qcow2: make qcow2_encrypt_sectors encrypt in place
[qemu/ar7.git] / include / exec / memory.h
blob8503685455fbebd4e6188fcad66f27c3f2895ebf
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
29 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 #define MAX_PHYS_ADDR_SPACE_BITS 62
32 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 #define TYPE_MEMORY_REGION "qemu:memory-region"
35 #define MEMORY_REGION(obj) \
36 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 typedef struct MemoryRegionOps MemoryRegionOps;
39 typedef struct MemoryRegionMmio MemoryRegionMmio;
41 struct MemoryRegionMmio {
42 CPUReadMemoryFunc *read[3];
43 CPUWriteMemoryFunc *write[3];
46 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
48 /* See address_space_translate: bit 0 is read, bit 1 is write. */
49 typedef enum {
50 IOMMU_NONE = 0,
51 IOMMU_RO = 1,
52 IOMMU_WO = 2,
53 IOMMU_RW = 3,
54 } IOMMUAccessFlags;
56 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
58 struct IOMMUTLBEntry {
59 AddressSpace *target_as;
60 hwaddr iova;
61 hwaddr translated_addr;
62 hwaddr addr_mask; /* 0xfff = 4k translation */
63 IOMMUAccessFlags perm;
67 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
68 * register with one or multiple IOMMU Notifier capability bit(s).
70 typedef enum {
71 IOMMU_NOTIFIER_NONE = 0,
72 /* Notify cache invalidations */
73 IOMMU_NOTIFIER_UNMAP = 0x1,
74 /* Notify entry changes (newly created entries) */
75 IOMMU_NOTIFIER_MAP = 0x2,
76 } IOMMUNotifierFlag;
78 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
80 struct IOMMUNotifier;
81 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
82 IOMMUTLBEntry *data);
84 struct IOMMUNotifier {
85 IOMMUNotify notify;
86 IOMMUNotifierFlag notifier_flags;
87 /* Notify for address space range start <= addr <= end */
88 hwaddr start;
89 hwaddr end;
90 QLIST_ENTRY(IOMMUNotifier) node;
92 typedef struct IOMMUNotifier IOMMUNotifier;
94 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
95 IOMMUNotifierFlag flags,
96 hwaddr start, hwaddr end)
98 n->notify = fn;
99 n->notifier_flags = flags;
100 n->start = start;
101 n->end = end;
104 /* New-style MMIO accessors can indicate that the transaction failed.
105 * A zero (MEMTX_OK) response means success; anything else is a failure
106 * of some kind. The memory subsystem will bitwise-OR together results
107 * if it is synthesizing an operation from multiple smaller accesses.
109 #define MEMTX_OK 0
110 #define MEMTX_ERROR (1U << 0) /* device returned an error */
111 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
112 typedef uint32_t MemTxResult;
115 * Memory region callbacks
117 struct MemoryRegionOps {
118 /* Read from the memory region. @addr is relative to @mr; @size is
119 * in bytes. */
120 uint64_t (*read)(void *opaque,
121 hwaddr addr,
122 unsigned size);
123 /* Write to the memory region. @addr is relative to @mr; @size is
124 * in bytes. */
125 void (*write)(void *opaque,
126 hwaddr addr,
127 uint64_t data,
128 unsigned size);
130 MemTxResult (*read_with_attrs)(void *opaque,
131 hwaddr addr,
132 uint64_t *data,
133 unsigned size,
134 MemTxAttrs attrs);
135 MemTxResult (*write_with_attrs)(void *opaque,
136 hwaddr addr,
137 uint64_t data,
138 unsigned size,
139 MemTxAttrs attrs);
140 /* Instruction execution pre-callback:
141 * @addr is the address of the access relative to the @mr.
142 * @size is the size of the area returned by the callback.
143 * @offset is the location of the pointer inside @mr.
145 * Returns a pointer to a location which contains guest code.
147 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
148 unsigned *offset);
150 enum device_endian endianness;
151 /* Guest-visible constraints: */
152 struct {
153 /* If nonzero, specify bounds on access sizes beyond which a machine
154 * check is thrown.
156 unsigned min_access_size;
157 unsigned max_access_size;
158 /* If true, unaligned accesses are supported. Otherwise unaligned
159 * accesses throw machine checks.
161 bool unaligned;
163 * If present, and returns #false, the transaction is not accepted
164 * by the device (and results in machine dependent behaviour such
165 * as a machine check exception).
167 bool (*accepts)(void *opaque, hwaddr addr,
168 unsigned size, bool is_write);
169 } valid;
170 /* Internal implementation constraints: */
171 struct {
172 /* If nonzero, specifies the minimum size implemented. Smaller sizes
173 * will be rounded upwards and a partial result will be returned.
175 unsigned min_access_size;
176 /* If nonzero, specifies the maximum size implemented. Larger sizes
177 * will be done as a series of accesses with smaller sizes.
179 unsigned max_access_size;
180 /* If true, unaligned accesses are supported. Otherwise all accesses
181 * are converted to (possibly multiple) naturally aligned accesses.
183 bool unaligned;
184 } impl;
186 /* If .read and .write are not present, old_mmio may be used for
187 * backwards compatibility with old mmio registration
189 const MemoryRegionMmio old_mmio;
192 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
194 struct MemoryRegionIOMMUOps {
196 * Return a TLB entry that contains a given address. Flag should
197 * be the access permission of this translation operation. We can
198 * set flag to IOMMU_NONE to mean that we don't need any
199 * read/write permission checks, like, when for region replay.
201 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr,
202 IOMMUAccessFlags flag);
203 /* Returns minimum supported page size */
204 uint64_t (*get_min_page_size)(MemoryRegion *iommu);
205 /* Called when IOMMU Notifier flag changed */
206 void (*notify_flag_changed)(MemoryRegion *iommu,
207 IOMMUNotifierFlag old_flags,
208 IOMMUNotifierFlag new_flags);
209 /* Set this up to provide customized IOMMU replay function */
210 void (*replay)(MemoryRegion *iommu, IOMMUNotifier *notifier);
213 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
214 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
216 struct MemoryRegion {
217 Object parent_obj;
219 /* All fields are private - violators will be prosecuted */
221 /* The following fields should fit in a cache line */
222 bool romd_mode;
223 bool ram;
224 bool subpage;
225 bool readonly; /* For RAM regions */
226 bool rom_device;
227 bool flush_coalesced_mmio;
228 bool global_locking;
229 uint8_t dirty_log_mask;
230 RAMBlock *ram_block;
231 Object *owner;
232 const MemoryRegionIOMMUOps *iommu_ops;
234 const MemoryRegionOps *ops;
235 void *opaque;
236 MemoryRegion *container;
237 Int128 size;
238 hwaddr addr;
239 void (*destructor)(MemoryRegion *mr);
240 uint64_t align;
241 bool terminates;
242 bool ram_device;
243 bool enabled;
244 bool warning_printed; /* For reservations */
245 uint8_t vga_logging_count;
246 MemoryRegion *alias;
247 hwaddr alias_offset;
248 int32_t priority;
249 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
250 QTAILQ_ENTRY(MemoryRegion) subregions_link;
251 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
252 const char *name;
253 unsigned ioeventfd_nb;
254 MemoryRegionIoeventfd *ioeventfds;
255 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
256 IOMMUNotifierFlag iommu_notify_flags;
259 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
260 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
263 * MemoryListener: callbacks structure for updates to the physical memory map
265 * Allows a component to adjust to changes in the guest-visible memory map.
