acpi: extend aml_interrupt() to support multiple irqs
[qemu/ar7.git] / block / qcow2-cluster.c
blob24a60e2236ffd3f11ad322f81d633bf06b77e369
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size2, ret, i;
37 uint64_t *new_l1_table;
38 int64_t old_l1_table_offset, old_l1_size;
39 int64_t new_l1_table_offset, new_l1_size;
40 uint8_t data[12];
42 if (min_size <= s->l1_size)
43 return 0;
45 /* Do a sanity check on min_size before trying to calculate new_l1_size
46 * (this prevents overflows during the while loop for the calculation of
47 * new_l1_size) */
48 if (min_size > INT_MAX / sizeof(uint64_t)) {
49 return -EFBIG;
52 if (exact_size) {
53 new_l1_size = min_size;
54 } else {
55 /* Bump size up to reduce the number of times we have to grow */
56 new_l1_size = s->l1_size;
57 if (new_l1_size == 0) {
58 new_l1_size = 1;
60 while (min_size > new_l1_size) {
61 new_l1_size = (new_l1_size * 3 + 1) / 2;
65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66 return -EFBIG;
69 #ifdef DEBUG_ALLOC2
70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71 s->l1_size, new_l1_size);
72 #endif
74 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75 new_l1_table = qemu_try_blockalign(bs->file->bs,
76 align_offset(new_l1_size2, 512));
77 if (new_l1_table == NULL) {
78 return -ENOMEM;
80 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
82 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
84 /* write new table (align to cluster) */
85 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
86 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
87 if (new_l1_table_offset < 0) {
88 qemu_vfree(new_l1_table);
89 return new_l1_table_offset;
92 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
93 if (ret < 0) {
94 goto fail;
97 /* the L1 position has not yet been updated, so these clusters must
98 * indeed be completely free */
99 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
100 new_l1_size2);
101 if (ret < 0) {
102 goto fail;
105 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
106 for(i = 0; i < s->l1_size; i++)
107 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
108 ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset,
109 new_l1_table, new_l1_size2);
110 if (ret < 0)
111 goto fail;
112 for(i = 0; i < s->l1_size; i++)
113 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
115 /* set new table */
116 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
117 cpu_to_be32w((uint32_t*)data, new_l1_size);
118 stq_be_p(data + 4, new_l1_table_offset);
119 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size),
120 data, sizeof(data));
121 if (ret < 0) {
122 goto fail;
124 qemu_vfree(s->l1_table);
125 old_l1_table_offset = s->l1_table_offset;
126 s->l1_table_offset = new_l1_table_offset;
127 s->l1_table = new_l1_table;
128 old_l1_size = s->l1_size;
129 s->l1_size = new_l1_size;
130 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
131 QCOW2_DISCARD_OTHER);
132 return 0;
133 fail:
134 qemu_vfree(new_l1_table);
135 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
136 QCOW2_DISCARD_OTHER);
137 return ret;
141 * l2_load
143 * Loads a L2 table into memory. If the table is in the cache, the cache
144 * is used; otherwise the L2 table is loaded from the image file.
146 * Returns a pointer to the L2 table on success, or NULL if the read from
147 * the image file failed.
150 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
151 uint64_t **l2_table)
153 BDRVQcow2State *s = bs->opaque;
154 int ret;
156 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
158 return ret;
162 * Writes one sector of the L1 table to the disk (can't update single entries
163 * and we really don't want bdrv_pread to perform a read-modify-write)
165 #define L1_ENTRIES_PER_SECTOR (512 / 8)
166 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
168 BDRVQcow2State *s = bs->opaque;
169 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
170 int l1_start_index;
171 int i, ret;
173 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
174 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
175 i++)
177 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
180 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
181 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
182 if (ret < 0) {
183 return ret;
186 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
187 ret = bdrv_pwrite_sync(bs->file->bs,
188 s->l1_table_offset + 8 * l1_start_index,
189 buf, sizeof(buf));
190 if (ret < 0) {
191 return ret;
194 return 0;
198 * l2_allocate
200 * Allocate a new l2 entry in the file. If l1_index points to an already
201 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
202 * table) copy the contents of the old L2 table into the newly allocated one.
203 * Otherwise the new table is initialized with zeros.
