hw/arm/smmuv3: Support nested SMMUs in smmuv3_notify_iova()
[qemu/ar7.git] / hw / arm / smmuv3.c
bloba3cb30501e67081b236a1e3ad269a63e0143761f
1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-properties.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "cpu.h"
28 #include "trace.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
33 #include "hw/arm/smmuv3.h"
34 #include "smmuv3-internal.h"
35 #include "smmu-internal.h"
37 #define PTW_RECORD_FAULT(cfg) (((cfg)->stage == SMMU_STAGE_1) ? \
38 (cfg)->record_faults : \
39 (cfg)->s2cfg.record_faults)
41 /**
42 * smmuv3_trigger_irq - pulse @irq if enabled and update
43 * GERROR register in case of GERROR interrupt
45 * @irq: irq type
46 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
48 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
49 uint32_t gerror_mask)
52 bool pulse = false;
54 switch (irq) {
55 case SMMU_IRQ_EVTQ:
56 pulse = smmuv3_eventq_irq_enabled(s);
57 break;
58 case SMMU_IRQ_PRIQ:
59 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
60 break;
61 case SMMU_IRQ_CMD_SYNC:
62 pulse = true;
63 break;
64 case SMMU_IRQ_GERROR:
66 uint32_t pending = s->gerror ^ s->gerrorn;
67 uint32_t new_gerrors = ~pending & gerror_mask;
69 if (!new_gerrors) {
70 /* only toggle non pending errors */
71 return;
73 s->gerror ^= new_gerrors;
74 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
76 pulse = smmuv3_gerror_irq_enabled(s);
77 break;
80 if (pulse) {
81 trace_smmuv3_trigger_irq(irq);
82 qemu_irq_pulse(s->irq[irq]);
86 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
88 uint32_t pending = s->gerror ^ s->gerrorn;
89 uint32_t toggled = s->gerrorn ^ new_gerrorn;
91 if (toggled & ~pending) {
92 qemu_log_mask(LOG_GUEST_ERROR,
93 "guest toggles non pending errors = 0x%x\n",
94 toggled & ~pending);
98 * We do not raise any error in case guest toggles bits corresponding
99 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
101 s->gerrorn = new_gerrorn;
103 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
106 static inline MemTxResult queue_read(SMMUQueue *q, Cmd *cmd)
108 dma_addr_t addr = Q_CONS_ENTRY(q);
109 MemTxResult ret;
110 int i;
112 ret = dma_memory_read(&address_space_memory, addr, cmd, sizeof(Cmd),
113 MEMTXATTRS_UNSPECIFIED);
114 if (ret != MEMTX_OK) {
115 return ret;
117 for (i = 0; i < ARRAY_SIZE(cmd->word); i++) {
118 le32_to_cpus(&cmd->word[i]);
120 return ret;
123 static MemTxResult queue_write(SMMUQueue *q, Evt *evt_in)
125 dma_addr_t addr = Q_PROD_ENTRY(q);
126 MemTxResult ret;
127 Evt evt = *evt_in;
128 int i;
130 for (i = 0; i < ARRAY_SIZE(evt.word); i++) {
131 cpu_to_le32s(&evt.word[i]);
133 ret = dma_memory_write(&address_space_memory, addr, &evt, sizeof(Evt),
134 MEMTXATTRS_UNSPECIFIED);
135 if (ret != MEMTX_OK) {
136 return ret;
139 queue_prod_incr(q);
140 return MEMTX_OK;
143 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
145 SMMUQueue *q = &s->eventq;
146 MemTxResult r;
148 if (!smmuv3_eventq_enabled(s)) {
149 return MEMTX_ERROR;
152 if (smmuv3_q_full(q)) {
153 return MEMTX_ERROR;
156 r = queue_write(q, evt);
157 if (r != MEMTX_OK) {
158 return r;
161 if (!smmuv3_q_empty(q)) {
162 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
164 return MEMTX_OK;
167 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
169 Evt evt = {};
170 MemTxResult r;
172 if (!smmuv3_eventq_enabled(s)) {
173 return;
176 EVT_SET_TYPE(&evt, info->type);
177 EVT_SET_SID(&evt, info->sid);
179 switch (info->type) {
180 case SMMU_EVT_NONE:
181 return;
182 case SMMU_EVT_F_UUT:
183 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
184 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
185 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
186 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
187 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
188 EVT_SET_IND(&evt, info->u.f_uut.ind);
189 break;
190 case SMMU_EVT_C_BAD_STREAMID:
191 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
192 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
193 break;
194 case SMMU_EVT_F_STE_FETCH:
195 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
196 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
197 EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
198 break;
199 case SMMU_EVT_C_BAD_STE:
200 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
201 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
202 break;
203 case SMMU_EVT_F_STREAM_DISABLED:
204 break;
205 case SMMU_EVT_F_TRANS_FORBIDDEN:
206 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
207 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
208 break;
209 case SMMU_EVT_C_BAD_SUBSTREAMID:
210 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
211 break;
212 case SMMU_EVT_F_CD_FETCH:
213 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
214 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
215 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
216 break;
217 case SMMU_EVT_C_BAD_CD:
218 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
219 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
220 break;
221 case SMMU_EVT_F_WALK_EABT:
222 case SMMU_EVT_F_TRANSLATION:
223 case SMMU_EVT_F_ADDR_SIZE:
224 case SMMU_EVT_F_ACCESS:
225 case SMMU_EVT_F_PERMISSION:
226 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
227 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
228 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
229 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
230 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
231 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
232 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
233 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
234 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
235 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
236 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
237 break;
238 case SMMU_EVT_F_CFG_CONFLICT:
239 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
240 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
241 break;
242 /* rest is not implemented */
243 case SMMU_EVT_F_BAD_ATS_TREQ:
244 case SMMU_EVT_F_TLB_CONFLICT:
245 case SMMU_EVT_E_PAGE_REQ:
246 default:
247 g_assert_not_reached();
250 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
251 r = smmuv3_write_eventq(s, &evt);
252 if (r != MEMTX_OK) {
253 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
255 info->recorded = true;
258 static void smmuv3_init_regs(SMMUv3State *s)
260 /* Based on sys property, the stages supported in smmu will be advertised.*/
261 if (s->stage && !strcmp("2", s->stage)) {
262 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
263 } else {
264 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
267 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
268 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
269 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
270 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */
271 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
272 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
273 /* terminated transaction will always be aborted/error returned */
274 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
275 /* 2-level stream table supported */
276 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
278 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
279 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
280 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
282 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
283 if (FIELD_EX32(s->idr[0], IDR0, S2P)) {
284 /* XNX is a stage-2-specific feature */
285 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, XNX, 1);
287 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
288 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2);
290 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
291 /* 4K, 16K and 64K granule support */
292 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
293 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
294 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
296 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
297 s->cmdq.prod = 0;
298 s->cmdq.cons = 0;
299 s->cmdq.entry_size = sizeof(struct Cmd);
300 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
301 s->eventq.prod = 0;
302 s->eventq.cons = 0;
303 s->eventq.entry_size = sizeof(struct Evt);
305 s->features = 0;
306 s->sid_split = 0;
307 s->aidr = 0x1;
308 s->cr[0] = 0;
309 s->cr0ack = 0;
310 s->irq_ctrl = 0;
311 s->gerror = 0;
312 s->gerrorn = 0;
313 s->statusr = 0;
314 s->gbpa = SMMU_GBPA_RESET_VAL;
317 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
318 SMMUEventInfo *event)
320 int ret, i;
322 trace_smmuv3_get_ste(addr);
323 /* TODO: guarantee 64-bit single-copy atomicity */
324 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
325 MEMTXATTRS_UNSPECIFIED);
326 if (ret != MEMTX_OK) {
327 qemu_log_mask(LOG_GUEST_ERROR,
328 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
329 event->type = SMMU_EVT_F_STE_FETCH;
330 event->u.f_ste_fetch.addr = addr;
331 return -EINVAL;
333 for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
334 le32_to_cpus(&buf->word[i]);
336 return 0;
340 static SMMUTranslationStatus smmuv3_do_translate(SMMUv3State *s, hwaddr addr,
341 SMMUTransCfg *cfg,
342 SMMUEventInfo *event,
343 IOMMUAccessFlags flag,
344 SMMUTLBEntry **out_entry,
345 SMMUTranslationClass class);
346 /* @ssid > 0 not supported yet */
347 static int smmu_get_cd(SMMUv3State *s, STE *ste, SMMUTransCfg *cfg,
348 uint32_t ssid, CD *buf, SMMUEventInfo *event)
350 dma_addr_t addr = STE_CTXPTR(ste);
351 int ret, i;
352 SMMUTranslationStatus status;
353 SMMUTLBEntry *entry;
355 trace_smmuv3_get_cd(addr);
357 if (cfg->stage == SMMU_NESTED) {
358 status = smmuv3_do_translate(s, addr, cfg, event,
359 IOMMU_RO, &entry, SMMU_CLASS_CD);
361 /* Same PTW faults are reported but with CLASS = CD. */
362 if (status != SMMU_TRANS_SUCCESS) {
363 return -EINVAL;
366 addr = CACHED_ENTRY_TO_ADDR(entry, addr);
369 /* TODO: guarantee 64-bit single-copy atomicity */
370 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
371 MEMTXATTRS_UNSPECIFIED);
372 if (ret != MEMTX_OK) {
373 qemu_log_mask(LOG_GUEST_ERROR,
374 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
375 event->type = SMMU_EVT_F_CD_FETCH;
376 event->u.f_ste_fetch.addr = addr;
377 return -EINVAL;
379 for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
380 le32_to_cpus(&buf->word[i]);
382 return 0;
386 * Max valid value is 39 when SMMU_IDR3.STT == 0.