266 * Use with memory_listener_register() and memory_listener_unregister().
268 struct MemoryListener {
269 void (*begin)(MemoryListener *listener);
270 void (*commit)(MemoryListener *listener);
271 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
272 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
273 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
274 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
275 int old, int new);
276 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
277 int old, int new);
278 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
279 void (*log_global_start)(MemoryListener *listener);
280 void (*log_global_stop)(MemoryListener *listener);
281 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
282 bool match_data, uint64_t data, EventNotifier *e);
283 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
284 bool match_data, uint64_t data, EventNotifier *e);
285 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
286 hwaddr addr, hwaddr len);
287 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
288 hwaddr addr, hwaddr len);
289 /* Lower = earlier (during add), later (during del) */
290 unsigned priority;
291 AddressSpace *address_space;
292 QTAILQ_ENTRY(MemoryListener) link;
293 QTAILQ_ENTRY(MemoryListener) link_as;
297 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
299 struct AddressSpace {
300 /* All fields are private. */
301 struct rcu_head rcu;
302 char *name;
303 MemoryRegion *root;
304 int ref_count;
305 bool malloced;
307 /* Accessed via RCU. */
308 struct FlatView *current_map;
310 int ioeventfd_nb;
311 struct MemoryRegionIoeventfd *ioeventfds;
312 struct AddressSpaceDispatch *dispatch;
313 struct AddressSpaceDispatch *next_dispatch;
314 MemoryListener dispatch_listener;
315 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
316 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
320 * MemoryRegionSection: describes a fragment of a #MemoryRegion
322 * @mr: the region, or %NULL if empty
323 * @address_space: the address space the region is mapped in
324 * @offset_within_region: the beginning of the section, relative to @mr's start
325 * @size: the size of the section; will not exceed @mr's boundaries
326 * @offset_within_address_space: the address of the first byte of the section
327 * relative to the region's address space
328 * @readonly: writes to this section are ignored
330 struct MemoryRegionSection {
331 MemoryRegion *mr;
332 AddressSpace *address_space;
333 hwaddr offset_within_region;
334 Int128 size;
335 hwaddr offset_within_address_space;
336 bool readonly;
340 * memory_region_init: Initialize a memory region
342 * The region typically acts as a container for other memory regions. Use
343 * memory_region_add_subregion() to add subregions.
345 * @mr: the #MemoryRegion to be initialized
346 * @owner: the object that tracks the region's reference count
347 * @name: used for debugging; not visible to the user or ABI
348 * @size: size of the region; any subregions beyond this size will be clipped
350 void memory_region_init(MemoryRegion *mr,
351 struct Object *owner,
352 const char *name,
353 uint64_t size);
356 * memory_region_ref: Add 1 to a memory region's reference count
358 * Whenever memory regions are accessed outside the BQL, they need to be
359 * preserved against hot-unplug. MemoryRegions actually do not have their
360 * own reference count; they piggyback on a QOM object, their "owner".
361 * This function adds a reference to the owner.
363 * All MemoryRegions must have an owner if they can disappear, even if the
364 * device they belong to operates exclusively under the BQL. This is because
365 * the region could be returned at any time by memory_region_find, and this
366 * is usually under guest control.
368 * @mr: the #MemoryRegion
370 void memory_region_ref(MemoryRegion *mr);
373 * memory_region_unref: Remove 1 to a memory region's reference count
375 * Whenever memory regions are accessed outside the BQL, they need to be
376 * preserved against hot-unplug. MemoryRegions actually do not have their
377 * own reference count; they piggyback on a QOM object, their "owner".
378 * This function removes a reference to the owner and possibly destroys it.
380 * @mr: the #MemoryRegion
382 void memory_region_unref(MemoryRegion *mr);
385 * memory_region_init_io: Initialize an I/O memory region.
387 * Accesses into the region will cause the callbacks in @ops to be called.
388 * if @size is nonzero, subregions will be clipped to @size.
390 * @mr: the #MemoryRegion to be initialized.
391 * @owner: the object that tracks the region's reference count
392 * @ops: a structure containing read and write callbacks to be used when
393 * I/O is performed on the region.
394 * @opaque: passed to the read and write callbacks of the @ops structure.
395 * @name: used for debugging; not visible to the user or ABI
396 * @size: size of the region.
398 void memory_region_init_io(MemoryRegion *mr,
399 struct Object *owner,
400 const MemoryRegionOps *ops,
401 void *opaque,
402 const char *name,
403 uint64_t size);
406 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
407 * region will modify memory directly.
409 * @mr: the #MemoryRegion to be initialized.
410 * @owner: the object that tracks the region's reference count
411 * @name: Region name, becomes part of RAMBlock name used in migration stream
412 * must be unique within any device
413 * @size: size of the region.
414 * @errp: pointer to Error*, to store an error if it happens.
416 void memory_region_init_ram(MemoryRegion *mr,
417 struct Object *owner,
418 const char *name,
419 uint64_t size,
420 Error **errp);
423 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
424 * RAM. Accesses into the region will
425 * modify memory directly. Only an initial
426 * portion of this RAM is actually used.
427 * The used size can change across reboots.
429 * @mr: the #MemoryRegion to be initialized.
430 * @owner: the object that tracks the region's reference count
431 * @name: Region name, becomes part of RAMBlock name used in migration stream
432 * must be unique within any device
433 * @size: used size of the region.
434 * @max_size: max size of the region.
435 * @resized: callback to notify owner about used size change.
436 * @errp: pointer to Error*, to store an error if it happens.
438 void memory_region_init_resizeable_ram(MemoryRegion *mr,
439 struct Object *owner,
440 const char *name,
441 uint64_t size,
442 uint64_t max_size,
443 void (*resized)(const char*,
444 uint64_t length,
445 void *host),
446 Error **errp);
447 #ifdef __linux__
449 * memory_region_init_ram_from_file: Initialize RAM memory region with a
450 * mmap-ed backend.
452 * @mr: the #MemoryRegion to be initialized.
