_CPSR_BITS;
4099 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4102 /* Sign/zero extend */
4103 uint32_t HELPER(sxtb16)(uint32_t x)
4105 uint32_t res;
4106 res = (uint16_t)(int8_t)x;
4107 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4108 return res;
4111 uint32_t HELPER(uxtb16)(uint32_t x)
4113 uint32_t res;
4114 res = (uint16_t)(uint8_t)x;
4115 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4116 return res;
4119 uint32_t HELPER(clz)(uint32_t x)
4121 return clz32(x);
4124 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4126 if (den == 0)
4127 return 0;
4128 if (num == INT_MIN && den == -1)
4129 return INT_MIN;
4130 return num / den;
4133 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4135 if (den == 0)
4136 return 0;
4137 return num / den;
4140 uint32_t HELPER(rbit)(uint32_t x)
4142 x = ((x & 0xff000000) >> 24)
4143 | ((x & 0x00ff0000) >> 8)
4144 | ((x & 0x0000ff00) << 8)
4145 | ((x & 0x000000ff) << 24);
4146 x = ((x & 0xf0f0f0f0) >> 4)
4147 | ((x & 0x0f0f0f0f) << 4);
4148 x = ((x & 0x88888888) >> 3)
4149 | ((x & 0x44444444) >> 1)
4150 | ((x & 0x22222222) << 1)
4151 | ((x & 0x11111111) << 3);
4152 return x;
4155 #if defined(CONFIG_USER_ONLY)
4157 /* These should probably raise undefined insn exceptions. */
4158 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4160 ARMCPU *cpu = arm_env_get_cpu(env);
4162 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
4165 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4167 ARMCPU *cpu = arm_env_get_cpu(env);
4169 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
4170 return 0;
4173 void switch_mode(CPUARMState *env, int mode)
4175 ARMCPU *cpu = arm_env_get_cpu(env);
4177 if (mode != ARM_CPU_MODE_USR) {
4178 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4182 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4184 ARMCPU *cpu = arm_env_get_cpu(env);
4186 cpu_abort(CPU(cpu), "banked r13 write\n");
4189 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4191 ARMCPU *cpu = arm_env_get_cpu(env);
4193 cpu_abort(CPU(cpu), "banked r13 read\n");
4194 return 0;
4197 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4198 uint32_t cur_el, bool secure)
4200 return 1;
4203 void aarch64_sync_64_to_32(CPUARMState *env)
4205 g_assert_not_reached();
4208 #else
4210 /* Map CPU modes onto saved register banks. */
4211 int bank_number(int mode)
4213 switch (mode) {
4214 case ARM_CPU_MODE_USR:
4215 case ARM_CPU_MODE_SYS:
4216 return 0;
4217 case ARM_CPU_MODE_SVC:
4218 return 1;
4219 case ARM_CPU_MODE_ABT:
4220 return 2;
4221 case ARM_CPU_MODE_UND:
4222 return 3;
4223 case ARM_CPU_MODE_IRQ:
4224 return 4;
4225 case ARM_CPU_MODE_FIQ:
4226 return 5;
4227 case ARM_CPU_MODE_HYP:
4228 return 6;
4229 case ARM_CPU_MODE_MON:
4230 return 7;
4232 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
4235 void switch_mode(CPUARMState *env, int mode)
4237 int old_mode;
4238 int i;
4240 old_mode = env->uncached_cpsr & CPSR_M;
4241 if (mode == old_mode)
4242 return;
4244 if (old_mode == ARM_CPU_MODE_FIQ) {
4245 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
4246 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
4247 } else if (mode == ARM_CPU_MODE_FIQ) {
4248 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
4249 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
4252 i = bank_number(old_mode);
4253 env->banked_r13[i] = env->regs[13];
4254 env->banked_r14[i] = env->regs[14];
4255 env->banked_spsr[i] = env->spsr;
4257 i = bank_number(mode);
4258 env->regs[13] = env->banked_r13[i];
4259 env->regs[14] = env->banked_r14[i];
4260 env->spsr = env->banked_spsr[i];
4263 /* Physical Interrupt Target EL Lookup Table
4265 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4267 * The below multi-dimensional table is used for looking up the target
4268 * exception level given numerous condition criteria. Specifically, the
4269 * target EL is based on SCR and HCR routing controls as well as the
4270 * currently executing EL and secure state.
4272 * Dimensions:
4273 * target_el_table[2][2][2][2][2][4]
4274 * | | | | | +--- Current EL
4275 * | | | | +------ Non-secure(0)/Secure(1)
4276 * | | | +--------- HCR mask override
4277 * | | +------------ SCR exec state control
4278 * | +--------------- SCR mask override
4279 * +------------------ 32-bit(0)/64-bit(1) EL3
4281 * The table values are as such:
4282 * 0-3 = EL0-EL3
4283 * -1 = Cannot occur
4285 * The ARM ARM target EL table includes entries indicating that an "exception
4286 * is not taken". The two cases where this is applicable are:
4287 * 1) An exception is taken from EL3 but the SCR does not have the exception
4288 * routed to EL3.
4289 * 2) An exception is taken from EL2 but the HCR does not have the exception
4290 * routed to EL2.
4291 * In these two cases, the below table contain a target of EL1. This value is
4292 * returned as it is expected that the consumer of the table data will check
4293 * for "target EL >= current EL" to ensure the exception is not taken.
4295 * SCR HCR
4296 * 64 EA AMO From
4297 * BIT IRQ IMO Non-secure Secure
4298 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4300 const int8_t target_el_table[2][2][2][2][2][4] = {
4301 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4302 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4303 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4304 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4305 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4306 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4307 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4308 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4309 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4310 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4311 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4312 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4313 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4314 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4315 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4316 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4320 * Determine the target EL for physical exceptions
4322 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4323 uint32_t cur_el, bool secure)
4325 CPUARMState *env = cs->env_ptr;
4326 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4327 int scr;
4328 int hcr;
4329 int target_el;
4330 int is64 = arm_el_is_aa64(env, 3);
4332 switch (excp_idx) {
4333 case EXCP_IRQ:
4334 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4335 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4336 break;
4337 case EXCP_FIQ:
4338 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4339 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4340 break;
4341 default:
4342 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4343 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4344 break;
4347 /* If HCR.TGE is set then HCR is treated as being 1 */
4348 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4350 /* Perform a table-lookup for the target EL given the current state */
4351 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4353 assert(target_el > 0);
4355 return target_el;
4358 static void v7m_push(CPUARMState *env, uint32_t val)
4360 CPUState *cs = CPU(arm_env_get_cpu(env));
4362 env->regs[13] -= 4;
4363 stl_phys(cs->as, env->regs[13], val);
4366 static uint32_t v7m_pop(CPUARMState *env)
4368 CPUState *cs = CPU(arm_env_get_cpu(env));
4369 uint32_t val;
4371 val = ldl_phys(cs->as, env->regs[13]);
4372 env->regs[13] += 4;
4373 return val;
4376 /* Switch to V7M main or process stack pointer. */
4377 static void switch_v7m_sp(CPUARMState *env, int process)
4379 uint32_t tmp;
4380 if (env->v7m.current_sp != process) {
4381 tmp = env->v7m.other_sp;
4382 env->v7m.other_sp = env->regs[13];
4383 env->regs[13] = tmp;
4384 env->v7m.current_sp = process;
4388 static void do_v7m_exception_exit(CPUARMState *env)
4390 uint32_t type;
4391 uint32_t xpsr;
4393 type = env->regs[15];
4394 if (env->v7m.exception != 0)
4395 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
4397 /* Switch to the target stack. */
4398 switch_v7m_sp(env, (type & 4) != 0);
4399 /* Pop registers. */
4400 env->regs[0] = v7m_pop(env);
4401 env->regs[1] = v7m_pop(env);
4402 env->regs[2] = v7m_pop(env);
4403 env->regs[3] = v7m_pop(env);
4404 env->regs[12] = v7m_pop(env);
4405 env->regs[14] = v7m_pop(env);
4406 env->regs[15] = v7m_pop(env);
4407 if (env->regs[15] & 1) {
4408 qemu_log_mask(LOG_GUEST_ERROR,
4409 "M profile return from interrupt with misaligned "
4410 "PC is UNPREDICTABLE\n");
4411 /* Actual hardware seems to ignore the lsbit, and there are several
4412 * RTOSes out there which incorrectly assume the r15 in the stack
4413 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
4415 env->regs[15] &= ~1U;
4417 xpsr = v7m_pop(env);
4418 xpsr_write(env, xpsr, 0xfffffdff);
4419 /* Undo stack alignment. */
4420 if (xpsr & 0x200)
4421 env->regs[13] |= 4;
4422 /* ??? The exception return type specifies Thread/Handler mode. However
4423 this is also implied by the xPSR value. Not sure what to do
4424 if there is a mismatch. */
4425 /* ??? Likewise for mismatches between the CONTROL register and the stack
4426 pointer. */
4429 void arm_v7m_cpu_do_interrupt(CPUState *cs)
4431 ARMCPU *cpu = ARM_CPU(cs);
4432 CPUARMState *env = &cpu->env;
4433 uint32_t xpsr = xpsr_read(env);
4434 uint32_t lr;
4435 uint32_t addr;
4437 arm_log_exception(cs->exception_index);
4439 lr = 0xfffffff1;
4440 if (env->v7m.current_sp)
4441 lr |= 4;
4442 if (env->v7m.exception == 0)
4443 lr |= 8;
4445 /* For exceptions we just mark as pending on the NVIC, and let that
4446 handle it. */
4447 /* TODO: Need to escalate if the current priority is higher than the
4448 one we're raising. */
4449 switch (cs->exception_index) {
4450 case EXCP_UDEF:
4451 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
4452 return;
4453 case EXCP_SWI:
4454 /* The PC already points to the next instruction. */
4455 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
4456 return;
4457 case EXCP_PREFETCH_ABORT:
4458 case EXCP_DATA_ABORT:
4459 /* TODO: if we implemented the MPU registers, this is where we
4460 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
4462 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
4463 return;
4464 case EXCP_BKPT:
4465 if (semihosting_enabled) {
4466 int nr;
4467 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4468 if (nr == 0xab) {
4469 env->regs[15] += 2;
4470 env->regs[0] = do_arm_semihosting(env);
4471 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4472 return;
4475 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
4476 return;
4477 case EXCP_IRQ:
4478 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
4479 break;
4480 case EXCP_EXCEPTION_EXIT:
4481 do_v7m_exception_exit(env);
4482 return;
4483 default:
4484 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4485 return; /* Never happens. Keep compiler happy. */
4488 /* Align stack pointer. */
4489 /* ??? Should only do this if Configuration Control Register
4490 STACKALIGN bit is set. */
4491 if (env->regs[13] & 4) {
4492 env->regs[13] -= 4;
4493 xpsr |= 0x200;
4495 /* Switch to the handler mode. */
4496 v7m_push(env, xpsr);
4497 v7m_push(env, env->regs[15]);
4498 v7m_push(env, env->regs[14]);
4499 v7m_push(env, env->regs[12]);
4500 v7m_push(env, env->regs[3]);
4501 v7m_push(env, env->regs[2]);
4502 v7m_push(env, env->regs[1]);
4503 v7m_push(env, env->regs[0]);
4504 switch_v7m_sp(env, 0);
4505 /* Clear IT bits */
4506 env->condexec_bits = 0;
4507 env->regs[14] = lr;
4508 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
4509 env->regs[15] = addr & 0xfffffffe;
4510 env->thumb = addr & 1;
4513 /* Function used to synchronize QEMU's AArch64 register set with AArch32
4514 * register set. This is necessary when switching between AArch32 and AArch64
4515 * execution state.