387 * In architectures after SMMUv3.0:
388 * - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this
389 * field is MAX(16, 64-IAS)
390 * - If STE.S2TG selects a 64KB granule, the minimum valid value for this field
391 * is (64-IAS).
392 * As we only support AA64, IAS = OAS.
394 static bool s2t0sz_valid(SMMUTransCfg *cfg)
396 if (cfg->s2cfg.tsz > 39) {
397 return false;
400 if (cfg->s2cfg.granule_sz == 16) {
401 return (cfg->s2cfg.tsz >= 64 - oas2bits(SMMU_IDR5_OAS));
404 return (cfg->s2cfg.tsz >= MAX(64 - oas2bits(SMMU_IDR5_OAS), 16));
408 * Return true if s2 page table config is valid.
409 * This checks with the configured start level, ias_bits and granularity we can
410 * have a valid page table as described in ARM ARM D8.2 Translation process.
411 * The idea here is to see for the highest possible number of IPA bits, how
412 * many concatenated tables we would need, if it is more than 16, then this is
413 * not possible.
415 static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran)
417 int level = get_start_level(sl0, gran);
418 uint64_t ipa_bits = 64 - t0sz;
419 uint64_t max_ipa = (1ULL << ipa_bits) - 1;
420 int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1;
422 return nr_concat <= VMSA_MAX_S2_CONCAT;
425 static int decode_ste_s2_cfg(SMMUTransCfg *cfg, STE *ste)
427 cfg->stage = SMMU_STAGE_2;
429 if (STE_S2AA64(ste) == 0x0) {
430 qemu_log_mask(LOG_UNIMP,
431 "SMMUv3 AArch32 tables not supported\n");
432 g_assert_not_reached();
435 switch (STE_S2TG(ste)) {
436 case 0x0: /* 4KB */
437 cfg->s2cfg.granule_sz = 12;
438 break;
439 case 0x1: /* 64KB */
440 cfg->s2cfg.granule_sz = 16;
441 break;
442 case 0x2: /* 16KB */
443 cfg->s2cfg.granule_sz = 14;
444 break;
445 default:
446 qemu_log_mask(LOG_GUEST_ERROR,
447 "SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste));
448 goto bad_ste;
451 cfg->s2cfg.vttb = STE_S2TTB(ste);
453 cfg->s2cfg.sl0 = STE_S2SL0(ste);
454 /* FEAT_TTST not supported. */
455 if (cfg->s2cfg.sl0 == 0x3) {
456 qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n");
457 goto bad_ste;
460 /* For AA64, The effective S2PS size is capped to the OAS. */
461 cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), SMMU_IDR5_OAS));
463 * It is ILLEGAL for the address in S2TTB to be outside the range
464 * described by the effective S2PS value.
466 if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) {
467 qemu_log_mask(LOG_GUEST_ERROR,
468 "SMMUv3 S2TTB too large 0x%" PRIx64
469 ", effective PS %d bits\n",
470 cfg->s2cfg.vttb, cfg->s2cfg.eff_ps);
471 goto bad_ste;
474 cfg->s2cfg.tsz = STE_S2T0SZ(ste);
476 if (!s2t0sz_valid(cfg)) {
477 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n",
478 cfg->s2cfg.tsz);
479 goto bad_ste;
482 if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz,
483 cfg->s2cfg.granule_sz)) {
484 qemu_log_mask(LOG_GUEST_ERROR,
485 "SMMUv3 STE stage 2 config not valid!\n");
486 goto bad_ste;
489 /* Only LE supported(IDR0.TTENDIAN). */
490 if (STE_S2ENDI(ste)) {
491 qemu_log_mask(LOG_GUEST_ERROR,
492 "SMMUv3 STE_S2ENDI only supports LE!\n");
493 goto bad_ste;
496 cfg->s2cfg.affd = STE_S2AFFD(ste);
498 cfg->s2cfg.record_faults = STE_S2R(ste);
499 /* As stall is not supported. */
500 if (STE_S2S(ste)) {
501 qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n");
502 goto bad_ste;
505 return 0;
507 bad_ste:
508 return -EINVAL;
511 /* Returns < 0 in case of invalid STE, 0 otherwise */
512 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
513 STE *ste, SMMUEventInfo *event)
515 uint32_t config;
516 int ret;
518 if (!STE_VALID(ste)) {
519 if (!event->inval_ste_allowed) {
520 qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
522 goto bad_ste;
525 config = STE_CONFIG(ste);
527 if (STE_CFG_ABORT(config)) {
528 cfg->aborted = true;
529 return 0;
532 if (STE_CFG_BYPASS(config)) {
533 cfg->bypassed = true;
534 return 0;
538 * If a stage is enabled in SW while not advertised, throw bad ste
539 * according to user manual(IHI0070E) "5.2 Stream Table Entry".
541 if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) {
542 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n");
543 goto bad_ste;
545 if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) {
546 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n");
547 goto bad_ste;
550 if (STAGE2_SUPPORTED(s)) {
551 /* VMID is considered even if s2 is disabled. */
552 cfg->s2cfg.vmid = STE_S2VMID(ste);
553 } else {
554 /* Default to -1 */
555 cfg->s2cfg.vmid = -1;
558 if (STE_CFG_S2_ENABLED(config)) {
560 * Stage-1 OAS defaults to OAS even if not enabled as it would be used
561 * in input address check for stage-2.
