vfio: Wrap VFIO_DEVICE_GET_REGION_INFO
[qemu/ar7.git] / include / exec / memory.h
blob2de789871d29bbd6d9332e2ca9e24bc90c66aab2
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 #include "qemu/typedefs.h"
36 #define MAX_PHYS_ADDR_SPACE_BITS 62
37 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 #define TYPE_MEMORY_REGION "qemu:memory-region"
40 #define MEMORY_REGION(obj) \
41 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 typedef struct MemoryRegionOps MemoryRegionOps;
44 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 struct MemoryRegionMmio {
47 CPUReadMemoryFunc *read[3];
48 CPUWriteMemoryFunc *write[3];
51 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 /* See address_space_translate: bit 0 is read, bit 1 is write. */
54 typedef enum {
55 IOMMU_NONE = 0,
56 IOMMU_RO = 1,
57 IOMMU_WO = 2,
58 IOMMU_RW = 3,
59 } IOMMUAccessFlags;
61 struct IOMMUTLBEntry {
62 AddressSpace *target_as;
63 hwaddr iova;
64 hwaddr translated_addr;
65 hwaddr addr_mask; /* 0xfff = 4k translation */
66 IOMMUAccessFlags perm;
69 /* New-style MMIO accessors can indicate that the transaction failed.
70 * A zero (MEMTX_OK) response means success; anything else is a failure
71 * of some kind. The memory subsystem will bitwise-OR together results
72 * if it is synthesizing an operation from multiple smaller accesses.
74 #define MEMTX_OK 0
75 #define MEMTX_ERROR (1U << 0) /* device returned an error */
76 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
77 typedef uint32_t MemTxResult;
80 * Memory region callbacks
82 struct MemoryRegionOps {
83 /* Read from the memory region. @addr is relative to @mr; @size is
84 * in bytes. */
85 uint64_t (*read)(void *opaque,
86 hwaddr addr,
87 unsigned size);
88 /* Write to the memory region. @addr is relative to @mr; @size is
89 * in bytes. */
90 void (*write)(void *opaque,
91 hwaddr addr,
92 uint64_t data,
93 unsigned size);
95 MemTxResult (*read_with_attrs)(void *opaque,
96 hwaddr addr,
97 uint64_t *data,
98 unsigned size,
99 MemTxAttrs attrs);
100 MemTxResult (*write_with_attrs)(void *opaque,
101 hwaddr addr,
102 uint64_t data,
103 unsigned size,
104 MemTxAttrs attrs);
106 enum device_endian endianness;
107 /* Guest-visible constraints: */
108 struct {
109 /* If nonzero, specify bounds on access sizes beyond which a machine
110 * check is thrown.
112 unsigned min_access_size;
113 unsigned max_access_size;
114 /* If true, unaligned accesses are supported. Otherwise unaligned
115 * accesses throw machine checks.
117 bool unaligned;
119 * If present, and returns #false, the transaction is not accepted
120 * by the device (and results in machine dependent behaviour such
121 * as a machine check exception).
123 bool (*accepts)(void *opaque, hwaddr addr,
124 unsigned size, bool is_write);
125 } valid;
126 /* Internal implementation constraints: */
127 struct {
128 /* If nonzero, specifies the minimum size implemented. Smaller sizes
129 * will be rounded upwards and a partial result will be returned.
131 unsigned min_access_size;
132 /* If nonzero, specifies the maximum size implemented. Larger sizes
133 * will be done as a series of accesses with smaller sizes.
135 unsigned max_access_size;
136 /* If true, unaligned accesses are supported. Otherwise all accesses
137 * are converted to (possibly multiple) naturally aligned accesses.
139 bool unaligned;
140 } impl;
142 /* If .read and .write are not present, old_mmio may be used for
143 * backwards compatibility with old mmio registration
145 const MemoryRegionMmio old_mmio;
148 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
150 struct MemoryRegionIOMMUOps {
151 /* Return a TLB entry that contains a given address. */
152 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
155 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
156 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
158 struct MemoryRegion {
159 Object parent_obj;
161 /* All fields are private - violators will be prosecuted */
163 /* The following fields should fit in a cache line */
164 bool romd_mode;
165 bool ram;
166 bool subpage;
167 bool readonly; /* For RAM regions */
168 bool rom_device;
169 bool flush_coalesced_mmio;
170 bool global_locking;
171 uint8_t dirty_log_mask;
172 RAMBlock *ram_block;
173 Object *owner;
174 const MemoryRegionIOMMUOps *iommu_ops;
176 const MemoryRegionOps *ops;
177 void *opaque;
178 MemoryRegion *container;
179 Int128 size;
180 hwaddr addr;
181 void (*destructor)(MemoryRegion *mr);
182 uint64_t align;
183 bool terminates;
184 bool skip_dump;
185 bool enabled;
186 bool warning_printed; /* For reservations */
187 uint8_t vga_logging_count;
188 MemoryRegion *alias;
189 hwaddr alias_offset;
190 int32_t priority;
191 bool may_overlap;
192 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
193 QTAILQ_ENTRY(MemoryRegion) subregions_link;
194 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
195 const char *name;
196 unsigned ioeventfd_nb;
197 MemoryRegionIoeventfd *ioeventfds;
198 NotifierList iommu_notify;
202 * MemoryListener: callbacks structure for updates to the physical memory map
204 * Allows a component to adjust to changes in the guest-visible memory map.
