tests: add test to check VirtQueue object
[qemu/ar7.git] / hw / ppc / spapr.c
blob1ac7eb0f8cf3ab3e0e09f9db32d4a5e19743f9b7
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "qmp-commands.h"
79 #include <libfdt.h>
81 /* SLOF memory layout:
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
89 * We load our kernel at 4M, leaving space for SLOF initial image
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
99 #define MIN_RMA_SLOF 128UL
101 #define PHANDLE_XICP 0x00001111
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
107 Error *local_err = NULL;
108 Object *obj;
110 obj = object_new(type_ics);
111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
118 object_property_set_bool(obj, true, "realized", &local_err);
119 if (local_err) {
120 goto error;
123 return ICS_SIMPLE(obj);
125 error:
126 error_propagate(errp, local_err);
127 return NULL;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 static inline int xics_max_server_number(void)
166 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
171 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
174 if (kvm_enabled()) {
175 if (machine_kernel_irqchip_allowed(machine) &&
176 !xics_kvm_init(spapr, errp)) {
177 spapr->icp_type = TYPE_KVM_ICP;
178 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
180 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182 return;
186 if (!spapr->ics) {
187 xics_spapr_init(spapr);
188 spapr->icp_type = TYPE_ICP;
189 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190 if (!spapr->ics) {
191 return;
195 if (smc->pre_2_10_has_unused_icps) {
196 int i;
198 for (i = 0; i < xics_max_server_number(); i++) {
199 /* Dummy entries get deregistered when real ICPState objects
200 * are registered during CPU core hotplug.
202 pre_2_10_vmstate_register_dummy_icp(i);
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208 int smt_threads)
210 int i, ret = 0;
211 uint32_t servers_prop[smt_threads];
212 uint32_t gservers_prop[smt_threads * 2];
213 int index = spapr_vcpu_id(cpu);
215 if (cpu->compat_pvr) {
216 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217 if (ret < 0) {
218 return ret;
222 /* Build interrupt servers and gservers properties */
223 for (i = 0; i < smt_threads; i++) {
224 servers_prop[i] = cpu_to_be32(index + i);
225 /* Hack, direct the group queues back to cpu 0 */
226 gservers_prop[i*2] = cpu_to_be32(index + i);
227 gservers_prop[i*2 + 1] = 0;
229 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230 servers_prop, sizeof(servers_prop));
231 if (ret < 0) {
232 return ret;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235 gservers_prop, sizeof(gservers_prop));
237 return ret;
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
242 int index = spapr_vcpu_id(cpu);
243 uint32_t associativity[] = {cpu_to_be32(0x5),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(0x0),
247 cpu_to_be32(cpu->node_id),
248 cpu_to_be32(index)};
250 /* Advertise NUMA via ibm,associativity */
251 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252 sizeof(associativity));
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(PowerPCCPU *cpu, void *fdt, int offset,
257 bool legacy_guest)
259 CPUPPCState *env = &cpu->env;
260 uint8_t pa_features_206[] = { 6, 0,
261 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
262 uint8_t pa_features_207[] = { 24, 0,
263 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
264 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
265 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
266 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
267 uint8_t pa_features_300[] = { 66, 0,
268 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
269 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
271 /* 6: DS207 */
272 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
273 /* 16: Vector */
274 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
275 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
276 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
277 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
278 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
279 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
280 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
281 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
283 /* 42: PM, 44: PC RA, 46: SC vec'd */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
285 /* 48: SIMD, 50: QP BFP, 52: String */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
287 /* 54: DecFP, 56: DecI, 58: SHA */
288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
289 /* 60: NM atomic, 62: RNG */
290 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
292 uint8_t *pa_features = NULL;
293 size_t pa_size;
295 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
296 pa_features = pa_features_206;
297 pa_size = sizeof(pa_features_206);
299 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
300 pa_features = pa_features_207;
301 pa_size = sizeof(pa_features_207);
303 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
304 pa_features = pa_features_300;
305 pa_size = sizeof(pa_features_300);
307 if (!pa_features) {
308 return;
311 if (env->ci_large_pages) {
313 * Note: we keep CI large pages off by default because a 64K capable
314 * guest provisioned with large pages might otherwise try to map a qemu
315 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
316 * even if that qemu runs on a 4k host.
317 * We dd this bit back here if we are confident this is not an issue
319 pa_features[3] |= 0x20;
321 if (kvmppc_has_cap_htm() && pa_size > 24) {
322 pa_features[24] |= 0x80; /* Transactional memory support */
324 if (legacy_guest && pa_size > 40) {
325 /* Workaround for broken kernels that attempt (guest) radix
326 * mode when they can't handle it, if they see the radix bit set
327 * in pa-features. So hide it from them. */
328 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
331 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
334 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
336 int ret = 0, offset, cpus_offset;
337 CPUState *cs;
338 char cpu_model[32];
339 int smt = kvmppc_smt_threads();
340 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
342 CPU_FOREACH(cs) {
343 PowerPCCPU *cpu = POWERPC_CPU(cs);
344 DeviceClass *dc = DEVICE_GET_CLASS(cs);
345 int index = spapr_vcpu_id(cpu);
346 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
348 if ((index % smt) != 0) {
349 continue;
352 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
354 cpus_offset = fdt_path_offset(fdt, "/cpus");
355 if (cpus_offset < 0) {
356 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
357 if (cpus_offset < 0) {
358 return cpus_offset;
361 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
362 if (offset < 0) {
363 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 return offset;
369 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
370 pft_size_prop, sizeof(pft_size_prop));
371 if (ret < 0) {
372 return ret;
375 if (nb_numa_nodes > 1) {
376 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
377 if (ret < 0) {
378 return ret;
382 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
383 if (ret < 0) {
384 return ret;
387 spapr_populate_pa_features(cpu, fdt, offset,
388 spapr->cas_legacy_guest_workaround);
390 return ret;
393 static hwaddr spapr_node0_size(MachineState *machine)
395 if (nb_numa_nodes) {
396 int i;
397 for (i = 0; i < nb_numa_nodes; ++i) {
398 if (numa_info[i].node_mem) {
399 return MIN(pow2floor(numa_info[i].node_mem),
400 machine->ram_size);
404 return machine->ram_size;
407 static void add_str(GString *s, const gchar *s1)
409 g_string_append_len(s, s1, strlen(s1) + 1);
412 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
413 hwaddr size)
415 uint32_t associativity[] = {
416 cpu_to_be32(0x4), /* length */
417 cpu_to_be32(0x0), cpu_to_be32(0x0),
418 cpu_to_be32(0x0), cpu_to_be32(nodeid)
420 char mem_name[32];
421 uint64_t mem_reg_property[2];
422 int off;
424 mem_reg_property[0] = cpu_to_be64(start);
425 mem_reg_property[1] = cpu_to_be64(size);
427 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
428 off = fdt_add_subnode(fdt, 0, mem_name);
429 _FDT(off);
430 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
431 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
432 sizeof(mem_reg_property))));
433 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
434 sizeof(associativity))));
435 return off;
438 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