563 cfg->oas = oas2bits(SMMU_IDR5_OAS);
564 ret = decode_ste_s2_cfg(cfg, ste);
565 if (ret) {
566 goto bad_ste;
570 if (STE_S1CDMAX(ste) != 0) {
571 qemu_log_mask(LOG_UNIMP,
572 "SMMUv3 does not support multiple context descriptors yet\n");
573 goto bad_ste;
576 if (STE_S1STALLD(ste)) {
577 qemu_log_mask(LOG_UNIMP,
578 "SMMUv3 S1 stalling fault model not allowed yet\n");
579 goto bad_ste;
581 return 0;
583 bad_ste:
584 event->type = SMMU_EVT_C_BAD_STE;
585 return -EINVAL;
589 * smmu_find_ste - Return the stream table entry associated
590 * to the sid
592 * @s: smmuv3 handle
593 * @sid: stream ID
594 * @ste: returned stream table entry
595 * @event: handle to an event info
597 * Supports linear and 2-level stream table
598 * Return 0 on success, -EINVAL otherwise
600 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
601 SMMUEventInfo *event)
603 dma_addr_t addr, strtab_base;
604 uint32_t log2size;
605 int strtab_size_shift;
606 int ret;
608 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
609 log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
611 * Check SID range against both guest-configured and implementation limits
613 if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
614 event->type = SMMU_EVT_C_BAD_STREAMID;
615 return -EINVAL;
617 if (s->features & SMMU_FEATURE_2LVL_STE) {
618 int l1_ste_offset, l2_ste_offset, max_l2_ste, span, i;
619 dma_addr_t l1ptr, l2ptr;
620 STEDesc l1std;
623 * Align strtab base address to table size. For this purpose, assume it
624 * is not bounded by SMMU_IDR1_SIDSIZE.
626 strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
627 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
628 ~MAKE_64BIT_MASK(0, strtab_size_shift);
629 l1_ste_offset = sid >> s->sid_split;
630 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
631 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
632 /* TODO: guarantee 64-bit single-copy atomicity */
633 ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
634 sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
635 if (ret != MEMTX_OK) {
636 qemu_log_mask(LOG_GUEST_ERROR,
637 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
638 event->type = SMMU_EVT_F_STE_FETCH;
639 event->u.f_ste_fetch.addr = l1ptr;
640 return -EINVAL;
642 for (i = 0; i < ARRAY_SIZE(l1std.word); i++) {
643 le32_to_cpus(&l1std.word[i]);
646 span = L1STD_SPAN(&l1std);
648 if (!span) {
649 /* l2ptr is not valid */
650 if (!event->inval_ste_allowed) {
651 qemu_log_mask(LOG_GUEST_ERROR,
652 "invalid sid=%d (L1STD span=0)\n", sid);
654 event->type = SMMU_EVT_C_BAD_STREAMID;
655 return -EINVAL;
657 max_l2_ste = (1 << span) - 1;
658 l2ptr = l1std_l2ptr(&l1std);
659 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
660 l2ptr, l2_ste_offset, max_l2_ste);
661 if (l2_ste_offset > max_l2_ste) {
662 qemu_log_mask(LOG_GUEST_ERROR,
663 "l2_ste_offset=%d > max_l2_ste=%d\n",
664 l2_ste_offset, max_l2_ste);
665 event->type = SMMU_EVT_C_BAD_STE;
666 return -EINVAL;
668 addr = l2ptr + l2_ste_offset * sizeof(*ste);
669 } else {
670 strtab_size_shift = log2size + 5;
671 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
672 ~MAKE_64BIT_MASK(0, strtab_size_shift);
673 addr = strtab_base + sid * sizeof(*ste);
676 if (smmu_get_ste(s, addr, ste, event)) {
677 return -EINVAL;
680 return 0;
683 static int decode_cd(SMMUv3State *s, SMMUTransCfg *cfg,
684 CD *cd, SMMUEventInfo *event)
686 int ret = -EINVAL;
687 int i;
688 SMMUTranslationStatus status;
689 SMMUTLBEntry *entry;
691 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
692 goto bad_cd;
694 if (!CD_A(cd)) {
695 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
697 if (CD_S(cd)) {
698 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
700 if (CD_HA(cd) || CD_HD(cd)) {
701 goto bad_cd; /* HTTU = 0 */
704 /* we support only those at the moment */
705 cfg->aa64 = true;
706 cfg->stage = SMMU_STAGE_1;
708 cfg->oas = oas2bits(CD_IPS(cd));
709 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
710 cfg->tbi = CD_TBI(cd);
711 cfg->asid = CD_ASID(cd);
712 cfg->affd = CD_AFFD(cd);
714 trace_smmuv3_decode_cd(cfg->oas);
716 /* decode data dependent on TT */
717 for (i = 0; i <= 1; i++) {
718 int tg, tsz;
719 SMMUTransTableInfo *tt = &cfg->tt[i];
721 cfg->tt[i].disabled = CD_EPD(cd, i);
722 if (cfg->tt[i].disabled) {
723 continue;
726 tsz = CD_TSZ(cd, i);
727 if (tsz < 16 || tsz > 39) {
728 goto bad_cd;
731 tg = CD_TG(cd, i);
732 tt->granule_sz = tg2granule(tg, i);
733 if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
734 tt->granule_sz != 16) || CD_ENDI(cd)) {
735 goto bad_cd;
738 tt->tsz = tsz;
739 tt->ttb = CD_TTB(cd, i);
741 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
742 goto bad_cd;
745 /* Translate the TTBx, from IPA to PA if nesting is enabled. */
746 if (cfg->stage == SMMU_NESTED) {
747 status = smmuv3_do_translate(s, tt->ttb, cfg, event, IOMMU_RO,
748 &entry, SMMU_CLASS_TT);
750 * Same PTW faults are reported but with CLASS = TT.
751 * If TTBx is larger than the effective stage 1 output addres
752 * size, it reports C_BAD_CD, which is handled by the above case.
754 if (status != SMMU_TRANS_SUCCESS) {
755 return -EINVAL;
757 tt->ttb = CACHED_ENTRY_TO_ADDR(entry, tt->ttb);
760 tt->had = CD_HAD(cd, i);
761 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
764 cfg->record_faults = CD_R(cd);
766 return 0;
768 bad_cd:
769 event->type = SMMU_EVT_C_BAD_CD;
770 return ret;
774 * smmuv3_decode_config - Prepare the translation configuration
775 * for the @mr iommu region
776 * @mr: iommu memory region the translation config must be prepared for
777 * @cfg: output translation configuration which is populated through
778 * the different configuration decoding steps
779 * @event: must be zero'ed by the caller
781 * return < 0 in case of config decoding error (@event is filled
782 * accordingly). Return 0 otherwise.
784 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
785 SMMUEventInfo *event)
787 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
788 uint32_t sid = smmu_get_sid(sdev);
789 SMMUv3State *s = sdev->smmu;
790 int ret;
791 STE ste;
792 CD cd;
794 /* ASID defaults to -1 (if s1 is not supported). */
795 cfg->asid = -1;
797 ret = smmu_find_ste(s, sid, &ste, event);
798 if (ret) {
799 return ret;
802 ret = decode_ste(s, cfg, &ste, event);
803 if (ret) {
804 return ret;
807 if (cfg->aborted || cfg->bypassed || (cfg->stage == SMMU_STAGE_2)) {
808 return 0;
811 ret = smmu_get_cd(s, &ste, cfg, 0 /* ssid */, &cd, event);
812 if (ret) {
813 return ret;
816 return decode_cd(s, cfg, &cd, event);
820 * smmuv3_get_config - Look up for a cached copy of configuration data for
821 * @sdev and on cache miss performs a configuration structure decoding from
822 * guest RAM.
824 * @sdev: SMMUDevice handle
825 * @event: output event info
827 * The configuration cache contains data resulting from both STE and CD
828 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
829 * by the SMMUDevice handle.