4517 void aarch64_sync_32_to_64(CPUARMState *env)
4519 int i;
4520 uint32_t mode = env->uncached_cpsr & CPSR_M;
4522 /* We can blanket copy R[0:7] to X[0:7] */
4523 for (i = 0; i < 8; i++) {
4524 env->xregs[i] = env->regs[i];
4527 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
4528 * Otherwise, they come from the banked user regs.
4530 if (mode == ARM_CPU_MODE_FIQ) {
4531 for (i = 8; i < 13; i++) {
4532 env->xregs[i] = env->usr_regs[i - 8];
4534 } else {
4535 for (i = 8; i < 13; i++) {
4536 env->xregs[i] = env->regs[i];
4540 /* Registers x13-x23 are the various mode SP and FP registers. Registers
4541 * r13 and r14 are only copied if we are in that mode, otherwise we copy
4542 * from the mode banked register.
4544 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4545 env->xregs[13] = env->regs[13];
4546 env->xregs[14] = env->regs[14];
4547 } else {
4548 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
4549 /* HYP is an exception in that it is copied from r14 */
4550 if (mode == ARM_CPU_MODE_HYP) {
4551 env->xregs[14] = env->regs[14];
4552 } else {
4553 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
4557 if (mode == ARM_CPU_MODE_HYP) {
4558 env->xregs[15] = env->regs[13];
4559 } else {
4560 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
4563 if (mode == ARM_CPU_MODE_IRQ) {
4564 env->xregs[16] = env->regs[13];
4565 env->xregs[17] = env->regs[14];
4566 } else {
4567 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
4568 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
4571 if (mode == ARM_CPU_MODE_SVC) {
4572 env->xregs[18] = env->regs[13];
4573 env->xregs[19] = env->regs[14];
4574 } else {
4575 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
4576 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
4579 if (mode == ARM_CPU_MODE_ABT) {
4580 env->xregs[20] = env->regs[13];
4581 env->xregs[21] = env->regs[14];
4582 } else {
4583 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
4584 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
4587 if (mode == ARM_CPU_MODE_UND) {
4588 env->xregs[22] = env->regs[13];
4589 env->xregs[23] = env->regs[14];
4590 } else {
4591 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
4592 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
4595 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4596 * mode, then we can copy from r8-r14. Otherwise, we copy from the
4597 * FIQ bank for r8-r14.
4599 if (mode == ARM_CPU_MODE_FIQ) {
4600 for (i = 24; i < 31; i++) {
4601 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
4603 } else {
4604 for (i = 24; i < 29; i++) {
4605 env->xregs[i] = env->fiq_regs[i - 24];
4607 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
4608 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
4611 env->pc = env->regs[15];
4614 /* Function used to synchronize QEMU's AArch32 register set with AArch64
4615 * register set. This is necessary when switching between AArch32 and AArch64
4616 * execution state.
4618 void aarch64_sync_64_to_32(CPUARMState *env)
4620 int i;
4621 uint32_t mode = env->uncached_cpsr & CPSR_M;
4623 /* We can blanket copy X[0:7] to R[0:7] */
4624 for (i = 0; i < 8; i++) {
4625 env->regs[i] = env->xregs[i];
4628 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
4629 * Otherwise, we copy x8-x12 into the banked user regs.
4631 if (mode == ARM_CPU_MODE_FIQ) {
4632 for (i = 8; i < 13; i++) {
4633 env->usr_regs[i - 8] = env->xregs[i];
4635 } else {
4636 for (i = 8; i < 13; i++) {
4637 env->regs[i] = env->xregs[i];
4641 /* Registers r13 & r14 depend on the current mode.
4642 * If we are in a given mode, we copy the corresponding x registers to r13
4643 * and r14. Otherwise, we copy the x register to the banked r13 and r14
4644 * for the mode.
4646 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
4647 env->regs[13] = env->xregs[13];
4648 env->regs[14] = env->xregs[14];
4649 } else {
4650 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
4652 /* HYP is an exception in that it does not have its own banked r14 but
4653 * shares the USR r14
4655 if (mode == ARM_CPU_MODE_HYP) {
4656 env->regs[14] = env->xregs[14];
4657 } else {
4658 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
4662 if (mode == ARM_CPU_MODE_HYP) {
4663 env->regs[13] = env->xregs[15];
4664 } else {
4665 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
4668 if (mode == ARM_CPU_MODE_IRQ) {
4669 env->regs[13] = env->xregs[16];
4670 env->regs[14] = env->xregs[17];
4671 } else {
4672 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
4673 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
4676 if (mode == ARM_CPU_MODE_SVC) {
4677 env->regs[13] = env->xregs[18];
4678 env->regs[14] = env->xregs[19];
4679 } else {
4680 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
4681 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
4684 if (mode == ARM_CPU_MODE_ABT) {
4685 env->regs[13] = env->xregs[20];
4686 env->regs[14] = env->xregs[21];
4687 } else {
4688 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
4689 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
4692 if (mode == ARM_CPU_MODE_UND) {
4693 env->regs[13] = env->xregs[22];
4694 env->regs[14] = env->xregs[23];
4695 } else {
4696 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
4697 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
4700 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
4701 * mode, then we can copy to r8-r14. Otherwise, we copy to the
4702 * FIQ bank for r8-r14.
4704 if (mode == ARM_CPU_MODE_FIQ) {
4705 for (i = 24; i < 31; i++) {
4706 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
4708 } else {
4709 for (i = 24; i < 29; i++) {
4710 env->fiq_regs[i - 24] = env->xregs[i];
4712 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
4713 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
4716 env->regs[15] = env->pc;
4719 /* Handle a CPU exception. */
4720 void arm_cpu_do_interrupt(CPUState *cs)
4722 ARMCPU *cpu = ARM_CPU(cs);
4723 CPUARMState *env = &cpu->env;
4724 uint32_t addr;
4725 uint32_t mask;
4726 int new_mode;
4727 uint32_t offset;
4728 uint32_t moe;
4730 assert(!IS_M(env));
4732 arm_log_exception(cs->exception_index);
4734 if (arm_is_psci_call(cpu, cs->exception_index)) {
4735 arm_handle_psci_call(cpu);
4736 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
4737 return;
4740 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
4741 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
4742 case EC_BREAKPOINT:
4743 case EC_BREAKPOINT_SAME_EL:
4744 moe = 1;
4745 break;
4746 case EC_WATCHPOINT:
4747 case EC_WATCHPOINT_SAME_EL:
4748 moe = 10;
4749 break;
4750 case EC_AA32_BKPT:
4751 moe = 3;
4752 break;
4753 case EC_VECTORCATCH:
4754 moe = 5;
4755 break;
4756 default:
4757 moe = 0;
4758 break;
4761 if (moe) {
4762 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
4765 /* TODO: Vectored interrupt controller. */
4766 switch (cs->exception_index) {
4767 case EXCP_UDEF:
4768 new_mode = ARM_CPU_MODE_UND;
4769 addr = 0x04;
4770 mask = CPSR_I;
4771 if (env->thumb)
4772 offset = 2;
4773 else
4774 offset = 4;
4775 break;
4776 case EXCP_SWI:
4777 if (semihosting_enabled) {
4778 /* Check for semihosting interrupt. */
4779 if (env->thumb) {
4780 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
4781 & 0xff;
4782 } else {
4783 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
4784 & 0xffffff;
4786 /* Only intercept calls from privileged modes, to provide some
4787 semblance of security. */
4788 if (((mask == 0x123456 && !env->thumb)
4789 || (mask == 0xab && env->thumb))
4790 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4791 env->regs[0] = do_arm_semihosting(env);
4792 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4793 return;
4796 new_mode = ARM_CPU_MODE_SVC;
4797 addr = 0x08;
4798 mask = CPSR_I;
4799 /* The PC already points to the next instruction. */
4800 offset = 0;
4801 break;
4802 case EXCP_BKPT:
4803 /* See if this is a semihosting syscall. */
4804 if (env->thumb && semihosting_enabled) {
4805 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
4806 if (mask == 0xab
4807 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
4808 env->regs[15] += 2;
4809 env->regs[0] = do_arm_semihosting(env);
4810 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4811 return;
4814 env->exception.fsr = 2;
4815 /* Fall through to prefetch abort. */
4816 case EXCP_PREFETCH_ABORT:
4817 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
4818 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4819 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
4820 env->exception.fsr, (uint32_t)env->exception.vaddress);
4821 new_mode = ARM_CPU_MODE_ABT;
4822 addr = 0x0c;
4823 mask = CPSR_A | CPSR_I;
4824 offset = 4;
4825 break;
4826 case EXCP_DATA_ABORT:
4827 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
4828 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4829 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4830 env->exception.fsr,
4831 (uint32_t)env->exception.vaddress);
4832 new_mode = ARM_CPU_MODE_ABT;
4833 addr = 0x10;
4834 mask = CPSR_A | CPSR_I;
4835 offset = 8;
4836 break;
4837 case EXCP_IRQ:
4838 new_mode = ARM_CPU_MODE_IRQ;
4839 addr = 0x18;
4840 /* Disable IRQ and imprecise data aborts. */
4841 mask = CPSR_A | CPSR_I;
4842 offset = 4;
4843 if (env->cp15.scr_el3 & SCR_IRQ) {
4844 /* IRQ routed to monitor mode */
4845 new_mode = ARM_CPU_MODE_MON;
4846 mask |= CPSR_F;
4848 break;
4849 case EXCP_FIQ:
4850 new_mode = ARM_CPU_MODE_FIQ;
4851 addr = 0x1c;
4852 /* Disable FIQ, IRQ and imprecise data aborts. */
4853 mask = CPSR_A | CPSR_I | CPSR_F;
4854 if (env->cp15.scr_el3 & SCR_FIQ) {
4855 /* FIQ routed to monitor mode */
4856 new_mode = ARM_CPU_MODE_MON;
4858 offset = 4;
4859 break;
4860 case EXCP_SMC:
4861 new_mode = ARM_CPU_MODE_MON;
4862 addr = 0x08;
4863 mask = CPSR_A | CPSR_I | CPSR_F;
4864 offset = 0;
4865 break;
4866 default:
4867 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
4868 return; /* Never happens. Keep compiler happy. */
4871 if (new_mode == ARM_CPU_MODE_MON) {
4872 addr += env->cp15.mvbar;
4873 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
4874 /* High vectors. When enabled, base address cannot be remapped. */
4875 addr += 0xffff0000;
4876 } else {
4877 /* ARM v7 architectures provide a vector base address register to remap
4878 * the interrupt vector table.
4879 * This register is only followed in non-monitor mode, and is banked.
4880 * Note: only bits 31:5 are valid.