440 MachineState *machine = MACHINE(spapr);
441 hwaddr mem_start, node_size;
442 int i, nb_nodes = nb_numa_nodes;
443 NodeInfo *nodes = numa_info;
444 NodeInfo ramnode;
446 /* No NUMA nodes, assume there is just one node with whole RAM */
447 if (!nb_numa_nodes) {
448 nb_nodes = 1;
449 ramnode.node_mem = machine->ram_size;
450 nodes = &ramnode;
453 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
454 if (!nodes[i].node_mem) {
455 continue;
457 if (mem_start >= machine->ram_size) {
458 node_size = 0;
459 } else {
460 node_size = nodes[i].node_mem;
461 if (node_size > machine->ram_size - mem_start) {
462 node_size = machine->ram_size - mem_start;
465 if (!mem_start) {
466 /* ppc_spapr_init() checks for rma_size <= node0_size already */
467 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
468 mem_start += spapr->rma_size;
469 node_size -= spapr->rma_size;
471 for ( ; node_size; ) {
472 hwaddr sizetmp = pow2floor(node_size);
474 /* mem_start != 0 here */
475 if (ctzl(mem_start) < ctzl(sizetmp)) {
476 sizetmp = 1ULL << ctzl(mem_start);
479 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
480 node_size -= sizetmp;
481 mem_start += sizetmp;
485 return 0;
488 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
489 sPAPRMachineState *spapr)
491 PowerPCCPU *cpu = POWERPC_CPU(cs);
492 CPUPPCState *env = &cpu->env;
493 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
494 int index = spapr_vcpu_id(cpu);
495 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
496 0xffffffff, 0xffffffff};
497 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
498 : SPAPR_TIMEBASE_FREQ;
499 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
500 uint32_t page_sizes_prop[64];
501 size_t page_sizes_prop_size;
502 uint32_t vcpus_per_socket = smp_threads * smp_cores;
503 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
504 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
505 sPAPRDRConnector *drc;
506 int drc_index;
507 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
508 int i;
510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
511 if (drc) {
512 drc_index = spapr_drc_index(drc);
513 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
516 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
517 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
519 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
520 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
521 env->dcache_line_size)));
522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
523 env->dcache_line_size)));
524 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
525 env->icache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
527 env->icache_line_size)));
529 if (pcc->l1_dcache_size) {
530 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
531 pcc->l1_dcache_size)));
532 } else {
533 warn_report("Unknown L1 dcache size for cpu");
535 if (pcc->l1_icache_size) {
536 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
537 pcc->l1_icache_size)));
538 } else {
539 warn_report("Unknown L1 icache size for cpu");
542 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
543 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
544 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
545 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
546 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
547 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
549 if (env->spr_cb[SPR_PURR].oea_read) {
550 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
553 if (env->mmu_model & POWERPC_MMU_1TSEG) {
554 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
555 segs, sizeof(segs))));
558 /* Advertise VMX/VSX (vector extensions) if available
559 * 0 / no property == no vector extensions
560 * 1 == VMX / Altivec available
561 * 2 == VSX available */
562 if (env->insns_flags & PPC_ALTIVEC) {
563 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
565 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
568 /* Advertise DFP (Decimal Floating Point) if available
569 * 0 / no property == no DFP
570 * 1 == DFP available */
571 if (env->insns_flags2 & PPC2_DFP) {
572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
575 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
576 sizeof(page_sizes_prop));
577 if (page_sizes_prop_size) {
578 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
579 page_sizes_prop, page_sizes_prop_size)));
582 spapr_populate_pa_features(cpu, fdt, offset, false);
584 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
585 cs->cpu_index / vcpus_per_socket)));
587 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
588 pft_size_prop, sizeof(pft_size_prop))));
590 if (nb_numa_nodes > 1) {
591 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
594 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
596 if (pcc->radix_page_info) {
597 for (i = 0; i < pcc->radix_page_info->count; i++) {
598 radix_AP_encodings[i] =
599 cpu_to_be32(pcc->radix_page_info->entries[i]);
601 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
602 radix_AP_encodings,
603 pcc->radix_page_info->count *
604 sizeof(radix_AP_encodings[0]))));
608 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
610 CPUState *cs;
611 int cpus_offset;
612 char *nodename;
613 int smt = kvmppc_smt_threads();
615 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
616 _FDT(cpus_offset);
617 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
618 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
621 * We walk the CPUs in reverse order to ensure that CPU DT nodes
622 * created by fdt_add_subnode() end up in the right order in FDT
623 * for the guest kernel the enumerate the CPUs correctly.
625 CPU_FOREACH_REVERSE(cs) {
626 PowerPCCPU *cpu = POWERPC_CPU(cs);
627 int index = spapr_vcpu_id(cpu);
628 DeviceClass *dc = DEVICE_GET_CLASS(cs);
629 int offset;
631 if ((index % smt) != 0) {
632 continue;
635 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
636 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
637 g_free(nodename);
638 _FDT(offset);
639 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
645 * Adds ibm,dynamic-reconfiguration-memory node.
646 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
647 * of this device tree node.
649 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
651 MachineState *machine = MACHINE(spapr);
652 int ret, i, offset;
653 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
654 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
655 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
656 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
657 memory_region_size(&spapr->hotplug_memory.mr)) /
658 lmb_size;
659 uint32_t *int_buf, *cur_index, buf_len;
660 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
663 * Don't create the node if there is no hotpluggable memory
665 if (machine->ram_size == machine->maxram_size) {
666 return 0;
670 * Allocate enough buffer size to fit in ibm,dynamic-memory
671 * or ibm,associativity-lookup-arrays
673 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
674 * sizeof(uint32_t);
675 cur_index = int_buf = g_malloc0(buf_len);
677 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
679 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
680 sizeof(prop_lmb_size));
681 if (ret < 0) {
682 goto out;
685 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
686 if (ret < 0) {
687 goto out;
690 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
691 if (ret < 0) {
692 goto out;
695 /* ibm,dynamic-memory */
696 int_buf[0] = cpu_to_be32(nr_lmbs);
697 cur_index++;
698 for (i = 0; i < nr_lmbs; i++) {
699 uint64_t addr = i * lmb_size;
700 uint32_t *dynamic_memory = cur_index;
702 if (i >= hotplug_lmb_start) {
703 sPAPRDRConnector *drc;
705 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
706 g_assert(drc);
708 dynamic_memory[0] = cpu_to_be32(addr >> 32);
709 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
710 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
711 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
712 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
713 if (memory_region_present(get_system_memory(), addr)) {
714 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
715 } else {
716 dynamic_memory[5] = cpu_to_be32(0);
718 } else {
720 * LMB information for RMA, boot time RAM and gap b/n RAM and
721 * hotplug memory region -- all these are marked as reserved
722 * and as having no valid DRC.