205 * Use with memory_listener_register() and memory_listener_unregister().
207 struct MemoryListener {
208 void (*begin)(MemoryListener *listener);
209 void (*commit)(MemoryListener *listener);
210 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
211 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
212 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
213 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
214 int old, int new);
215 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
216 int old, int new);
217 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
218 void (*log_global_start)(MemoryListener *listener);
219 void (*log_global_stop)(MemoryListener *listener);
220 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
221 bool match_data, uint64_t data, EventNotifier *e);
222 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
223 bool match_data, uint64_t data, EventNotifier *e);
224 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
225 hwaddr addr, hwaddr len);
226 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
227 hwaddr addr, hwaddr len);
228 /* Lower = earlier (during add), later (during del) */
229 unsigned priority;
230 AddressSpace *address_space_filter;
231 QTAILQ_ENTRY(MemoryListener) link;
235 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
237 struct AddressSpace {
238 /* All fields are private. */
239 struct rcu_head rcu;
240 char *name;
241 MemoryRegion *root;
242 int ref_count;
243 bool malloced;
245 /* Accessed via RCU. */
246 struct FlatView *current_map;
248 int ioeventfd_nb;
249 struct MemoryRegionIoeventfd *ioeventfds;
250 struct AddressSpaceDispatch *dispatch;
251 struct AddressSpaceDispatch *next_dispatch;
252 MemoryListener dispatch_listener;
254 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
258 * MemoryRegionSection: describes a fragment of a #MemoryRegion
260 * @mr: the region, or %NULL if empty
261 * @address_space: the address space the region is mapped in
262 * @offset_within_region: the beginning of the section, relative to @mr's start
263 * @size: the size of the section; will not exceed @mr's boundaries
264 * @offset_within_address_space: the address of the first byte of the section
265 * relative to the region's address space
266 * @readonly: writes to this section are ignored
268 struct MemoryRegionSection {
269 MemoryRegion *mr;
270 AddressSpace *address_space;
271 hwaddr offset_within_region;
272 Int128 size;
273 hwaddr offset_within_address_space;
274 bool readonly;
278 * memory_region_init: Initialize a memory region
280 * The region typically acts as a container for other memory regions. Use
281 * memory_region_add_subregion() to add subregions.
283 * @mr: the #MemoryRegion to be initialized
284 * @owner: the object that tracks the region's reference count
285 * @name: used for debugging; not visible to the user or ABI
286 * @size: size of the region; any subregions beyond this size will be clipped
288 void memory_region_init(MemoryRegion *mr,
289 struct Object *owner,
290 const char *name,
291 uint64_t size);
294 * memory_region_ref: Add 1 to a memory region's reference count
296 * Whenever memory regions are accessed outside the BQL, they need to be
297 * preserved against hot-unplug. MemoryRegions actually do not have their
298 * own reference count; they piggyback on a QOM object, their "owner".
299 * This function adds a reference to the owner.
301 * All MemoryRegions must have an owner if they can disappear, even if the
302 * device they belong to operates exclusively under the BQL. This is because
303 * the region could be returned at any time by memory_region_find, and this
304 * is usually under guest control.
306 * @mr: the #MemoryRegion
308 void memory_region_ref(MemoryRegion *mr);
311 * memory_region_unref: Remove 1 to a memory region's reference count
313 * Whenever memory regions are accessed outside the BQL, they need to be
314 * preserved against hot-unplug. MemoryRegions actually do not have their
315 * own reference count; they piggyback on a QOM object, their "owner".
316 * This function removes a reference to the owner and possibly destroys it.
318 * @mr: the #MemoryRegion
320 void memory_region_unref(MemoryRegion *mr);
323 * memory_region_init_io: Initialize an I/O memory region.
325 * Accesses into the region will cause the callbacks in @ops to be called.
326 * if @size is nonzero, subregions will be clipped to @size.
328 * @mr: the #MemoryRegion to be initialized.
329 * @owner: the object that tracks the region's reference count
330 * @ops: a structure containing read and write callbacks to be used when
331 * I/O is performed on the region.
332 * @opaque: passed to the read and write callbacks of the @ops structure.
333 * @name: used for debugging; not visible to the user or ABI
334 * @size: size of the region.
336 void memory_region_init_io(MemoryRegion *mr,
337 struct Object *owner,
338 const MemoryRegionOps *ops,
339 void *opaque,
340 const char *name,
341 uint64_t size);
344 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
345 * region will modify memory directly.
347 * @mr: the #MemoryRegion to be initialized.
348 * @owner: the object that tracks the region's reference count
349 * @name: the name of the region.
350 * @size: size of the region.
351 * @errp: pointer to Error*, to store an error if it happens.
353 void memory_region_init_ram(MemoryRegion *mr,
354 struct Object *owner,
355 const char *name,
356 uint64_t size,
357 Error **errp);
360 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
361 * RAM. Accesses into the region will
362 * modify memory directly. Only an initial
363 * portion of this RAM is actually used.
364 * The used size can change across reboots.