207 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
209 BDRVQcow2State *s = bs->opaque;
210 uint64_t old_l2_offset;
211 uint64_t *l2_table = NULL;
212 int64_t l2_offset;
213 int ret;
215 old_l2_offset = s->l1_table[l1_index];
217 trace_qcow2_l2_allocate(bs, l1_index);
219 /* allocate a new l2 entry */
221 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
222 if (l2_offset < 0) {
223 ret = l2_offset;
224 goto fail;
227 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
228 if (ret < 0) {
229 goto fail;
232 /* allocate a new entry in the l2 cache */
234 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
235 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
236 if (ret < 0) {
237 goto fail;
240 l2_table = *table;
242 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
243 /* if there was no old l2 table, clear the new table */
244 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
245 } else {
246 uint64_t* old_table;
248 /* if there was an old l2 table, read it from the disk */
249 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
250 ret = qcow2_cache_get(bs, s->l2_table_cache,
251 old_l2_offset & L1E_OFFSET_MASK,
252 (void**) &old_table);
253 if (ret < 0) {
254 goto fail;
257 memcpy(l2_table, old_table, s->cluster_size);
259 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
262 /* write the l2 table to the file */
263 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
265 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
266 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
267 ret = qcow2_cache_flush(bs, s->l2_table_cache);
268 if (ret < 0) {
269 goto fail;
272 /* update the L1 entry */
273 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
274 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
275 ret = qcow2_write_l1_entry(bs, l1_index);
276 if (ret < 0) {
277 goto fail;
280 *table = l2_table;
281 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
282 return 0;
284 fail:
285 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
286 if (l2_table != NULL) {
287 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
289 s->l1_table[l1_index] = old_l2_offset;
290 if (l2_offset > 0) {
291 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
292 QCOW2_DISCARD_ALWAYS);
294 return ret;
298 * Checks how many clusters in a given L2 table are contiguous in the image
299 * file. As soon as one of the flags in the bitmask stop_flags changes compared
300 * to the first cluster, the search is stopped and the cluster is not counted
301 * as contiguous. (This allows it, for example, to stop at the first compressed
302 * cluster which may require a different handling)
304 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
305 uint64_t *l2_table, uint64_t stop_flags)
307 int i;
308 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
309 uint64_t first_entry = be64_to_cpu(l2_table[0]);
310 uint64_t offset = first_entry & mask;
312 if (!offset)
313 return 0;
315 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
317 for (i = 0; i < nb_clusters; i++) {
318 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
319 if (offset + (uint64_t) i * cluster_size != l2_entry) {
320 break;
324 return i;
327 static int count_contiguous_clusters_by_type(int nb_clusters,
328 uint64_t *l2_table,
329 int wanted_type)
331 int i;
333 for (i = 0; i < nb_clusters; i++) {
334 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
336 if (type != wanted_type) {
337 break;
341 return i;
344 /* The crypt function is compatible with the linux cryptoloop
345 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
346 supported */
347 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
348 uint8_t *out_buf, const uint8_t *in_buf,
349 int nb_sectors, bool enc,
350 Error **errp)
352 union {
353 uint64_t ll[2];
354 uint8_t b[16];
355 } ivec;
356 int i;
357 int ret;
359 for(i = 0; i < nb_sectors; i++) {
360 ivec.ll[0] = cpu_to_le64(sector_num);
361 ivec.ll[1] = 0;
362 if (qcrypto_cipher_setiv(s->cipher,
363 ivec.b, G_N_ELEMENTS(ivec.b),
364 errp) < 0) {
365 return -1;
367 if (enc) {
368 ret = qcrypto_cipher_encrypt(s->cipher,
369 in_buf,
370 out_buf,
371 512,
372 errp);
373 } else {
374 ret = qcrypto_cipher_decrypt(s->cipher,
375 in_buf,
376 out_buf,
377 512,
378 errp);
380 if (ret < 0) {
381 return -1;
383 sector_num++;
384 in_buf += 512;
385 out_buf += 512;
387 return 0;
390 static int coroutine_fn copy_sectors(BlockDriverState *bs,
391 uint64_t start_sect,
392 uint64_t cluster_offset,
393 int n_start, int n_end)
395 BDRVQcow2State *s = bs->opaque;
396 QEMUIOVector qiov;
397 struct iovec iov;
398 int n, ret;
400 n = n_end - n_start;
401 if (n <= 0) {
402 return 0;
405 iov.iov_len = n * BDRV_SECTOR_SIZE;
406 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
407 if (iov.iov_base == NULL) {
408 return -ENOMEM;
411 qemu_iovec_init_external(&qiov, &iov, 1);
413 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
415 if (!bs->drv) {
416 ret = -ENOMEDIUM;
417 goto out;
420 /* Call .bdrv_co_readv() directly instead of using the public block-layer
421 * interface. This avoids double I/O throttling and request tracking,
422 * which can lead to deadlock when block layer copy-on-read is enabled.
424 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
425 if (ret < 0) {
426 goto out;
429 if (bs->encrypted) {
430 Error *err = NULL;
431 assert(s->cipher);
432 if (qcow2_encrypt_sectors(s, start_sect + n_start,
433 iov.iov_base, iov.iov_base, n,
434 true, &err) < 0) {
435 ret = -EIO;
436 error_free(err);
437 goto out;
441 ret = qcow2_pre_write_overlap_check(bs, 0,
442 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
443 if (ret < 0) {
444 goto out;
447 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
448 ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n,
449 &qiov);
450 if (ret < 0) {
451 goto out;
454 ret = 0;
455 out:
456 qemu_vfree(iov.iov_base);
457 return ret;
462 * get_cluster_offset
464 * For a given offset of the disk image, find the cluster offset in
465 * qcow2 file. The offset is stored in *cluster_offset.
467 * on entry, *num is the number of contiguous sectors we'd like to
468 * access following offset.
470 * on exit, *num is the number of contiguous sectors we can read.
472 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
473 * cases.