724 dynamic_memory[0] = cpu_to_be32(addr >> 32);
725 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
726 dynamic_memory[2] = cpu_to_be32(0);
727 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
728 dynamic_memory[4] = cpu_to_be32(-1);
729 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
730 SPAPR_LMB_FLAGS_DRC_INVALID);
733 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
735 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
736 if (ret < 0) {
737 goto out;
740 /* ibm,associativity-lookup-arrays */
741 cur_index = int_buf;
742 int_buf[0] = cpu_to_be32(nr_nodes);
743 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
744 cur_index += 2;
745 for (i = 0; i < nr_nodes; i++) {
746 uint32_t associativity[] = {
747 cpu_to_be32(0x0),
748 cpu_to_be32(0x0),
749 cpu_to_be32(0x0),
750 cpu_to_be32(i)
752 memcpy(cur_index, associativity, sizeof(associativity));
753 cur_index += 4;
755 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
756 (cur_index - int_buf) * sizeof(uint32_t));
757 out:
758 g_free(int_buf);
759 return ret;
762 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
763 sPAPROptionVector *ov5_updates)
765 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
766 int ret = 0, offset;
768 /* Generate ibm,dynamic-reconfiguration-memory node if required */
769 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
770 g_assert(smc->dr_lmb_enabled);
771 ret = spapr_populate_drconf_memory(spapr, fdt);
772 if (ret) {
773 goto out;
777 offset = fdt_path_offset(fdt, "/chosen");
778 if (offset < 0) {
779 offset = fdt_add_subnode(fdt, 0, "chosen");
780 if (offset < 0) {
781 return offset;
784 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
785 "ibm,architecture-vec-5");
787 out:
788 return ret;
791 static bool spapr_hotplugged_dev_before_cas(void)
793 Object *drc_container, *obj;
794 ObjectProperty *prop;
795 ObjectPropertyIterator iter;
797 drc_container = container_get(object_get_root(), "/dr-connector");
798 object_property_iter_init(&iter, drc_container);
799 while ((prop = object_property_iter_next(&iter))) {
800 if (!strstart(prop->type, "link<", NULL)) {
801 continue;
803 obj = object_property_get_link(drc_container, prop->name, NULL);
804 if (spapr_drc_needed(obj)) {
805 return true;
808 return false;
811 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
812 target_ulong addr, target_ulong size,
813 sPAPROptionVector *ov5_updates)
815 void *fdt, *fdt_skel;
816 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
818 if (spapr_hotplugged_dev_before_cas()) {
819 return 1;
822 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
823 error_report("SLOF provided an unexpected CAS buffer size "
824 TARGET_FMT_lu " (min: %zu, max: %u)",
825 size, sizeof(hdr), FW_MAX_SIZE);
826 exit(EXIT_FAILURE);
829 size -= sizeof(hdr);
831 /* Create skeleton */
832 fdt_skel = g_malloc0(size);
833 _FDT((fdt_create(fdt_skel, size)));
834 _FDT((fdt_begin_node(fdt_skel, "")));
835 _FDT((fdt_end_node(fdt_skel)));
836 _FDT((fdt_finish(fdt_skel)));
837 fdt = g_malloc0(size);
838 _FDT((fdt_open_into(fdt_skel, fdt, size)));
839 g_free(fdt_skel);
841 /* Fixup cpu nodes */
842 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
844 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
845 return -1;
848 /* Pack resulting tree */
849 _FDT((fdt_pack(fdt)));
851 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
852 trace_spapr_cas_failed(size);
853 return -1;
856 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
857 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
858 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
859 g_free(fdt);
861 return 0;
864 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
866 int rtas;
867 GString *hypertas = g_string_sized_new(256);
868 GString *qemu_hypertas = g_string_sized_new(256);
869 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
870 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
871 memory_region_size(&spapr->hotplug_memory.mr);
872 uint32_t lrdr_capacity[] = {
873 cpu_to_be32(max_hotplug_addr >> 32),
874 cpu_to_be32(max_hotplug_addr & 0xffffffff),
875 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
876 cpu_to_be32(max_cpus / smp_threads),
879 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
881 /* hypertas */
882 add_str(hypertas, "hcall-pft");
883 add_str(hypertas, "hcall-term");
884 add_str(hypertas, "hcall-dabr");
885 add_str(hypertas, "hcall-interrupt");
886 add_str(hypertas, "hcall-tce");
887 add_str(hypertas, "hcall-vio");
888 add_str(hypertas, "hcall-splpar");
889 add_str(hypertas, "hcall-bulk");
890 add_str(hypertas, "hcall-set-mode");
891 add_str(hypertas, "hcall-sprg0");
892 add_str(hypertas, "hcall-copy");
893 add_str(hypertas, "hcall-debug");
894 add_str(qemu_hypertas, "hcall-memop1");
896 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
897 add_str(hypertas, "hcall-multi-tce");
900 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
901 add_str(hypertas, "hcall-hpt-resize");
904 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
905 hypertas->str, hypertas->len));
906 g_string_free(hypertas, TRUE);
907 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
908 qemu_hypertas->str, qemu_hypertas->len));
909 g_string_free(qemu_hypertas, TRUE);
911 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
912 refpoints, sizeof(refpoints)));
914 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
915 RTAS_ERROR_LOG_MAX));
916 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
917 RTAS_EVENT_SCAN_RATE));
919 if (msi_nonbroken) {
920 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
924 * According to PAPR, rtas ibm,os-term does not guarantee a return
925 * back to the guest cpu.
927 * While an additional ibm,extended-os-term property indicates
928 * that rtas call return will always occur. Set this property.