366 * @mr: the #MemoryRegion to be initialized.
367 * @owner: the object that tracks the region's reference count
368 * @name: the name of the region.
369 * @size: used size of the region.
370 * @max_size: max size of the region.
371 * @resized: callback to notify owner about used size change.
372 * @errp: pointer to Error*, to store an error if it happens.
374 void memory_region_init_resizeable_ram(MemoryRegion *mr,
375 struct Object *owner,
376 const char *name,
377 uint64_t size,
378 uint64_t max_size,
379 void (*resized)(const char*,
380 uint64_t length,
381 void *host),
382 Error **errp);
383 #ifdef __linux__
385 * memory_region_init_ram_from_file: Initialize RAM memory region with a
386 * mmap-ed backend.
388 * @mr: the #MemoryRegion to be initialized.
389 * @owner: the object that tracks the region's reference count
390 * @name: the name of the region.
391 * @size: size of the region.
392 * @share: %true if memory must be mmaped with the MAP_SHARED flag
393 * @path: the path in which to allocate the RAM.
394 * @errp: pointer to Error*, to store an error if it happens.
396 void memory_region_init_ram_from_file(MemoryRegion *mr,
397 struct Object *owner,
398 const char *name,
399 uint64_t size,
400 bool share,
401 const char *path,
402 Error **errp);
403 #endif
406 * memory_region_init_ram_ptr: Initialize RAM memory region from a
407 * user-provided pointer. Accesses into the
408 * region will modify memory directly.
410 * @mr: the #MemoryRegion to be initialized.
411 * @owner: the object that tracks the region's reference count
412 * @name: the name of the region.
413 * @size: size of the region.
414 * @ptr: memory to be mapped; must contain at least @size bytes.
416 void memory_region_init_ram_ptr(MemoryRegion *mr,
417 struct Object *owner,
418 const char *name,
419 uint64_t size,
420 void *ptr);
423 * memory_region_init_alias: Initialize a memory region that aliases all or a
424 * part of another memory region.
426 * @mr: the #MemoryRegion to be initialized.
427 * @owner: the object that tracks the region's reference count
428 * @name: used for debugging; not visible to the user or ABI
429 * @orig: the region to be referenced; @mr will be equivalent to
430 * @orig between @offset and @offset + @size - 1.
431 * @offset: start of the section in @orig to be referenced.
432 * @size: size of the region.
434 void memory_region_init_alias(MemoryRegion *mr,
435 struct Object *owner,
436 const char *name,
437 MemoryRegion *orig,
438 hwaddr offset,
439 uint64_t size);
442 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
443 * handled via callbacks.
445 * If NULL callbacks pointer is given, then I/O space is not supposed to be
446 * handled by QEMU itself. Any access via the memory API will cause an abort().
448 * @mr: the #MemoryRegion to be initialized.
449 * @owner: the object that tracks the region's reference count
450 * @ops: callbacks for write access handling.
451 * @name: the name of the region.
452 * @size: size of the region.
453 * @errp: pointer to Error*, to store an error if it happens.
455 void memory_region_init_rom_device(MemoryRegion *mr,
456 struct Object *owner,
457 const MemoryRegionOps *ops,
458 void *opaque,
459 const char *name,
460 uint64_t size,
461 Error **errp);
464 * memory_region_init_reservation: Initialize a memory region that reserves
465 * I/O space.
467 * A reservation region primariy serves debugging purposes. It claims I/O
468 * space that is not supposed to be handled by QEMU itself. Any access via
469 * the memory API will cause an abort().
470 * This function is deprecated. Use memory_region_init_io() with NULL
471 * callbacks instead.
473 * @mr: the #MemoryRegion to be initialized
474 * @owner: the object that tracks the region's reference count
475 * @name: used for debugging; not visible to the user or ABI
476 * @size: size of the region.
478 static inline void memory_region_init_reservation(MemoryRegion *mr,
479 Object *owner,
480 const char *name,
481 uint64_t size)
483 memory_region_init_io(mr, owner, NULL, mr, name, size);
487 * memory_region_init_iommu: Initialize a memory region that translates
488 * addresses
490 * An IOMMU region translates addresses and forwards accesses to a target
491 * memory region.
493 * @mr: the #MemoryRegion to be initialized
494 * @owner: the object that tracks the region's reference count
495 * @ops: a function that translates addresses into the @target region
496 * @name: used for debugging; not visible to the user or ABI
497 * @size: size of the region.
499 void memory_region_init_iommu(MemoryRegion *mr,
500 struct Object *owner,
501 const MemoryRegionIOMMUOps *ops,
502 const char *name,
503 uint64_t size);
506 * memory_region_owner: get a memory region's owner.
508 * @mr: the memory region being queried.
510 struct Object *memory_region_owner(MemoryRegion *mr);
513 * memory_region_size: get a memory region's size.
515 * @mr: the memory region being queried.
517 uint64_t memory_region_size(MemoryRegion *mr);
520 * memory_region_is_ram: check whether a memory region is random access
522 * Returns %true is a memory region is random access.