475 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
476 int *num, uint64_t *cluster_offset)
478 BDRVQcow2State *s = bs->opaque;
479 unsigned int l2_index;
480 uint64_t l1_index, l2_offset, *l2_table;
481 int l1_bits, c;
482 unsigned int index_in_cluster, nb_clusters;
483 uint64_t nb_available, nb_needed;
484 int ret;
486 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
487 nb_needed = *num + index_in_cluster;
489 l1_bits = s->l2_bits + s->cluster_bits;
491 /* compute how many bytes there are between the offset and
492 * the end of the l1 entry
495 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
497 /* compute the number of available sectors */
499 nb_available = (nb_available >> 9) + index_in_cluster;
501 if (nb_needed > nb_available) {
502 nb_needed = nb_available;
504 assert(nb_needed <= INT_MAX);
506 *cluster_offset = 0;
508 /* seek to the l2 offset in the l1 table */
510 l1_index = offset >> l1_bits;
511 if (l1_index >= s->l1_size) {
512 ret = QCOW2_CLUSTER_UNALLOCATED;
513 goto out;
516 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
517 if (!l2_offset) {
518 ret = QCOW2_CLUSTER_UNALLOCATED;
519 goto out;
522 if (offset_into_cluster(s, l2_offset)) {
523 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
524 " unaligned (L1 index: %#" PRIx64 ")",
525 l2_offset, l1_index);
526 return -EIO;
529 /* load the l2 table in memory */
531 ret = l2_load(bs, l2_offset, &l2_table);
532 if (ret < 0) {
533 return ret;
536 /* find the cluster offset for the given disk offset */
538 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
539 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
541 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
542 nb_clusters = size_to_clusters(s, nb_needed << 9);
544 ret = qcow2_get_cluster_type(*cluster_offset);
545 switch (ret) {
546 case QCOW2_CLUSTER_COMPRESSED:
547 /* Compressed clusters can only be processed one by one */
548 c = 1;
549 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
550 break;
551 case QCOW2_CLUSTER_ZERO:
552 if (s->qcow_version < 3) {
553 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
554 " in pre-v3 image (L2 offset: %#" PRIx64
555 ", L2 index: %#x)", l2_offset, l2_index);
556 ret = -EIO;
557 goto fail;
559 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
560 QCOW2_CLUSTER_ZERO);
561 *cluster_offset = 0;
562 break;
563 case QCOW2_CLUSTER_UNALLOCATED:
564 /* how many empty clusters ? */
565 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
566 QCOW2_CLUSTER_UNALLOCATED);
567 *cluster_offset = 0;
568 break;
569 case QCOW2_CLUSTER_NORMAL:
570 /* how many allocated clusters ? */
571 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
572 &l2_table[l2_index], QCOW_OFLAG_ZERO);
573 *cluster_offset &= L2E_OFFSET_MASK;
574 if (offset_into_cluster(s, *cluster_offset)) {
575 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
576 PRIx64 " unaligned (L2 offset: %#" PRIx64
577 ", L2 index: %#x)", *cluster_offset,
578 l2_offset, l2_index);
579 ret = -EIO;
580 goto fail;
582 break;
583 default:
584 abort();
587 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
589 nb_available = (c * s->cluster_sectors);
591 out:
592 if (nb_available > nb_needed)
593 nb_available = nb_needed;
595 *num = nb_available - index_in_cluster;
597 return ret;
599 fail:
600 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
601 return ret;
605 * get_cluster_table
607 * for a given disk offset, load (and allocate if needed)
608 * the l2 table.
610 * the l2 table offset in the qcow2 file and the cluster index
611 * in the l2 table are given to the caller.
613 * Returns 0 on success, -errno in failure case
615 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
616 uint64_t **new_l2_table,
617 int *new_l2_index)
619 BDRVQcow2State *s = bs->opaque;
620 unsigned int l2_index;
621 uint64_t l1_index, l2_offset;
622 uint64_t *l2_table = NULL;
623 int ret;
625 /* seek to the l2 offset in the l1 table */
627 l1_index = offset >> (s->l2_bits + s->cluster_bits);
628 if (l1_index >= s->l1_size) {
629 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
630 if (ret < 0) {
631 return ret;
635 assert(l1_index < s->l1_size);
636 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
637 if (offset_into_cluster(s, l2_offset)) {
638 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
639 " unaligned (L1 index: %#" PRIx64 ")",
640 l2_offset, l1_index);
641 return -EIO;
644 /* seek the l2 table of the given l2 offset */
646 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
647 /* load the l2 table in memory */
648 ret = l2_load(bs, l2_offset, &l2_table);
649 if (ret < 0) {
650 return ret;
652 } else {
653 /* First allocate a new L2 table (and do COW if needed) */
654 ret = l2_allocate(bs, l1_index, &l2_table);
655 if (ret < 0) {
656 return ret;
659 /* Then decrease the refcount of the old table */
660 if (l2_offset) {
661 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
662 QCOW2_DISCARD_OTHER);
666 /* find the cluster offset for the given disk offset */
668 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
670 *new_l2_table = l2_table;
671 *new_l2_index = l2_index;
673 return 0;
677 * alloc_compressed_cluster_offset
679 * For a given offset of the disk image, return cluster offset in
680 * qcow2 file.
682 * If the offset is not found, allocate a new compressed cluster.
684 * Return the cluster offset if successful,
685 * Return 0, otherwise.
689 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
690 uint64_t offset,
691 int compressed_size)
693 BDRVQcow2State *s = bs->opaque;
694 int l2_index, ret;
695 uint64_t *l2_table;
696 int64_t cluster_offset;
697 int nb_csectors;
699 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
700 if (ret < 0) {
701 return 0;
704 /* Compression can't overwrite anything. Fail if the cluster was already
705 * allocated. */
706 cluster_offset = be64_to_cpu(l2_table[l2_index]);
707 if (cluster_offset & L2E_OFFSET_MASK) {
708 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
709 return 0;
712 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
713 if (cluster_offset < 0) {
714 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
715 return 0;
718 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
719 (cluster_offset >> 9);
721 cluster_offset |= QCOW_OFLAG_COMPRESSED |
722 ((uint64_t)nb_csectors << s->csize_shift);
724 /* update L2 table */
726 /* compressed clusters never have the copied flag */
728 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
729 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
730 l2_table[l2_index] = cpu_to_be64(cluster_offset);
731 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
733 return cluster_offset;
736 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
738 BDRVQcow2State *s = bs->opaque;
739 int ret;
741 if (r->nb_sectors == 0) {
742 return 0;
745 qemu_co_mutex_unlock(&s->lock);
746 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
747 r->offset / BDRV_SECTOR_SIZE,
748 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
749 qemu_co_mutex_lock(&s->lock);
751 if (ret < 0) {
752 return ret;
756 * Before we update the L2 table to actually point to the new cluster, we
757 * need to be sure that the refcounts have been increased and COW was
758 * handled.