453 * @owner: the object that tracks the region's reference count
454 * @name: Region name, becomes part of RAMBlock name used in migration stream
455 * must be unique within any device
456 * @size: size of the region.
457 * @share: %true if memory must be mmaped with the MAP_SHARED flag
458 * @path: the path in which to allocate the RAM.
459 * @errp: pointer to Error*, to store an error if it happens.
461 void memory_region_init_ram_from_file(MemoryRegion *mr,
462 struct Object *owner,
463 const char *name,
464 uint64_t size,
465 bool share,
466 const char *path,
467 Error **errp);
470 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
471 * mmap-ed backend.
473 * @mr: the #MemoryRegion to be initialized.
474 * @owner: the object that tracks the region's reference count
475 * @name: the name of the region.
476 * @size: size of the region.
477 * @share: %true if memory must be mmaped with the MAP_SHARED flag
478 * @fd: the fd to mmap.
479 * @errp: pointer to Error*, to store an error if it happens.
481 void memory_region_init_ram_from_fd(MemoryRegion *mr,
482 struct Object *owner,
483 const char *name,
484 uint64_t size,
485 bool share,
486 int fd,
487 Error **errp);
488 #endif
491 * memory_region_init_ram_ptr: Initialize RAM memory region from a
492 * user-provided pointer. Accesses into the
493 * region will modify memory directly.
495 * @mr: the #MemoryRegion to be initialized.
496 * @owner: the object that tracks the region's reference count
497 * @name: Region name, becomes part of RAMBlock name used in migration stream
498 * must be unique within any device
499 * @size: size of the region.
500 * @ptr: memory to be mapped; must contain at least @size bytes.
502 void memory_region_init_ram_ptr(MemoryRegion *mr,
503 struct Object *owner,
504 const char *name,
505 uint64_t size,
506 void *ptr);
509 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
510 * a user-provided pointer.
512 * A RAM device represents a mapping to a physical device, such as to a PCI
513 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
514 * into the VM address space and access to the region will modify memory
515 * directly. However, the memory region should not be included in a memory
516 * dump (device may not be enabled/mapped at the time of the dump), and
517 * operations incompatible with manipulating MMIO should be avoided. Replaces
518 * skip_dump flag.
520 * @mr: the #MemoryRegion to be initialized.
521 * @owner: the object that tracks the region's reference count
522 * @name: the name of the region.
523 * @size: size of the region.
524 * @ptr: memory to be mapped; must contain at least @size bytes.
526 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
527 struct Object *owner,
528 const char *name,
529 uint64_t size,
530 void *ptr);
533 * memory_region_init_alias: Initialize a memory region that aliases all or a
534 * part of another memory region.
536 * @mr: the #MemoryRegion to be initialized.
537 * @owner: the object that tracks the region's reference count
538 * @name: used for debugging; not visible to the user or ABI
539 * @orig: the region to be referenced; @mr will be equivalent to
540 * @orig between @offset and @offset + @size - 1.
541 * @offset: start of the section in @orig to be referenced.
542 * @size: size of the region.
544 void memory_region_init_alias(MemoryRegion *mr,
545 struct Object *owner,
546 const char *name,
547 MemoryRegion *orig,
548 hwaddr offset,
549 uint64_t size);
552 * memory_region_init_rom: Initialize a ROM memory region.
554 * This has the same effect as calling memory_region_init_ram()
555 * and then marking the resulting region read-only with
556 * memory_region_set_readonly().
558 * @mr: the #MemoryRegion to be initialized.
559 * @owner: the object that tracks the region's reference count
560 * @name: Region name, becomes part of RAMBlock name used in migration stream
561 * must be unique within any device
562 * @size: size of the region.
563 * @errp: pointer to Error*, to store an error if it happens.
565 void memory_region_init_rom(MemoryRegion *mr,
566 struct Object *owner,
567 const char *name,
568 uint64_t size,
569 Error **errp);
572 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
573 * handled via callbacks.
575 * @mr: the #MemoryRegion to be initialized.
576 * @owner: the object that tracks the region's reference count
577 * @ops: callbacks for write access handling (must not be NULL).
578 * @name: Region name, becomes part of RAMBlock name used in migration stream
579 * must be unique within any device
580 * @size: size of the region.
581 * @errp: pointer to Error*, to store an error if it happens.
583 void memory_region_init_rom_device(MemoryRegion *mr,
584 struct Object *owner,
585 const MemoryRegionOps *ops,
586 void *opaque,
587 const char *name,
588 uint64_t size,
589 Error **errp);
592 * memory_region_init_reservation: Initialize a memory region that reserves
593 * I/O space.
595 * A reservation region primariy serves debugging purposes. It claims I/O
596 * space that is not supposed to be handled by QEMU itself. Any access via
597 * the memory API will cause an abort().
598 * This function is deprecated. Use memory_region_init_io() with NULL
599 * callbacks instead.
601 * @mr: the #MemoryRegion to be initialized
602 * @owner: the object that tracks the region's reference count
603 * @name: used for debugging; not visible to the user or ABI
604 * @size: size of the region.
606 static inline void memory_region_init_reservation(MemoryRegion *mr,
607 Object *owner,
608 const char *name,
609 uint64_t size)
611 memory_region_init_io(mr, owner, NULL, mr, name, size);
615 * memory_region_init_iommu: Initialize a memory region that translates
616 * addresses
618 * An IOMMU region translates addresses and forwards accesses to a target
619 * memory region.
621 * @mr: the #MemoryRegion to be initialized
622 * @owner: the object that tracks the region's reference count
623 * @ops: a function that translates addresses into the @target region
624 * @name: used for debugging; not visible to the user or ABI
625 * @size: size of the region.
627 void memory_region_init_iommu(MemoryRegion *mr,
628 struct Object *owner,
629 const MemoryRegionIOMMUOps *ops,
630 const char *name,
631 uint64_t size);
634 * memory_region_owner: get a memory region's owner.
636 * @mr: the memory region being queried.
638 struct Object *memory_region_owner(MemoryRegion *mr);
641 * memory_region_size: get a memory region's size.
643 * @mr: the memory region being queried.
645 uint64_t memory_region_size(MemoryRegion *mr);
648 * memory_region_is_ram: check whether a memory region is random access
650 * Returns %true is a memory region is random access.
652 * @mr: the memory region being queried
654 static inline bool memory_region_is_ram(MemoryRegion *mr)
656 return mr->ram;
660 * memory_region_is_ram_device: check whether a memory region is a ram device
662 * Returns %true is a memory region is a device backed ram region
664 * @mr: the memory region being queried
666 bool memory_region_is_ram_device(MemoryRegion *mr);
669 * memory_region_is_romd: check whether a memory region is in ROMD mode
671 * Returns %true if a memory region is a ROM device and currently set to allow
672 * direct reads.