524 * @mr: the memory region being queried
526 static inline bool memory_region_is_ram(MemoryRegion *mr)
528 return mr->ram;
532 * memory_region_is_skip_dump: check whether a memory region should not be
533 * dumped
535 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
537 * @mr: the memory region being queried
539 bool memory_region_is_skip_dump(MemoryRegion *mr);
542 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
543 * region
545 * @mr: the memory region being queried
547 void memory_region_set_skip_dump(MemoryRegion *mr);
550 * memory_region_is_romd: check whether a memory region is in ROMD mode
552 * Returns %true if a memory region is a ROM device and currently set to allow
553 * direct reads.
555 * @mr: the memory region being queried
557 static inline bool memory_region_is_romd(MemoryRegion *mr)
559 return mr->rom_device && mr->romd_mode;
563 * memory_region_is_iommu: check whether a memory region is an iommu
565 * Returns %true is a memory region is an iommu.
567 * @mr: the memory region being queried
569 static inline bool memory_region_is_iommu(MemoryRegion *mr)
571 return mr->iommu_ops;
576 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
578 * @mr: the memory region that was changed
579 * @entry: the new entry in the IOMMU translation table. The entry
580 * replaces all old entries for the same virtual I/O address range.
581 * Deleted entries have .@perm == 0.
583 void memory_region_notify_iommu(MemoryRegion *mr,
584 IOMMUTLBEntry entry);
587 * memory_region_register_iommu_notifier: register a notifier for changes to
588 * IOMMU translation entries.
590 * @mr: the memory region to observe
591 * @n: the notifier to be added; the notifier receives a pointer to an
592 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
593 * valid on exit from the notifier.
595 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
598 * memory_region_iommu_replay: replay existing IOMMU translations to
599 * a notifier
601 * @mr: the memory region to observe
602 * @n: the notifier to which to replay iommu mappings
603 * @granularity: Minimum page granularity to replay notifications for
604 * @is_write: Whether to treat the replay as a translate "write"
605 * through the iommu
607 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
608 hwaddr granularity, bool is_write);
611 * memory_region_unregister_iommu_notifier: unregister a notifier for
612 * changes to IOMMU translation entries.
614 * @n: the notifier to be removed.
616 void memory_region_unregister_iommu_notifier(Notifier *n);
619 * memory_region_name: get a memory region's name
621 * Returns the string that was used to initialize the memory region.
623 * @mr: the memory region being queried
625 const char *memory_region_name(const MemoryRegion *mr);
628 * memory_region_is_logging: return whether a memory region is logging writes
630 * Returns %true if the memory region is logging writes for the given client
632 * @mr: the memory region being queried
633 * @client: the client being queried
635 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
638 * memory_region_get_dirty_log_mask: return the clients for which a
639 * memory region is logging writes.
641 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
642 * are the bit indices.
644 * @mr: the memory region being queried
646 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
649 * memory_region_is_rom: check whether a memory region is ROM
651 * Returns %true is a memory region is read-only memory.
653 * @mr: the memory region being queried
655 static inline bool memory_region_is_rom(MemoryRegion *mr)
657 return mr->ram && mr->readonly;
662 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
664 * Returns a file descriptor backing a file-based RAM memory region,
665 * or -1 if the region is not a file-based RAM memory region.
667 * @mr: the RAM or alias memory region being queried.
669 int memory_region_get_fd(MemoryRegion *mr);
672 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
674 * Returns a host pointer to a RAM memory region (created with
675 * memory_region_init_ram() or memory_region_init_ram_ptr()).
677 * Use with care; by the time this function returns, the returned pointer is
678 * not protected by RCU anymore. If the caller is not within an RCU critical
679 * section and does not hold the iothread lock, it must have other means of
680 * protecting the pointer, such as a reference to the region that includes
681 * the incoming ram_addr_t.
683 * @mr: the memory region being queried.
685 void *memory_region_get_ram_ptr(MemoryRegion *mr);
687 /* memory_region_ram_resize: Resize a RAM region.
689 * Only legal before guest might have detected the memory size: e.g. on
690 * incoming migration, or right after reset.
692 * @mr: a memory region created with @memory_region_init_resizeable_ram.
693 * @newsize: the new size the region
694 * @errp: pointer to Error*, to store an error if it happens.
696 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
697 Error **errp);
700 * memory_region_set_log: Turn dirty logging on or off for a region.
702 * Turns dirty logging on or off for a specified client (display, migration).
703 * Only meaningful for RAM regions.
705 * @mr: the memory region being updated.
706 * @log: whether dirty logging is to be enabled or disabled.
707 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
709 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
712 * memory_region_get_dirty: Check whether a range of bytes is dirty
713 * for a specified client.
715 * Checks whether a range of bytes has been written to since the last
716 * call to memory_region_reset_dirty() with the same @client. Dirty logging
717 * must be enabled.
719 * @mr: the memory region being queried.
720 * @addr: the address (relative to the start of the region) being queried.
721 * @size: the size of the range being queried.
722 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
723 * %DIRTY_MEMORY_VGA.
725 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
726 hwaddr size, unsigned client);
729 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
731 * Marks a range of bytes as dirty, after it has been dirtied outside
732 * guest code.
734 * @mr: the memory region being dirtied.
735 * @addr: the address (relative to the start of the region) being dirtied.
736 * @size: size of the range being dirtied.
738 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
739 hwaddr size);
742 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
743 * for a specified client. It clears them.