760 qcow2_cache_depends_on_flush(s->l2_table_cache);
762 return 0;
765 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
767 BDRVQcow2State *s = bs->opaque;
768 int i, j = 0, l2_index, ret;
769 uint64_t *old_cluster, *l2_table;
770 uint64_t cluster_offset = m->alloc_offset;
772 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
773 assert(m->nb_clusters > 0);
775 old_cluster = g_try_new(uint64_t, m->nb_clusters);
776 if (old_cluster == NULL) {
777 ret = -ENOMEM;
778 goto err;
781 /* copy content of unmodified sectors */
782 ret = perform_cow(bs, m, &m->cow_start);
783 if (ret < 0) {
784 goto err;
787 ret = perform_cow(bs, m, &m->cow_end);
788 if (ret < 0) {
789 goto err;
792 /* Update L2 table. */
793 if (s->use_lazy_refcounts) {
794 qcow2_mark_dirty(bs);
796 if (qcow2_need_accurate_refcounts(s)) {
797 qcow2_cache_set_dependency(bs, s->l2_table_cache,
798 s->refcount_block_cache);
801 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
802 if (ret < 0) {
803 goto err;
805 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
807 assert(l2_index + m->nb_clusters <= s->l2_size);
808 for (i = 0; i < m->nb_clusters; i++) {
809 /* if two concurrent writes happen to the same unallocated cluster
810 * each write allocates separate cluster and writes data concurrently.
811 * The first one to complete updates l2 table with pointer to its
812 * cluster the second one has to do RMW (which is done above by
813 * copy_sectors()), update l2 table with its cluster pointer and free
814 * old cluster. This is what this loop does */
815 if(l2_table[l2_index + i] != 0)
816 old_cluster[j++] = l2_table[l2_index + i];
818 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
819 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
823 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
826 * If this was a COW, we need to decrease the refcount of the old cluster.
828 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
829 * clusters), the next write will reuse them anyway.
831 if (j != 0) {
832 for (i = 0; i < j; i++) {
833 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
834 QCOW2_DISCARD_NEVER);
838 ret = 0;
839 err:
840 g_free(old_cluster);
841 return ret;
845 * Returns the number of contiguous clusters that can be used for an allocating
846 * write, but require COW to be performed (this includes yet unallocated space,
847 * which must copy from the backing file)
849 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
850 uint64_t *l2_table, int l2_index)
852 int i;
854 for (i = 0; i < nb_clusters; i++) {
855 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
856 int cluster_type = qcow2_get_cluster_type(l2_entry);
858 switch(cluster_type) {
859 case QCOW2_CLUSTER_NORMAL:
860 if (l2_entry & QCOW_OFLAG_COPIED) {
861 goto out;
863 break;
864 case QCOW2_CLUSTER_UNALLOCATED:
865 case QCOW2_CLUSTER_COMPRESSED:
866 case QCOW2_CLUSTER_ZERO:
867 break;
868 default:
869 abort();
873 out:
874 assert(i <= nb_clusters);
875 return i;
879 * Check if there already is an AIO write request in flight which allocates
880 * the same cluster. In this case we need to wait until the previous
881 * request has completed and updated the L2 table accordingly.
883 * Returns:
884 * 0 if there was no dependency. *cur_bytes indicates the number of
885 * bytes from guest_offset that can be read before the next
886 * dependency must be processed (or the request is complete)
888 * -EAGAIN if we had to wait for another request, previously gathered
889 * information on cluster allocation may be invalid now. The caller
890 * must start over anyway, so consider *cur_bytes undefined.
892 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
893 uint64_t *cur_bytes, QCowL2Meta **m)
895 BDRVQcow2State *s = bs->opaque;
896 QCowL2Meta *old_alloc;
897 uint64_t bytes = *cur_bytes;
899 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
901 uint64_t start = guest_offset;
902 uint64_t end = start + bytes;
903 uint64_t old_start = l2meta_cow_start(old_alloc);
904 uint64_t old_end = l2meta_cow_end(old_alloc);
906 if (end <= old_start || start >= old_end) {
907 /* No intersection */
908 } else {
909 if (start < old_start) {
910 /* Stop at the start of a running allocation */
911 bytes = old_start - start;
912 } else {
913 bytes = 0;
916 /* Stop if already an l2meta exists. After yielding, it wouldn't
917 * be valid any more, so we'd have to clean up the old L2Metas
918 * and deal with requests depending on them before starting to
919 * gather new ones. Not worth the trouble. */
920 if (bytes == 0 && *m) {
921 *cur_bytes = 0;
922 return 0;
925 if (bytes == 0) {
926 /* Wait for the dependency to complete. We need to recheck
927 * the free/allocated clusters when we continue. */
928 qemu_co_mutex_unlock(&s->lock);
929 qemu_co_queue_wait(&old_alloc->dependent_requests);
930 qemu_co_mutex_lock(&s->lock);
931 return -EAGAIN;
936 /* Make sure that existing clusters and new allocations are only used up to
937 * the next dependency if we shortened the request above */
938 *cur_bytes = bytes;
940 return 0;
944 * Checks how many already allocated clusters that don't require a copy on
945 * write there are at the given guest_offset (up to *bytes). If
946 * *host_offset is not zero, only physically contiguous clusters beginning at
947 * this host offset are counted.
949 * Note that guest_offset may not be cluster aligned. In this case, the
950 * returned *host_offset points to exact byte referenced by guest_offset and
951 * therefore isn't cluster aligned as well.
953 * Returns:
954 * 0: if no allocated clusters are available at the given offset.
955 * *bytes is normally unchanged. It is set to 0 if the cluster
956 * is allocated and doesn't need COW, but doesn't have the right
957 * physical offset.
959 * 1: if allocated clusters that don't require a COW are available at
960 * the requested offset. *bytes may have decreased and describes
961 * the length of the area that can be written to.
963 * -errno: in error cases
965 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
966 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
968 BDRVQcow2State *s = bs->opaque;
969 int l2_index;
970 uint64_t cluster_offset;
971 uint64_t *l2_table;
972 uint64_t nb_clusters;
973 unsigned int keep_clusters;
974 int ret;
976 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
977 *bytes);
979 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
980 == offset_into_cluster(s, *host_offset));
983 * Calculate the number of clusters to look for. We stop at L2 table
984 * boundaries to keep things simple.