831 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
833 SMMUv3State *s = sdev->smmu;
834 SMMUState *bc = &s->smmu_state;
835 SMMUTransCfg *cfg;
837 cfg = g_hash_table_lookup(bc->configs, sdev);
838 if (cfg) {
839 sdev->cfg_cache_hits++;
840 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
841 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
842 100 * sdev->cfg_cache_hits /
843 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
844 } else {
845 sdev->cfg_cache_misses++;
846 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
847 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
848 100 * sdev->cfg_cache_hits /
849 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
850 cfg = g_new0(SMMUTransCfg, 1);
852 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
853 g_hash_table_insert(bc->configs, sdev, cfg);
854 } else {
855 g_free(cfg);
856 cfg = NULL;
859 return cfg;
862 static void smmuv3_flush_config(SMMUDevice *sdev)
864 SMMUv3State *s = sdev->smmu;
865 SMMUState *bc = &s->smmu_state;
867 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
868 g_hash_table_remove(bc->configs, sdev);
871 /* Do translation with TLB lookup. */
872 static SMMUTranslationStatus smmuv3_do_translate(SMMUv3State *s, hwaddr addr,
873 SMMUTransCfg *cfg,
874 SMMUEventInfo *event,
875 IOMMUAccessFlags flag,
876 SMMUTLBEntry **out_entry,
877 SMMUTranslationClass class)
879 SMMUPTWEventInfo ptw_info = {};
880 SMMUState *bs = ARM_SMMU(s);
881 SMMUTLBEntry *cached_entry = NULL;
882 int asid, stage;
883 bool desc_s2_translation = class != SMMU_CLASS_IN;
886 * The function uses the argument class to identify which stage is used:
887 * - CLASS = IN: Means an input translation, determine the stage from STE.
888 * - CLASS = CD: Means the addr is an IPA of the CD, and it would be
889 * translated using the stage-2.
890 * - CLASS = TT: Means the addr is an IPA of the stage-1 translation table
891 * and it would be translated using the stage-2.
892 * For the last 2 cases instead of having intrusive changes in the common
893 * logic, we modify the cfg to be a stage-2 translation only in case of
894 * nested, and then restore it after.
896 if (desc_s2_translation) {
897 asid = cfg->asid;
898 stage = cfg->stage;
899 cfg->asid = -1;
900 cfg->stage = SMMU_STAGE_2;
903 cached_entry = smmu_translate(bs, cfg, addr, flag, &ptw_info);
905 if (desc_s2_translation) {
906 cfg->asid = asid;
907 cfg->stage = stage;
910 if (!cached_entry) {
911 /* All faults from PTW has S2 field. */
912 event->u.f_walk_eabt.s2 = (ptw_info.stage == SMMU_STAGE_2);
914 * Fault class is set as follows based on "class" input to
915 * the function and to "ptw_info" from "smmu_translate()"
916 * For stage-1:
917 * - EABT => CLASS_TT (hardcoded)
918 * - other events => CLASS_IN (input to function)
919 * For stage-2 => CLASS_IN (input to function)
920 * For nested, for all events:
921 * - CD fetch => CLASS_CD (input to function)
922 * - walking stage 1 translation table => CLASS_TT (from
923 * is_ipa_descriptor or input in case of TTBx)
924 * - s2 translation => CLASS_IN (input to function)
926 class = ptw_info.is_ipa_descriptor ? SMMU_CLASS_TT : class;
927 switch (ptw_info.type) {
928 case SMMU_PTW_ERR_WALK_EABT:
929 event->type = SMMU_EVT_F_WALK_EABT;
930 event->u.f_walk_eabt.rnw = flag & 0x1;
931 event->u.f_walk_eabt.class = (ptw_info.stage == SMMU_STAGE_2) ?
932 class : SMMU_CLASS_TT;
933 event->u.f_walk_eabt.addr2 = ptw_info.addr;
934 break;
935 case SMMU_PTW_ERR_TRANSLATION:
936 if (PTW_RECORD_FAULT(cfg)) {
937 event->type = SMMU_EVT_F_TRANSLATION;
938 event->u.f_translation.addr2 = ptw_info.addr;
939 event->u.f_translation.class = class;
940 event->u.f_translation.rnw = flag & 0x1;
942 break;
943 case SMMU_PTW_ERR_ADDR_SIZE:
944 if (PTW_RECORD_FAULT(cfg)) {
945 event->type = SMMU_EVT_F_ADDR_SIZE;
946 event->u.f_addr_size.addr2 = ptw_info.addr;
947 event->u.f_addr_size.class = class;
948 event->u.f_addr_size.rnw = flag & 0x1;
950 break;
951 case SMMU_PTW_ERR_ACCESS:
952 if (PTW_RECORD_FAULT(cfg)) {
953 event->type = SMMU_EVT_F_ACCESS;
954 event->u.f_access.addr2 = ptw_info.addr;
955 event->u.f_access.class = class;
956 event->u.f_access.rnw = flag & 0x1;
958 break;
959 case SMMU_PTW_ERR_PERMISSION:
960 if (PTW_RECORD_FAULT(cfg)) {
961 event->type = SMMU_EVT_F_PERMISSION;
962 event->u.f_permission.addr2 = ptw_info.addr;
963 event->u.f_permission.class = class;
964 event->u.f_permission.rnw = flag & 0x1;
966 break;
967 default:
968 g_assert_not_reached();
970 return SMMU_TRANS_ERROR;
972 *out_entry = cached_entry;
973 return SMMU_TRANS_SUCCESS;
977 * Sets the InputAddr for an SMMU_TRANS_ERROR, as it can't be
978 * set from all contexts, as smmuv3_get_config() can return
979 * translation faults in case of nested translation (for CD
980 * and TTBx). But in that case the iova is not known.
982 static void smmuv3_fixup_event(SMMUEventInfo *event, hwaddr iova)
984 switch (event->type) {
985 case SMMU_EVT_F_WALK_EABT:
986 case SMMU_EVT_F_TRANSLATION:
987 case SMMU_EVT_F_ADDR_SIZE:
988 case SMMU_EVT_F_ACCESS:
989 case SMMU_EVT_F_PERMISSION:
990 event->u.f_walk_eabt.addr = iova;
991 break;
992 default:
993 break;
997 /* Entry point to SMMU, does everything. */
998 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
999 IOMMUAccessFlags flag, int iommu_idx)
1001 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
1002 SMMUv3State *s = sdev->smmu;
1003 uint32_t sid = smmu_get_sid(sdev);
1004 SMMUEventInfo event = {.type = SMMU_EVT_NONE,
1005 .sid = sid,
1006 .inval_ste_allowed = false};
1007 SMMUTranslationStatus status;
1008 SMMUTransCfg *cfg = NULL;
1009 IOMMUTLBEntry entry = {
1010 .target_as = &address_space_memory,
1011 .iova = addr,
1012 .translated_addr = addr,
1013 .addr_mask = ~(hwaddr)0,
1014 .perm = IOMMU_NONE,
1016 SMMUTLBEntry *cached_entry = NULL;
1018 qemu_mutex_lock(&s->mutex);
1020 if (!smmu_enabled(s)) {
1021 if (FIELD_EX32(s->gbpa, GBPA, ABORT)) {
1022 status = SMMU_TRANS_ABORT;
1023 } else {
1024 status = SMMU_TRANS_DISABLE;
1026 goto epilogue;
1029 cfg = smmuv3_get_config(sdev, &event);
1030 if (!cfg) {
1031 status = SMMU_TRANS_ERROR;
1032 goto epilogue;
1035 if (cfg->aborted) {
1036 status = SMMU_TRANS_ABORT;
1037 goto epilogue;
1040 if (cfg->bypassed) {
1041 status = SMMU_TRANS_BYPASS;
1042 goto epilogue;
1045 status = smmuv3_do_translate(s, addr, cfg, &event, flag,
1046 &cached_entry, SMMU_CLASS_IN);
1048 epilogue:
1049 qemu_mutex_unlock(&s->mutex);
1050 switch (status) {
1051 case SMMU_TRANS_SUCCESS:
1052 entry.perm = cached_entry->entry.perm;
1053 entry.translated_addr = CACHED_ENTRY_TO_ADDR(cached_entry, addr);
1054 entry.addr_mask = cached_entry->entry.addr_mask;
1055 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
1056 entry.translated_addr, entry.perm,
1057 cfg->stage);
1058 break;
1059 case SMMU_TRANS_DISABLE:
1060 entry.perm = flag;
1061 entry.addr_mask = ~TARGET_PAGE_MASK;
1062 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
1063 entry.perm);
1064 break;
1065 case SMMU_TRANS_BYPASS:
1066 entry.perm = flag;
1067 entry.addr_mask = ~TARGET_PAGE_MASK;
1068 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
1069 entry.perm);
1070 break;
1071 case SMMU_TRANS_ABORT:
1072 /* no event is recorded on abort */
1073 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
1074 entry.perm);
1075 break;
1076 case SMMU_TRANS_ERROR:
1077 smmuv3_fixup_event(&event, addr);
1078 qemu_log_mask(LOG_GUEST_ERROR,
1079 "%s translation failed for iova=0x%"PRIx64" (%s)\n",
1080 mr->parent_obj.name, addr, smmu_event_string(event.type));
1081 smmuv3_record_event(s, &event);
1082 break;
1085 return entry;
1089 * smmuv3_notify_iova - call the notifier @n for a given
1090 * @asid and @iova tuple.