745 * Checks whether a range of bytes has been written to since the last
746 * call to memory_region_reset_dirty() with the same @client. Dirty logging
747 * must be enabled.
749 * @mr: the memory region being queried.
750 * @addr: the address (relative to the start of the region) being queried.
751 * @size: the size of the range being queried.
752 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
753 * %DIRTY_MEMORY_VGA.
755 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
756 hwaddr size, unsigned client);
758 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
759 * any external TLBs (e.g. kvm)
761 * Flushes dirty information from accelerators such as kvm and vhost-net
762 * and makes it available to users of the memory API.
764 * @mr: the region being flushed.
766 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
769 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
770 * client.
772 * Marks a range of pages as no longer dirty.
774 * @mr: the region being updated.
775 * @addr: the start of the subrange being cleaned.
776 * @size: the size of the subrange being cleaned.
777 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
778 * %DIRTY_MEMORY_VGA.
780 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
781 hwaddr size, unsigned client);
784 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
786 * Allows a memory region to be marked as read-only (turning it into a ROM).
787 * only useful on RAM regions.
789 * @mr: the region being updated.
790 * @readonly: whether rhe region is to be ROM or RAM.
792 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
795 * memory_region_rom_device_set_romd: enable/disable ROMD mode
797 * Allows a ROM device (initialized with memory_region_init_rom_device() to
798 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
799 * device is mapped to guest memory and satisfies read access directly.
800 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
801 * Writes are always handled by the #MemoryRegion.write function.
803 * @mr: the memory region to be updated
804 * @romd_mode: %true to put the region into ROMD mode
806 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
809 * memory_region_set_coalescing: Enable memory coalescing for the region.
811 * Enabled writes to a region to be queued for later processing. MMIO ->write
812 * callbacks may be delayed until a non-coalesced MMIO is issued.
813 * Only useful for IO regions. Roughly similar to write-combining hardware.
815 * @mr: the memory region to be write coalesced
817 void memory_region_set_coalescing(MemoryRegion *mr);
820 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
821 * a region.
823 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
824 * Multiple calls can be issued coalesced disjoint ranges.
826 * @mr: the memory region to be updated.
827 * @offset: the start of the range within the region to be coalesced.
828 * @size: the size of the subrange to be coalesced.
830 void memory_region_add_coalescing(MemoryRegion *mr,
831 hwaddr offset,
832 uint64_t size);
835 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
837 * Disables any coalescing caused by memory_region_set_coalescing() or
838 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
839 * hardware.
841 * @mr: the memory region to be updated.
843 void memory_region_clear_coalescing(MemoryRegion *mr);
846 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
847 * accesses.
849 * Ensure that pending coalesced MMIO request are flushed before the memory
850 * region is accessed. This property is automatically enabled for all regions
851 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
853 * @mr: the memory region to be updated.
855 void memory_region_set_flush_coalesced(MemoryRegion *mr);
858 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
859 * accesses.
861 * Clear the automatic coalesced MMIO flushing enabled via
862 * memory_region_set_flush_coalesced. Note that this service has no effect on
863 * memory regions that have MMIO coalescing enabled for themselves. For them,
864 * automatic flushing will stop once coalescing is disabled.
866 * @mr: the memory region to be updated.
868 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
871 * memory_region_set_global_locking: Declares the access processing requires
872 * QEMU's global lock.
874 * When this is invoked, accesses to the memory region will be processed while
875 * holding the global lock of QEMU. This is the default behavior of memory
876 * regions.
878 * @mr: the memory region to be updated.
880 void memory_region_set_global_locking(MemoryRegion *mr);
883 * memory_region_clear_global_locking: Declares that access processing does
884 * not depend on the QEMU global lock.
886 * By clearing this property, accesses to the memory region will be processed
887 * outside of QEMU's global lock (unless the lock is held on when issuing the
888 * access request). In this case, the device model implementing the access
889 * handlers is responsible for synchronization of concurrency.
891 * @mr: the memory region to be updated.
893 void memory_region_clear_global_locking(MemoryRegion *mr);
896 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
897 * is written to a location.
899 * Marks a word in an IO region (initialized with memory_region_init_io())
900 * as a trigger for an eventfd event. The I/O callback will not be called.
901 * The caller must be prepared to handle failure (that is, take the required
902 * action if the callback _is_ called).
904 * @mr: the memory region being updated.
905 * @addr: the address within @mr that is to be monitored
906 * @size: the size of the access to trigger the eventfd
907 * @match_data: whether to match against @data, instead of just @addr
908 * @data: the data to match against the guest write
909 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
911 void memory_region_add_eventfd(MemoryRegion *mr,
912 hwaddr addr,
913 unsigned size,
914 bool match_data,
915 uint64_t data,
916 EventNotifier *e);
919 * memory_region_del_eventfd: Cancel an eventfd.
921 * Cancels an eventfd trigger requested by a previous
922 * memory_region_add_eventfd() call.
924 * @mr: the memory region being updated.