674 * @mr: the memory region being queried
676 static inline bool memory_region_is_romd(MemoryRegion *mr)
678 return mr->rom_device && mr->romd_mode;
682 * memory_region_is_iommu: check whether a memory region is an iommu
684 * Returns %true is a memory region is an iommu.
686 * @mr: the memory region being queried
688 static inline bool memory_region_is_iommu(MemoryRegion *mr)
690 if (mr->alias) {
691 return memory_region_is_iommu(mr->alias);
693 return mr->iommu_ops;
698 * memory_region_iommu_get_min_page_size: get minimum supported page size
699 * for an iommu
701 * Returns minimum supported page size for an iommu.
703 * @mr: the memory region being queried
705 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
708 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
710 * The notification type will be decided by entry.perm bits:
712 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
713 * - For MAP (newly added entry) notifies: set entry.perm to the
714 * permission of the page (which is definitely !IOMMU_NONE).
716 * Note: for any IOMMU implementation, an in-place mapping change
717 * should be notified with an UNMAP followed by a MAP.
719 * @mr: the memory region that was changed
720 * @entry: the new entry in the IOMMU translation table. The entry
721 * replaces all old entries for the same virtual I/O address range.
722 * Deleted entries have .@perm == 0.
724 void memory_region_notify_iommu(MemoryRegion *mr,
725 IOMMUTLBEntry entry);
728 * memory_region_notify_one: notify a change in an IOMMU translation
729 * entry to a single notifier
731 * This works just like memory_region_notify_iommu(), but it only
732 * notifies a specific notifier, not all of them.
734 * @notifier: the notifier to be notified
735 * @entry: the new entry in the IOMMU translation table. The entry
736 * replaces all old entries for the same virtual I/O address range.
737 * Deleted entries have .@perm == 0.
739 void memory_region_notify_one(IOMMUNotifier *notifier,
740 IOMMUTLBEntry *entry);
743 * memory_region_register_iommu_notifier: register a notifier for changes to
744 * IOMMU translation entries.
746 * @mr: the memory region to observe
747 * @n: the IOMMUNotifier to be added; the notify callback receives a
748 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
749 * ceases to be valid on exit from the notifier.
751 void memory_region_register_iommu_notifier(MemoryRegion *mr,
752 IOMMUNotifier *n);
755 * memory_region_iommu_replay: replay existing IOMMU translations to
756 * a notifier with the minimum page granularity returned by
757 * mr->iommu_ops->get_page_size().
759 * @mr: the memory region to observe
760 * @n: the notifier to which to replay iommu mappings
762 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n);
765 * memory_region_iommu_replay_all: replay existing IOMMU translations
766 * to all the notifiers registered.
768 * @mr: the memory region to observe
770 void memory_region_iommu_replay_all(MemoryRegion *mr);
773 * memory_region_unregister_iommu_notifier: unregister a notifier for
774 * changes to IOMMU translation entries.
776 * @mr: the memory region which was observed and for which notity_stopped()
777 * needs to be called
778 * @n: the notifier to be removed.
780 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
781 IOMMUNotifier *n);
784 * memory_region_name: get a memory region's name
786 * Returns the string that was used to initialize the memory region.
788 * @mr: the memory region being queried
790 const char *memory_region_name(const MemoryRegion *mr);
793 * memory_region_is_logging: return whether a memory region is logging writes
795 * Returns %true if the memory region is logging writes for the given client
797 * @mr: the memory region being queried
798 * @client: the client being queried
800 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
803 * memory_region_get_dirty_log_mask: return the clients for which a
804 * memory region is logging writes.
806 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
807 * are the bit indices.
809 * @mr: the memory region being queried
811 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
814 * memory_region_is_rom: check whether a memory region is ROM
816 * Returns %true is a memory region is read-only memory.
818 * @mr: the memory region being queried
820 static inline bool memory_region_is_rom(MemoryRegion *mr)
822 return mr->ram && mr->readonly;
827 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
829 * Returns a file descriptor backing a file-based RAM memory region,
830 * or -1 if the region is not a file-based RAM memory region.
832 * @mr: the RAM or alias memory region being queried.
834 int memory_region_get_fd(MemoryRegion *mr);
837 * memory_region_from_host: Convert a pointer into a RAM memory region
838 * and an offset within it.
840 * Given a host pointer inside a RAM memory region (created with
841 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
842 * the MemoryRegion and the offset within it.
844 * Use with care; by the time this function returns, the returned pointer is
845 * not protected by RCU anymore. If the caller is not within an RCU critical
846 * section and does not hold the iothread lock, it must have other means of
847 * protecting the pointer, such as a reference to the region that includes
848 * the incoming ram_addr_t.
850 * @mr: the memory region being queried.
852 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
855 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
857 * Returns a host pointer to a RAM memory region (created with
858 * memory_region_init_ram() or memory_region_init_ram_ptr()).
860 * Use with care; by the time this function returns, the returned pointer is
861 * not protected by RCU anymore. If the caller is not within an RCU critical
862 * section and does not hold the iothread lock, it must have other means of
863 * protecting the pointer, such as a reference to the region that includes
864 * the incoming ram_addr_t.
866 * @mr: the memory region being queried.
868 void *memory_region_get_ram_ptr(MemoryRegion *mr);
870 /* memory_region_ram_resize: Resize a RAM region.
872 * Only legal before guest might have detected the memory size: e.g. on
873 * incoming migration, or right after reset.
875 * @mr: a memory region created with @memory_region_init_resizeable_ram.
876 * @newsize: the new size the region
877 * @errp: pointer to Error*, to store an error if it happens.
879 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
880 Error **errp);
883 * memory_region_set_log: Turn dirty logging on or off for a region.
885 * Turns dirty logging on or off for a specified client (display, migration).
886 * Only meaningful for RAM regions.
888 * @mr: the memory region being updated.
889 * @log: whether dirty logging is to be enabled or disabled.
890 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
892 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
895 * memory_region_get_dirty: Check whether a range of bytes is dirty
896 * for a specified client.
898 * Checks whether a range of bytes has been written to since the last
899 * call to memory_region_reset_dirty() with the same @client. Dirty logging
900 * must be enabled.
902 * @mr: the memory region being queried.
903 * @addr: the address (relative to the start of the region) being queried.
904 * @size: the size of the range being queried.
905 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
906 * %DIRTY_MEMORY_VGA.
908 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
909 hwaddr size, unsigned client);
912 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
914 * Marks a range of bytes as dirty, after it has been dirtied outside
915 * guest code.
917 * @mr: the memory region being dirtied.
918 * @addr: the address (relative to the start of the region) being dirtied.
919 * @size: size of the range being dirtied.
921 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
922 hwaddr size);
925 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
926 * for a specified client. It clears them.