4882 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
4885 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
4886 env->cp15.scr_el3 &= ~SCR_NS;
4889 switch_mode (env, new_mode);
4890 /* For exceptions taken to AArch32 we must clear the SS bit in both
4891 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
4893 env->uncached_cpsr &= ~PSTATE_SS;
4894 env->spsr = cpsr_read(env);
4895 /* Clear IT bits. */
4896 env->condexec_bits = 0;
4897 /* Switch to the new mode, and to the correct instruction set. */
4898 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4899 env->daif |= mask;
4900 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
4901 * and we should just guard the thumb mode on V4 */
4902 if (arm_feature(env, ARM_FEATURE_V4T)) {
4903 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4905 env->regs[14] = env->regs[15] + offset;
4906 env->regs[15] = addr;
4907 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
4911 /* Return the exception level which controls this address translation regime */
4912 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
4914 switch (mmu_idx) {
4915 case ARMMMUIdx_S2NS:
4916 case ARMMMUIdx_S1E2:
4917 return 2;
4918 case ARMMMUIdx_S1E3:
4919 return 3;
4920 case ARMMMUIdx_S1SE0:
4921 return arm_el_is_aa64(env, 3) ? 1 : 3;
4922 case ARMMMUIdx_S1SE1:
4923 case ARMMMUIdx_S1NSE0:
4924 case ARMMMUIdx_S1NSE1:
4925 return 1;
4926 default:
4927 g_assert_not_reached();
4931 /* Return true if this address translation regime is secure */
4932 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
4934 switch (mmu_idx) {
4935 case ARMMMUIdx_S12NSE0:
4936 case ARMMMUIdx_S12NSE1:
4937 case ARMMMUIdx_S1NSE0:
4938 case ARMMMUIdx_S1NSE1:
4939 case ARMMMUIdx_S1E2:
4940 case ARMMMUIdx_S2NS:
4941 return false;
4942 case ARMMMUIdx_S1E3:
4943 case ARMMMUIdx_S1SE0:
4944 case ARMMMUIdx_S1SE1:
4945 return true;
4946 default:
4947 g_assert_not_reached();
4951 /* Return the SCTLR value which controls this address translation regime */
4952 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
4954 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
4957 /* Return true if the specified stage of address translation is disabled */
4958 static inline bool regime_translation_disabled(CPUARMState *env,
4959 ARMMMUIdx mmu_idx)
4961 if (mmu_idx == ARMMMUIdx_S2NS) {
4962 return (env->cp15.hcr_el2 & HCR_VM) == 0;
4964 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
4967 /* Return the TCR controlling this translation regime */
4968 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
4970 if (mmu_idx == ARMMMUIdx_S2NS) {
4971 /* TODO: return VTCR_EL2 */
4972 g_assert_not_reached();
4974 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
4977 /* Return the TTBR associated with this translation regime */
4978 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
4979 int ttbrn)
4981 if (mmu_idx == ARMMMUIdx_S2NS) {
4982 /* TODO: return VTTBR_EL2 */
4983 g_assert_not_reached();
4985 if (ttbrn == 0) {
4986 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
4987 } else {
4988 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
4992 /* Return true if the translation regime is using LPAE format page tables */
4993 static inline bool regime_using_lpae_format(CPUARMState *env,
4994 ARMMMUIdx mmu_idx)
4996 int el = regime_el(env, mmu_idx);
4997 if (el == 2 || arm_el_is_aa64(env, el)) {
4998 return true;
5000 if (arm_feature(env, ARM_FEATURE_LPAE)
5001 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5002 return true;
5004 return false;
5007 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5009 switch (mmu_idx) {
5010 case ARMMMUIdx_S1SE0:
5011 case ARMMMUIdx_S1NSE0:
5012 return true;
5013 default:
5014 return false;
5015 case ARMMMUIdx_S12NSE0:
5016 case ARMMMUIdx_S12NSE1:
5017 g_assert_not_reached();
5021 /* Translate section/page access permissions to page
5022 * R/W protection flags
5024 * @env: CPUARMState
5025 * @mmu_idx: MMU index indicating required translation regime
5026 * @ap: The 3-bit access permissions (AP[2:0])
5027 * @domain_prot: The 2-bit domain access permissions
5029 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5030 int ap, int domain_prot)
5032 bool is_user = regime_is_user(env, mmu_idx);
5034 if (domain_prot == 3) {
5035 return PAGE_READ | PAGE_WRITE;
5038 switch (ap) {
5039 case 0:
5040 if (arm_feature(env, ARM_FEATURE_V7)) {
5041 return 0;
5043 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5044 case SCTLR_S:
5045 return is_user ? 0 : PAGE_READ;
5046 case SCTLR_R:
5047 return PAGE_READ;
5048 default:
5049 return 0;
5051 case 1:
5052 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5053 case 2:
5054 if (is_user) {
5055 return PAGE_READ;
5056 } else {
5057 return PAGE_READ | PAGE_WRITE;
5059 case 3:
5060 return PAGE_READ | PAGE_WRITE;
5061 case 4: /* Reserved. */
5062 return 0;
5063 case 5:
5064 return is_user ? 0 : PAGE_READ;
5065 case 6:
5066 return PAGE_READ;
5067 case 7:
5068 if (!arm_feature(env, ARM_FEATURE_V6K)) {
5069 return 0;
5071 return PAGE_READ;
5072 default:
5073 g_assert_not_reached();
5077 /* Translate section/page access permissions to page
5078 * R/W protection flags.
5080 * @ap: The 2-bit simple AP (AP[2:1])
5081 * @is_user: TRUE if accessing from PL0
5083 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5085 switch (ap) {
5086 case 0:
5087 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5088 case 1:
5089 return PAGE_READ | PAGE_WRITE;
5090 case 2:
5091 return is_user ? 0 : PAGE_READ;
5092 case 3:
5093 return PAGE_READ;
5094 default:
5095 g_assert_not_reached();
5099 static inline int
5100 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5102 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5105 /* Translate section/page access permissions to protection flags
5107 * @env: CPUARMState
5108 * @mmu_idx: MMU index indicating required translation regime
5109 * @is_aa64: TRUE if AArch64
5110 * @ap: The 2-bit simple AP (AP[2:1])
5111 * @ns: NS (non-secure) bit
5112 * @xn: XN (execute-never) bit
5113 * @pxn: PXN (privileged execute-never) bit
5115 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5116 int ap, int ns, int xn, int pxn)
5118 bool is_user = regime_is_user(env, mmu_idx);
5119 int prot_rw, user_rw;
5120 bool have_wxn;
5121 int wxn = 0;
5123 assert(mmu_idx != ARMMMUIdx_S2NS);
5125 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5126 if (is_user) {
5127 prot_rw = user_rw;
5128 } else {
5129 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5132 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5133 return prot_rw;
5136 /* TODO have_wxn should be replaced with
5137 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5138 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5139 * compatible processors have EL2, which is required for [U]WXN.
5141 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5143 if (have_wxn) {
5144 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5147 if (is_aa64) {
5148 switch (regime_el(env, mmu_idx)) {
5149 case 1:
5150 if (!is_user) {
5151 xn = pxn || (user_rw & PAGE_WRITE);
5153 break;
5154 case 2:
5155 case 3:
5156 break;
5158 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5159 switch (regime_el(env, mmu_idx)) {
5160 case 1:
5161 case 3:
5162 if (is_user) {
5163 xn = xn || !(user_rw & PAGE_READ);
5164 } else {
5165 int uwxn = 0;
5166 if (have_wxn) {
5167 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5169 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5170 (uwxn && (user_rw & PAGE_WRITE));
5172 break;
5173 case 2:
5174 break;
5176 } else {
5177 xn = wxn = 0;
5180 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5181 return prot_rw;
5183 return prot_rw | PAGE_EXEC;
5186 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5187 uint32_t *table, uint32_t address)
5189 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5190 TCR *tcr = regime_tcr(env, mmu_idx);
5192 if (address & tcr->mask) {
5193 if (tcr->raw_tcr & TTBCR_PD1) {
5194 /* Translation table walk disabled for TTBR1 */
5195 return false;
5197 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5198 } else {
5199 if (tcr->raw_tcr & TTBCR_PD0) {
5200 /* Translation table walk disabled for TTBR0 */
5201 return false;
5203 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5205 *table |= (address >> 18) & 0x3ffc;
5206 return true;
5209 /* All loads done in the course of a page table walk go through here.
5210 * TODO: rather than ignoring errors from physical memory reads (which
5211 * are external aborts in ARM terminology) we should propagate this
5212 * error out so that we can turn it into a Data Abort if this walk
5213 * was being done for a CPU load/store or an address translation instruction
5214 * (but not if it was for a debug access).
5216 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5218 MemTxAttrs attrs = {};
5220 attrs.secure = is_secure;
5221 return address_space_ldl(cs->as, addr, attrs, NULL);
5224 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5226 MemTxAttrs attrs = {};
5228 attrs.secure = is_secure;
5229 return address_space_ldq(cs->as, addr, attrs, NULL);
5232 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
5233 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5234 int *prot, target_ulong *page_size)
5236 CPUState *cs = CPU(arm_env_get_cpu(env));
5237 int code;
5238 uint32_t table;
5239 uint32_t desc;
5240 int type;
5241 int ap;
5242 int domain = 0;
5243 int domain_prot;
5244 hwaddr phys_addr;
5245 uint32_t dacr;
5247 /* Pagetable walk. */
5248 /* Lookup l1 descriptor. */
5249 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5250 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5251 code = 5;
5252 goto do_fault;
5254 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5255 type = (desc & 3);
5256 domain = (desc >> 5) & 0x0f;
5257 if (regime_el(env, mmu_idx) == 1) {
5258 dacr = env->cp15.dacr_ns;
5259 } else {
5260 dacr = env->cp15.dacr_s;
5262 domain_prot = (dacr >> (domain * 2)) & 3;
5263 if (type == 0) {
5264 /* Section translation fault. */
5265 code = 5;
5266 goto do_fault;
5268 if (domain_prot == 0 || domain_prot == 2) {
5269 if (type == 2)
5270 code = 9; /* Section domain fault. */
5271 else
5272 code = 11; /* Page domain fault. */
5273 goto do_fault;
5275 if (type == 2) {
5276 /* 1Mb section. */
5277 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5278 ap = (desc >> 10) & 3;
5279 code = 13;
5280 *page_size = 1024 * 1024;
5281 } else {
5282 /* Lookup l2 entry. */
5283 if (type == 1) {
5284 /* Coarse pagetable. */
5285 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5286 } else {
5287 /* Fine pagetable. */
5288 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5290 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5291 switch (desc & 3) {
5292 case 0: /* Page translation fault. */
5293 code = 7;
5294 goto do_fault;
5295 case 1: /* 64k page. */
5296 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5297 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
5298 *page_size = 0x10000;
5299 break;
5300 case 2: /* 4k page. */
5301 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5302 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
5303 *page_size = 0x1000;
5304 break;
5305 case 3: /* 1k page. */
5306 if (type == 1) {
5307 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5308 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5309 } else {
5310 /* Page translation fault. */
5311 code = 7;
5312 goto do_fault;
5314 } else {
5315 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5317 ap = (desc >> 4) & 3;
5318 *page_size = 0x400;
5319 break;
5320 default:
5321 /* Never happens, but compiler isn't smart enough to tell. */
5322 abort();
5324 code = 15;
5326 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5327 *prot |= *prot ? PAGE_EXEC : 0;
5328 if (!(*prot & (1 << access_type))) {
5329 /* Access permission fault. */
5330 goto do_fault;
5332 *phys_ptr = phys_addr;
5333 return 0;
5334 do_fault:
5335 return code | (domain << 4);
5338 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
5339 ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5340 MemTxAttrs *attrs,
5341 int *prot, target_ulong *page_size)
5343 CPUState *cs = CPU(arm_env_get_cpu(env));
5344 int code;
5345 uint32_t table;
5346 uint32_t desc;
5347 uint32_t xn;
5348 uint32_t pxn = 0;
5349 int type;
5350 int ap;
5351 int domain = 0;
5352 int domain_prot;
5353 hwaddr phys_addr;
5354 uint32_t dacr;
5355 bool ns;
5357 /* Pagetable walk. */
5358 /* Lookup l1 descriptor. */
5359 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5360 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5361 code = 5;
5362 goto do_fault;
5364 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5365 type = (desc & 3);
5366 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
5367 /* Section translation fault, or attempt to use the encoding
5368 * which is Reserved on implementations without PXN.