986 nb_clusters =
987 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
989 l2_index = offset_to_l2_index(s, guest_offset);
990 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
991 assert(nb_clusters <= INT_MAX);
993 /* Find L2 entry for the first involved cluster */
994 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
995 if (ret < 0) {
996 return ret;
999 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1001 /* Check how many clusters are already allocated and don't need COW */
1002 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1003 && (cluster_offset & QCOW_OFLAG_COPIED))
1005 /* If a specific host_offset is required, check it */
1006 bool offset_matches =
1007 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1009 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1010 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1011 "%#llx unaligned (guest offset: %#" PRIx64
1012 ")", cluster_offset & L2E_OFFSET_MASK,
1013 guest_offset);
1014 ret = -EIO;
1015 goto out;
1018 if (*host_offset != 0 && !offset_matches) {
1019 *bytes = 0;
1020 ret = 0;
1021 goto out;
1024 /* We keep all QCOW_OFLAG_COPIED clusters */
1025 keep_clusters =
1026 count_contiguous_clusters(nb_clusters, s->cluster_size,
1027 &l2_table[l2_index],
1028 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1029 assert(keep_clusters <= nb_clusters);
1031 *bytes = MIN(*bytes,
1032 keep_clusters * s->cluster_size
1033 - offset_into_cluster(s, guest_offset));
1035 ret = 1;
1036 } else {
1037 ret = 0;
1040 /* Cleanup */
1041 out:
1042 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1044 /* Only return a host offset if we actually made progress. Otherwise we
1045 * would make requirements for handle_alloc() that it can't fulfill */
1046 if (ret > 0) {
1047 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1048 + offset_into_cluster(s, guest_offset);
1051 return ret;
1055 * Allocates new clusters for the given guest_offset.
1057 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1058 * contain the number of clusters that have been allocated and are contiguous
1059 * in the image file.
1061 * If *host_offset is non-zero, it specifies the offset in the image file at
1062 * which the new clusters must start. *nb_clusters can be 0 on return in this
1063 * case if the cluster at host_offset is already in use. If *host_offset is
1064 * zero, the clusters can be allocated anywhere in the image file.
1066 * *host_offset is updated to contain the offset into the image file at which
1067 * the first allocated cluster starts.
1069 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1070 * function has been waiting for another request and the allocation must be
1071 * restarted, but the whole request should not be failed.
1073 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1074 uint64_t *host_offset, uint64_t *nb_clusters)
1076 BDRVQcow2State *s = bs->opaque;
1078 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1079 *host_offset, *nb_clusters);
1081 /* Allocate new clusters */
1082 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1083 if (*host_offset == 0) {
1084 int64_t cluster_offset =
1085 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1086 if (cluster_offset < 0) {
1087 return cluster_offset;
1089 *host_offset = cluster_offset;
1090 return 0;
1091 } else {
1092 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1093 if (ret < 0) {
1094 return ret;
1096 *nb_clusters = ret;
1097 return 0;
1102 * Allocates new clusters for an area that either is yet unallocated or needs a
1103 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1104 * the new allocation can match the specified host offset.
1106 * Note that guest_offset may not be cluster aligned. In this case, the
1107 * returned *host_offset points to exact byte referenced by guest_offset and
1108 * therefore isn't cluster aligned as well.
1110 * Returns:
1111 * 0: if no clusters could be allocated. *bytes is set to 0,
1112 * *host_offset is left unchanged.
1114 * 1: if new clusters were allocated. *bytes may be decreased if the
1115 * new allocation doesn't cover all of the requested area.
1116 * *host_offset is updated to contain the host offset of the first
1117 * newly allocated cluster.
1119 * -errno: in error cases
1121 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1122 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1124 BDRVQcow2State *s = bs->opaque;
1125 int l2_index;
1126 uint64_t *l2_table;
1127 uint64_t entry;
1128 uint64_t nb_clusters;
1129 int ret;
1131 uint64_t alloc_cluster_offset;
1133 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1134 *bytes);
1135 assert(*bytes > 0);
1138 * Calculate the number of clusters to look for. We stop at L2 table
1139 * boundaries to keep things simple.
1141 nb_clusters =
1142 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1144 l2_index = offset_to_l2_index(s, guest_offset);
1145 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1146 assert(nb_clusters <= INT_MAX);
1148 /* Find L2 entry for the first involved cluster */
1149 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1150 if (ret < 0) {
1151 return ret;
1154 entry = be64_to_cpu(l2_table[l2_index]);
1156 /* For the moment, overwrite compressed clusters one by one */
1157 if (entry & QCOW_OFLAG_COMPRESSED) {
1158 nb_clusters = 1;
1159 } else {
1160 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1163 /* This function is only called when there were no non-COW clusters, so if
1164 * we can't find any unallocated or COW clusters either, something is
1165 * wrong with our code. */
1166 assert(nb_clusters > 0);
1168 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1170 /* Allocate, if necessary at a given offset in the image file */
1171 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1172 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1173 &nb_clusters);
1174 if (ret < 0) {
1175 goto fail;
1178 /* Can't extend contiguous allocation */
1179 if (nb_clusters == 0) {
1180 *bytes = 0;
1181 return 0;
1184 /* !*host_offset would overwrite the image header and is reserved for "no
1185 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1186 * following overlap check; do that now to avoid having an invalid value in
1187 * *host_offset. */
1188 if (!alloc_cluster_offset) {
1189 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1190 nb_clusters * s->cluster_size);
1191 assert(ret < 0);
1192 goto fail;
1196 * Save info needed for meta data update.
1198 * requested_sectors: Number of sectors from the start of the first
1199 * newly allocated cluster to the end of the (possibly shortened
1200 * before) write request.
1202 * avail_sectors: Number of sectors from the start of the first
1203 * newly allocated to the end of the last newly allocated cluster.
