pci-testdev: fast mmio support
[qemu/ar7.git] / hw / intc / arm_gic_kvm.c
blobbc85ab769f90ee0b301c68fdc3e26e57b8f2a78f
1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
6 * Save/Restore logic added by Christoffer Dall.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/sysbus.h"
25 #include "migration/migration.h"
26 #include "sysemu/kvm.h"
27 #include "kvm_arm.h"
28 #include "gic_internal.h"
29 #include "vgic_common.h"
31 //#define DEBUG_GIC_KVM
33 #ifdef DEBUG_GIC_KVM
34 static const int debug_gic_kvm = 1;
35 #else
36 static const int debug_gic_kvm = 0;
37 #endif
39 #define DPRINTF(fmt, ...) do { \
40 if (debug_gic_kvm) { \
41 printf("arm_gic: " fmt , ## __VA_ARGS__); \
42 } \
43 } while (0)
45 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
46 #define KVM_ARM_GIC(obj) \
47 OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
48 #define KVM_ARM_GIC_CLASS(klass) \
49 OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
50 #define KVM_ARM_GIC_GET_CLASS(obj) \
51 OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
53 typedef struct KVMARMGICClass {
54 ARMGICCommonClass parent_class;
55 DeviceRealize parent_realize;
56 void (*parent_reset)(DeviceState *dev);
57 } KVMARMGICClass;
59 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
61 /* Meaning of the 'irq' parameter:
62 * [0..N-1] : external interrupts
63 * [N..N+31] : PPI (internal) interrupts for CPU 0
64 * [N+32..N+63] : PPI (internal interrupts for CPU 1
65 * ...
66 * Convert this to the kernel's desired encoding, which
67 * has separate fields in the irq number for type,
68 * CPU number and interrupt number.
70 int kvm_irq, irqtype, cpu;
72 if (irq < (num_irq - GIC_INTERNAL)) {
73 /* External interrupt. The kernel numbers these like the GIC
74 * hardware, with external interrupt IDs starting after the
75 * internal ones.
77 irqtype = KVM_ARM_IRQ_TYPE_SPI;
78 cpu = 0;
79 irq += GIC_INTERNAL;
80 } else {
81 /* Internal interrupt: decode into (cpu, interrupt id) */
82 irqtype = KVM_ARM_IRQ_TYPE_PPI;
83 irq -= (num_irq - GIC_INTERNAL);
84 cpu = irq / GIC_INTERNAL;
85 irq %= GIC_INTERNAL;
87 kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
88 | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
90 kvm_set_irq(kvm_state, kvm_irq, !!level);
93 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
95 GICState *s = (GICState *)opaque;
97 kvm_arm_gic_set_irq(s->num_irq, irq, level);
100 static bool kvm_arm_gic_can_save_restore(GICState *s)
102 return s->dev_fd >= 0;
105 #define KVM_VGIC_ATTR(offset, cpu) \
106 ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
107 KVM_DEV_ARM_VGIC_CPUID_MASK) | \
108 (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
109 KVM_DEV_ARM_VGIC_OFFSET_MASK))
111 static void kvm_gicd_access(GICState *s, int offset, int cpu,
112 uint32_t *val, bool write)
114 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
115 KVM_VGIC_ATTR(offset, cpu), val, write);
118 static void kvm_gicc_access(GICState *s, int offset, int cpu,
119 uint32_t *val, bool write)
121 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
122 KVM_VGIC_ATTR(offset, cpu), val, write);
125 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
126 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
129 * Translate from the in-kernel field for an IRQ value to/from the qemu
130 * representation.