5370 code = 5;
5371 goto do_fault;
5373 if ((type == 1) || !(desc & (1 << 18))) {
5374 /* Page or Section. */
5375 domain = (desc >> 5) & 0x0f;
5377 if (regime_el(env, mmu_idx) == 1) {
5378 dacr = env->cp15.dacr_ns;
5379 } else {
5380 dacr = env->cp15.dacr_s;
5382 domain_prot = (dacr >> (domain * 2)) & 3;
5383 if (domain_prot == 0 || domain_prot == 2) {
5384 if (type != 1) {
5385 code = 9; /* Section domain fault. */
5386 } else {
5387 code = 11; /* Page domain fault. */
5389 goto do_fault;
5391 if (type != 1) {
5392 if (desc & (1 << 18)) {
5393 /* Supersection. */
5394 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5395 *page_size = 0x1000000;
5396 } else {
5397 /* Section. */
5398 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5399 *page_size = 0x100000;
5401 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
5402 xn = desc & (1 << 4);
5403 pxn = desc & 1;
5404 code = 13;
5405 ns = extract32(desc, 19, 1);
5406 } else {
5407 if (arm_feature(env, ARM_FEATURE_PXN)) {
5408 pxn = (desc >> 2) & 1;
5410 ns = extract32(desc, 3, 1);
5411 /* Lookup l2 entry. */
5412 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5413 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5414 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
5415 switch (desc & 3) {
5416 case 0: /* Page translation fault. */
5417 code = 7;
5418 goto do_fault;
5419 case 1: /* 64k page. */
5420 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5421 xn = desc & (1 << 15);
5422 *page_size = 0x10000;
5423 break;
5424 case 2: case 3: /* 4k page. */
5425 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5426 xn = desc & 1;
5427 *page_size = 0x1000;
5428 break;
5429 default:
5430 /* Never happens, but compiler isn't smart enough to tell. */
5431 abort();
5433 code = 15;
5435 if (domain_prot == 3) {
5436 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5437 } else {
5438 if (pxn && !regime_is_user(env, mmu_idx)) {
5439 xn = 1;
5441 if (xn && access_type == 2)
5442 goto do_fault;
5444 if (arm_feature(env, ARM_FEATURE_V6K) &&
5445 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
5446 /* The simplified model uses AP[0] as an access control bit. */
5447 if ((ap & 1) == 0) {
5448 /* Access flag fault. */
5449 code = (code == 15) ? 6 : 3;
5450 goto do_fault;
5452 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
5453 } else {
5454 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5456 if (*prot && !xn) {
5457 *prot |= PAGE_EXEC;
5459 if (!(*prot & (1 << access_type))) {
5460 /* Access permission fault. */
5461 goto do_fault;
5464 if (ns) {
5465 /* The NS bit will (as required by the architecture) have no effect if
5466 * the CPU doesn't support TZ or this is a non-secure translation
5467 * regime, because the attribute will already be non-secure.
5469 attrs->secure = false;
5471 *phys_ptr = phys_addr;
5472 return 0;
5473 do_fault:
5474 return code | (domain << 4);
5477 /* Fault type for long-descriptor MMU fault reporting; this corresponds
5478 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
5480 typedef enum {
5481 translation_fault = 1,
5482 access_fault = 2,
5483 permission_fault = 3,
5484 } MMUFaultType;
5486 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
5487 int access_type, ARMMMUIdx mmu_idx,
5488 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
5489 target_ulong *page_size_ptr)
5491 CPUState *cs = CPU(arm_env_get_cpu(env));
5492 /* Read an LPAE long-descriptor translation table. */
5493 MMUFaultType fault_type = translation_fault;
5494 uint32_t level = 1;
5495 uint32_t epd;
5496 int32_t tsz;
5497 uint32_t tg;
5498 uint64_t ttbr;
5499 int ttbr_select;
5500 hwaddr descaddr, descmask;
5501 uint32_t tableattrs;
5502 target_ulong page_size;
5503 uint32_t attrs;
5504 int32_t granule_sz = 9;
5505 int32_t va_size = 32;
5506 int32_t tbi = 0;
5507 TCR *tcr = regime_tcr(env, mmu_idx);
5508 int ap, ns, xn, pxn;
5509 uint32_t el = regime_el(env, mmu_idx);
5510 bool ttbr1_valid = true;
5512 /* TODO:
5513 * This code does not handle the different format TCR for VTCR_EL2.
5514 * This code also does not support shareability levels.
5515 * Attribute and permission bit handling should also be checked when adding
5516 * support for those page table walks.
5518 if (arm_el_is_aa64(env, el)) {
5519 va_size = 64;
5520 if (el > 1) {
5521 tbi = extract64(tcr->raw_tcr, 20, 1);
5522 } else {
5523 if (extract64(address, 55, 1)) {
5524 tbi = extract64(tcr->raw_tcr, 38, 1);
5525 } else {
5526 tbi = extract64(tcr->raw_tcr, 37, 1);
5529 tbi *= 8;
5531 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
5532 * invalid.
5534 if (el > 1) {
5535 ttbr1_valid = false;
5539 /* Determine whether this address is in the region controlled by
5540 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
5541 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
5542 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
5544 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5545 if (va_size == 64) {
5546 t0sz = MIN(t0sz, 39);
5547 t0sz = MAX(t0sz, 16);
5549 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5550 if (va_size == 64) {
5551 t1sz = MIN(t1sz, 39);
5552 t1sz = MAX(t1sz, 16);
5554 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5555 /* there is a ttbr0 region and we are in it (high bits all zero) */
5556 ttbr_select = 0;
5557 } else if (ttbr1_valid && t1sz &&
5558 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5559 /* there is a ttbr1 region and we are in it (high bits all one) */
5560 ttbr_select = 1;
5561 } else if (!t0sz) {
5562 /* ttbr0 region is "everything not in the ttbr1 region" */
5563 ttbr_select = 0;
5564 } else if (!t1sz && ttbr1_valid) {
5565 /* ttbr1 region is "everything not in the ttbr0 region" */
5566 ttbr_select = 1;
5567 } else {
5568 /* in the gap between the two regions, this is a Translation fault */
5569 fault_type = translation_fault;
5570 goto do_fault;
5573 /* Note that QEMU ignores shareability and cacheability attributes,
5574 * so we don't need to do anything with the SH, ORGN, IRGN fields
5575 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
5576 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
5577 * implement any ASID-like capability so we can ignore it (instead
5578 * we will always flush the TLB any time the ASID is changed).
5580 if (ttbr_select == 0) {
5581 ttbr = regime_ttbr(env, mmu_idx, 0);
5582 epd = extract32(tcr->raw_tcr, 7, 1);
5583 tsz = t0sz;
5585 tg = extract32(tcr->raw_tcr, 14, 2);
5586 if (tg == 1) { /* 64KB pages */
5587 granule_sz = 13;
5589 if (tg == 2) { /* 16KB pages */
5590 granule_sz = 11;
5592 } else {
5593 /* We should only be here if TTBR1 is valid */
5594 assert(ttbr1_valid);
5596 ttbr = regime_ttbr(env, mmu_idx, 1);
5597 epd = extract32(tcr->raw_tcr, 23, 1);
5598 tsz = t1sz;
5600 tg = extract32(tcr->raw_tcr, 30, 2);
5601 if (tg == 3) { /* 64KB pages */
5602 granule_sz = 13;
5604 if (tg == 1) { /* 16KB pages */
5605 granule_sz = 11;
5609 /* Here we should have set up all the parameters for the translation:
5610 * va_size, ttbr, epd, tsz, granule_sz, tbi
5613 if (epd) {
5614 /* Translation table walk disabled => Translation fault on TLB miss
5615 * Note: This is always 0 on 64-bit EL2 and EL3.
5617 goto do_fault;
5620 /* The starting level depends on the virtual address size (which can be
5621 * up to 48 bits) and the translation granule size. It indicates the number
5622 * of strides (granule_sz bits at a time) needed to consume the bits
5623 * of the input address. In the pseudocode this is:
5624 * level = 4 - RoundUp((inputsize - grainsize) / stride)
5625 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
5626 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
5627 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
5628 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
5629 * = 4 - (va_size - tsz - 4) / granule_sz;
5631 level = 4 - (va_size - tsz - 4) / granule_sz;
5633 /* Clear the vaddr bits which aren't part of the within-region address,
5634 * so that we don't have to special case things when calculating the
5635 * first descriptor address.
5637 if (tsz) {
5638 address &= (1ULL << (va_size - tsz)) - 1;
5641 descmask = (1ULL << (granule_sz + 3)) - 1;
5643 /* Now we can extract the actual base address from the TTBR */
5644 descaddr = extract64(ttbr, 0, 48);
5645 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5647 /* Secure accesses start with the page table in secure memory and
5648 * can be downgraded to non-secure at any step. Non-secure accesses
5649 * remain non-secure. We implement this by just ORing in the NSTable/NS
5650 * bits at each step.
5652 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
5653 for (;;) {
5654 uint64_t descriptor;
5655 bool nstable;
5657 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
5658 descaddr &= ~7ULL;
5659 nstable = extract32(tableattrs, 4, 1);
5660 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
5661 if (!(descriptor & 1) ||
5662 (!(descriptor & 2) && (level == 3))) {
5663 /* Invalid, or the Reserved level 3 encoding */
5664 goto do_fault;
5666 descaddr = descriptor & 0xfffffff000ULL;
5668 if ((descriptor & 2) && (level < 3)) {
5669 /* Table entry. The top five bits are attributes which may
5670 * propagate down through lower levels of the table (and
5671 * which are all arranged so that 0 means "no effect", so
5672 * we can gather them up by ORing in the bits at each level).
5674 tableattrs |= extract64(descriptor, 59, 5);
5675 level++;
5676 continue;
5678 /* Block entry at level 1 or 2, or page entry at level 3.
5679 * These are basically the same thing, although the number
5680 * of bits we pull in from the vaddr varies.
5682 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5683 descaddr |= (address & (page_size - 1));
5684 /* Extract attributes from the descriptor and merge with table attrs */
5685 attrs = extract64(descriptor, 2, 10)
5686 | (extract64(descriptor, 52, 12) << 10);
5687 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
5688 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
5689 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
5690 * means "force PL1 access only", which means forcing AP[1] to 0.
5692 if (extract32(tableattrs, 2, 1)) {
5693 attrs &= ~(1 << 4);
5695 attrs |= nstable << 3; /* NS */
5696 break;
5698 /* Here descaddr is the final physical address, and attributes
5699 * are all in attrs.
5701 fault_type = access_fault;
5702 if ((attrs & (1 << 8)) == 0) {
5703 /* Access flag */
5704 goto do_fault;
5707 ap = extract32(attrs, 4, 2);
5708 ns = extract32(attrs, 3, 1);
5709 xn = extract32(attrs, 12, 1);
5710 pxn = extract32(attrs, 11, 1);
5712 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
5714 fault_type = permission_fault;
5715 if (!(*prot & (1 << access_type))) {
5716 goto do_fault;
5719 if (ns) {
5720 /* The NS bit will (as required by the architecture) have no effect if
5721 * the CPU doesn't support TZ or this is a non-secure translation
5722 * regime, because the attribute will already be non-secure.