930 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
932 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
933 lrdr_capacity, sizeof(lrdr_capacity)));
935 spapr_dt_rtas_tokens(fdt, rtas);
938 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
939 * that the guest may request and thus the valid values for bytes 24..26 of
940 * option vector 5: */
941 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
943 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
945 char val[2 * 4] = {
946 23, 0x00, /* Xive mode, filled in below. */
947 24, 0x00, /* Hash/Radix, filled in below. */
948 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
949 26, 0x40, /* Radix options: GTSE == yes. */
952 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
953 first_ppc_cpu->compat_pvr)) {
954 /* If we're in a pre POWER9 compat mode then the guest should do hash */
955 val[3] = 0x00; /* Hash */
956 } else if (kvm_enabled()) {
957 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
958 val[3] = 0x80; /* OV5_MMU_BOTH */
959 } else if (kvmppc_has_cap_mmu_radix()) {
960 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
961 } else {
962 val[3] = 0x00; /* Hash */
964 } else {
965 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
966 val[3] = 0xC0;
968 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
969 val, sizeof(val)));
972 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
974 MachineState *machine = MACHINE(spapr);
975 int chosen;
976 const char *boot_device = machine->boot_order;
977 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
978 size_t cb = 0;
979 char *bootlist = get_boot_devices_list(&cb, true);
981 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
983 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
984 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
985 spapr->initrd_base));
986 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
987 spapr->initrd_base + spapr->initrd_size));
989 if (spapr->kernel_size) {
990 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
991 cpu_to_be64(spapr->kernel_size) };
993 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
994 &kprop, sizeof(kprop)));
995 if (spapr->kernel_le) {
996 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
999 if (boot_menu) {
1000 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1002 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1003 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1004 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1006 if (cb && bootlist) {
1007 int i;
1009 for (i = 0; i < cb; i++) {
1010 if (bootlist[i] == '\n') {
1011 bootlist[i] = ' ';
1014 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1017 if (boot_device && strlen(boot_device)) {
1018 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1021 if (!spapr->has_graphics && stdout_path) {
1022 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1025 spapr_dt_ov5_platform_support(fdt, chosen);
1027 g_free(stdout_path);
1028 g_free(bootlist);
1031 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1033 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1034 * KVM to work under pHyp with some guest co-operation */
1035 int hypervisor;
1036 uint8_t hypercall[16];
1038 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1039 /* indicate KVM hypercall interface */
1040 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1041 if (kvmppc_has_cap_fixup_hcalls()) {
1043 * Older KVM versions with older guest kernels were broken
1044 * with the magic page, don't allow the guest to map it.
1046 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1047 sizeof(hypercall))) {
1048 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1049 hypercall, sizeof(hypercall)));
1054 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1055 hwaddr rtas_addr,
1056 hwaddr rtas_size)
1058 MachineState *machine = MACHINE(spapr);
1059 MachineClass *mc = MACHINE_GET_CLASS(machine);
1060 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1061 int ret;
1062 void *fdt;
1063 sPAPRPHBState *phb;
1064 char *buf;
1066 fdt = g_malloc0(FDT_MAX_SIZE);
1067 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1069 /* Root node */
1070 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1071 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1072 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1075 * Add info to guest to indentify which host is it being run on
1076 * and what is the uuid of the guest
1078 if (kvmppc_get_host_model(&buf)) {
1079 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1080 g_free(buf);
1082 if (kvmppc_get_host_serial(&buf)) {
1083 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1084 g_free(buf);
1087 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1089 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1090 if (qemu_uuid_set) {
1091 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1093 g_free(buf);
1095 if (qemu_get_vm_name()) {
1096 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1097 qemu_get_vm_name()));
1100 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1101 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1103 /* /interrupt controller */
1104 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1106 ret = spapr_populate_memory(spapr, fdt);
1107 if (ret < 0) {
1108 error_report("couldn't setup memory nodes in fdt");
1109 exit(1);
1112 /* /vdevice */
1113 spapr_dt_vdevice(spapr->vio_bus, fdt);
1115 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1116 ret = spapr_rng_populate_dt(fdt);
1117 if (ret < 0) {
1118 error_report("could not set up rng device in the fdt");
1119 exit(1);
1123 QLIST_FOREACH(phb, &spapr->phbs, list) {
1124 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1125 if (ret < 0) {
1126 error_report("couldn't setup PCI devices in fdt");
1127 exit(1);
1131 /* cpus */
1132 spapr_populate_cpus_dt_node(fdt, spapr);
1134 if (smc->dr_lmb_enabled) {
1135 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1138 if (mc->has_hotpluggable_cpus) {
1139 int offset = fdt_path_offset(fdt, "/cpus");
1140 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1141 SPAPR_DR_CONNECTOR_TYPE_CPU);
1142 if (ret < 0) {
1143 error_report("Couldn't set up CPU DR device tree properties");
1144 exit(1);
1148 /* /event-sources */
1149 spapr_dt_events(spapr, fdt);
1151 /* /rtas */
1152 spapr_dt_rtas(spapr, fdt);
1154 /* /chosen */
1155 spapr_dt_chosen(spapr, fdt);
1157 /* /hypervisor */
1158 if (kvm_enabled()) {
1159 spapr_dt_hypervisor(spapr, fdt);
1162 /* Build memory reserve map */
1163 if (spapr->kernel_size) {
1164 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1166 if (spapr->initrd_size) {
1167 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1170 /* ibm,client-architecture-support updates */
1171 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1172 if (ret < 0) {
1173 error_report("couldn't setup CAS properties fdt");
1174 exit(1);
1177 return fdt;
1180 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1182 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1185 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1186 PowerPCCPU *cpu)
1188 CPUPPCState *env = &cpu->env;
1190 /* The TCG path should also be holding the BQL at this point */
1191 g_assert(qemu_mutex_iothread_locked());
1193 if (msr_pr) {
1194 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1195 env->gpr[3] = H_PRIVILEGE;
1196 } else {
1197 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1201 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1203 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1205 return spapr->patb_entry;
1208 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1209 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1210 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1211 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1212 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1215 * Get the fd to access the kernel htab, re-opening it if necessary
1217 static int get_htab_fd(sPAPRMachineState *spapr)
1219 Error *local_err = NULL;
1221 if (spapr->htab_fd >= 0) {
1222 return spapr->htab_fd;
1225 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1226 if (spapr->htab_fd < 0) {
1227 error_report_err(local_err);
1230 return spapr->htab_fd;
1233 void close_htab_fd(sPAPRMachineState *spapr)
1235 if (spapr->htab_fd >= 0) {
1236 close(spapr->htab_fd);
1238 spapr->htab_fd = -1;
1241 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1243 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1245 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1248 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1250 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1252 assert(kvm_enabled());
1254 if (!spapr->htab) {
1255 return 0;
1258 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1261 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1262 hwaddr ptex, int n)
1264 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1265 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1267 if (!spapr->htab) {
1269 * HTAB is controlled by KVM. Fetch into temporary buffer
1271 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1272 kvmppc_read_hptes(hptes, ptex, n);
1273 return hptes;
1277 * HTAB is controlled by QEMU. Just point to the internally
1278 * accessible PTEG.