132 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
133 uint32_t *field, bool to_kernel);
135 /* synthetic translate function used for clear/set registers to completely
136 * clear a setting using a clear-register before setting the remaining bits
137 * using a set-register */
138 static void translate_clear(GICState *s, int irq, int cpu,
139 uint32_t *field, bool to_kernel)
141 if (to_kernel) {
142 *field = ~0;
143 } else {
144 /* does not make sense: qemu model doesn't use set/clear regs */
145 abort();
149 static void translate_group(GICState *s, int irq, int cpu,
150 uint32_t *field, bool to_kernel)
152 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
154 if (to_kernel) {
155 *field = GIC_TEST_GROUP(irq, cm);
156 } else {
157 if (*field & 1) {
158 GIC_SET_GROUP(irq, cm);
163 static void translate_enabled(GICState *s, int irq, int cpu,
164 uint32_t *field, bool to_kernel)
166 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
168 if (to_kernel) {
169 *field = GIC_TEST_ENABLED(irq, cm);
170 } else {
171 if (*field & 1) {
172 GIC_SET_ENABLED(irq, cm);
177 static void translate_pending(GICState *s, int irq, int cpu,
178 uint32_t *field, bool to_kernel)
180 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
182 if (to_kernel) {
183 *field = gic_test_pending(s, irq, cm);
184 } else {
185 if (*field & 1) {
186 GIC_SET_PENDING(irq, cm);
187 /* TODO: Capture is level-line is held high in the kernel */
192 static void translate_active(GICState *s, int irq, int cpu,
193 uint32_t *field, bool to_kernel)
195 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
197 if (to_kernel) {
198 *field = GIC_TEST_ACTIVE(irq, cm);
199 } else {
200 if (*field & 1) {
201 GIC_SET_ACTIVE(irq, cm);
206 static void translate_trigger(GICState *s, int irq, int cpu,
207 uint32_t *field, bool to_kernel)
209 if (to_kernel) {
210 *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
211 } else {
212 if (*field & 0x2) {
213 GIC_SET_EDGE_TRIGGER(irq);
218 static void translate_priority(GICState *s, int irq, int cpu,
219 uint32_t *field, bool to_kernel)
221 if (to_kernel) {
222 *field = GIC_GET_PRIORITY(irq, cpu) & 0xff;
223 } else {
224 gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED);
228 static void translate_targets(GICState *s, int irq, int cpu,
229 uint32_t *field, bool to_kernel)
231 if (to_kernel) {
232 *field = s->irq_target[irq] & 0xff;
233 } else {
234 s->irq_target[irq] = *field & 0xff;
238 static void translate_sgisource(GICState *s, int irq, int cpu,
239 uint32_t *field, bool to_kernel)
241 if (to_kernel) {
242 *field = s->sgi_pending[irq][cpu] & 0xff;
243 } else {
244 s->sgi_pending[irq][cpu] = *field & 0xff;
248 /* Read a register group from the kernel VGIC */
249 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
250 int maxirq, vgic_translate_fn translate_fn)
252 uint32_t reg;
253 int i;
254 int j;
255 int irq;
256 int cpu;
257 int regsz = 32 / width; /* irqs per kernel register */
258 uint32_t field;
260 for_each_irq_reg(i, maxirq, width) {
261 irq = i * regsz;
262 cpu = 0;
263 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
264 kvm_gicd_access(s, offset, cpu, &reg, false);
265 for (j = 0; j < regsz; j++) {
266 field = extract32(reg, j * width, width);
267 translate_fn(s, irq + j, cpu, &field, false);
270 cpu++;
272 offset += 4;
276 /* Write a register group to the kernel VGIC */
277 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
278 int maxirq, vgic_translate_fn translate_fn)
280 uint32_t reg;
281 int i;
282 int j;
283 int irq;
284 int cpu;
285 int regsz = 32 / width; /* irqs per kernel register */
286 uint32_t field;
288 for_each_irq_reg(i, maxirq, width) {
289 irq = i * regsz;
290 cpu = 0;
291 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
292 reg = 0;
293 for (j = 0; j < regsz; j++) {
294 translate_fn(s, irq + j, cpu, &field, true);
295 reg = deposit32(reg, j * width, width, field);
297 kvm_gicd_access(s, offset, cpu, &reg, true);
299 cpu++;
301 offset += 4;
305 static void kvm_arm_gic_put(GICState *s)
307 uint32_t reg;
308 int i;
309 int cpu;
310 int num_cpu;
311 int num_irq;
313 /* Note: We do the restore in a slightly different order than the save
314 * (where the order doesn't matter and is simply ordered according to the
315 * register offset values */