5724 txattrs->secure = false;
5726 *phys_ptr = descaddr;
5727 *page_size_ptr = page_size;
5728 return 0;
5730 do_fault:
5731 /* Long-descriptor format IFSR/DFSR value */
5732 return (1 << 9) | (fault_type << 2) | level;
5735 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
5736 int access_type, ARMMMUIdx mmu_idx,
5737 hwaddr *phys_ptr, int *prot)
5739 int n;
5740 uint32_t mask;
5741 uint32_t base;
5742 bool is_user = regime_is_user(env, mmu_idx);
5744 *phys_ptr = address;
5745 for (n = 7; n >= 0; n--) {
5746 base = env->cp15.c6_region[n];
5747 if ((base & 1) == 0) {
5748 continue;
5750 mask = 1 << ((base >> 1) & 0x1f);
5751 /* Keep this shift separate from the above to avoid an
5752 (undefined) << 32. */
5753 mask = (mask << 1) - 1;
5754 if (((base ^ address) & ~mask) == 0) {
5755 break;
5758 if (n < 0) {
5759 return 2;
5762 if (access_type == 2) {
5763 mask = env->cp15.pmsav5_insn_ap;
5764 } else {
5765 mask = env->cp15.pmsav5_data_ap;
5767 mask = (mask >> (n * 4)) & 0xf;
5768 switch (mask) {
5769 case 0:
5770 return 1;
5771 case 1:
5772 if (is_user) {
5773 return 1;
5775 *prot = PAGE_READ | PAGE_WRITE;
5776 break;
5777 case 2:
5778 *prot = PAGE_READ;
5779 if (!is_user) {
5780 *prot |= PAGE_WRITE;
5782 break;
5783 case 3:
5784 *prot = PAGE_READ | PAGE_WRITE;
5785 break;
5786 case 5:
5787 if (is_user) {
5788 return 1;
5790 *prot = PAGE_READ;
5791 break;
5792 case 6:
5793 *prot = PAGE_READ;
5794 break;
5795 default:
5796 /* Bad permission. */
5797 return 1;
5799 *prot |= PAGE_EXEC;
5800 return 0;
5803 /* get_phys_addr - get the physical address for this virtual address
5805 * Find the physical address corresponding to the given virtual address,
5806 * by doing a translation table walk on MMU based systems or using the
5807 * MPU state on MPU based systems.
5809 * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs,
5810 * prot and page_size may not be filled in, and the return value provides
5811 * information on why the translation aborted, in the format of a
5812 * DFSR/IFSR fault register, with the following caveats:
5813 * * we honour the short vs long DFSR format differences.
5814 * * the WnR bit is never set (the caller must do this).
5815 * * for MPU based systems we don't bother to return a full FSR format
5816 * value.
5818 * @env: CPUARMState
5819 * @address: virtual address to get physical address for
5820 * @access_type: 0 for read, 1 for write, 2 for execute
5821 * @mmu_idx: MMU index indicating required translation regime
5822 * @phys_ptr: set to the physical address corresponding to the virtual address
5823 * @attrs: set to the memory transaction attributes to use
5824 * @prot: set to the permissions for the page containing phys_ptr
5825 * @page_size: set to the size of the page containing phys_ptr
5827 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
5828 int access_type, ARMMMUIdx mmu_idx,
5829 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
5830 target_ulong *page_size)
5832 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
5833 /* TODO: when we support EL2 we should here call ourselves recursively
5834 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
5835 * functions will also need changing to perform ARMMMUIdx_S2NS loads
5836 * rather than direct physical memory loads when appropriate.
5837 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
5839 assert(!arm_feature(env, ARM_FEATURE_EL2));
5840 mmu_idx += ARMMMUIdx_S1NSE0;
5843 /* The page table entries may downgrade secure to non-secure, but
5844 * cannot upgrade an non-secure translation regime's attributes
5845 * to secure.
5847 attrs->secure = regime_is_secure(env, mmu_idx);
5848 attrs->user = regime_is_user(env, mmu_idx);
5850 /* Fast Context Switch Extension. This doesn't exist at all in v8.
5851 * In v7 and earlier it affects all stage 1 translations.
5853 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
5854 && !arm_feature(env, ARM_FEATURE_V8)) {
5855 if (regime_el(env, mmu_idx) == 3) {
5856 address += env->cp15.fcseidr_s;
5857 } else {
5858 address += env->cp15.fcseidr_ns;
5862 if (regime_translation_disabled(env, mmu_idx)) {
5863 /* MMU/MPU disabled. */
5864 *phys_ptr = address;
5865 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
5866 *page_size = TARGET_PAGE_SIZE;
5867 return 0;
5870 if (arm_feature(env, ARM_FEATURE_MPU)) {
5871 *page_size = TARGET_PAGE_SIZE;
5872 return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr,
5873 prot);
5876 if (regime_using_lpae_format(env, mmu_idx)) {
5877 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5878 attrs, prot, page_size);
5879 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
5880 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
5881 attrs, prot, page_size);
5882 } else {
5883 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
5884 prot, page_size);
5888 /* Walk the page table and (if the mapping exists) add the page
5889 * to the TLB. Return 0 on success, or an ARM DFSR/IFSR fault
5890 * register format value on failure.
5892 int arm_tlb_fill(CPUState *cs, vaddr address,
5893 int access_type, int mmu_idx)
5895 ARMCPU *cpu = ARM_CPU(cs);
5896 CPUARMState *env = &cpu->env;
5897 hwaddr phys_addr;
5898 target_ulong page_size;
5899 int prot;
5900 int ret;
5901 MemTxAttrs attrs = {};
5903 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
5904 &attrs, &prot, &page_size);
5905 if (ret == 0) {
5906 /* Map a single [sub]page. */
5907 phys_addr &= TARGET_PAGE_MASK;
5908 address &= TARGET_PAGE_MASK;
5909 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
5910 prot, mmu_idx, page_size);
5911 return 0;
5914 return ret;
5917 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
5919 ARMCPU *cpu = ARM_CPU(cs);
5920 CPUARMState *env = &cpu->env;
5921 hwaddr phys_addr;
5922 target_ulong page_size;
5923 int prot;
5924 int ret;
5925 MemTxAttrs attrs = {};
5927 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
5928 &attrs, &prot, &page_size);
5930 if (ret != 0) {
5931 return -1;
5934 return phys_addr;
5937 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
5939 if ((env->uncached_cpsr & CPSR_M) == mode) {
5940 env->regs[13] = val;
5941 } else {
5942 env->banked_r13[bank_number(mode)] = val;
5946 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
5948 if ((env->uncached_cpsr & CPSR_M) == mode) {
5949 return env->regs[13];
5950 } else {
5951 return env->banked_r13[bank_number(mode)];
5955 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5957 ARMCPU *cpu = arm_env_get_cpu(env);
5959 switch (reg) {
5960 case 0: /* APSR */
5961 return xpsr_read(env) & 0xf8000000;
5962 case 1: /* IAPSR */
5963 return xpsr_read(env) & 0xf80001ff;
5964 case 2: /* EAPSR */
5965 return xpsr_read(env) & 0xff00fc00;
5966 case 3: /* xPSR */
5967 return xpsr_read(env) & 0xff00fdff;
5968 case 5: /* IPSR */
5969 return xpsr_read(env) & 0x000001ff;
5970 case 6: /* EPSR */
5971 return xpsr_read(env) & 0x0700fc00;
5972 case 7: /* IEPSR */
5973 return xpsr_read(env) & 0x0700edff;
5974 case 8: /* MSP */
5975 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
5976 case 9: /* PSP */
5977 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
5978 case 16: /* PRIMASK */
5979 return (env->daif & PSTATE_I) != 0;
5980 case 17: /* BASEPRI */
5981 case 18: /* BASEPRI_MAX */
5982 return env->v7m.basepri;
5983 case 19: /* FAULTMASK */
5984 return (env->daif & PSTATE_F) != 0;
5985 case 20: /* CONTROL */
5986 return env->v7m.control;
5987 default:
5988 /* ??? For debugging only. */
5989 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
5990 return 0;
5994 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5996 ARMCPU *cpu = arm_env_get_cpu(env);
5998 switch (reg) {
5999 case 0: /* APSR */
6000 xpsr_write(env, val, 0xf8000000);
6001 break;
6002 case 1: /* IAPSR */
6003 xpsr_write(env, val, 0xf8000000);
6004 break;
6005 case 2: /* EAPSR */
6006 xpsr_write(env, val, 0xfe00fc00);
6007 break;
6008 case 3: /* xPSR */
6009 xpsr_write(env, val, 0xfe00fc00);
6010 break;
6011 case 5: /* IPSR */
6012 /* IPSR bits are readonly. */
6013 break;
6014 case 6: /* EPSR */
6015 xpsr_write(env, val, 0x0600fc00);
6016 break;
6017 case 7: /* IEPSR */
6018 xpsr_write(env, val, 0x0600fc00);
6019 break;
6020 case 8: /* MSP */
6021 if (env->v7m.current_sp)
6022 env->v7m.other_sp = val;
6023 else
6024 env->regs[13] = val;
6025 break;
6026 case 9: /* PSP */
6027 if (env->v7m.current_sp)
6028 env->regs[13] = val;
6029 else
6030 env->v7m.other_sp = val;
6031 break;
6032 case 16: /* PRIMASK */
6033 if (val & 1) {
6034 env->daif |= PSTATE_I;
6035 } else {
6036 env->daif &= ~PSTATE_I;
6038 break;
6039 case 17: /* BASEPRI */
6040 env->v7m.basepri = val & 0xff;
6041 break;
6042 case 18: /* BASEPRI_MAX */
6043 val &= 0xff;
6044 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
6045 env->v7m.basepri = val;
6046 break;
6047 case 19: /* FAULTMASK */
6048 if (val & 1) {
6049 env->daif |= PSTATE_F;
6050 } else {
6051 env->daif &= ~PSTATE_F;
6053 break;
6054 case 20: /* CONTROL */
6055 env->v7m.control = val & 3;
6056 switch_v7m_sp(env, (val & 2) != 0);
6057 break;
6058 default:
6059 /* ??? For debugging only. */
6060 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
6061 return;
6065 #endif
6067 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
6069 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
6070 * Note that we do not implement the (architecturally mandated)
6071 * alignment fault for attempts to use this on Device memory
6072 * (which matches the usual QEMU behaviour of not implementing either
6073 * alignment faults or any memory attribute handling).
6076 ARMCPU *cpu = arm_env_get_cpu(env);
6077 uint64_t blocklen = 4 << cpu->dcz_blocksize;
6078 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
6080 #ifndef CONFIG_USER_ONLY
6082 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6083 * the block size so we might have to do more than one TLB lookup.
6084 * We know that in fact for any v8 CPU the page size is at least 4K
6085 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6086 * 1K as an artefact of legacy v5 subpage support being present in the
6087 * same QEMU executable.
6089 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
6090 void *hostaddr[maxidx];
6091 int try, i;
6092 unsigned mmu_idx = cpu_mmu_index(env);
6093 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
6095 for (try = 0; try < 2; try++) {
6097 for (i = 0; i < maxidx; i++) {
6098 hostaddr[i] = tlb_vaddr_to_host(env,
6099 vaddr + TARGET_PAGE_SIZE * i,
6100 1, mmu_idx);
6101 if (!hostaddr[i]) {
6102 break;
6105 if (i == maxidx) {
6106 /* If it's all in the TLB it's fair game for just writing to;
6107 * we know we don't need to update dirty status, etc.
6109 for (i = 0; i < maxidx - 1; i++) {
6110 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
6112 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
6113 return;
6115 /* OK, try a store and see if we can populate the tlb. This
6116 * might cause an exception if the memory isn't writable,
6117 * in which case we will longjmp out of here. We must for
6118 * this purpose use the actual register value passed to us
6119 * so that we get the fault address right.