1092 * @mr: IOMMU mr region handle
1093 * @n: notifier to be called
1094 * @asid: address space ID or negative value if we don't care
1095 * @vmid: virtual machine ID or negative value if we don't care
1096 * @iova: iova
1097 * @tg: translation granule (if communicated through range invalidation)
1098 * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
1099 * @stage: Which stage(1 or 2) is used
1101 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
1102 IOMMUNotifier *n,
1103 int asid, int vmid,
1104 dma_addr_t iova, uint8_t tg,
1105 uint64_t num_pages, int stage)
1107 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
1108 SMMUEventInfo eventinfo = {.inval_ste_allowed = true};
1109 SMMUTransCfg *cfg = smmuv3_get_config(sdev, &eventinfo);
1110 IOMMUTLBEvent event;
1111 uint8_t granule;
1113 if (!cfg) {
1114 return;
1118 * stage is passed from TLB invalidation commands which can be either
1119 * stage-1 or stage-2.
1120 * However, IOMMUTLBEvent only understands IOVA, for stage-1 or stage-2
1121 * SMMU instances we consider the input address as the IOVA, but when
1122 * nesting is used, we can't mix stage-1 and stage-2 addresses, so for
1123 * nesting only stage-1 is considered the IOVA and would be notified.
1125 if ((stage == SMMU_STAGE_2) && (cfg->stage == SMMU_NESTED))
1126 return;
1128 if (!tg) {
1129 SMMUTransTableInfo *tt;
1131 if (asid >= 0 && cfg->asid != asid) {
1132 return;
1135 if (vmid >= 0 && cfg->s2cfg.vmid != vmid) {
1136 return;
1139 if (stage == SMMU_STAGE_1) {
1140 tt = select_tt(cfg, iova);
1141 if (!tt) {
1142 return;
1144 granule = tt->granule_sz;
1145 } else {
1146 granule = cfg->s2cfg.granule_sz;
1149 } else {
1150 granule = tg * 2 + 10;
1153 event.type = IOMMU_NOTIFIER_UNMAP;
1154 event.entry.target_as = &address_space_memory;
1155 event.entry.iova = iova;
1156 event.entry.addr_mask = num_pages * (1 << granule) - 1;
1157 event.entry.perm = IOMMU_NONE;
1159 memory_region_notify_iommu_one(n, &event);
1162 /* invalidate an asid/vmid/iova range tuple in all mr's */
1163 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid,
1164 dma_addr_t iova, uint8_t tg,
1165 uint64_t num_pages, int stage)
1167 SMMUDevice *sdev;
1169 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
1170 IOMMUMemoryRegion *mr = &sdev->iommu;
1171 IOMMUNotifier *n;
1173 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid,
1174 iova, tg, num_pages, stage);
1176 IOMMU_NOTIFIER_FOREACH(n, mr) {
1177 smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages, stage);
1182 static void smmuv3_range_inval(SMMUState *s, Cmd *cmd, SMMUStage stage)
1184 dma_addr_t end, addr = CMD_ADDR(cmd);
1185 uint8_t type = CMD_TYPE(cmd);
1186 int vmid = -1;
1187 uint8_t scale = CMD_SCALE(cmd);
1188 uint8_t num = CMD_NUM(cmd);
1189 uint8_t ttl = CMD_TTL(cmd);
1190 bool leaf = CMD_LEAF(cmd);
1191 uint8_t tg = CMD_TG(cmd);
1192 uint64_t num_pages;
1193 uint8_t granule;
1194 int asid = -1;
1195 SMMUv3State *smmuv3 = ARM_SMMUV3(s);
1197 /* Only consider VMID if stage-2 is supported. */
1198 if (STAGE2_SUPPORTED(smmuv3)) {
1199 vmid = CMD_VMID(cmd);
1202 if (type == SMMU_CMD_TLBI_NH_VA) {
1203 asid = CMD_ASID(cmd);
1206 if (!tg) {
1207 trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf, stage);
1208 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1, stage);
1209 if (stage == SMMU_STAGE_1) {
1210 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl);
1211 } else {
1212 smmu_iotlb_inv_ipa(s, vmid, addr, tg, 1, ttl);
1214 return;
1217 /* RIL in use */
1219 num_pages = (num + 1) * BIT_ULL(scale);
1220 granule = tg * 2 + 10;
1222 /* Split invalidations into ^2 range invalidations */
1223 end = addr + (num_pages << granule) - 1;
1225 while (addr != end + 1) {
1226 uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
1228 num_pages = (mask + 1) >> granule;
1229 trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages,
1230 ttl, leaf, stage);
1231 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages, stage);
1232 if (stage == SMMU_STAGE_1) {
1233 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl);
1234 } else {
1235 smmu_iotlb_inv_ipa(s, vmid, addr, tg, num_pages, ttl);
1237 addr += mask + 1;
1241 static gboolean
1242 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
1244 SMMUDevice *sdev = (SMMUDevice *)key;
1245 uint32_t sid = smmu_get_sid(sdev);
1246 SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
1248 if (sid < sid_range->start || sid > sid_range->end) {
1249 return false;
1251 trace_smmuv3_config_cache_inv(sid);
1252 return true;
1255 static int smmuv3_cmdq_consume(SMMUv3State *s)
1257 SMMUState *bs = ARM_SMMU(s);
1258 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
1259 SMMUQueue *q = &s->cmdq;
1260 SMMUCommandType type = 0;
1262 if (!smmuv3_cmdq_enabled(s)) {
1263 return 0;
1266 * some commands depend on register values, typically CR0. In case those
1267 * register values change while handling the command, spec says it
1268 * is UNPREDICTABLE whether the command is interpreted under the new
1269 * or old value.