1280 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1283 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1284 const ppc_hash_pte64_t *hptes,
1285 hwaddr ptex, int n)
1287 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1289 if (!spapr->htab) {
1290 g_free((void *)hptes);
1293 /* Nothing to do for qemu managed HPT */
1296 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1297 uint64_t pte0, uint64_t pte1)
1299 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1300 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1302 if (!spapr->htab) {
1303 kvmppc_write_hpte(ptex, pte0, pte1);
1304 } else {
1305 stq_p(spapr->htab + offset, pte0);
1306 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1310 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1312 int shift;
1314 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1315 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1316 * that's much more than is needed for Linux guests */
1317 shift = ctz64(pow2ceil(ramsize)) - 7;
1318 shift = MAX(shift, 18); /* Minimum architected size */
1319 shift = MIN(shift, 46); /* Maximum architected size */
1320 return shift;
1323 void spapr_free_hpt(sPAPRMachineState *spapr)
1325 g_free(spapr->htab);
1326 spapr->htab = NULL;
1327 spapr->htab_shift = 0;
1328 close_htab_fd(spapr);
1331 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1332 Error **errp)
1334 long rc;
1336 /* Clean up any HPT info from a previous boot */
1337 spapr_free_hpt(spapr);
1339 rc = kvmppc_reset_htab(shift);
1340 if (rc < 0) {
1341 /* kernel-side HPT needed, but couldn't allocate one */
1342 error_setg_errno(errp, errno,
1343 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1344 shift);
1345 /* This is almost certainly fatal, but if the caller really
1346 * wants to carry on with shift == 0, it's welcome to try */
1347 } else if (rc > 0) {
1348 /* kernel-side HPT allocated */
1349 if (rc != shift) {
1350 error_setg(errp,
1351 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1352 shift, rc);
1355 spapr->htab_shift = shift;
1356 spapr->htab = NULL;
1357 } else {
1358 /* kernel-side HPT not needed, allocate in userspace instead */
1359 size_t size = 1ULL << shift;
1360 int i;
1362 spapr->htab = qemu_memalign(size, size);
1363 if (!spapr->htab) {
1364 error_setg_errno(errp, errno,
1365 "Could not allocate HPT of order %d", shift);
1366 return;
1369 memset(spapr->htab, 0, size);
1370 spapr->htab_shift = shift;
1372 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1373 DIRTY_HPTE(HPTE(spapr->htab, i));
1376 /* We're setting up a hash table, so that means we're not radix */
1377 spapr->patb_entry = 0;
1380 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1382 int hpt_shift;
1384 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1385 || (spapr->cas_reboot
1386 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1387 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1388 } else {
1389 uint64_t current_ram_size;
1391 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1392 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1394 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1396 if (spapr->vrma_adjust) {
1397 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1398 spapr->htab_shift);
1402 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1404 bool matched = false;
1406 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1407 matched = true;
1410 if (!matched) {
1411 error_report("Device %s is not supported by this machine yet.",
1412 qdev_fw_name(DEVICE(sbdev)));
1413 exit(1);
1417 static int spapr_reset_drcs(Object *child, void *opaque)
1419 sPAPRDRConnector *drc =
1420 (sPAPRDRConnector *) object_dynamic_cast(child,
1421 TYPE_SPAPR_DR_CONNECTOR);
1423 if (drc) {
1424 spapr_drc_reset(drc);
1427 return 0;
1430 static void ppc_spapr_reset(void)
1432 MachineState *machine = MACHINE(qdev_get_machine());
1433 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1434 PowerPCCPU *first_ppc_cpu;
1435 uint32_t rtas_limit;
1436 hwaddr rtas_addr, fdt_addr;
1437 void *fdt;
1438 int rc;
1440 /* Check for unknown sysbus devices */
1441 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1443 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1444 /* If using KVM with radix mode available, VCPUs can be started
1445 * without a HPT because KVM will start them in radix mode.
1446 * Set the GR bit in PATB so that we know there is no HPT. */
1447 spapr->patb_entry = PATBE1_GR;
1448 } else {
1449 spapr_setup_hpt_and_vrma(spapr);
1452 qemu_devices_reset();
1454 /* DRC reset may cause a device to be unplugged. This will cause troubles
1455 * if this device is used by another device (eg, a running vhost backend
1456 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1457 * situations, we reset DRCs after all devices have been reset.