925 * @addr: the address within @mr that is to be monitored
926 * @size: the size of the access to trigger the eventfd
927 * @match_data: whether to match against @data, instead of just @addr
928 * @data: the data to match against the guest write
929 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
931 void memory_region_del_eventfd(MemoryRegion *mr,
932 hwaddr addr,
933 unsigned size,
934 bool match_data,
935 uint64_t data,
936 EventNotifier *e);
939 * memory_region_add_subregion: Add a subregion to a container.
941 * Adds a subregion at @offset. The subregion may not overlap with other
942 * subregions (except for those explicitly marked as overlapping). A region
943 * may only be added once as a subregion (unless removed with
944 * memory_region_del_subregion()); use memory_region_init_alias() if you
945 * want a region to be a subregion in multiple locations.
947 * @mr: the region to contain the new subregion; must be a container
948 * initialized with memory_region_init().
949 * @offset: the offset relative to @mr where @subregion is added.
950 * @subregion: the subregion to be added.
952 void memory_region_add_subregion(MemoryRegion *mr,
953 hwaddr offset,
954 MemoryRegion *subregion);
956 * memory_region_add_subregion_overlap: Add a subregion to a container
957 * with overlap.
959 * Adds a subregion at @offset. The subregion may overlap with other
960 * subregions. Conflicts are resolved by having a higher @priority hide a
961 * lower @priority. Subregions without priority are taken as @priority 0.
962 * A region may only be added once as a subregion (unless removed with
963 * memory_region_del_subregion()); use memory_region_init_alias() if you
964 * want a region to be a subregion in multiple locations.
966 * @mr: the region to contain the new subregion; must be a container
967 * initialized with memory_region_init().
968 * @offset: the offset relative to @mr where @subregion is added.
969 * @subregion: the subregion to be added.
970 * @priority: used for resolving overlaps; highest priority wins.
972 void memory_region_add_subregion_overlap(MemoryRegion *mr,
973 hwaddr offset,
974 MemoryRegion *subregion,
975 int priority);
978 * memory_region_get_ram_addr: Get the ram address associated with a memory
979 * region
981 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
983 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
985 * memory_region_del_subregion: Remove a subregion.
987 * Removes a subregion from its container.
989 * @mr: the container to be updated.
990 * @subregion: the region being removed; must be a current subregion of @mr.
992 void memory_region_del_subregion(MemoryRegion *mr,
993 MemoryRegion *subregion);
996 * memory_region_set_enabled: dynamically enable or disable a region
998 * Enables or disables a memory region. A disabled memory region
999 * ignores all accesses to itself and its subregions. It does not
1000 * obscure sibling subregions with lower priority - it simply behaves as
1001 * if it was removed from the hierarchy.
1003 * Regions default to being enabled.
1005 * @mr: the region to be updated
1006 * @enabled: whether to enable or disable the region
1008 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1011 * memory_region_set_address: dynamically update the address of a region
1013 * Dynamically updates the address of a region, relative to its container.
1014 * May be used on regions are currently part of a memory hierarchy.
1016 * @mr: the region to be updated
1017 * @addr: new address, relative to container region
1019 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1022 * memory_region_set_size: dynamically update the size of a region.
1024 * Dynamically updates the size of a region.
1026 * @mr: the region to be updated
1027 * @size: used size of the region.
1029 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1032 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1034 * Dynamically updates the offset into the target region that an alias points
1035 * to, as if the fourth argument to memory_region_init_alias() has changed.
1037 * @mr: the #MemoryRegion to be updated; should be an alias.
1038 * @offset: the new offset into the target memory region
1040 void memory_region_set_alias_offset(MemoryRegion *mr,
1041 hwaddr offset);
1044 * memory_region_present: checks if an address relative to a @container
1045 * translates into #MemoryRegion within @container
1047 * Answer whether a #MemoryRegion within @container covers the address
1048 * @addr.
1050 * @container: a #MemoryRegion within which @addr is a relative address
1051 * @addr: the area within @container to be searched
1053 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1056 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1057 * into any address space.
1059 * @mr: a #MemoryRegion which should be checked if it's mapped
1061 bool memory_region_is_mapped(MemoryRegion *mr);
1064 * memory_region_find: translate an address/size relative to a
1065 * MemoryRegion into a #MemoryRegionSection.
1067 * Locates the first #MemoryRegion within @mr that overlaps the range
1068 * given by @addr and @size.
1070 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1071 * It will have the following characteristics:
1072 * .@size = 0 iff no overlap was found
1073 * .@mr is non-%NULL iff an overlap was found
1075 * Remember that in the return value the @offset_within_region is
1076 * relative to the returned region (in the .@mr field), not to the
1077 * @mr argument.
1079 * Similarly, the .@offset_within_address_space is relative to the
1080 * address space that contains both regions, the passed and the
1081 * returned one. However, in the special case where the @mr argument
1082 * has no container (and thus is the root of the address space), the
1083 * following will hold:
1084 * .@offset_within_address_space >= @addr
1085 * .@offset_within_address_space + .@size <= @addr + @size
1087 * @mr: a MemoryRegion within which @addr is a relative address
1088 * @addr: start of the area within @as to be searched
1089 * @size: size of the area to be searched
1091 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1092 hwaddr addr, uint64_t size);
1095 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1097 * Synchronizes the dirty page log for an entire address space.
1098 * @as: the address space that contains the memory being synchronized
1100 void address_space_sync_dirty_bitmap(AddressSpace *as);
1103 * memory_region_transaction_begin: Start a transaction.