1205 * nb_sectors: The number of sectors from the start of the first
1206 * newly allocated cluster to the end of the area that the write
1207 * request actually writes to (excluding COW at the end)
1209 int requested_sectors =
1210 (*bytes + offset_into_cluster(s, guest_offset))
1211 >> BDRV_SECTOR_BITS;
1212 int avail_sectors = nb_clusters
1213 << (s->cluster_bits - BDRV_SECTOR_BITS);
1214 int alloc_n_start = offset_into_cluster(s, guest_offset)
1215 >> BDRV_SECTOR_BITS;
1216 int nb_sectors = MIN(requested_sectors, avail_sectors);
1217 QCowL2Meta *old_m = *m;
1219 *m = g_malloc0(sizeof(**m));
1221 **m = (QCowL2Meta) {
1222 .next = old_m,
1224 .alloc_offset = alloc_cluster_offset,
1225 .offset = start_of_cluster(s, guest_offset),
1226 .nb_clusters = nb_clusters,
1227 .nb_available = nb_sectors,
1229 .cow_start = {
1230 .offset = 0,
1231 .nb_sectors = alloc_n_start,
1233 .cow_end = {
1234 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1235 .nb_sectors = avail_sectors - nb_sectors,
1238 qemu_co_queue_init(&(*m)->dependent_requests);
1239 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1241 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1242 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1243 - offset_into_cluster(s, guest_offset));
1244 assert(*bytes != 0);
1246 return 1;
1248 fail:
1249 if (*m && (*m)->nb_clusters > 0) {
1250 QLIST_REMOVE(*m, next_in_flight);
1252 return ret;
1256 * alloc_cluster_offset
1258 * For a given offset on the virtual disk, find the cluster offset in qcow2
1259 * file. If the offset is not found, allocate a new cluster.
1261 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1262 * other fields in m are meaningless.
1264 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1265 * contiguous clusters that have been allocated. In this case, the other
1266 * fields of m are valid and contain information about the first allocated
1267 * cluster.
1269 * If the request conflicts with another write request in flight, the coroutine
1270 * is queued and will be reentered when the dependency has completed.
1272 * Return 0 on success and -errno in error cases
1274 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1275 int *num, uint64_t *host_offset, QCowL2Meta **m)
1277 BDRVQcow2State *s = bs->opaque;
1278 uint64_t start, remaining;
1279 uint64_t cluster_offset;
1280 uint64_t cur_bytes;
1281 int ret;
1283 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1285 assert((offset & ~BDRV_SECTOR_MASK) == 0);
1287 again:
1288 start = offset;
1289 remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1290 cluster_offset = 0;
1291 *host_offset = 0;
1292 cur_bytes = 0;
1293 *m = NULL;
1295 while (true) {
1297 if (!*host_offset) {
1298 *host_offset = start_of_cluster(s, cluster_offset);
1301 assert(remaining >= cur_bytes);
1303 start += cur_bytes;
1304 remaining -= cur_bytes;
1305 cluster_offset += cur_bytes;
1307 if (remaining == 0) {
1308 break;
1311 cur_bytes = remaining;
1314 * Now start gathering as many contiguous clusters as possible:
1316 * 1. Check for overlaps with in-flight allocations
1318 * a) Overlap not in the first cluster -> shorten this request and
1319 * let the caller handle the rest in its next loop iteration.
1321 * b) Real overlaps of two requests. Yield and restart the search
1322 * for contiguous clusters (the situation could have changed
1323 * while we were sleeping)
1325 * c) TODO: Request starts in the same cluster as the in-flight
1326 * allocation ends. Shorten the COW of the in-fight allocation,
1327 * set cluster_offset to write to the same cluster and set up
1328 * the right synchronisation between the in-flight request and
1329 * the new one.
1331 ret = handle_dependencies(bs, start, &cur_bytes, m);
1332 if (ret == -EAGAIN) {
1333 /* Currently handle_dependencies() doesn't yield if we already had
1334 * an allocation. If it did, we would have to clean up the L2Meta
1335 * structs before starting over. */
1336 assert(*m == NULL);
1337 goto again;
1338 } else if (ret < 0) {
1339 return ret;
1340 } else if (cur_bytes == 0) {
1341 break;
1342 } else {
1343 /* handle_dependencies() may have decreased cur_bytes (shortened
1344 * the allocations below) so that the next dependency is processed
1345 * correctly during the next loop iteration. */
1349 * 2. Count contiguous COPIED clusters.
1351 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1352 if (ret < 0) {
1353 return ret;
1354 } else if (ret) {
1355 continue;
1356 } else if (cur_bytes == 0) {
1357 break;
1361 * 3. If the request still hasn't completed, allocate new clusters,
1362 * considering any cluster_offset of steps 1c or 2.
1364 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1365 if (ret < 0) {
1366 return ret;
1367 } else if (ret) {
1368 continue;
1369 } else {
1370 assert(cur_bytes == 0);
1371 break;
1375 *num -= remaining >> BDRV_SECTOR_BITS;
1376 assert(*num > 0);
1377 assert(*host_offset != 0);
1379 return 0;
1382 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1383 const uint8_t *buf, int buf_size)
1385 z_stream strm1, *strm = &strm1;
1386 int ret, out_len;
1388 memset(strm, 0, sizeof(*strm));
1390 strm->next_in = (uint8_t *)buf;
1391 strm->avail_in = buf_size;
1392 strm->next_out = out_buf;
1393 strm->avail_out = out_buf_size;
1395 ret = inflateInit2(strm, -12);
1396 if (ret != Z_OK)
1397 return -1;
1398 ret = inflate(strm, Z_FINISH);
1399 out_len = strm->next_out - out_buf;
1400 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1401 out_len != out_buf_size) {
1402 inflateEnd(strm);
1403 return -1;
1405 inflateEnd(strm);
1406 return 0;
1409 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1411 BDRVQcow2State *s = bs->opaque;
1412 int ret, csize, nb_csectors, sector_offset;
1413 uint64_t coffset;
1415 coffset = cluster_offset & s->cluster_offset_mask;
1416 if (s->cluster_cache_offset != coffset) {
1417 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1418 sector_offset = coffset & 511;
1419 csize = nb_csectors * 512 - sector_offset;
1420 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1421 ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data,
1422 nb_csectors);
1423 if (ret < 0) {
1424 return ret;
1426 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1427 s->cluster_data + sector_offset, csize) < 0) {
1428 return -EIO;
1430 s->cluster_cache_offset = coffset;
1432 return 0;
1436 * This discards as many clusters of nb_clusters as possible at once (i.e.