928 * Checks whether a range of bytes has been written to since the last
929 * call to memory_region_reset_dirty() with the same @client. Dirty logging
930 * must be enabled.
932 * @mr: the memory region being queried.
933 * @addr: the address (relative to the start of the region) being queried.
934 * @size: the size of the range being queried.
935 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
936 * %DIRTY_MEMORY_VGA.
938 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
939 hwaddr size, unsigned client);
942 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
943 * bitmap and clear it.
945 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
946 * returns the snapshot. The snapshot can then be used to query dirty
947 * status, using memory_region_snapshot_get_dirty. Unlike
948 * memory_region_test_and_clear_dirty this allows to query the same
949 * page multiple times, which is especially useful for display updates
950 * where the scanlines often are not page aligned.
952 * The dirty bitmap region which gets copyed into the snapshot (and
953 * cleared afterwards) can be larger than requested. The boundaries
954 * are rounded up/down so complete bitmap longs (covering 64 pages on
955 * 64bit hosts) can be copied over into the bitmap snapshot. Which
956 * isn't a problem for display updates as the extra pages are outside
957 * the visible area, and in case the visible area changes a full
958 * display redraw is due anyway. Should other use cases for this
959 * function emerge we might have to revisit this implementation
960 * detail.
962 * Use g_free to release DirtyBitmapSnapshot.
964 * @mr: the memory region being queried.
965 * @addr: the address (relative to the start of the region) being queried.
966 * @size: the size of the range being queried.
967 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
969 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
970 hwaddr addr,
971 hwaddr size,
972 unsigned client);
975 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
976 * in the specified dirty bitmap snapshot.
978 * @mr: the memory region being queried.
979 * @snap: the dirty bitmap snapshot
980 * @addr: the address (relative to the start of the region) being queried.
981 * @size: the size of the range being queried.
983 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
984 DirtyBitmapSnapshot *snap,
985 hwaddr addr, hwaddr size);
988 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
989 * any external TLBs (e.g. kvm)
991 * Flushes dirty information from accelerators such as kvm and vhost-net
992 * and makes it available to users of the memory API.
994 * @mr: the region being flushed.
996 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
999 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1000 * client.
1002 * Marks a range of pages as no longer dirty.
1004 * @mr: the region being updated.
1005 * @addr: the start of the subrange being cleaned.
1006 * @size: the size of the subrange being cleaned.
1007 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1008 * %DIRTY_MEMORY_VGA.
1010 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1011 hwaddr size, unsigned client);
1014 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1016 * Allows a memory region to be marked as read-only (turning it into a ROM).
1017 * only useful on RAM regions.
1019 * @mr: the region being updated.
1020 * @readonly: whether rhe region is to be ROM or RAM.
1022 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1025 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1027 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1028 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1029 * device is mapped to guest memory and satisfies read access directly.
1030 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1031 * Writes are always handled by the #MemoryRegion.write function.
1033 * @mr: the memory region to be updated
1034 * @romd_mode: %true to put the region into ROMD mode
1036 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1039 * memory_region_set_coalescing: Enable memory coalescing for the region.
1041 * Enabled writes to a region to be queued for later processing. MMIO ->write
1042 * callbacks may be delayed until a non-coalesced MMIO is issued.
1043 * Only useful for IO regions. Roughly similar to write-combining hardware.
1045 * @mr: the memory region to be write coalesced
1047 void memory_region_set_coalescing(MemoryRegion *mr);
1050 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1051 * a region.
1053 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1054 * Multiple calls can be issued coalesced disjoint ranges.
1056 * @mr: the memory region to be updated.
1057 * @offset: the start of the range within the region to be coalesced.
1058 * @size: the size of the subrange to be coalesced.
1060 void memory_region_add_coalescing(MemoryRegion *mr,
1061 hwaddr offset,
1062 uint64_t size);
1065 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1067 * Disables any coalescing caused by memory_region_set_coalescing() or
1068 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1069 * hardware.
1071 * @mr: the memory region to be updated.
1073 void memory_region_clear_coalescing(MemoryRegion *mr);
1076 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1077 * accesses.
1079 * Ensure that pending coalesced MMIO request are flushed before the memory
1080 * region is accessed. This property is automatically enabled for all regions
1081 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1083 * @mr: the memory region to be updated.
1085 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1088 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1089 * accesses.
1091 * Clear the automatic coalesced MMIO flushing enabled via
1092 * memory_region_set_flush_coalesced. Note that this service has no effect on
1093 * memory regions that have MMIO coalescing enabled for themselves. For them,
1094 * automatic flushing will stop once coalescing is disabled.
1096 * @mr: the memory region to be updated.
1098 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1101 * memory_region_set_global_locking: Declares the access processing requires
1102 * QEMU's global lock.
1104 * When this is invoked, accesses to the memory region will be processed while
1105 * holding the global lock of QEMU. This is the default behavior of memory
1106 * regions.
1108 * @mr: the memory region to be updated.
1110 void memory_region_set_global_locking(MemoryRegion *mr);
1113 * memory_region_clear_global_locking: Declares that access processing does
1114 * not depend on the QEMU global lock.
1116 * By clearing this property, accesses to the memory region will be processed
1117 * outside of QEMU's global lock (unless the lock is held on when issuing the
1118 * access request). In this case, the device model implementing the access
1119 * handlers is responsible for synchronization of concurrency.
1121 * @mr: the memory region to be updated.
1123 void memory_region_clear_global_locking(MemoryRegion *mr);
1126 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1127 * is written to a location.
1129 * Marks a word in an IO region (initialized with memory_region_init_io())
1130 * as a trigger for an eventfd event. The I/O callback will not be called.
1131 * The caller must be prepared to handle failure (that is, take the required
1132 * action if the callback _is_ called).
1134 * @mr: the memory region being updated.
1135 * @addr: the address within @mr that is to be monitored
1136 * @size: the size of the access to trigger the eventfd
1137 * @match_data: whether to match against @data, instead of just @addr
1138 * @data: the data to match against the guest write
1139 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1141 void memory_region_add_eventfd(MemoryRegion *mr,
1142 hwaddr addr,
1143 unsigned size,
1144 bool match_data,
1145 uint64_t data,
1146 EventNotifier *e);
1149 * memory_region_del_eventfd: Cancel an eventfd.
1151 * Cancels an eventfd trigger requested by a previous
1152 * memory_region_add_eventfd() call.
1154 * @mr: the memory region being updated.
1155 * @addr: the address within @mr that is to be monitored
1156 * @size: the size of the access to trigger the eventfd
1157 * @match_data: whether to match against @data, instead of just @addr
1158 * @data: the data to match against the guest write
1159 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1161 void memory_region_del_eventfd(MemoryRegion *mr,
1162 hwaddr addr,
1163 unsigned size,
1164 bool match_data,
1165 uint64_t data,
1166 EventNotifier *e);
1169 * memory_region_add_subregion: Add a subregion to a container.