1459 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1461 spapr_clear_pending_events(spapr);
1464 * We place the device tree and RTAS just below either the top of the RMA,
1465 * or just below 2GB, whichever is lowere, so that it can be
1466 * processed with 32-bit real mode code if necessary
1468 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1469 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1470 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1472 /* if this reset wasn't generated by CAS, we should reset our
1473 * negotiated options and start from scratch */
1474 if (!spapr->cas_reboot) {
1475 spapr_ovec_cleanup(spapr->ov5_cas);
1476 spapr->ov5_cas = spapr_ovec_new();
1478 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1481 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1483 spapr_load_rtas(spapr, fdt, rtas_addr);
1485 rc = fdt_pack(fdt);
1487 /* Should only fail if we've built a corrupted tree */
1488 assert(rc == 0);
1490 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1491 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1492 fdt_totalsize(fdt), FDT_MAX_SIZE);
1493 exit(1);
1496 /* Load the fdt */
1497 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1498 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1499 g_free(fdt);
1501 /* Set up the entry state */
1502 first_ppc_cpu = POWERPC_CPU(first_cpu);
1503 first_ppc_cpu->env.gpr[3] = fdt_addr;
1504 first_ppc_cpu->env.gpr[5] = 0;
1505 first_cpu->halted = 0;
1506 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1508 spapr->cas_reboot = false;
1511 static void spapr_create_nvram(sPAPRMachineState *spapr)
1513 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1514 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1516 if (dinfo) {
1517 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1518 &error_fatal);
1521 qdev_init_nofail(dev);
1523 spapr->nvram = (struct sPAPRNVRAM *)dev;
1526 static void spapr_rtc_create(sPAPRMachineState *spapr)
1528 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1529 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1530 &error_fatal);
1531 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1532 &error_fatal);
1533 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1534 "date", &error_fatal);
1537 /* Returns whether we want to use VGA or not */
1538 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1540 switch (vga_interface_type) {
1541 case VGA_NONE:
1542 return false;
1543 case VGA_DEVICE:
1544 return true;
1545 case VGA_STD:
1546 case VGA_VIRTIO:
1547 return pci_vga_init(pci_bus) != NULL;
1548 default:
1549 error_setg(errp,
1550 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1551 return false;
1555 static int spapr_post_load(void *opaque, int version_id)
1557 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1558 int err = 0;
1560 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1561 CPUState *cs;
1562 CPU_FOREACH(cs) {
1563 PowerPCCPU *cpu = POWERPC_CPU(cs);
1564 icp_resend(ICP(cpu->intc));
1568 /* In earlier versions, there was no separate qdev for the PAPR
1569 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1570 * So when migrating from those versions, poke the incoming offset
1571 * value into the RTC device */
1572 if (version_id < 3) {
1573 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1576 if (kvm_enabled() && spapr->patb_entry) {
1577 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1578 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1579 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1581 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1582 if (err) {
1583 error_report("Process table config unsupported by the host");
1584 return -EINVAL;
1588 return err;
1591 static bool version_before_3(void *opaque, int version_id)
1593 return version_id < 3;
1596 static bool spapr_pending_events_needed(void *opaque)
1598 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1599 return !QTAILQ_EMPTY(&spapr->pending_events);
1602 static const VMStateDescription vmstate_spapr_event_entry = {
1603 .name = "spapr_event_log_entry",
1604 .version_id = 1,
1605 .minimum_version_id = 1,
1606 .fields = (VMStateField[]) {
1607 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1608 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1609 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1610 NULL, extended_length),
1611 VMSTATE_END_OF_LIST()
1615 static const VMStateDescription vmstate_spapr_pending_events = {
1616 .name = "spapr_pending_events",
1617 .version_id = 1,
1618 .minimum_version_id = 1,
1619 .needed = spapr_pending_events_needed,
1620 .fields = (VMStateField[]) {
1621 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1622 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1623 VMSTATE_END_OF_LIST()
1627 static bool spapr_ov5_cas_needed(void *opaque)
1629 sPAPRMachineState *spapr = opaque;
1630 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1631 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1632 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1633 bool cas_needed;
1635 /* Prior to the introduction of sPAPROptionVector, we had two option
1636 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1637 * Both of these options encode machine topology into the device-tree
1638 * in such a way that the now-booted OS should still be able to interact
1639 * appropriately with QEMU regardless of what options were actually
1640 * negotiatied on the source side.
1642 * As such, we can avoid migrating the CAS-negotiated options if these
1643 * are the only options available on the current machine/platform.
1644 * Since these are the only options available for pseries-2.7 and
1645 * earlier, this allows us to maintain old->new/new->old migration
1646 * compatibility.
1648 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1649 * via default pseries-2.8 machines and explicit command-line parameters.
1650 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1651 * of the actual CAS-negotiated values to continue working properly. For
1652 * example, availability of memory unplug depends on knowing whether
1653 * OV5_HP_EVT was negotiated via CAS.
1655 * Thus, for any cases where the set of available CAS-negotiatable
1656 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1657 * include the CAS-negotiated options in the migration stream.
1659 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1660 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1662 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1663 * the mask itself since in the future it's possible "legacy" bits may be
1664 * removed via machine options, which could generate a false positive
1665 * that breaks migration.
1667 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1668 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1670 spapr_ovec_cleanup(ov5_mask);
1671 spapr_ovec_cleanup(ov5_legacy);
1672 spapr_ovec_cleanup(ov5_removed);
1674 return cas_needed;
1677 static const VMStateDescription vmstate_spapr_ov5_cas = {
1678 .name = "spapr_option_vector_ov5_cas",
1679 .version_id = 1,
1680 .minimum_version_id = 1,
1681 .needed = spapr_ov5_cas_needed,
1682 .fields = (VMStateField[]) {
1683 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1684 vmstate_spapr_ovec, sPAPROptionVector),
1685 VMSTATE_END_OF_LIST()
1689 static bool spapr_patb_entry_needed(void *opaque)
1691 sPAPRMachineState *spapr = opaque;
1693 return !!spapr->patb_entry;
1696 static const VMStateDescription vmstate_spapr_patb_entry = {
1697 .name = "spapr_patb_entry",
1698 .version_id = 1,
1699 .minimum_version_id = 1,
1700 .needed = spapr_patb_entry_needed,
1701 .fields = (VMStateField[]) {