6121 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
6122 /* Now we can populate the other TLB entries, if any */
6123 for (i = 0; i < maxidx; i++) {
6124 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
6125 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6126 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
6131 /* Slow path (probably attempt to do this to an I/O device or
6132 * similar, or clearing of a block of code we have translations
6133 * cached for). Just do a series of byte writes as the architecture
6134 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6135 * memset(), unmap() sequence here because:
6136 * + we'd need to account for the blocksize being larger than a page
6137 * + the direct-RAM access case is almost always going to be dealt
6138 * with in the fastpath code above, so there's no speed benefit
6139 * + we would have to deal with the map returning NULL because the
6140 * bounce buffer was in use
6142 for (i = 0; i < blocklen; i++) {
6143 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
6146 #else
6147 memset(g2h(vaddr), 0, blocklen);
6148 #endif
6151 /* Note that signed overflow is undefined in C. The following routines are
6152 careful to use unsigned types where modulo arithmetic is required.
6153 Failure to do so _will_ break on newer gcc. */
6155 /* Signed saturating arithmetic. */
6157 /* Perform 16-bit signed saturating addition. */
6158 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
6160 uint16_t res;
6162 res = a + b;
6163 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
6164 if (a & 0x8000)
6165 res = 0x8000;
6166 else
6167 res = 0x7fff;
6169 return res;
6172 /* Perform 8-bit signed saturating addition. */
6173 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
6175 uint8_t res;
6177 res = a + b;
6178 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
6179 if (a & 0x80)
6180 res = 0x80;
6181 else
6182 res = 0x7f;
6184 return res;
6187 /* Perform 16-bit signed saturating subtraction. */
6188 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
6190 uint16_t res;
6192 res = a - b;
6193 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
6194 if (a & 0x8000)
6195 res = 0x8000;
6196 else
6197 res = 0x7fff;
6199 return res;
6202 /* Perform 8-bit signed saturating subtraction. */
6203 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
6205 uint8_t res;
6207 res = a - b;
6208 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
6209 if (a & 0x80)
6210 res = 0x80;
6211 else
6212 res = 0x7f;
6214 return res;
6217 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
6218 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
6219 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
6220 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
6221 #define PFX q
6223 #include "op_addsub.h"
6225 /* Unsigned saturating arithmetic. */
6226 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6228 uint16_t res;
6229 res = a + b;
6230 if (res < a)
6231 res = 0xffff;
6232 return res;
6235 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6237 if (a > b)
6238 return a - b;
6239 else
6240 return 0;
6243 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
6245 uint8_t res;
6246 res = a + b;
6247 if (res < a)
6248 res = 0xff;
6249 return res;
6252 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
6254 if (a > b)
6255 return a - b;
6256 else
6257 return 0;
6260 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
6261 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
6262 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
6263 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
6264 #define PFX uq
6266 #include "op_addsub.h"
6268 /* Signed modulo arithmetic. */
6269 #define SARITH16(a, b, n, op) do { \
6270 int32_t sum; \
6271 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6272 RESULT(sum, n, 16); \
6273 if (sum >= 0) \
6274 ge |= 3 << (n * 2); \
6275 } while(0)
6277 #define SARITH8(a, b, n, op) do { \
6278 int32_t sum; \
6279 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6280 RESULT(sum, n, 8); \
6281 if (sum >= 0) \
6282 ge |= 1 << n; \
6283 } while(0)
6286 #define ADD16(a, b, n) SARITH16(a, b, n, +)
6287 #define SUB16(a, b, n) SARITH16(a, b, n, -)
6288 #define ADD8(a, b, n) SARITH8(a, b, n, +)
6289 #define SUB8(a, b, n) SARITH8(a, b, n, -)
6290 #define PFX s
6291 #define ARITH_GE
6293 #include "op_addsub.h"
6295 /* Unsigned modulo arithmetic. */
6296 #define ADD16(a, b, n) do { \
6297 uint32_t sum; \
6298 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
6299 RESULT(sum, n, 16); \
6300 if ((sum >> 16) == 1) \
6301 ge |= 3 << (n * 2); \
6302 } while(0)
6304 #define ADD8(a, b, n) do { \
6305 uint32_t sum; \
6306 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
6307 RESULT(sum, n, 8); \
6308 if ((sum >> 8) == 1) \
6309 ge |= 1 << n; \
6310 } while(0)
6312 #define SUB16(a, b, n) do { \
6313 uint32_t sum; \
6314 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
6315 RESULT(sum, n, 16); \
6316 if ((sum >> 16) == 0) \
6317 ge |= 3 << (n * 2); \
6318 } while(0)
6320 #define SUB8(a, b, n) do { \
6321 uint32_t sum; \
6322 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
6323 RESULT(sum, n, 8); \
6324 if ((sum >> 8) == 0) \
6325 ge |= 1 << n; \
6326 } while(0)
6328 #define PFX u
6329 #define ARITH_GE
6331 #include "op_addsub.h"
6333 /* Halved signed arithmetic. */
6334 #define ADD16(a, b, n) \
6335 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
6336 #define SUB16(a, b, n) \
6337 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
6338 #define ADD8(a, b, n) \
6339 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
6340 #define SUB8(a, b, n) \
6341 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
6342 #define PFX sh
6344 #include "op_addsub.h"
6346 /* Halved unsigned arithmetic. */
6347 #define ADD16(a, b, n) \
6348 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6349 #define SUB16(a, b, n) \
6350 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
6351 #define ADD8(a, b, n) \
6352 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6353 #define SUB8(a, b, n) \
6354 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
6355 #define PFX uh
6357 #include "op_addsub.h"
6359 static inline uint8_t do_usad(uint8_t a, uint8_t b)
6361 if (a > b)
6362 return a - b;
6363 else
6364 return b - a;
6367 /* Unsigned sum of absolute byte differences. */
6368 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
6370 uint32_t sum;
6371 sum = do_usad(a, b);
6372 sum += do_usad(a >> 8, b >> 8);
6373 sum += do_usad(a >> 16, b >>16);
6374 sum += do_usad(a >> 24, b >> 24);
6375 return sum;
6378 /* For ARMv6 SEL instruction. */
6379 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
6381 uint32_t mask;
6383 mask = 0;
6384 if (flags & 1)
6385 mask |= 0xff;
6386 if (flags & 2)
6387 mask |= 0xff00;
6388 if (flags & 4)
6389 mask |= 0xff0000;
6390 if (flags & 8)
6391 mask |= 0xff000000;
6392 return (a & mask) | (b & ~mask);
6395 /* VFP support. We follow the convention used for VFP instructions:
6396 Single precision routines have a "s" suffix, double precision a
6397 "d" suffix. */
6399 /* Convert host exception flags to vfp form. */
6400 static inline int vfp_exceptbits_from_host(int host_bits)
6402 int target_bits = 0;
6404 if (host_bits & float_flag_invalid)
6405 target_bits |= 1;
6406 if (host_bits & float_flag_divbyzero)
6407 target_bits |= 2;
6408 if (host_bits & float_flag_overflow)
6409 target_bits |= 4;
6410 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
6411 target_bits |= 8;
6412 if (host_bits & float_flag_inexact)
6413 target_bits |= 0x10;
6414 if (host_bits & float_flag_input_denormal)
6415 target_bits |= 0x80;
6416 return target_bits;
6419 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
6421 int i;
6422 uint32_t fpscr;
6424 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
6425 | (env->vfp.vec_len << 16)
6426 | (env->vfp.vec_stride << 20);
6427 i = get_float_exception_flags(&env->vfp.fp_status);
6428 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
6429 fpscr |= vfp_exceptbits_from_host(i);
6430 return fpscr;
6433 uint32_t vfp_get_fpscr(CPUARMState *env)
6435 return HELPER(vfp_get_fpscr)(env);
6438 /* Convert vfp exception flags to target form. */
6439 static inline int vfp_exceptbits_to_host(int target_bits)
6441 int host_bits = 0;
6443 if (target_bits & 1)
6444 host_bits |= float_flag_invalid;
6445 if (target_bits & 2)
6446 host_bits |= float_flag_divbyzero;
6447 if (target_bits & 4)
6448 host_bits |= float_flag_overflow;
6449 if (target_bits & 8)
6450 host_bits |= float_flag_underflow;
6451 if (target_bits & 0x10)
6452 host_bits |= float_flag_inexact;
6453 if (target_bits & 0x80)
6454 host_bits |= float_flag_input_denormal;
6455 return host_bits;
6458 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
6460 int i;
6461 uint32_t changed;
6463 changed = env->vfp.xregs[ARM_VFP_FPSCR];
6464 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
6465 env->vfp.vec_len = (val >> 16) & 7;
6466 env->vfp.vec_stride = (val >> 20) & 3;
6468 changed ^= val;
6469 if (changed & (3 << 22)) {
6470 i = (val >> 22) & 3;
6471 switch (i) {
6472 case FPROUNDING_TIEEVEN:
6473 i = float_round_nearest_even;
6474 break;
6475 case FPROUNDING_POSINF:
6476 i = float_round_up;
6477 break;
6478 case FPROUNDING_NEGINF:
6479 i = float_round_down;
6480 break;
6481 case FPROUNDING_ZERO:
6482 i = float_round_to_zero;
6483 break;
6485 set_float_rounding_mode(i, &env->vfp.fp_status);
6487 if (changed & (1 << 24)) {
6488 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6489 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6491 if (changed & (1 << 25))
6492 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
6494 i = vfp_exceptbits_to_host(val);
6495 set_float_exception_flags(i, &env->vfp.fp_status);
6496 set_float_exception_flags(0, &env->vfp.standard_fp_status);
6499 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6501 HELPER(vfp_set_fpscr)(env, val);
6504 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
6506 #define VFP_BINOP(name) \
6507 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
6509 float_status *fpst = fpstp; \
6510 return float32_ ## name(a, b, fpst); \
6512 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
6514 float_status *fpst = fpstp; \
6515 return float64_ ## name(a, b, fpst); \
6517 VFP_BINOP(add)
6518 VFP_BINOP(sub)
6519 VFP_BINOP(mul)
6520 VFP_BINOP(div)
6521 VFP_BINOP(min)
6522 VFP_BINOP(max)
6523 VFP_BINOP(minnum)
6524 VFP_BINOP(maxnum)
6525 #undef VFP_BINOP
6527 float32 VFP_HELPER(neg, s)(float32 a)
6529 return float32_chs(a);
6532 float64 VFP_HELPER(neg, d)(float64 a)
6534 return float64_chs(a);
6537 float32 VFP_HELPER(abs, s)(float32 a)
6539 return float32_abs(a);
6542 float64 VFP_HELPER(abs, d)(float64 a)
6544 return float64_abs(a);
6547 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
6549 return float32_sqrt(a, &env->vfp.fp_status);
6552 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
6554 return float64_sqrt(a, &env->vfp.fp_status);
6557 /* XXX: check quiet/signaling case */
6558 #define DO_VFP_cmp(p, type) \
6559 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
6561 uint32_t flags; \
6562 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
6563 case 0: flags = 0x6; break; \
6564 case -1: flags = 0x8; break; \
6565 case 1: flags = 0x2; break; \
6566 default: case 2: flags = 0x3; break; \
6568 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6569 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6571 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
6573 uint32_t flags; \
6574 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
6575 case 0: flags = 0x6; break; \
6576 case -1: flags = 0x8; break; \
6577 case 1: flags = 0x2; break; \
6578 default: case 2: flags = 0x3; break; \
6580 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
6581 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
6583 DO_VFP_cmp(s, float32)
6584 DO_VFP_cmp(d, float64)
6585 #undef DO_VFP_cmp
6587 /* Integer to float and float to integer conversions */
6589 #define CONV_ITOF(name, fsz, sign) \
6590 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
6592 float_status *fpst = fpstp; \
6593 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
6596 #define CONV_FTOI(name, fsz, sign, round) \
6597 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
6599 float_status *fpst = fpstp; \
6600 if (float##fsz##_is_any_nan(x)) { \
6601 float_raise(float_flag_invalid, fpst); \
6602 return 0; \
6604 return float##fsz##_to_##sign##int32##round(x, fpst); \
6607 #define FLOAT_CONVS(name, p, fsz, sign) \
6608 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
6609 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
6610 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
6612 FLOAT_CONVS(si, s, 32, )
6613 FLOAT_CONVS(si, d, 64, )
6614 FLOAT_CONVS(ui, s, 32, u)
6615 FLOAT_CONVS(ui, d, 64, u)
6617 #undef CONV_ITOF
6618 #undef CONV_FTOI
6619 #undef FLOAT_CONVS
6621 /* floating point conversion */
6622 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
6624 float64 r = float32_to_float64(x, &env->vfp.fp_status);
6625 /* ARM requires that S<->D conversion of any kind of NaN generates
6626 * a quiet NaN by forcing the most significant frac bit to 1.