1171 * Adds a subregion at @offset. The subregion may not overlap with other
1172 * subregions (except for those explicitly marked as overlapping). A region
1173 * may only be added once as a subregion (unless removed with
1174 * memory_region_del_subregion()); use memory_region_init_alias() if you
1175 * want a region to be a subregion in multiple locations.
1177 * @mr: the region to contain the new subregion; must be a container
1178 * initialized with memory_region_init().
1179 * @offset: the offset relative to @mr where @subregion is added.
1180 * @subregion: the subregion to be added.
1182 void memory_region_add_subregion(MemoryRegion *mr,
1183 hwaddr offset,
1184 MemoryRegion *subregion);
1186 * memory_region_add_subregion_overlap: Add a subregion to a container
1187 * with overlap.
1189 * Adds a subregion at @offset. The subregion may overlap with other
1190 * subregions. Conflicts are resolved by having a higher @priority hide a
1191 * lower @priority. Subregions without priority are taken as @priority 0.
1192 * A region may only be added once as a subregion (unless removed with
1193 * memory_region_del_subregion()); use memory_region_init_alias() if you
1194 * want a region to be a subregion in multiple locations.
1196 * @mr: the region to contain the new subregion; must be a container
1197 * initialized with memory_region_init().
1198 * @offset: the offset relative to @mr where @subregion is added.
1199 * @subregion: the subregion to be added.
1200 * @priority: used for resolving overlaps; highest priority wins.
1202 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1203 hwaddr offset,
1204 MemoryRegion *subregion,
1205 int priority);
1208 * memory_region_get_ram_addr: Get the ram address associated with a memory
1209 * region
1211 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1213 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1215 * memory_region_del_subregion: Remove a subregion.
1217 * Removes a subregion from its container.
1219 * @mr: the container to be updated.
1220 * @subregion: the region being removed; must be a current subregion of @mr.
1222 void memory_region_del_subregion(MemoryRegion *mr,
1223 MemoryRegion *subregion);
1226 * memory_region_set_enabled: dynamically enable or disable a region
1228 * Enables or disables a memory region. A disabled memory region
1229 * ignores all accesses to itself and its subregions. It does not
1230 * obscure sibling subregions with lower priority - it simply behaves as
1231 * if it was removed from the hierarchy.
1233 * Regions default to being enabled.
1235 * @mr: the region to be updated
1236 * @enabled: whether to enable or disable the region
1238 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1241 * memory_region_set_address: dynamically update the address of a region
1243 * Dynamically updates the address of a region, relative to its container.
1244 * May be used on regions are currently part of a memory hierarchy.
1246 * @mr: the region to be updated
1247 * @addr: new address, relative to container region
1249 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1252 * memory_region_set_size: dynamically update the size of a region.
1254 * Dynamically updates the size of a region.
1256 * @mr: the region to be updated
1257 * @size: used size of the region.
1259 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1262 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1264 * Dynamically updates the offset into the target region that an alias points
1265 * to, as if the fourth argument to memory_region_init_alias() has changed.
1267 * @mr: the #MemoryRegion to be updated; should be an alias.
1268 * @offset: the new offset into the target memory region
1270 void memory_region_set_alias_offset(MemoryRegion *mr,
1271 hwaddr offset);
1274 * memory_region_present: checks if an address relative to a @container
1275 * translates into #MemoryRegion within @container
1277 * Answer whether a #MemoryRegion within @container covers the address
1278 * @addr.
1280 * @container: a #MemoryRegion within which @addr is a relative address
1281 * @addr: the area within @container to be searched
1283 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1286 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1287 * into any address space.
1289 * @mr: a #MemoryRegion which should be checked if it's mapped
1291 bool memory_region_is_mapped(MemoryRegion *mr);
1294 * memory_region_find: translate an address/size relative to a
1295 * MemoryRegion into a #MemoryRegionSection.
1297 * Locates the first #MemoryRegion within @mr that overlaps the range
1298 * given by @addr and @size.
1300 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1301 * It will have the following characteristics:
1302 * .@size = 0 iff no overlap was found
1303 * .@mr is non-%NULL iff an overlap was found
1305 * Remember that in the return value the @offset_within_region is
1306 * relative to the returned region (in the .@mr field), not to the
1307 * @mr argument.
1309 * Similarly, the .@offset_within_address_space is relative to the
1310 * address space that contains both regions, the passed and the
1311 * returned one. However, in the special case where the @mr argument
1312 * has no container (and thus is the root of the address space), the
1313 * following will hold:
1314 * .@offset_within_address_space >= @addr
1315 * .@offset_within_address_space + .@size <= @addr + @size
1317 * @mr: a MemoryRegion within which @addr is a relative address
1318 * @addr: start of the area within @as to be searched
1319 * @size: size of the area to be searched
1321 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1322 hwaddr addr, uint64_t size);
1325 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1327 * Synchronizes the dirty page log for all address spaces.
1329 void memory_global_dirty_log_sync(void);
1332 * memory_region_transaction_begin: Start a transaction.
1334 * During a transaction, changes will be accumulated and made visible
1335 * only when the transaction ends (is committed).
1337 void memory_region_transaction_begin(void);
1340 * memory_region_transaction_commit: Commit a transaction and make changes
1341 * visible to the guest.
1343 void memory_region_transaction_commit(void);
1346 * memory_listener_register: register callbacks to be called when memory
1347 * sections are mapped or unmapped into an address
1348 * space
1350 * @listener: an object containing the callbacks to be called
1351 * @filter: if non-%NULL, only regions in this address space will be observed
1353 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1356 * memory_listener_unregister: undo the effect of memory_listener_register()
1358 * @listener: an object containing the callbacks to be removed
1360 void memory_listener_unregister(MemoryListener *listener);
1363 * memory_global_dirty_log_start: begin dirty logging for all regions
1365 void memory_global_dirty_log_start(void);
1368 * memory_global_dirty_log_stop: end dirty logging for all regions
1370 void memory_global_dirty_log_stop(void);
1372 void mtree_info(fprintf_function mon_printf, void *f, bool flatview);
1375 * memory_region_request_mmio_ptr: request a pointer to an mmio
1376 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1377 * When the device wants to invalidate the pointer it will call
1378 * memory_region_invalidate_mmio_ptr.
1380 * @mr: #MemoryRegion to check
1381 * @addr: address within that region
1383 * Returns true on success, false otherwise.
1385 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1388 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1389 * previously requested.
1390 * In the end that means that if something wants to execute from this area it
1391 * will need to request the pointer again.
1393 * @mr: #MemoryRegion associated to the pointer.