1702 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1703 VMSTATE_END_OF_LIST()
1707 static const VMStateDescription vmstate_spapr = {
1708 .name = "spapr",
1709 .version_id = 3,
1710 .minimum_version_id = 1,
1711 .post_load = spapr_post_load,
1712 .fields = (VMStateField[]) {
1713 /* used to be @next_irq */
1714 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1716 /* RTC offset */
1717 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1719 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1720 VMSTATE_END_OF_LIST()
1722 .subsections = (const VMStateDescription*[]) {
1723 &vmstate_spapr_ov5_cas,
1724 &vmstate_spapr_patb_entry,
1725 &vmstate_spapr_pending_events,
1726 NULL
1730 static int htab_save_setup(QEMUFile *f, void *opaque)
1732 sPAPRMachineState *spapr = opaque;
1734 /* "Iteration" header */
1735 if (!spapr->htab_shift) {
1736 qemu_put_be32(f, -1);
1737 } else {
1738 qemu_put_be32(f, spapr->htab_shift);
1741 if (spapr->htab) {
1742 spapr->htab_save_index = 0;
1743 spapr->htab_first_pass = true;
1744 } else {
1745 if (spapr->htab_shift) {
1746 assert(kvm_enabled());
1751 return 0;
1754 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1755 int chunkstart, int n_valid, int n_invalid)
1757 qemu_put_be32(f, chunkstart);
1758 qemu_put_be16(f, n_valid);
1759 qemu_put_be16(f, n_invalid);
1760 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1761 HASH_PTE_SIZE_64 * n_valid);
1764 static void htab_save_end_marker(QEMUFile *f)
1766 qemu_put_be32(f, 0);
1767 qemu_put_be16(f, 0);
1768 qemu_put_be16(f, 0);
1771 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1772 int64_t max_ns)
1774 bool has_timeout = max_ns != -1;
1775 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1776 int index = spapr->htab_save_index;
1777 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1779 assert(spapr->htab_first_pass);
1781 do {
1782 int chunkstart;
1784 /* Consume invalid HPTEs */
1785 while ((index < htabslots)
1786 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1787 CLEAN_HPTE(HPTE(spapr->htab, index));
1788 index++;
1791 /* Consume valid HPTEs */
1792 chunkstart = index;
1793 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1794 && HPTE_VALID(HPTE(spapr->htab, index))) {
1795 CLEAN_HPTE(HPTE(spapr->htab, index));
1796 index++;
1799 if (index > chunkstart) {
1800 int n_valid = index - chunkstart;
1802 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1804 if (has_timeout &&
1805 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1806 break;
1809 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1811 if (index >= htabslots) {
1812 assert(index == htabslots);
1813 index = 0;
1814 spapr->htab_first_pass = false;
1816 spapr->htab_save_index = index;
1819 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1820 int64_t max_ns)
1822 bool final = max_ns < 0;
1823 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1824 int examined = 0, sent = 0;
1825 int index = spapr->htab_save_index;
1826 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1828 assert(!spapr->htab_first_pass);
1830 do {
1831 int chunkstart, invalidstart;
1833 /* Consume non-dirty HPTEs */
1834 while ((index < htabslots)
1835 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1836 index++;
1837 examined++;
1840 chunkstart = index;
1841 /* Consume valid dirty HPTEs */
1842 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1843 && HPTE_DIRTY(HPTE(spapr->htab, index))
1844 && HPTE_VALID(HPTE(spapr->htab, index))) {
1845 CLEAN_HPTE(HPTE(spapr->htab, index));
1846 index++;
1847 examined++;
1850 invalidstart = index;
1851 /* Consume invalid dirty HPTEs */
1852 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1853 && HPTE_DIRTY(HPTE(spapr->htab, index))
1854 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1855 CLEAN_HPTE(HPTE(spapr->htab, index));
1856 index++;
1857 examined++;
1860 if (index > chunkstart) {
1861 int n_valid = invalidstart - chunkstart;
1862 int n_invalid = index - invalidstart;
1864 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1865 sent += index - chunkstart;
1867 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1868 break;
1872 if (examined >= htabslots) {
1873 break;
1876 if (index >= htabslots) {
1877 assert(index == htabslots);
1878 index = 0;
1880 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1882 if (index >= htabslots) {
1883 assert(index == htabslots);
1884 index = 0;
1887 spapr->htab_save_index = index;
1889 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1892 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1893 #define MAX_KVM_BUF_SIZE 2048
1895 static int htab_save_iterate(QEMUFile *f, void *opaque)
1897 sPAPRMachineState *spapr = opaque;
1898 int fd;
1899 int rc = 0;
1901 /* Iteration header */
1902 if (!spapr->htab_shift) {
1903 qemu_put_be32(f, -1);
1904 return 1;
1905 } else {
1906 qemu_put_be32(f, 0);
1909 if (!spapr->htab) {
1910 assert(kvm_enabled());
1912 fd = get_htab_fd(spapr);
1913 if (fd < 0) {
1914 return fd;
1917 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1918 if (rc < 0) {
1919 return rc;
1921 } else if (spapr->htab_first_pass) {
1922 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1923 } else {
1924 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1927 htab_save_end_marker(f);
1929 return rc;
1932 static int htab_save_complete(QEMUFile *f, void *opaque)
1934 sPAPRMachineState *spapr = opaque;
1935 int fd;
1937 /* Iteration header */
1938 if (!spapr->htab_shift) {
1939 qemu_put_be32(f, -1);
1940 return 0;
1941 } else {
1942 qemu_put_be32(f, 0);
1945 if (!spapr->htab) {
1946 int rc;
1948 assert(kvm_enabled());
1950 fd = get_htab_fd(spapr);
1951 if (fd < 0) {
1952 return fd;
1955 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1956 if (rc < 0) {
1957 return rc;
1959 } else {
1960 if (spapr->htab_first_pass) {
1961 htab_save_first_pass(f, spapr, -1);
1963 htab_save_later_pass(f, spapr, -1);
1966 /* End marker */
1967 htab_save_end_marker(f);
1969 return 0;
1972 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1974 sPAPRMachineState *spapr = opaque;
1975 uint32_t section_hdr;
1976 int fd = -1;
1977 Error *local_err = NULL;
1979 if (version_id < 1 || version_id > 1) {
1980 error_report("htab_load() bad version");
1981 return -EINVAL;
1984 section_hdr = qemu_get_be32(f);
1986 if (section_hdr == -1) {
1987 spapr_free_hpt(spapr);
1988 return 0;
1991 if (section_hdr) {
1992 /* First section gives the htab size */
1993 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1994 if (local_err) {
1995 error_report_err(local_err);
1996 return -EINVAL;
1998 return 0;
2001 if (!spapr->htab) {
2002 assert(kvm_enabled());
2004 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2005 if (fd < 0) {
2006 error_report_err(local_err);
2007 return fd;
2011 while (true) {
2012 uint32_t index;
2013 uint16_t n_valid, n_invalid;
2015 index = qemu_get_be32(f);
2016 n_valid = qemu_get_be16(f);
2017 n_invalid = qemu_get_be16(f);
2019 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2020 /* End of Stream */
2021 break;
2024 if ((index + n_valid + n_invalid) >
2025 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2026 /* Bad index in stream */
2027 error_report(
2028 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2029 index, n_valid, n_invalid, spapr->htab_shift);
2030 return -EINVAL;
2033 if (spapr->htab) {
2034 if (n_valid) {
2035 qemu_get_buffer(f, HPTE(spapr->htab, index),
2036 HASH_PTE_SIZE_64 * n_valid);
2038 if (n_invalid) {
2039 memset(HPTE(spapr->htab, index + n_valid), 0,
2040 HASH_PTE_SIZE_64 * n_invalid);
2042 } else {
2043 int rc;
2045 assert(fd >= 0);
2047 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2048 if (rc < 0) {
2049 return rc;
2054 if (!spapr->htab) {