1105 * During a transaction, changes will be accumulated and made visible
1106 * only when the transaction ends (is committed).
1108 void memory_region_transaction_begin(void);
1111 * memory_region_transaction_commit: Commit a transaction and make changes
1112 * visible to the guest.
1114 void memory_region_transaction_commit(void);
1117 * memory_listener_register: register callbacks to be called when memory
1118 * sections are mapped or unmapped into an address
1119 * space
1121 * @listener: an object containing the callbacks to be called
1122 * @filter: if non-%NULL, only regions in this address space will be observed
1124 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1127 * memory_listener_unregister: undo the effect of memory_listener_register()
1129 * @listener: an object containing the callbacks to be removed
1131 void memory_listener_unregister(MemoryListener *listener);
1134 * memory_global_dirty_log_start: begin dirty logging for all regions
1136 void memory_global_dirty_log_start(void);
1139 * memory_global_dirty_log_stop: end dirty logging for all regions
1141 void memory_global_dirty_log_stop(void);
1143 void mtree_info(fprintf_function mon_printf, void *f);
1146 * memory_region_dispatch_read: perform a read directly to the specified
1147 * MemoryRegion.
1149 * @mr: #MemoryRegion to access
1150 * @addr: address within that region
1151 * @pval: pointer to uint64_t which the data is written to
1152 * @size: size of the access in bytes
1153 * @attrs: memory transaction attributes to use for the access
1155 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1156 hwaddr addr,
1157 uint64_t *pval,
1158 unsigned size,
1159 MemTxAttrs attrs);
1161 * memory_region_dispatch_write: perform a write directly to the specified
1162 * MemoryRegion.
1164 * @mr: #MemoryRegion to access
1165 * @addr: address within that region
1166 * @data: data to write
1167 * @size: size of the access in bytes
1168 * @attrs: memory transaction attributes to use for the access
1170 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1171 hwaddr addr,
1172 uint64_t data,
1173 unsigned size,
1174 MemTxAttrs attrs);
1177 * address_space_init: initializes an address space
1179 * @as: an uninitialized #AddressSpace
1180 * @root: a #MemoryRegion that routes addresses for the address space
1181 * @name: an address space name. The name is only used for debugging
1182 * output.
1184 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1187 * address_space_init_shareable: return an address space for a memory region,
1188 * creating it if it does not already exist
1190 * @root: a #MemoryRegion that routes addresses for the address space
1191 * @name: an address space name. The name is only used for debugging
1192 * output.
1194 * This function will return a pointer to an existing AddressSpace
1195 * which was initialized with the specified MemoryRegion, or it will
1196 * create and initialize one if it does not already exist. The ASes
1197 * are reference-counted, so the memory will be freed automatically
1198 * when the AddressSpace is destroyed via address_space_destroy.
1200 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1201 const char *name);
1204 * address_space_destroy: destroy an address space
1206 * Releases all resources associated with an address space. After an address space
1207 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1208 * as well.
1210 * @as: address space to be destroyed
1212 void address_space_destroy(AddressSpace *as);
1215 * address_space_rw: read from or write to an address space.
1217 * Return a MemTxResult indicating whether the operation succeeded
1218 * or failed (eg unassigned memory, device rejected the transaction,
1219 * IOMMU fault).
1221 * @as: #AddressSpace to be accessed
1222 * @addr: address within that address space
1223 * @attrs: memory transaction attributes
1224 * @buf: buffer with the data transferred
1225 * @is_write: indicates the transfer direction
1227 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1228 MemTxAttrs attrs, uint8_t *buf,
1229 int len, bool is_write);
1232 * address_space_write: write to address space.
1234 * Return a MemTxResult indicating whether the operation succeeded
1235 * or failed (eg unassigned memory, device rejected the transaction,
1236 * IOMMU fault).
1238 * @as: #AddressSpace to be accessed
1239 * @addr: address within that address space
1240 * @attrs: memory transaction attributes
1241 * @buf: buffer with the data transferred
1243 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1244 MemTxAttrs attrs,
1245 const uint8_t *buf, int len);
1247 /* address_space_ld*: load from an address space
1248 * address_space_st*: store to an address space
1250 * These functions perform a load or store of the byte, word,
1251 * longword or quad to the specified address within the AddressSpace.
1252 * The _le suffixed functions treat the data as little endian;
1253 * _be indicates big endian; no suffix indicates "same endianness
1254 * as guest CPU".
1256 * The "guest CPU endianness" accessors are deprecated for use outside
1257 * target-* code; devices should be CPU-agnostic and use either the LE
1258 * or the BE accessors.