1394 * @addr: address within that region
1395 * @size: size of that area.
1397 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1398 unsigned size);
1401 * memory_region_dispatch_read: perform a read directly to the specified
1402 * MemoryRegion.
1404 * @mr: #MemoryRegion to access
1405 * @addr: address within that region
1406 * @pval: pointer to uint64_t which the data is written to
1407 * @size: size of the access in bytes
1408 * @attrs: memory transaction attributes to use for the access
1410 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1411 hwaddr addr,
1412 uint64_t *pval,
1413 unsigned size,
1414 MemTxAttrs attrs);
1416 * memory_region_dispatch_write: perform a write directly to the specified
1417 * MemoryRegion.
1419 * @mr: #MemoryRegion to access
1420 * @addr: address within that region
1421 * @data: data to write
1422 * @size: size of the access in bytes
1423 * @attrs: memory transaction attributes to use for the access
1425 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1426 hwaddr addr,
1427 uint64_t data,
1428 unsigned size,
1429 MemTxAttrs attrs);
1432 * address_space_init: initializes an address space
1434 * @as: an uninitialized #AddressSpace
1435 * @root: a #MemoryRegion that routes addresses for the address space
1436 * @name: an address space name. The name is only used for debugging
1437 * output.
1439 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1442 * address_space_init_shareable: return an address space for a memory region,
1443 * creating it if it does not already exist
1445 * @root: a #MemoryRegion that routes addresses for the address space
1446 * @name: an address space name. The name is only used for debugging
1447 * output.
1449 * This function will return a pointer to an existing AddressSpace
1450 * which was initialized with the specified MemoryRegion, or it will
1451 * create and initialize one if it does not already exist. The ASes
1452 * are reference-counted, so the memory will be freed automatically
1453 * when the AddressSpace is destroyed via address_space_destroy.
1455 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1456 const char *name);
1459 * address_space_destroy: destroy an address space
1461 * Releases all resources associated with an address space. After an address space
1462 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1463 * as well.
1465 * @as: address space to be destroyed
1467 void address_space_destroy(AddressSpace *as);
1470 * address_space_rw: read from or write to an address space.
1472 * Return a MemTxResult indicating whether the operation succeeded
1473 * or failed (eg unassigned memory, device rejected the transaction,
1474 * IOMMU fault).
1476 * @as: #AddressSpace to be accessed
1477 * @addr: address within that address space
1478 * @attrs: memory transaction attributes
1479 * @buf: buffer with the data transferred
1480 * @is_write: indicates the transfer direction
1482 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1483 MemTxAttrs attrs, uint8_t *buf,
1484 int len, bool is_write);
1487 * address_space_write: write to address space.
1489 * Return a MemTxResult indicating whether the operation succeeded
1490 * or failed (eg unassigned memory, device rejected the transaction,
1491 * IOMMU fault).
1493 * @as: #AddressSpace to be accessed
1494 * @addr: address within that address space
1495 * @attrs: memory transaction attributes
1496 * @buf: buffer with the data transferred
1498 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1499 MemTxAttrs attrs,
1500 const uint8_t *buf, int len);
1502 /* address_space_ld*: load from an address space
1503 * address_space_st*: store to an address space
1505 * These functions perform a load or store of the byte, word,
1506 * longword or quad to the specified address within the AddressSpace.
1507 * The _le suffixed functions treat the data as little endian;
1508 * _be indicates big endian; no suffix indicates "same endianness
1509 * as guest CPU".
1511 * The "guest CPU endianness" accessors are deprecated for use outside
1512 * target-* code; devices should be CPU-agnostic and use either the LE
1513 * or the BE accessors.
1515 * @as #AddressSpace to be accessed
1516 * @addr: address within that address space
1517 * @val: data value, for stores
1518 * @attrs: memory transaction attributes
1519 * @result: location to write the success/failure of the transaction;
1520 * if NULL, this information is discarded
1522 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1523 MemTxAttrs attrs, MemTxResult *result);
1524 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1525 MemTxAttrs attrs, MemTxResult *result);
1526 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1527 MemTxAttrs attrs, MemTxResult *result);
1528 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1529 MemTxAttrs attrs, MemTxResult *result);
1530 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1531 MemTxAttrs attrs, MemTxResult *result);
1532 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1533 MemTxAttrs attrs, MemTxResult *result);
1534 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1535 MemTxAttrs attrs, MemTxResult *result);
1536 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1537 MemTxAttrs attrs, MemTxResult *result);
1538 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1539 MemTxAttrs attrs, MemTxResult *result);
1540 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1541 MemTxAttrs attrs, MemTxResult *result);
1542 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1543 MemTxAttrs attrs, MemTxResult *result);
1544 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1545 MemTxAttrs attrs, MemTxResult *result);
1546 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1547 MemTxAttrs attrs, MemTxResult *result);
1548 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1549 MemTxAttrs attrs, MemTxResult *result);
1551 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1552 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1553 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1554 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1555 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1556 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1557 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1558 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1559 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1560 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1561 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1562 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1563 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1564 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1566 struct MemoryRegionCache {
1567 hwaddr xlat;
1568 hwaddr len;
1569 AddressSpace *as;
1572 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1574 /* address_space_cache_init: prepare for repeated access to a physical
1575 * memory region
1577 * @cache: #MemoryRegionCache to be filled
1578 * @as: #AddressSpace to be accessed
1579 * @addr: address within that address space
1580 * @len: length of buffer
1581 * @is_write: indicates the transfer direction
1583 * Will only work with RAM, and may map a subset of the requested range by
1584 * returning a value that is less than @len. On failure, return a negative
1585 * errno value.
1587 * Because it only works with RAM, this function can be used for
1588 * read-modify-write operations. In this case, is_write should be %true.
1590 * Note that addresses passed to the address_space_*_cached functions
1591 * are relative to @addr.
1593 int64_t address_space_cache_init(MemoryRegionCache *cache,
1594 AddressSpace *as,
1595 hwaddr addr,
1596 hwaddr len,
1597 bool is_write);
1600 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1602 * @cache: The #MemoryRegionCache to operate on.
1603 * @addr: The first physical address that was written, relative to the
1604 * address that was passed to @address_space_cache_init.
1605 * @access_len: The number of bytes that were written starting at @addr.
1607 void address_space_cache_invalidate(MemoryRegionCache *cache,
1608 hwaddr addr,
1609 hwaddr access_len);
1612 * address_space_cache_destroy: free a #MemoryRegionCache
1614 * @cache: The #MemoryRegionCache whose memory should be released.