1272 while (!smmuv3_q_empty(q)) {
1273 uint32_t pending = s->gerror ^ s->gerrorn;
1274 Cmd cmd;
1276 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
1277 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1279 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
1280 break;
1283 if (queue_read(q, &cmd) != MEMTX_OK) {
1284 cmd_error = SMMU_CERROR_ABT;
1285 break;
1288 type = CMD_TYPE(&cmd);
1290 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
1292 qemu_mutex_lock(&s->mutex);
1293 switch (type) {
1294 case SMMU_CMD_SYNC:
1295 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
1296 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
1298 break;
1299 case SMMU_CMD_PREFETCH_CONFIG:
1300 case SMMU_CMD_PREFETCH_ADDR:
1301 break;
1302 case SMMU_CMD_CFGI_STE:
1304 uint32_t sid = CMD_SID(&cmd);
1305 SMMUDevice *sdev = smmu_find_sdev(bs, sid);
1307 if (CMD_SSEC(&cmd)) {
1308 cmd_error = SMMU_CERROR_ILL;
1309 break;
1312 if (!sdev) {
1313 break;
1316 trace_smmuv3_cmdq_cfgi_ste(sid);
1317 smmuv3_flush_config(sdev);
1319 break;
1321 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
1323 uint32_t sid = CMD_SID(&cmd), mask;
1324 uint8_t range = CMD_STE_RANGE(&cmd);
1325 SMMUSIDRange sid_range;
1327 if (CMD_SSEC(&cmd)) {
1328 cmd_error = SMMU_CERROR_ILL;
1329 break;
1332 mask = (1ULL << (range + 1)) - 1;
1333 sid_range.start = sid & ~mask;
1334 sid_range.end = sid_range.start + mask;
1336 trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
1337 g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
1338 &sid_range);
1339 break;
1341 case SMMU_CMD_CFGI_CD:
1342 case SMMU_CMD_CFGI_CD_ALL:
1344 uint32_t sid = CMD_SID(&cmd);
1345 SMMUDevice *sdev = smmu_find_sdev(bs, sid);
1347 if (CMD_SSEC(&cmd)) {
1348 cmd_error = SMMU_CERROR_ILL;
1349 break;
1352 if (!sdev) {
1353 break;
1356 trace_smmuv3_cmdq_cfgi_cd(sid);
1357 smmuv3_flush_config(sdev);
1358 break;
1360 case SMMU_CMD_TLBI_NH_ASID:
1362 int asid = CMD_ASID(&cmd);
1363 int vmid = -1;
1365 if (!STAGE1_SUPPORTED(s)) {
1366 cmd_error = SMMU_CERROR_ILL;
1367 break;
1371 * VMID is only matched when stage 2 is supported, otherwise set it
1372 * to -1 as the value used for stage-1 only VMIDs.
1374 if (STAGE2_SUPPORTED(s)) {
1375 vmid = CMD_VMID(&cmd);
1378 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1379 smmu_inv_notifiers_all(&s->smmu_state);
1380 smmu_iotlb_inv_asid_vmid(bs, asid, vmid);
1381 break;
1383 case SMMU_CMD_TLBI_NH_ALL:
1385 int vmid = -1;
1387 if (!STAGE1_SUPPORTED(s)) {
1388 cmd_error = SMMU_CERROR_ILL;
1389 break;
1393 * If stage-2 is supported, invalidate for this VMID only, otherwise
1394 * invalidate the whole thing.
1396 if (STAGE2_SUPPORTED(s)) {
1397 vmid = CMD_VMID(&cmd);
1398 trace_smmuv3_cmdq_tlbi_nh(vmid);
1399 smmu_iotlb_inv_vmid_s1(bs, vmid);
1400 break;
1402 QEMU_FALLTHROUGH;
1404 case SMMU_CMD_TLBI_NSNH_ALL:
1405 trace_smmuv3_cmdq_tlbi_nsnh();
1406 smmu_inv_notifiers_all(&s->smmu_state);
1407 smmu_iotlb_inv_all(bs);
1408 break;
1409 case SMMU_CMD_TLBI_NH_VAA:
1410 case SMMU_CMD_TLBI_NH_VA:
1411 if (!STAGE1_SUPPORTED(s)) {
1412 cmd_error = SMMU_CERROR_ILL;
1413 break;
1415 smmuv3_range_inval(bs, &cmd, SMMU_STAGE_1);
1416 break;
1417 case SMMU_CMD_TLBI_S12_VMALL:
1419 int vmid = CMD_VMID(&cmd);
1421 if (!STAGE2_SUPPORTED(s)) {
1422 cmd_error = SMMU_CERROR_ILL;
1423 break;
1426 trace_smmuv3_cmdq_tlbi_s12_vmid(vmid);
1427 smmu_inv_notifiers_all(&s->smmu_state);
1428 smmu_iotlb_inv_vmid(bs, vmid);
1429 break;
1431 case SMMU_CMD_TLBI_S2_IPA:
1432 if (!STAGE2_SUPPORTED(s)) {
1433 cmd_error = SMMU_CERROR_ILL;
1434 break;
1437 * As currently only either s1 or s2 are supported
1438 * we can reuse same function for s2.
1440 smmuv3_range_inval(bs, &cmd, SMMU_STAGE_2);
1441 break;
1442 case SMMU_CMD_TLBI_EL3_ALL:
1443 case SMMU_CMD_TLBI_EL3_VA:
1444 case SMMU_CMD_TLBI_EL2_ALL:
1445 case SMMU_CMD_TLBI_EL2_ASID:
1446 case SMMU_CMD_TLBI_EL2_VA:
1447 case SMMU_CMD_TLBI_EL2_VAA:
1448 case SMMU_CMD_ATC_INV:
1449 case SMMU_CMD_PRI_RESP:
1450 case SMMU_CMD_RESUME:
1451 case SMMU_CMD_STALL_TERM:
1452 trace_smmuv3_unhandled_cmd(type);
1453 break;
1454 default:
1455 cmd_error = SMMU_CERROR_ILL;
1456 break;
1458 qemu_mutex_unlock(&s->mutex);
1459 if (cmd_error) {
1460 if (cmd_error == SMMU_CERROR_ILL) {
1461 qemu_log_mask(LOG_GUEST_ERROR,
1462 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1464 break;
1467 * We only increment the cons index after the completion of
1468 * the command. We do that because the SYNC returns immediately
1469 * and does not check the completion of previous commands
1471 queue_cons_incr(q);
1474 if (cmd_error) {
1475 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1476 smmu_write_cmdq_err(s, cmd_error);
1477 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1480 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1481 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1483 return 0;
1486 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1487 uint64_t data, MemTxAttrs attrs)
1489 switch (offset) {
1490 case A_GERROR_IRQ_CFG0:
1491 s->gerror_irq_cfg0 = data;
1492 return MEMTX_OK;
1493 case A_STRTAB_BASE:
1494 s->strtab_base = data;
1495 return MEMTX_OK;
1496 case A_CMDQ_BASE:
1497 s->cmdq.base = data;
1498 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1499 if (s->cmdq.log2size > SMMU_CMDQS) {
1500 s->cmdq.log2size = SMMU_CMDQS;
1502 return MEMTX_OK;
1503 case A_EVENTQ_BASE:
1504 s->eventq.base = data;
1505 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1506 if (s->eventq.log2size > SMMU_EVENTQS) {
1507 s->eventq.log2size = SMMU_EVENTQS;
1509 return MEMTX_OK;
1510 case A_EVENTQ_IRQ_CFG0:
1511 s->eventq_irq_cfg0 = data;
1512 return MEMTX_OK;
1513 default:
1514 qemu_log_mask(LOG_UNIMP,
1515 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1516 __func__, offset);
1517 return MEMTX_OK;
1521 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1522 uint64_t data, MemTxAttrs attrs)
1524 switch (offset) {
1525 case A_CR0:
1526 s->cr[0] = data;
1527 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1528 /* in case the command queue has been enabled */
1529 smmuv3_cmdq_consume(s);
1530 return MEMTX_OK;
1531 case A_CR1:
1532 s->cr[1] = data;
1533 return MEMTX_OK;
1534 case A_CR2:
1535 s->cr[2] = data;
1536 return MEMTX_OK;
1537 case A_IRQ_CTRL:
1538 s->irq_ctrl = data;
1539 return MEMTX_OK;
1540 case A_GERRORN:
1541 smmuv3_write_gerrorn(s, data);
1543 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1544 * be processed again
1546 smmuv3_cmdq_consume(s);
1547 return MEMTX_OK;
1548 case A_GERROR_IRQ_CFG0: /* 64b */
1549 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1550 return MEMTX_OK;
1551 case A_GERROR_IRQ_CFG0 + 4:
1552 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1553 return MEMTX_OK;
1554 case A_GERROR_IRQ_CFG1:
1555 s->gerror_irq_cfg1 = data;
1556 return MEMTX_OK;
1557 case A_GERROR_IRQ_CFG2:
1558 s->gerror_irq_cfg2 = data;
1559 return MEMTX_OK;
1560 case A_GBPA:
1562 * If UPDATE is not set, the write is ignored. This is the only
1563 * permitted behavior in SMMUv3.2 and later.