6628 return float64_maybe_silence_nan(r);
6631 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
6633 float32 r = float64_to_float32(x, &env->vfp.fp_status);
6634 /* ARM requires that S<->D conversion of any kind of NaN generates
6635 * a quiet NaN by forcing the most significant frac bit to 1.
6637 return float32_maybe_silence_nan(r);
6640 /* VFP3 fixed point conversion. */
6641 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6642 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
6643 void *fpstp) \
6645 float_status *fpst = fpstp; \
6646 float##fsz tmp; \
6647 tmp = itype##_to_##float##fsz(x, fpst); \
6648 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6651 /* Notice that we want only input-denormal exception flags from the
6652 * scalbn operation: the other possible flags (overflow+inexact if
6653 * we overflow to infinity, output-denormal) aren't correct for the
6654 * complete scale-and-convert operation.
6656 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
6657 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
6658 uint32_t shift, \
6659 void *fpstp) \
6661 float_status *fpst = fpstp; \
6662 int old_exc_flags = get_float_exception_flags(fpst); \
6663 float##fsz tmp; \
6664 if (float##fsz##_is_any_nan(x)) { \
6665 float_raise(float_flag_invalid, fpst); \
6666 return 0; \
6668 tmp = float##fsz##_scalbn(x, shift, fpst); \
6669 old_exc_flags |= get_float_exception_flags(fpst) \
6670 & float_flag_input_denormal; \
6671 set_float_exception_flags(old_exc_flags, fpst); \
6672 return float##fsz##_to_##itype##round(tmp, fpst); \
6675 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
6676 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6677 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
6678 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6680 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
6681 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6682 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6684 VFP_CONV_FIX(sh, d, 64, 64, int16)
6685 VFP_CONV_FIX(sl, d, 64, 64, int32)
6686 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6687 VFP_CONV_FIX(uh, d, 64, 64, uint16)
6688 VFP_CONV_FIX(ul, d, 64, 64, uint32)
6689 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6690 VFP_CONV_FIX(sh, s, 32, 32, int16)
6691 VFP_CONV_FIX(sl, s, 32, 32, int32)
6692 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6693 VFP_CONV_FIX(uh, s, 32, 32, uint16)
6694 VFP_CONV_FIX(ul, s, 32, 32, uint32)
6695 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
6696 #undef VFP_CONV_FIX
6697 #undef VFP_CONV_FIX_FLOAT
6698 #undef VFP_CONV_FLOAT_FIX_ROUND
6700 /* Set the current fp rounding mode and return the old one.
6701 * The argument is a softfloat float_round_ value.
6703 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
6705 float_status *fp_status = &env->vfp.fp_status;
6707 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6708 set_float_rounding_mode(rmode, fp_status);
6710 return prev_rmode;
6713 /* Set the current fp rounding mode in the standard fp status and return
6714 * the old one. This is for NEON instructions that need to change the
6715 * rounding mode but wish to use the standard FPSCR values for everything
6716 * else. Always set the rounding mode back to the correct value after
6717 * modifying it.
6718 * The argument is a softfloat float_round_ value.
6720 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
6722 float_status *fp_status = &env->vfp.standard_fp_status;
6724 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
6725 set_float_rounding_mode(rmode, fp_status);
6727 return prev_rmode;
6730 /* Half precision conversions. */
6731 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
6733 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6734 float32 r = float16_to_float32(make_float16(a), ieee, s);
6735 if (ieee) {
6736 return float32_maybe_silence_nan(r);
6738 return r;
6741 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
6743 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6744 float16 r = float32_to_float16(a, ieee, s);
6745 if (ieee) {
6746 r = float16_maybe_silence_nan(r);
6748 return float16_val(r);
6751 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6753 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
6756 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6758 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
6761 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6763 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
6766 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6768 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
6771 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
6773 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6774 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
6775 if (ieee) {
6776 return float64_maybe_silence_nan(r);
6778 return r;
6781 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
6783 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6784 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
6785 if (ieee) {
6786 r = float16_maybe_silence_nan(r);
6788 return float16_val(r);
6791 #define float32_two make_float32(0x40000000)
6792 #define float32_three make_float32(0x40400000)
6793 #define float32_one_point_five make_float32(0x3fc00000)
6795 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
6797 float_status *s = &env->vfp.standard_fp_status;
6798 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6799 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6800 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6801 float_raise(float_flag_input_denormal, s);
6803 return float32_two;
6805 return float32_sub(float32_two, float32_mul(a, b, s), s);
6808 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
6810 float_status *s = &env->vfp.standard_fp_status;
6811 float32 product;
6812 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
6813 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6814 if (!(float32_is_zero(a) || float32_is_zero(b))) {
6815 float_raise(float_flag_input_denormal, s);
6817 return float32_one_point_five;
6819 product = float32_mul(a, b, s);
6820 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
6823 /* NEON helpers. */
6825 /* Constants 256 and 512 are used in some helpers; we avoid relying on
6826 * int->float conversions at run-time. */
6827 #define float64_256 make_float64(0x4070000000000000LL)
6828 #define float64_512 make_float64(0x4080000000000000LL)
6829 #define float32_maxnorm make_float32(0x7f7fffff)
6830 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6832 /* Reciprocal functions
6834 * The algorithm that must be used to calculate the estimate
6835 * is specified by the ARM ARM, see FPRecipEstimate()
6838 static float64 recip_estimate(float64 a, float_status *real_fp_status)
6840 /* These calculations mustn't set any fp exception flags,
6841 * so we use a local copy of the fp_status.
6843 float_status dummy_status = *real_fp_status;
6844 float_status *s = &dummy_status;
6845 /* q = (int)(a * 512.0) */
6846 float64 q = float64_mul(float64_512, a, s);
6847 int64_t q_int = float64_to_int64_round_to_zero(q, s);
6849 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
6850 q = int64_to_float64(q_int, s);
6851 q = float64_add(q, float64_half, s);
6852 q = float64_div(q, float64_512, s);
6853 q = float64_div(float64_one, q, s);
6855 /* s = (int)(256.0 * r + 0.5) */
6856 q = float64_mul(q, float64_256, s);
6857 q = float64_add(q, float64_half, s);
6858 q_int = float64_to_int64_round_to_zero(q, s);
6860 /* return (double)s / 256.0 */
6861 return float64_div(int64_to_float64(q_int, s), float64_256, s);
6864 /* Common wrapper to call recip_estimate */
6865 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
6867 uint64_t val64 = float64_val(num);
6868 uint64_t frac = extract64(val64, 0, 52);
6869 int64_t exp = extract64(val64, 52, 11);
6870 uint64_t sbit;
6871 float64 scaled, estimate;
6873 /* Generate the scaled number for the estimate function */
6874 if (exp == 0) {
6875 if (extract64(frac, 51, 1) == 0) {
6876 exp = -1;
6877 frac = extract64(frac, 0, 50) << 2;
6878 } else {
6879 frac = extract64(frac, 0, 51) << 1;
6883 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
6884 scaled = make_float64((0x3feULL << 52)
6885 | extract64(frac, 44, 8) << 44);
6887 estimate = recip_estimate(scaled, fpst);
6889 /* Build new result */
6890 val64 = float64_val(estimate);
6891 sbit = 0x8000000000000000ULL & val64;
6892 exp = off - exp;
6893 frac = extract64(val64, 0, 52);
6895 if (exp == 0) {
6896 frac = 1ULL << 51 | extract64(frac, 1, 51);
6897 } else if (exp == -1) {
6898 frac = 1ULL << 50 | extract64(frac, 2, 50);
6899 exp = 0;
6902 return make_float64(sbit | (exp << 52) | frac);
6905 static bool round_to_inf(float_status *fpst, bool sign_bit)
6907 switch (fpst->float_rounding_mode) {
6908 case float_round_nearest_even: /* Round to Nearest */
6909 return true;
6910 case float_round_up: /* Round to +Inf */
6911 return !sign_bit;
6912 case float_round_down: /* Round to -Inf */
6913 return sign_bit;
6914 case float_round_to_zero: /* Round to Zero */
6915 return false;
6918 g_assert_not_reached();
6921 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
6923 float_status *fpst = fpstp;
6924 float32 f32 = float32_squash_input_denormal(input, fpst);
6925 uint32_t f32_val = float32_val(f32);
6926 uint32_t f32_sbit = 0x80000000ULL & f32_val;
6927 int32_t f32_exp = extract32(f32_val, 23, 8);
6928 uint32_t f32_frac = extract32(f32_val, 0, 23);
6929 float64 f64, r64;
6930 uint64_t r64_val;
6931 int64_t r64_exp;
6932 uint64_t r64_frac;
6934 if (float32_is_any_nan(f32)) {
6935 float32 nan = f32;
6936 if (float32_is_signaling_nan(f32)) {
6937 float_raise(float_flag_invalid, fpst);
6938 nan = float32_maybe_silence_nan(f32);
6940 if (fpst->default_nan_mode) {
6941 nan = float32_default_nan;
6943 return nan;
6944 } else if (float32_is_infinity(f32)) {
6945 return float32_set_sign(float32_zero, float32_is_neg(f32));
6946 } else if (float32_is_zero(f32)) {
6947 float_raise(float_flag_divbyzero, fpst);
6948 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6949 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
6950 /* Abs(value) < 2.0^-128 */
6951 float_raise(float_flag_overflow | float_flag_inexact, fpst);
6952 if (round_to_inf(fpst, f32_sbit)) {
6953 return float32_set_sign(float32_infinity, float32_is_neg(f32));
6954 } else {
6955 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
6957 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
6958 float_raise(float_flag_underflow, fpst);
6959 return float32_set_sign(float32_zero, float32_is_neg(f32));
6963 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
6964 r64 = call_recip_estimate(f64, 253, fpst);
6965 r64_val = float64_val(r64);
6966 r64_exp = extract64(r64_val, 52, 11);
6967 r64_frac = extract64(r64_val, 0, 52);
6969 /* result = sign : result_exp<7:0> : fraction<51:29>; */
6970 return make_float32(f32_sbit |
6971 (r64_exp & 0xff) << 23 |
6972 extract64(r64_frac, 29, 24));
6975 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
6977 float_status *fpst = fpstp;
6978 float64 f64 = float64_squash_input_denormal(input, fpst);
6979 uint64_t f64_val = float64_val(f64);
6980 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
6981 int64_t f64_exp = extract64(f64_val, 52, 11);
6982 float64 r64;
6983 uint64_t r64_val;
6984 int64_t r64_exp;
6985 uint64_t r64_frac;
6987 /* Deal with any special cases */
6988 if (float64_is_any_nan(f64)) {
6989 float64 nan = f64;
6990 if (float64_is_signaling_nan(f64)) {
6991 float_raise(float_flag_invalid, fpst);
6992 nan = float64_maybe_silence_nan(f64);
6994 if (fpst->default_nan_mode) {
6995 nan = float64_default_nan;
6997 return nan;
6998 } else if (float64_is_infinity(f64)) {
6999 return float64_set_sign(float64_zero, float64_is_neg(f64));
7000 } else if (float64_is_zero(f64)) {
7001 float_raise(float_flag_divbyzero, fpst);
7002 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7003 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
7004 /* Abs(value) < 2.0^-1024 */
7005 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7006 if (round_to_inf(fpst, f64_sbit)) {
7007 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7008 } else {
7009 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
7011 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
7012 float_raise(float_flag_underflow, fpst);
7013 return float64_set_sign(float64_zero, float64_is_neg(f64));
7016 r64 = call_recip_estimate(f64, 2045, fpst);
7017 r64_val = float64_val(r64);
7018 r64_exp = extract64(r64_val, 52, 11);
7019 r64_frac = extract64(r64_val, 0, 52);
7021 /* result = sign : result_exp<10:0> : fraction<51:0> */
7022 return make_float64(f64_sbit |
7023 ((r64_exp & 0x7ff) << 52) |
7024 r64_frac);
7027 /* The algorithm that must be used to calculate the estimate
7028 * is specified by the ARM ARM.