317 /*****************************************************************
318 * Distributor State
321 /* s->ctlr -> GICD_CTLR */
322 reg = s->ctlr;
323 kvm_gicd_access(s, 0x0, 0, &reg, true);
325 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
326 kvm_gicd_access(s, 0x4, 0, &reg, false);
327 num_irq = ((reg & 0x1f) + 1) * 32;
328 num_cpu = ((reg & 0xe0) >> 5) + 1;
330 if (num_irq < s->num_irq) {
331 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
332 s->num_irq, num_irq);
333 abort();
334 } else if (num_cpu != s->num_cpu) {
335 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
336 s->num_cpu, num_cpu);
337 /* Did we not create the VCPUs in the kernel yet? */
338 abort();
341 /* TODO: Consider checking compatibility with the IIDR ? */
343 /* irq_state[n].enabled -> GICD_ISENABLERn */
344 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
345 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
347 /* irq_state[n].group -> GICD_IGROUPRn */
348 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
350 /* s->irq_target[irq] -> GICD_ITARGETSRn
351 * (restore targets before pending to ensure the pending state is set on
352 * the appropriate CPU interfaces in the kernel) */
353 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
355 /* irq_state[n].trigger -> GICD_ICFGRn
356 * (restore configuration registers before pending IRQs so we treat
357 * level/edge correctly) */
358 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
360 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
361 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
362 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
364 /* irq_state[n].active -> GICD_ISACTIVERn */
365 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
366 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
369 /* s->priorityX[irq] -> ICD_IPRIORITYRn */
370 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
372 /* s->sgi_pending -> ICD_CPENDSGIRn */
373 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
374 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
377 /*****************************************************************
378 * CPU Interface(s) State
381 for (cpu = 0; cpu < s->num_cpu; cpu++) {
382 /* s->cpu_ctlr[cpu] -> GICC_CTLR */
383 reg = s->cpu_ctlr[cpu];
384 kvm_gicc_access(s, 0x00, cpu, &reg, true);
386 /* s->priority_mask[cpu] -> GICC_PMR */
387 reg = (s->priority_mask[cpu] & 0xff);
388 kvm_gicc_access(s, 0x04, cpu, &reg, true);
390 /* s->bpr[cpu] -> GICC_BPR */
391 reg = (s->bpr[cpu] & 0x7);
392 kvm_gicc_access(s, 0x08, cpu, &reg, true);
394 /* s->abpr[cpu] -> GICC_ABPR */
395 reg = (s->abpr[cpu] & 0x7);
396 kvm_gicc_access(s, 0x1c, cpu, &reg, true);
398 /* s->apr[n][cpu] -> GICC_APRn */
399 for (i = 0; i < 4; i++) {
400 reg = s->apr[i][cpu];
401 kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
406 static void kvm_arm_gic_get(GICState *s)
408 uint32_t reg;
409 int i;
410 int cpu;
412 /*****************************************************************
413 * Distributor State
416 /* GICD_CTLR -> s->ctlr */
417 kvm_gicd_access(s, 0x0, 0, &reg, false);
418 s->ctlr = reg;
420 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
421 kvm_gicd_access(s, 0x4, 0, &reg, false);
422 s->num_irq = ((reg & 0x1f) + 1) * 32;
423 s->num_cpu = ((reg & 0xe0) >> 5) + 1;
425 if (s->num_irq > GIC_MAXIRQ) {
426 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
427 s->num_irq);
428 abort();
431 /* GICD_IIDR -> ? */
432 kvm_gicd_access(s, 0x8, 0, &reg, false);
434 /* Clear all the IRQ settings */
435 for (i = 0; i < s->num_irq; i++) {
436 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
439 /* GICD_IGROUPRn -> irq_state[n].group */
440 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
442 /* GICD_ISENABLERn -> irq_state[n].enabled */
443 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
445 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
446 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
448 /* GICD_ISACTIVERn -> irq_state[n].active */
449 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
451 /* GICD_ICFRn -> irq_state[n].trigger */
452 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
454 /* GICD_IPRIORITYRn -> s->priorityX[irq] */
455 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
457 /* GICD_ITARGETSRn -> s->irq_target[irq] */