1437 * all clusters in the same L2 table) and returns the number of discarded
1438 * clusters.
1440 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1441 uint64_t nb_clusters, enum qcow2_discard_type type,
1442 bool full_discard)
1444 BDRVQcow2State *s = bs->opaque;
1445 uint64_t *l2_table;
1446 int l2_index;
1447 int ret;
1448 int i;
1450 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1451 if (ret < 0) {
1452 return ret;
1455 /* Limit nb_clusters to one L2 table */
1456 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1457 assert(nb_clusters <= INT_MAX);
1459 for (i = 0; i < nb_clusters; i++) {
1460 uint64_t old_l2_entry;
1462 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1465 * If full_discard is false, make sure that a discarded area reads back
1466 * as zeroes for v3 images (we cannot do it for v2 without actually
1467 * writing a zero-filled buffer). We can skip the operation if the
1468 * cluster is already marked as zero, or if it's unallocated and we
1469 * don't have a backing file.
1471 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1472 * holding s->lock, so that doesn't work today.
1474 * If full_discard is true, the sector should not read back as zeroes,
1475 * but rather fall through to the backing file.
1477 switch (qcow2_get_cluster_type(old_l2_entry)) {
1478 case QCOW2_CLUSTER_UNALLOCATED:
1479 if (full_discard || !bs->backing) {
1480 continue;
1482 break;
1484 case QCOW2_CLUSTER_ZERO:
1485 if (!full_discard) {
1486 continue;
1488 break;
1490 case QCOW2_CLUSTER_NORMAL:
1491 case QCOW2_CLUSTER_COMPRESSED:
1492 break;
1494 default:
1495 abort();
1498 /* First remove L2 entries */
1499 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1500 if (!full_discard && s->qcow_version >= 3) {
1501 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1502 } else {
1503 l2_table[l2_index + i] = cpu_to_be64(0);
1506 /* Then decrease the refcount */
1507 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1510 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1512 return nb_clusters;
1515 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1516 int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1518 BDRVQcow2State *s = bs->opaque;
1519 uint64_t end_offset;
1520 uint64_t nb_clusters;
1521 int ret;
1523 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1525 /* Round start up and end down */
1526 offset = align_offset(offset, s->cluster_size);
1527 end_offset = start_of_cluster(s, end_offset);
1529 if (offset > end_offset) {
1530 return 0;
1533 nb_clusters = size_to_clusters(s, end_offset - offset);
1535 s->cache_discards = true;
1537 /* Each L2 table is handled by its own loop iteration */
1538 while (nb_clusters > 0) {
1539 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1540 if (ret < 0) {
1541 goto fail;
1544 nb_clusters -= ret;
1545 offset += (ret * s->cluster_size);
1548 ret = 0;
1549 fail:
1550 s->cache_discards = false;
1551 qcow2_process_discards(bs, ret);
1553 return ret;
1557 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1558 * all clusters in the same L2 table) and returns the number of zeroed
1559 * clusters.
1561 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1562 uint64_t nb_clusters)
1564 BDRVQcow2State *s = bs->opaque;
1565 uint64_t *l2_table;
1566 int l2_index;
1567 int ret;
1568 int i;
1570 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1571 if (ret < 0) {
1572 return ret;
1575 /* Limit nb_clusters to one L2 table */
1576 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1577 assert(nb_clusters <= INT_MAX);
1579 for (i = 0; i < nb_clusters; i++) {
1580 uint64_t old_offset;
1582 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1584 /* Update L2 entries */
1585 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1586 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1587 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1588 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1589 } else {
1590 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1594 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1596 return nb_clusters;
1599 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1601 BDRVQcow2State *s = bs->opaque;
1602 uint64_t nb_clusters;
1603 int ret;
1605 /* The zero flag is only supported by version 3 and newer */
1606 if (s->qcow_version < 3) {
1607 return -ENOTSUP;
1610 /* Each L2 table is handled by its own loop iteration */
1611 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1613 s->cache_discards = true;
1615 while (nb_clusters > 0) {
1616 ret = zero_single_l2(bs, offset, nb_clusters);
1617 if (ret < 0) {
1618 goto fail;
1621 nb_clusters -= ret;
1622 offset += (ret * s->cluster_size);
1625 ret = 0;
1626 fail:
1627 s->cache_discards = false;
1628 qcow2_process_discards(bs, ret);
1630 return ret;
1634 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1635 * non-backed non-pre-allocated zero clusters).
1637 * l1_entries and *visited_l1_entries are used to keep track of progress for
1638 * status_cb(). l1_entries contains the total number of L1 entries and
1639 * *visited_l1_entries counts all visited L1 entries.