1260 * @as #AddressSpace to be accessed
1261 * @addr: address within that address space
1262 * @val: data value, for stores
1263 * @attrs: memory transaction attributes
1264 * @result: location to write the success/failure of the transaction;
1265 * if NULL, this information is discarded
1267 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1268 MemTxAttrs attrs, MemTxResult *result);
1269 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1270 MemTxAttrs attrs, MemTxResult *result);
1271 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1272 MemTxAttrs attrs, MemTxResult *result);
1273 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1274 MemTxAttrs attrs, MemTxResult *result);
1275 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1276 MemTxAttrs attrs, MemTxResult *result);
1277 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1278 MemTxAttrs attrs, MemTxResult *result);
1279 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1280 MemTxAttrs attrs, MemTxResult *result);
1281 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1282 MemTxAttrs attrs, MemTxResult *result);
1283 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1284 MemTxAttrs attrs, MemTxResult *result);
1285 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1286 MemTxAttrs attrs, MemTxResult *result);
1287 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1288 MemTxAttrs attrs, MemTxResult *result);
1289 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1290 MemTxAttrs attrs, MemTxResult *result);
1291 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1292 MemTxAttrs attrs, MemTxResult *result);
1293 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1294 MemTxAttrs attrs, MemTxResult *result);
1296 #ifdef NEED_CPU_H
1297 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1298 MemTxAttrs attrs, MemTxResult *result);
1299 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1300 MemTxAttrs attrs, MemTxResult *result);
1301 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1302 MemTxAttrs attrs, MemTxResult *result);
1303 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1304 MemTxAttrs attrs, MemTxResult *result);
1305 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1306 MemTxAttrs attrs, MemTxResult *result);
1307 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1308 MemTxAttrs attrs, MemTxResult *result);
1309 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1310 MemTxAttrs attrs, MemTxResult *result);
1311 #endif
1313 /* address_space_translate: translate an address range into an address space
1314 * into a MemoryRegion and an address range into that section. Should be
1315 * called from an RCU critical section, to avoid that the last reference
1316 * to the returned region disappears after address_space_translate returns.
1318 * @as: #AddressSpace to be accessed
1319 * @addr: address within that address space
1320 * @xlat: pointer to address within the returned memory region section's
1321 * #MemoryRegion.
1322 * @len: pointer to length
1323 * @is_write: indicates the transfer direction
1325 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1326 hwaddr *xlat, hwaddr *len,
1327 bool is_write);
1329 /* address_space_access_valid: check for validity of accessing an address
1330 * space range
1332 * Check whether memory is assigned to the given address space range, and
1333 * access is permitted by any IOMMU regions that are active for the address
1334 * space.
1336 * For now, addr and len should be aligned to a page size. This limitation
1337 * will be lifted in the future.
1339 * @as: #AddressSpace to be accessed
1340 * @addr: address within that address space
1341 * @len: length of the area to be checked
1342 * @is_write: indicates the transfer direction
1344 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1346 /* address_space_map: map a physical memory region into a host virtual address
1348 * May map a subset of the requested range, given by and returned in @plen.
1349 * May return %NULL if resources needed to perform the mapping are exhausted.
1350 * Use only for reads OR writes - not for read-modify-write operations.
1351 * Use cpu_register_map_client() to know when retrying the map operation is
1352 * likely to succeed.
1354 * @as: #AddressSpace to be accessed
1355 * @addr: address within that address space
1356 * @plen: pointer to length of buffer; updated on return
1357 * @is_write: indicates the transfer direction
1359 void *address_space_map(AddressSpace *as, hwaddr addr,
1360 hwaddr *plen, bool is_write);
1362 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1364 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1365 * the amount of memory that was actually read or written by the caller.
1367 * @as: #AddressSpace used
1368 * @addr: address within that address space
1369 * @len: buffer length as returned by address_space_map()
1370 * @access_len: amount of data actually transferred
1371 * @is_write: indicates the transfer direction
1373 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1374 int is_write, hwaddr access_len);
1377 /* Internal functions, part of the implementation of address_space_read. */
1378 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1379 MemTxAttrs attrs, uint8_t *buf,
1380 int len, hwaddr addr1, hwaddr l,
1381 MemoryRegion *mr);
1382 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1383 MemTxAttrs attrs, uint8_t *buf, int len);
1384 void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1386 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1388 if (is_write) {
1389 return memory_region_is_ram(mr) && !mr->readonly;
1390 } else {
1391 return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1396 * address_space_read: read from an address space.
1398 * Return a MemTxResult indicating whether the operation succeeded
1399 * or failed (eg unassigned memory, device rejected the transaction,
1400 * IOMMU fault).
1402 * @as: #AddressSpace to be accessed
1403 * @addr: address within that address space
1404 * @attrs: memory transaction attributes
1405 * @buf: buffer with the data transferred
1407 static inline __attribute__((__always_inline__))
1408 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1409 uint8_t *buf, int len)
1411 MemTxResult result = MEMTX_OK;
1412 hwaddr l, addr1;
1413 void *ptr;
1414 MemoryRegion *mr;
1416 if (__builtin_constant_p(len)) {
1417 if (len) {
1418 rcu_read_lock();
1419 l = len;
1420 mr = address_space_translate(as, addr, &addr1, &l, false);
1421 if (len == l && memory_access_is_direct(mr, false)) {
1422 addr1 += memory_region_get_ram_addr(mr);
1423 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1424 memcpy(buf, ptr, len);
1425 } else {
1426 result = address_space_read_continue(as, addr, attrs, buf, len,
1427 addr1, l, mr);
1429 rcu_read_unlock();
1431 } else {
1432 result = address_space_read_full(as, addr, attrs, buf, len);
1434 return result;
1437 #endif
1439 #endif