458 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
460 /* GICD_CPENDSGIRn -> s->sgi_pending */
461 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
464 /*****************************************************************
465 * CPU Interface(s) State
468 for (cpu = 0; cpu < s->num_cpu; cpu++) {
469 /* GICC_CTLR -> s->cpu_ctlr[cpu] */
470 kvm_gicc_access(s, 0x00, cpu, &reg, false);
471 s->cpu_ctlr[cpu] = reg;
473 /* GICC_PMR -> s->priority_mask[cpu] */
474 kvm_gicc_access(s, 0x04, cpu, &reg, false);
475 s->priority_mask[cpu] = (reg & 0xff);
477 /* GICC_BPR -> s->bpr[cpu] */
478 kvm_gicc_access(s, 0x08, cpu, &reg, false);
479 s->bpr[cpu] = (reg & 0x7);
481 /* GICC_ABPR -> s->abpr[cpu] */
482 kvm_gicc_access(s, 0x1c, cpu, &reg, false);
483 s->abpr[cpu] = (reg & 0x7);
485 /* GICC_APRn -> s->apr[n][cpu] */
486 for (i = 0; i < 4; i++) {
487 kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
488 s->apr[i][cpu] = reg;
493 static void kvm_arm_gic_reset(DeviceState *dev)
495 GICState *s = ARM_GIC_COMMON(dev);
496 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
498 kgc->parent_reset(dev);
500 if (kvm_arm_gic_can_save_restore(s)) {
501 kvm_arm_gic_put(s);
505 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
507 int i;
508 GICState *s = KVM_ARM_GIC(dev);
509 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
510 Error *local_err = NULL;
511 int ret;
513 kgc->parent_realize(dev, &local_err);
514 if (local_err) {
515 error_propagate(errp, local_err);
516 return;
519 if (s->security_extn) {
520 error_setg(errp, "the in-kernel VGIC does not implement the "
521 "security extensions");
522 return;
525 gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL);
527 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
528 qemu_irq irq = qdev_get_gpio_in(dev, i);
529 kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
532 /* Try to create the device via the device control API */
533 s->dev_fd = -1;
534 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
535 if (ret >= 0) {
536 s->dev_fd = ret;
538 /* Newstyle API is used, we may have attributes */
539 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
540 uint32_t numirqs = s->num_irq;
541 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
542 &numirqs, true);
544 /* Tell the kernel to complete VGIC initialization now */
545 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
546 KVM_DEV_ARM_VGIC_CTRL_INIT)) {
547 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
548 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true);
550 } else if (ret != -ENODEV && ret != -ENOTSUP) {
551 error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
552 return;
555 /* Distributor */
556 kvm_arm_register_device(&s->iomem,
557 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
558 | KVM_VGIC_V2_ADDR_TYPE_DIST,
559 KVM_DEV_ARM_VGIC_GRP_ADDR,
560 KVM_VGIC_V2_ADDR_TYPE_DIST,
561 s->dev_fd);
562 /* CPU interface for current core. Unlike arm_gic, we don't
563 * provide the "interface for core #N" memory regions, because
564 * cores with a VGIC don't have those.
566 kvm_arm_register_device(&s->cpuiomem[0],
567 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
568 | KVM_VGIC_V2_ADDR_TYPE_CPU,
569 KVM_DEV_ARM_VGIC_GRP_ADDR,
570 KVM_VGIC_V2_ADDR_TYPE_CPU,
571 s->dev_fd);
573 if (!kvm_arm_gic_can_save_restore(s)) {
574 error_setg(&s->migration_blocker, "This operating system kernel does "
575 "not support vGICv2 migration");
576 migrate_add_blocker(s->migration_blocker);
580 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
582 DeviceClass *dc = DEVICE_CLASS(klass);
583 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
584 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
586 agcc->pre_save = kvm_arm_gic_get;
587 agcc->post_load = kvm_arm_gic_put;
588 kgc->parent_realize = dc->realize;
589 kgc->parent_reset = dc->reset;
590 dc->realize = kvm_arm_gic_realize;
591 dc->reset = kvm_arm_gic_reset;
594 static const TypeInfo kvm_arm_gic_info = {
595 .name = TYPE_KVM_ARM_GIC,
596 .parent = TYPE_ARM_GIC_COMMON,
597 .instance_size = sizeof(GICState),
598 .class_init = kvm_arm_gic_class_init,
599 .class_size = sizeof(KVMARMGICClass),
602 static void kvm_arm_gic_register_types(void)
604 type_register_static(&kvm_arm_gic_info);
607 type_init(kvm_arm_gic_register_types)