7030 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
7032 /* These calculations mustn't set any fp exception flags,
7033 * so we use a local copy of the fp_status.
7035 float_status dummy_status = *real_fp_status;
7036 float_status *s = &dummy_status;
7037 float64 q;
7038 int64_t q_int;
7040 if (float64_lt(a, float64_half, s)) {
7041 /* range 0.25 <= a < 0.5 */
7043 /* a in units of 1/512 rounded down */
7044 /* q0 = (int)(a * 512.0); */
7045 q = float64_mul(float64_512, a, s);
7046 q_int = float64_to_int64_round_to_zero(q, s);
7048 /* reciprocal root r */
7049 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
7050 q = int64_to_float64(q_int, s);
7051 q = float64_add(q, float64_half, s);
7052 q = float64_div(q, float64_512, s);
7053 q = float64_sqrt(q, s);
7054 q = float64_div(float64_one, q, s);
7055 } else {
7056 /* range 0.5 <= a < 1.0 */
7058 /* a in units of 1/256 rounded down */
7059 /* q1 = (int)(a * 256.0); */
7060 q = float64_mul(float64_256, a, s);
7061 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7063 /* reciprocal root r */
7064 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
7065 q = int64_to_float64(q_int, s);
7066 q = float64_add(q, float64_half, s);
7067 q = float64_div(q, float64_256, s);
7068 q = float64_sqrt(q, s);
7069 q = float64_div(float64_one, q, s);
7071 /* r in units of 1/256 rounded to nearest */
7072 /* s = (int)(256.0 * r + 0.5); */
7074 q = float64_mul(q, float64_256,s );
7075 q = float64_add(q, float64_half, s);
7076 q_int = float64_to_int64_round_to_zero(q, s);
7078 /* return (double)s / 256.0;*/
7079 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7082 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
7084 float_status *s = fpstp;
7085 float32 f32 = float32_squash_input_denormal(input, s);
7086 uint32_t val = float32_val(f32);
7087 uint32_t f32_sbit = 0x80000000 & val;
7088 int32_t f32_exp = extract32(val, 23, 8);
7089 uint32_t f32_frac = extract32(val, 0, 23);
7090 uint64_t f64_frac;
7091 uint64_t val64;
7092 int result_exp;
7093 float64 f64;
7095 if (float32_is_any_nan(f32)) {
7096 float32 nan = f32;
7097 if (float32_is_signaling_nan(f32)) {
7098 float_raise(float_flag_invalid, s);
7099 nan = float32_maybe_silence_nan(f32);
7101 if (s->default_nan_mode) {
7102 nan = float32_default_nan;
7104 return nan;
7105 } else if (float32_is_zero(f32)) {
7106 float_raise(float_flag_divbyzero, s);
7107 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7108 } else if (float32_is_neg(f32)) {
7109 float_raise(float_flag_invalid, s);
7110 return float32_default_nan;
7111 } else if (float32_is_infinity(f32)) {
7112 return float32_zero;
7115 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7116 * preserving the parity of the exponent. */
7118 f64_frac = ((uint64_t) f32_frac) << 29;
7119 if (f32_exp == 0) {
7120 while (extract64(f64_frac, 51, 1) == 0) {
7121 f64_frac = f64_frac << 1;
7122 f32_exp = f32_exp-1;
7124 f64_frac = extract64(f64_frac, 0, 51) << 1;
7127 if (extract64(f32_exp, 0, 1) == 0) {
7128 f64 = make_float64(((uint64_t) f32_sbit) << 32
7129 | (0x3feULL << 52)
7130 | f64_frac);
7131 } else {
7132 f64 = make_float64(((uint64_t) f32_sbit) << 32
7133 | (0x3fdULL << 52)
7134 | f64_frac);
7137 result_exp = (380 - f32_exp) / 2;
7139 f64 = recip_sqrt_estimate(f64, s);
7141 val64 = float64_val(f64);
7143 val = ((result_exp & 0xff) << 23)
7144 | ((val64 >> 29) & 0x7fffff);
7145 return make_float32(val);
7148 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
7150 float_status *s = fpstp;
7151 float64 f64 = float64_squash_input_denormal(input, s);
7152 uint64_t val = float64_val(f64);
7153 uint64_t f64_sbit = 0x8000000000000000ULL & val;
7154 int64_t f64_exp = extract64(val, 52, 11);
7155 uint64_t f64_frac = extract64(val, 0, 52);
7156 int64_t result_exp;
7157 uint64_t result_frac;
7159 if (float64_is_any_nan(f64)) {
7160 float64 nan = f64;
7161 if (float64_is_signaling_nan(f64)) {
7162 float_raise(float_flag_invalid, s);
7163 nan = float64_maybe_silence_nan(f64);
7165 if (s->default_nan_mode) {
7166 nan = float64_default_nan;
7168 return nan;
7169 } else if (float64_is_zero(f64)) {
7170 float_raise(float_flag_divbyzero, s);
7171 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7172 } else if (float64_is_neg(f64)) {
7173 float_raise(float_flag_invalid, s);
7174 return float64_default_nan;
7175 } else if (float64_is_infinity(f64)) {
7176 return float64_zero;
7179 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7180 * preserving the parity of the exponent. */
7182 if (f64_exp == 0) {
7183 while (extract64(f64_frac, 51, 1) == 0) {
7184 f64_frac = f64_frac << 1;
7185 f64_exp = f64_exp - 1;
7187 f64_frac = extract64(f64_frac, 0, 51) << 1;
7190 if (extract64(f64_exp, 0, 1) == 0) {
7191 f64 = make_float64(f64_sbit
7192 | (0x3feULL << 52)
7193 | f64_frac);
7194 } else {
7195 f64 = make_float64(f64_sbit
7196 | (0x3fdULL << 52)
7197 | f64_frac);
7200 result_exp = (3068 - f64_exp) / 2;
7202 f64 = recip_sqrt_estimate(f64, s);
7204 result_frac = extract64(float64_val(f64), 0, 52);
7206 return make_float64(f64_sbit |
7207 ((result_exp & 0x7ff) << 52) |
7208 result_frac);
7211 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
7213 float_status *s = fpstp;
7214 float64 f64;
7216 if ((a & 0x80000000) == 0) {
7217 return 0xffffffff;
7220 f64 = make_float64((0x3feULL << 52)
7221 | ((int64_t)(a & 0x7fffffff) << 21));
7223 f64 = recip_estimate(f64, s);
7225 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7228 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
7230 float_status *fpst = fpstp;
7231 float64 f64;
7233 if ((a & 0xc0000000) == 0) {
7234 return 0xffffffff;
7237 if (a & 0x80000000) {
7238 f64 = make_float64((0x3feULL << 52)
7239 | ((uint64_t)(a & 0x7fffffff) << 21));
7240 } else { /* bits 31-30 == '01' */
7241 f64 = make_float64((0x3fdULL << 52)
7242 | ((uint64_t)(a & 0x3fffffff) << 22));
7245 f64 = recip_sqrt_estimate(f64, fpst);
7247 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
7250 /* VFPv4 fused multiply-accumulate */
7251 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
7253 float_status *fpst = fpstp;
7254 return float32_muladd(a, b, c, 0, fpst);
7257 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
7259 float_status *fpst = fpstp;
7260 return float64_muladd(a, b, c, 0, fpst);
7263 /* ARMv8 round to integral */
7264 float32 HELPER(rints_exact)(float32 x, void *fp_status)
7266 return float32_round_to_int(x, fp_status);
7269 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
7271 return float64_round_to_int(x, fp_status);
7274 float32 HELPER(rints)(float32 x, void *fp_status)
7276 int old_flags = get_float_exception_flags(fp_status), new_flags;
7277 float32 ret;
7279 ret = float32_round_to_int(x, fp_status);
7281 /* Suppress any inexact exceptions the conversion produced */
7282 if (!(old_flags & float_flag_inexact)) {
7283 new_flags = get_float_exception_flags(fp_status);
7284 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7287 return ret;
7290 float64 HELPER(rintd)(float64 x, void *fp_status)
7292 int old_flags = get_float_exception_flags(fp_status), new_flags;
7293 float64 ret;
7295 ret = float64_round_to_int(x, fp_status);
7297 new_flags = get_float_exception_flags(fp_status);
7299 /* Suppress any inexact exceptions the conversion produced */
7300 if (!(old_flags & float_flag_inexact)) {
7301 new_flags = get_float_exception_flags(fp_status);
7302 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
7305 return ret;
7308 /* Convert ARM rounding mode to softfloat */
7309 int arm_rmode_to_sf(int rmode)
7311 switch (rmode) {
7312 case FPROUNDING_TIEAWAY:
7313 rmode = float_round_ties_away;
7314 break;
7315 case FPROUNDING_ODD:
7316 /* FIXME: add support for TIEAWAY and ODD */
7317 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
7318 rmode);
7319 case FPROUNDING_TIEEVEN:
7320 default:
7321 rmode = float_round_nearest_even;
7322 break;
7323 case FPROUNDING_POSINF:
7324 rmode = float_round_up;
7325 break;
7326 case FPROUNDING_NEGINF:
7327 rmode = float_round_down;
7328 break;
7329 case FPROUNDING_ZERO:
7330 rmode = float_round_to_zero;
7331 break;
7333 return rmode;
7336 /* CRC helpers.
7337 * The upper bytes of val (above the number specified by 'bytes') must have
7338 * been zeroed out by the caller.
7340 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
7342 uint8_t buf[4];
7344 stl_le_p(buf, val);
7346 /* zlib crc32 converts the accumulator and output to one's complement. */
7347 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
7350 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
7352 uint8_t buf[4];
7354 stl_le_p(buf, val);
7356 /* Linux crc32c converts the output to one's complement. */
7357 return crc32c(acc, buf, bytes) ^ 0xffffffff;