1565 if (data & R_GBPA_UPDATE_MASK) {
1566 /* Ignore update bit as write is synchronous. */
1567 s->gbpa = data & ~R_GBPA_UPDATE_MASK;
1569 return MEMTX_OK;
1570 case A_STRTAB_BASE: /* 64b */
1571 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1572 return MEMTX_OK;
1573 case A_STRTAB_BASE + 4:
1574 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1575 return MEMTX_OK;
1576 case A_STRTAB_BASE_CFG:
1577 s->strtab_base_cfg = data;
1578 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1579 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1580 s->features |= SMMU_FEATURE_2LVL_STE;
1582 return MEMTX_OK;
1583 case A_CMDQ_BASE: /* 64b */
1584 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1585 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1586 if (s->cmdq.log2size > SMMU_CMDQS) {
1587 s->cmdq.log2size = SMMU_CMDQS;
1589 return MEMTX_OK;
1590 case A_CMDQ_BASE + 4: /* 64b */
1591 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1592 return MEMTX_OK;
1593 case A_CMDQ_PROD:
1594 s->cmdq.prod = data;
1595 smmuv3_cmdq_consume(s);
1596 return MEMTX_OK;
1597 case A_CMDQ_CONS:
1598 s->cmdq.cons = data;
1599 return MEMTX_OK;
1600 case A_EVENTQ_BASE: /* 64b */
1601 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1602 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1603 if (s->eventq.log2size > SMMU_EVENTQS) {
1604 s->eventq.log2size = SMMU_EVENTQS;
1606 return MEMTX_OK;
1607 case A_EVENTQ_BASE + 4:
1608 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1609 return MEMTX_OK;
1610 case A_EVENTQ_PROD:
1611 s->eventq.prod = data;
1612 return MEMTX_OK;
1613 case A_EVENTQ_CONS:
1614 s->eventq.cons = data;
1615 return MEMTX_OK;
1616 case A_EVENTQ_IRQ_CFG0: /* 64b */
1617 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1618 return MEMTX_OK;
1619 case A_EVENTQ_IRQ_CFG0 + 4:
1620 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1621 return MEMTX_OK;
1622 case A_EVENTQ_IRQ_CFG1:
1623 s->eventq_irq_cfg1 = data;
1624 return MEMTX_OK;
1625 case A_EVENTQ_IRQ_CFG2:
1626 s->eventq_irq_cfg2 = data;
1627 return MEMTX_OK;
1628 default:
1629 qemu_log_mask(LOG_UNIMP,
1630 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1631 __func__, offset);
1632 return MEMTX_OK;
1636 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1637 unsigned size, MemTxAttrs attrs)
1639 SMMUState *sys = opaque;
1640 SMMUv3State *s = ARM_SMMUV3(sys);
1641 MemTxResult r;
1643 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1644 offset &= ~0x10000;
1646 switch (size) {
1647 case 8:
1648 r = smmu_writell(s, offset, data, attrs);
1649 break;
1650 case 4:
1651 r = smmu_writel(s, offset, data, attrs);
1652 break;
1653 default:
1654 r = MEMTX_ERROR;
1655 break;
1658 trace_smmuv3_write_mmio(offset, data, size, r);
1659 return r;
1662 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1663 uint64_t *data, MemTxAttrs attrs)
1665 switch (offset) {
1666 case A_GERROR_IRQ_CFG0:
1667 *data = s->gerror_irq_cfg0;
1668 return MEMTX_OK;
1669 case A_STRTAB_BASE:
1670 *data = s->strtab_base;
1671 return MEMTX_OK;
1672 case A_CMDQ_BASE:
1673 *data = s->cmdq.base;
1674 return MEMTX_OK;
1675 case A_EVENTQ_BASE:
1676 *data = s->eventq.base;
1677 return MEMTX_OK;
1678 default:
1679 *data = 0;
1680 qemu_log_mask(LOG_UNIMP,
1681 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1682 __func__, offset);
1683 return MEMTX_OK;
1687 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1688 uint64_t *data, MemTxAttrs attrs)
1690 switch (offset) {
1691 case A_IDREGS ... A_IDREGS + 0x2f:
1692 *data = smmuv3_idreg(offset - A_IDREGS);
1693 return MEMTX_OK;
1694 case A_IDR0 ... A_IDR5:
1695 *data = s->idr[(offset - A_IDR0) / 4];
1696 return MEMTX_OK;
1697 case A_IIDR:
1698 *data = s->iidr;
1699 return MEMTX_OK;
1700 case A_AIDR:
1701 *data = s->aidr;
1702 return MEMTX_OK;
1703 case A_CR0:
1704 *data = s->cr[0];
1705 return MEMTX_OK;
1706 case A_CR0ACK:
1707 *data = s->cr0ack;
1708 return MEMTX_OK;
1709 case A_CR1:
1710 *data = s->cr[1];
1711 return MEMTX_OK;
1712 case A_CR2:
1713 *data = s->cr[2];
1714 return MEMTX_OK;
1715 case A_STATUSR:
1716 *data = s->statusr;
1717 return MEMTX_OK;
1718 case A_GBPA:
1719 *data = s->gbpa;
1720 return MEMTX_OK;
1721 case A_IRQ_CTRL:
1722 case A_IRQ_CTRL_ACK:
1723 *data = s->irq_ctrl;
1724 return MEMTX_OK;
1725 case A_GERROR:
1726 *data = s->gerror;
1727 return MEMTX_OK;
1728 case A_GERRORN:
1729 *data = s->gerrorn;
1730 return MEMTX_OK;
1731 case A_GERROR_IRQ_CFG0: /* 64b */
1732 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1733 return MEMTX_OK;
1734 case A_GERROR_IRQ_CFG0 + 4:
1735 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1736 return MEMTX_OK;
1737 case A_GERROR_IRQ_CFG1:
1738 *data = s->gerror_irq_cfg1;
1739 return MEMTX_OK;
1740 case A_GERROR_IRQ_CFG2:
1741 *data = s->gerror_irq_cfg2;
1742 return MEMTX_OK;
1743 case A_STRTAB_BASE: /* 64b */
1744 *data = extract64(s->strtab_base, 0, 32);
1745 return MEMTX_OK;
1746 case A_STRTAB_BASE + 4: /* 64b */
1747 *data = extract64(s->strtab_base, 32, 32);
1748 return MEMTX_OK;
1749 case A_STRTAB_BASE_CFG:
1750 *data = s->strtab_base_cfg;
1751 return MEMTX_OK;
1752 case A_CMDQ_BASE: /* 64b */
1753 *data = extract64(s->cmdq.base, 0, 32);
1754 return MEMTX_OK;
1755 case A_CMDQ_BASE + 4:
1756 *data = extract64(s->cmdq.base, 32, 32);
1757 return MEMTX_OK;
1758 case A_CMDQ_PROD:
1759 *data = s->cmdq.prod;
1760 return MEMTX_OK;
1761 case A_CMDQ_CONS:
1762 *data = s->cmdq.cons;
1763 return MEMTX_OK;
1764 case A_EVENTQ_BASE: /* 64b */
1765 *data = extract64(s->eventq.base, 0, 32);
1766 return MEMTX_OK;
1767 case A_EVENTQ_BASE + 4: /* 64b */
1768 *data = extract64(s->eventq.base, 32, 32);
1769 return MEMTX_OK;
1770 case A_EVENTQ_PROD:
1771 *data = s->eventq.prod;
1772 return MEMTX_OK;
1773 case A_EVENTQ_CONS:
1774 *data = s->eventq.cons;
1775 return MEMTX_OK;
1776 default:
1777 *data = 0;
1778 qemu_log_mask(LOG_UNIMP,
1779 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1780 __func__, offset);
1781 return MEMTX_OK;
1785 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1786 unsigned size, MemTxAttrs attrs)
1788 SMMUState *sys = opaque;
1789 SMMUv3State *s = ARM_SMMUV3(sys);
1790 MemTxResult r;
1792 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1793 offset &= ~0x10000;
1795 switch (size) {
1796 case 8:
1797 r = smmu_readll(s, offset, data, attrs);
1798 break;
1799 case 4:
1800 r = smmu_readl(s, offset, data, attrs);
1801 break;
1802 default:
1803 r = MEMTX_ERROR;
1804 break;
1807 trace_smmuv3_read_mmio(offset, *data, size, r);
1808 return r;
1811 static const MemoryRegionOps smmu_mem_ops = {
1812 .read_with_attrs = smmu_read_mmio,
1813 .write_with_attrs = smmu_write_mmio,
1814 .endianness = DEVICE_LITTLE_ENDIAN,
1815 .valid = {
1816 .min_access_size = 4,
1817 .max_access_size = 8,
1819 .impl = {
1820 .min_access_size = 4,
1821 .max_access_size = 8,
1825 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1827 int i;
1829 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1830 sysbus_init_irq(dev, &s->irq[i]);
1834 static void smmu_reset_hold(Object *obj, ResetType type)
1836 SMMUv3State *s = ARM_SMMUV3(obj);
1837 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1839 if (c->parent_phases.hold) {
1840 c->parent_phases.hold(obj, type);
1843 smmuv3_init_regs(s);
1846 static void smmu_realize(DeviceState *d, Error **errp)
1848 SMMUState *sys = ARM_SMMU(d);
1849 SMMUv3State *s = ARM_SMMUV3(sys);
1850 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1851 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1852 Error *local_err = NULL;
1854 c->parent_realize(d, &local_err);
1855 if (local_err) {
1856 error_propagate(errp, local_err);
1857 return;
1860 qemu_mutex_init(&s->mutex);
1862 memory_region_init_io(&sys->iomem, OBJECT(s),
1863 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1865 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1867 sysbus_init_mmio(dev, &sys->iomem);
1869 smmu_init_irq(s, dev);
1872 static const VMStateDescription vmstate_smmuv3_queue = {
1873 .name = "smmuv3_queue",
1874 .version_id = 1,
1875 .minimum_version_id = 1,
1876 .fields = (const VMStateField[]) {
1877 VMSTATE_UINT64(base, SMMUQueue),
1878 VMSTATE_UINT32(prod, SMMUQueue),
1879 VMSTATE_UINT32(cons, SMMUQueue),
1880 VMSTATE_UINT8(log2size, SMMUQueue),
1881 VMSTATE_END_OF_LIST(),
1885 static bool smmuv3_gbpa_needed(void *opaque)
1887 SMMUv3State *s = opaque;
1889 /* Only migrate GBPA if it has different reset value. */
1890 return s->gbpa != SMMU_GBPA_RESET_VAL;
1893 static const VMStateDescription vmstate_gbpa = {
1894 .name = "smmuv3/gbpa",
1895 .version_id = 1,
1896 .minimum_version_id = 1,
1897 .needed = smmuv3_gbpa_needed,
1898 .fields = (const VMStateField[]) {
1899 VMSTATE_UINT32(gbpa, SMMUv3State),
1900 VMSTATE_END_OF_LIST()
1904 static const VMStateDescription vmstate_smmuv3 = {
1905 .name = "smmuv3",
1906 .version_id = 1,
1907 .minimum_version_id = 1,
1908 .priority = MIG_PRI_IOMMU,
1909 .fields = (const VMStateField[]) {
1910 VMSTATE_UINT32(features, SMMUv3State),
1911 VMSTATE_UINT8(sid_size, SMMUv3State),
1912 VMSTATE_UINT8(sid_split, SMMUv3State),
1914 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1915 VMSTATE_UINT32(cr0ack, SMMUv3State),
1916 VMSTATE_UINT32(statusr, SMMUv3State),
1917 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1918 VMSTATE_UINT32(gerror, SMMUv3State),
1919 VMSTATE_UINT32(gerrorn, SMMUv3State),
1920 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1921 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1922 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1923 VMSTATE_UINT64(strtab_base, SMMUv3State),
1924 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1925 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1926 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1927 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1929 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1930 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1932 VMSTATE_END_OF_LIST(),
1934 .subsections = (const VMStateDescription * const []) {
1935 &vmstate_gbpa,
1936 NULL
1940 static Property smmuv3_properties[] = {
1942 * Stages of translation advertised.
1943 * "1": Stage 1
1944 * "2": Stage 2
1945 * Defaults to stage 1
1947 DEFINE_PROP_STRING("stage", SMMUv3State, stage),
1948 DEFINE_PROP_END_OF_LIST()
1951 static void smmuv3_instance_init(Object *obj)
1953 /* Nothing much to do here as of now */
1956 static void smmuv3_class_init(ObjectClass *klass, void *data)
1958 DeviceClass *dc = DEVICE_CLASS(klass);
1959 ResettableClass *rc = RESETTABLE_CLASS(klass);
1960 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1962 dc->vmsd = &vmstate_smmuv3;
1963 resettable_class_set_parent_phases(rc, NULL, smmu_reset_hold, NULL,
1964 &c->parent_phases);
1965 device_class_set_parent_realize(dc, smmu_realize,
1966 &c->parent_realize);
1967 device_class_set_props(dc, smmuv3_properties);
1970 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1971 IOMMUNotifierFlag old,
1972 IOMMUNotifierFlag new,
1973 Error **errp)
1975 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1976 SMMUv3State *s3 = sdev->smmu;
1977 SMMUState *s = &(s3->smmu_state);
1979 if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1980 error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
1981 return -EINVAL;
1984 if (new & IOMMU_NOTIFIER_MAP) {
1985 error_setg(errp,
1986 "device %02x.%02x.%x requires iommu MAP notifier which is "
1987 "not currently supported", pci_bus_num(sdev->bus),
1988 PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1989 return -EINVAL;
1992 if (old == IOMMU_NOTIFIER_NONE) {
1993 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1994 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1995 } else if (new == IOMMU_NOTIFIER_NONE) {
1996 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1997 QLIST_REMOVE(sdev, next);
1999 return 0;
2002 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
2003 void *data)
2005 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
2007 imrc->translate = smmuv3_translate;
2008 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
2011 static const TypeInfo smmuv3_type_info = {
2012 .name = TYPE_ARM_SMMUV3,
2013 .parent = TYPE_ARM_SMMU,
2014 .instance_size = sizeof(SMMUv3State),
2015 .instance_init = smmuv3_instance_init,
2016 .class_size = sizeof(SMMUv3Class),
2017 .class_init = smmuv3_class_init,
2020 static const TypeInfo smmuv3_iommu_memory_region_info = {
2021 .parent = TYPE_IOMMU_MEMORY_REGION,
2022 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
2023 .class_init = smmuv3_iommu_memory_region_class_init,
2026 static void smmuv3_register_types(void)
2028 type_register(&smmuv3_type_info);
2029 type_register(&smmuv3_iommu_memory_region_info);
2032 type_init(smmuv3_register_types)