1616 void address_space_cache_destroy(MemoryRegionCache *cache);
1618 /* address_space_ld*_cached: load from a cached #MemoryRegion
1619 * address_space_st*_cached: store into a cached #MemoryRegion
1621 * These functions perform a load or store of the byte, word,
1622 * longword or quad to the specified address. The address is
1623 * a physical address in the AddressSpace, but it must lie within
1624 * a #MemoryRegion that was mapped with address_space_cache_init.
1626 * The _le suffixed functions treat the data as little endian;
1627 * _be indicates big endian; no suffix indicates "same endianness
1628 * as guest CPU".
1630 * The "guest CPU endianness" accessors are deprecated for use outside
1631 * target-* code; devices should be CPU-agnostic and use either the LE
1632 * or the BE accessors.
1634 * @cache: previously initialized #MemoryRegionCache to be accessed
1635 * @addr: address within the address space
1636 * @val: data value, for stores
1637 * @attrs: memory transaction attributes
1638 * @result: location to write the success/failure of the transaction;
1639 * if NULL, this information is discarded
1641 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1642 MemTxAttrs attrs, MemTxResult *result);
1643 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1644 MemTxAttrs attrs, MemTxResult *result);
1645 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1646 MemTxAttrs attrs, MemTxResult *result);
1647 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1648 MemTxAttrs attrs, MemTxResult *result);
1649 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1650 MemTxAttrs attrs, MemTxResult *result);
1651 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1652 MemTxAttrs attrs, MemTxResult *result);
1653 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1654 MemTxAttrs attrs, MemTxResult *result);
1655 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1656 MemTxAttrs attrs, MemTxResult *result);
1657 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1658 MemTxAttrs attrs, MemTxResult *result);
1659 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1660 MemTxAttrs attrs, MemTxResult *result);
1661 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1662 MemTxAttrs attrs, MemTxResult *result);
1663 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1664 MemTxAttrs attrs, MemTxResult *result);
1665 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1666 MemTxAttrs attrs, MemTxResult *result);
1667 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1668 MemTxAttrs attrs, MemTxResult *result);
1670 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1671 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1672 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1673 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1674 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1675 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1676 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1677 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1678 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1679 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1680 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1681 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1682 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1683 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1684 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1685 * entry. Should be called from an RCU critical section.
1687 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1688 bool is_write);
1690 /* address_space_translate: translate an address range into an address space
1691 * into a MemoryRegion and an address range into that section. Should be
1692 * called from an RCU critical section, to avoid that the last reference
1693 * to the returned region disappears after address_space_translate returns.
1695 * @as: #AddressSpace to be accessed
1696 * @addr: address within that address space
1697 * @xlat: pointer to address within the returned memory region section's
1698 * #MemoryRegion.
1699 * @len: pointer to length
1700 * @is_write: indicates the transfer direction
1702 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1703 hwaddr *xlat, hwaddr *len,
1704 bool is_write);
1706 /* address_space_access_valid: check for validity of accessing an address
1707 * space range
1709 * Check whether memory is assigned to the given address space range, and
1710 * access is permitted by any IOMMU regions that are active for the address
1711 * space.
1713 * For now, addr and len should be aligned to a page size. This limitation
1714 * will be lifted in the future.
1716 * @as: #AddressSpace to be accessed
1717 * @addr: address within that address space
1718 * @len: length of the area to be checked
1719 * @is_write: indicates the transfer direction
1721 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1723 /* address_space_map: map a physical memory region into a host virtual address
1725 * May map a subset of the requested range, given by and returned in @plen.
1726 * May return %NULL if resources needed to perform the mapping are exhausted.
1727 * Use only for reads OR writes - not for read-modify-write operations.
1728 * Use cpu_register_map_client() to know when retrying the map operation is
1729 * likely to succeed.
1731 * @as: #AddressSpace to be accessed
1732 * @addr: address within that address space
1733 * @plen: pointer to length of buffer; updated on return
1734 * @is_write: indicates the transfer direction
1736 void *address_space_map(AddressSpace *as, hwaddr addr,
1737 hwaddr *plen, bool is_write);
1739 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1741 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1742 * the amount of memory that was actually read or written by the caller.
1744 * @as: #AddressSpace used
1745 * @addr: address within that address space
1746 * @len: buffer length as returned by address_space_map()
1747 * @access_len: amount of data actually transferred
1748 * @is_write: indicates the transfer direction
1750 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1751 int is_write, hwaddr access_len);
1754 /* Internal functions, part of the implementation of address_space_read. */
1755 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1756 MemTxAttrs attrs, uint8_t *buf,
1757 int len, hwaddr addr1, hwaddr l,
1758 MemoryRegion *mr);
1759 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1760 MemTxAttrs attrs, uint8_t *buf, int len);
1761 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1763 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1765 if (is_write) {
1766 return memory_region_is_ram(mr) &&
1767 !mr->readonly && !memory_region_is_ram_device(mr);
1768 } else {
1769 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1770 memory_region_is_romd(mr);
1775 * address_space_read: read from an address space.
1777 * Return a MemTxResult indicating whether the operation succeeded
1778 * or failed (eg unassigned memory, device rejected the transaction,
1779 * IOMMU fault).
1781 * @as: #AddressSpace to be accessed
1782 * @addr: address within that address space
1783 * @attrs: memory transaction attributes
1784 * @buf: buffer with the data transferred
1786 static inline __attribute__((__always_inline__))
1787 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1788 uint8_t *buf, int len)
1790 MemTxResult result = MEMTX_OK;
1791 hwaddr l, addr1;
1792 void *ptr;
1793 MemoryRegion *mr;
1795 if (__builtin_constant_p(len)) {
1796 if (len) {
1797 rcu_read_lock();
1798 l = len;
1799 mr = address_space_translate(as, addr, &addr1, &l, false);
1800 if (len == l && memory_access_is_direct(mr, false)) {
1801 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1802 memcpy(buf, ptr, len);
1803 } else {
1804 result = address_space_read_continue(as, addr, attrs, buf, len,
1805 addr1, l, mr);
1807 rcu_read_unlock();
1809 } else {
1810 result = address_space_read_full(as, addr, attrs, buf, len);
1812 return result;
1816 * address_space_read_cached: read from a cached RAM region
1818 * @cache: Cached region to be addressed
1819 * @addr: address relative to the base of the RAM region
1820 * @buf: buffer with the data transferred
1821 * @len: length of the data transferred
1823 static inline void
1824 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1825 void *buf, int len)
1827 assert(addr < cache->len && len <= cache->len - addr);
1828 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1832 * address_space_write_cached: write to a cached RAM region
1834 * @cache: Cached region to be addressed
1835 * @addr: address relative to the base of the RAM region
1836 * @buf: buffer with the data transferred
1837 * @len: length of the data transferred
1839 static inline void
1840 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1841 void *buf, int len)
1843 assert(addr < cache->len && len <= cache->len - addr);
1844 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1847 #endif
1849 #endif