1641 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1642 int l1_size, int64_t *visited_l1_entries,
1643 int64_t l1_entries,
1644 BlockDriverAmendStatusCB *status_cb)
1646 BDRVQcow2State *s = bs->opaque;
1647 bool is_active_l1 = (l1_table == s->l1_table);
1648 uint64_t *l2_table = NULL;
1649 int ret;
1650 int i, j;
1652 if (!is_active_l1) {
1653 /* inactive L2 tables require a buffer to be stored in when loading
1654 * them from disk */
1655 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1656 if (l2_table == NULL) {
1657 return -ENOMEM;
1661 for (i = 0; i < l1_size; i++) {
1662 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1663 bool l2_dirty = false;
1664 uint64_t l2_refcount;
1666 if (!l2_offset) {
1667 /* unallocated */
1668 (*visited_l1_entries)++;
1669 if (status_cb) {
1670 status_cb(bs, *visited_l1_entries, l1_entries);
1672 continue;
1675 if (offset_into_cluster(s, l2_offset)) {
1676 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1677 PRIx64 " unaligned (L1 index: %#x)",
1678 l2_offset, i);
1679 ret = -EIO;
1680 goto fail;
1683 if (is_active_l1) {
1684 /* get active L2 tables from cache */
1685 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1686 (void **)&l2_table);
1687 } else {
1688 /* load inactive L2 tables from disk */
1689 ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1690 (void *)l2_table, s->cluster_sectors);
1692 if (ret < 0) {
1693 goto fail;
1696 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1697 &l2_refcount);
1698 if (ret < 0) {
1699 goto fail;
1702 for (j = 0; j < s->l2_size; j++) {
1703 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1704 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1705 int cluster_type = qcow2_get_cluster_type(l2_entry);
1706 bool preallocated = offset != 0;
1708 if (cluster_type != QCOW2_CLUSTER_ZERO) {
1709 continue;
1712 if (!preallocated) {
1713 if (!bs->backing) {
1714 /* not backed; therefore we can simply deallocate the
1715 * cluster */
1716 l2_table[j] = 0;
1717 l2_dirty = true;
1718 continue;
1721 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1722 if (offset < 0) {
1723 ret = offset;
1724 goto fail;
1727 if (l2_refcount > 1) {
1728 /* For shared L2 tables, set the refcount accordingly (it is
1729 * already 1 and needs to be l2_refcount) */
1730 ret = qcow2_update_cluster_refcount(bs,
1731 offset >> s->cluster_bits,
1732 refcount_diff(1, l2_refcount), false,
1733 QCOW2_DISCARD_OTHER);
1734 if (ret < 0) {
1735 qcow2_free_clusters(bs, offset, s->cluster_size,
1736 QCOW2_DISCARD_OTHER);
1737 goto fail;
1742 if (offset_into_cluster(s, offset)) {
1743 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1744 "%#" PRIx64 " unaligned (L2 offset: %#"
1745 PRIx64 ", L2 index: %#x)", offset,
1746 l2_offset, j);
1747 if (!preallocated) {
1748 qcow2_free_clusters(bs, offset, s->cluster_size,
1749 QCOW2_DISCARD_ALWAYS);
1751 ret = -EIO;
1752 goto fail;
1755 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1756 if (ret < 0) {
1757 if (!preallocated) {
1758 qcow2_free_clusters(bs, offset, s->cluster_size,
1759 QCOW2_DISCARD_ALWAYS);
1761 goto fail;
1764 ret = bdrv_write_zeroes(bs->file->bs, offset / BDRV_SECTOR_SIZE,
1765 s->cluster_sectors, 0);
1766 if (ret < 0) {
1767 if (!preallocated) {
1768 qcow2_free_clusters(bs, offset, s->cluster_size,
1769 QCOW2_DISCARD_ALWAYS);
1771 goto fail;
1774 if (l2_refcount == 1) {
1775 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1776 } else {
1777 l2_table[j] = cpu_to_be64(offset);
1779 l2_dirty = true;
1782 if (is_active_l1) {
1783 if (l2_dirty) {
1784 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1785 qcow2_cache_depends_on_flush(s->l2_table_cache);
1787 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1788 } else {
1789 if (l2_dirty) {
1790 ret = qcow2_pre_write_overlap_check(bs,
1791 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1792 s->cluster_size);
1793 if (ret < 0) {
1794 goto fail;
1797 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1798 (void *)l2_table, s->cluster_sectors);
1799 if (ret < 0) {
1800 goto fail;
1805 (*visited_l1_entries)++;
1806 if (status_cb) {
1807 status_cb(bs, *visited_l1_entries, l1_entries);
1811 ret = 0;
1813 fail:
1814 if (l2_table) {
1815 if (!is_active_l1) {
1816 qemu_vfree(l2_table);
1817 } else {
1818 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1821 return ret;
1825 * For backed images, expands all zero clusters on the image. For non-backed
1826 * images, deallocates all non-pre-allocated zero clusters (and claims the
1827 * allocation for pre-allocated ones). This is important for downgrading to a
1828 * qcow2 version which doesn't yet support metadata zero clusters.
1830 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1831 BlockDriverAmendStatusCB *status_cb)
1833 BDRVQcow2State *s = bs->opaque;
1834 uint64_t *l1_table = NULL;
1835 int64_t l1_entries = 0, visited_l1_entries = 0;
1836 int ret;
1837 int i, j;
1839 if (status_cb) {
1840 l1_entries = s->l1_size;
1841 for (i = 0; i < s->nb_snapshots; i++) {
1842 l1_entries += s->snapshots[i].l1_size;
1846 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1847 &visited_l1_entries, l1_entries,
1848 status_cb);
1849 if (ret < 0) {
1850 goto fail;
1853 /* Inactive L1 tables may point to active L2 tables - therefore it is
1854 * necessary to flush the L2 table cache before trying to access the L2
1855 * tables pointed to by inactive L1 entries (else we might try to expand
1856 * zero clusters that have already been expanded); furthermore, it is also
1857 * necessary to empty the L2 table cache, since it may contain tables which
1858 * are now going to be modified directly on disk, bypassing the cache.
1859 * qcow2_cache_empty() does both for us. */
1860 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1861 if (ret < 0) {
1862 goto fail;
1865 for (i = 0; i < s->nb_snapshots; i++) {
1866 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1867 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1869 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1871 ret = bdrv_read(bs->file->bs,
1872 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1873 (void *)l1_table, l1_sectors);
1874 if (ret < 0) {
1875 goto fail;
1878 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1879 be64_to_cpus(&l1_table[j]);
1882 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1883 &visited_l1_entries, l1_entries,
1884 status_cb);
1885 if (ret < 0) {
1886 goto fail;
1890 ret = 0;
1892 fail:
1893 g_free(l1_table);
1894 return ret;