2055 assert(fd >= 0);
2056 close(fd);
2059 return 0;
2062 static void htab_save_cleanup(void *opaque)
2064 sPAPRMachineState *spapr = opaque;
2066 close_htab_fd(spapr);
2069 static SaveVMHandlers savevm_htab_handlers = {
2070 .save_setup = htab_save_setup,
2071 .save_live_iterate = htab_save_iterate,
2072 .save_live_complete_precopy = htab_save_complete,
2073 .save_cleanup = htab_save_cleanup,
2074 .load_state = htab_load,
2077 static void spapr_boot_set(void *opaque, const char *boot_device,
2078 Error **errp)
2080 MachineState *machine = MACHINE(opaque);
2081 machine->boot_order = g_strdup(boot_device);
2084 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2086 MachineState *machine = MACHINE(spapr);
2087 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2088 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2089 int i;
2091 for (i = 0; i < nr_lmbs; i++) {
2092 uint64_t addr;
2094 addr = i * lmb_size + spapr->hotplug_memory.base;
2095 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2096 addr / lmb_size);
2101 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2102 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2103 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2105 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2107 int i;
2109 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2110 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2111 " is not aligned to %llu MiB",
2112 machine->ram_size,
2113 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2114 return;
2117 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2118 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2119 " is not aligned to %llu MiB",
2120 machine->ram_size,
2121 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2122 return;
2125 for (i = 0; i < nb_numa_nodes; i++) {
2126 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2127 error_setg(errp,
2128 "Node %d memory size 0x%" PRIx64
2129 " is not aligned to %llu MiB",
2130 i, numa_info[i].node_mem,
2131 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2132 return;
2137 /* find cpu slot in machine->possible_cpus by core_id */
2138 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2140 int index = id / smp_threads;
2142 if (index >= ms->possible_cpus->len) {
2143 return NULL;
2145 if (idx) {
2146 *idx = index;
2148 return &ms->possible_cpus->cpus[index];
2151 static void spapr_init_cpus(sPAPRMachineState *spapr)
2153 MachineState *machine = MACHINE(spapr);
2154 MachineClass *mc = MACHINE_GET_CLASS(machine);
2155 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2156 int smt = kvmppc_smt_threads();
2157 const CPUArchIdList *possible_cpus;
2158 int boot_cores_nr = smp_cpus / smp_threads;
2159 int i;
2161 if (!type) {
2162 error_report("Unable to find sPAPR CPU Core definition");
2163 exit(1);
2166 possible_cpus = mc->possible_cpu_arch_ids(machine);
2167 if (mc->has_hotpluggable_cpus) {
2168 if (smp_cpus % smp_threads) {
2169 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2170 smp_cpus, smp_threads);
2171 exit(1);
2173 if (max_cpus % smp_threads) {
2174 error_report("max_cpus (%u) must be multiple of threads (%u)",
2175 max_cpus, smp_threads);
2176 exit(1);
2178 } else {
2179 if (max_cpus != smp_cpus) {
2180 error_report("This machine version does not support CPU hotplug");
2181 exit(1);
2183 boot_cores_nr = possible_cpus->len;
2186 for (i = 0; i < possible_cpus->len; i++) {
2187 int core_id = i * smp_threads;
2189 if (mc->has_hotpluggable_cpus) {
2190 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2191 (core_id / smp_threads) * smt);
2194 if (i < boot_cores_nr) {
2195 Object *core = object_new(type);
2196 int nr_threads = smp_threads;
2198 /* Handle the partially filled core for older machine types */
2199 if ((i + 1) * smp_threads >= smp_cpus) {
2200 nr_threads = smp_cpus - i * smp_threads;
2203 object_property_set_int(core, nr_threads, "nr-threads",
2204 &error_fatal);
2205 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2206 &error_fatal);
2207 object_property_set_bool(core, true, "realized", &error_fatal);
2212 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2214 Error *local_err = NULL;
2215 bool vsmt_user = !!spapr->vsmt;
2216 int kvm_smt = kvmppc_smt_threads();
2217 int ret;
2219 if (!kvm_enabled() && (smp_threads > 1)) {
2220 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2221 "on a pseries machine");
2222 goto out;
2224 if (!is_power_of_2(smp_threads)) {
2225 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2226 "machine because it must be a power of 2", smp_threads);
2227 goto out;
2230 /* Detemine the VSMT mode to use: */
2231 if (vsmt_user) {
2232 if (spapr->vsmt < smp_threads) {
2233 error_setg(&local_err, "Cannot support VSMT mode %d"
2234 " because it must be >= threads/core (%d)",
2235 spapr->vsmt, smp_threads);
2236 goto out;
2238 /* In this case, spapr->vsmt has been set by the command line */
2239 } else {
2240 /* Choose a VSMT mode that may be higher than necessary but is
2241 * likely to be compatible with hosts that don't have VSMT. */
2242 spapr->vsmt = MAX(kvm_smt, smp_threads);
2245 /* KVM: If necessary, set the SMT mode: */
2246 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2247 ret = kvmppc_set_smt_threads(spapr->vsmt);
2248 if (ret) {
2249 error_setg(&local_err,
2250 "Failed to set KVM's VSMT mode to %d (errno %d)",
2251 spapr->vsmt, ret);
2252 if (!vsmt_user) {
2253 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2254 "core on a host with %d threads/core requires "
2255 " the use of VSMT mode %d.\n",
2256 smp_threads, kvm_smt, spapr->vsmt);
2258 kvmppc_hint_smt_possible(&local_err);
2259 goto out;
2262 /* else TCG: nothing to do currently */
2263 out:
2264 error_propagate(errp, local_err);
2267 /* pSeries LPAR / sPAPR hardware init */
2268 static void ppc_spapr_init(MachineState *machine)
2270 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2271 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2272 const char *kernel_filename = machine->kernel_filename;
2273 const char *initrd_filename = machine->initrd_filename;
2274 PCIHostState *phb;
2275 int i;
2276 MemoryRegion *sysmem = get_system_memory();
2277 MemoryRegion *ram = g_new(MemoryRegion, 1);
2278 MemoryRegion *rma_region;
2279 void *rma = NULL;
2280 hwaddr rma_alloc_size;
2281 hwaddr node0_size = spapr_node0_size(machine);
2282 long load_limit, fw_size;
2283 char *filename;
2284 Error *resize_hpt_err = NULL;
2286 msi_nonbroken = true;
2288 QLIST_INIT(&spapr->phbs);
2289 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2291 /* Check HPT resizing availability */
2292 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2293 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2295 * If the user explicitly requested a mode we should either
2296 * supply it, or fail completely (which we do below). But if
2297 * it's not set explicitly, we reset our mode to something
2298 * that works
2300 if (resize_hpt_err) {
2301 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2302 error_free(resize_hpt_err);
2303 resize_hpt_err = NULL;
2304 } else {
2305 spapr->resize_hpt = smc->resize_hpt_default;
2309 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2311 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2313 * User requested HPT resize, but this host can't supply it. Bail out
2315 error_report_err(resize_hpt_err);
2316 exit(1);
2319 /* Allocate RMA if necessary */
2320 rma_alloc_size = kvmppc_alloc_rma(&rma);
2322 if (rma_alloc_size == -1) {
2323 error_report("Unable to create RMA");
2324 exit(1);
2327 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2328 spapr->rma_size = rma_alloc_size;
2329 } else {
2330 spapr->rma_size = node0_size;
2332 /* With KVM, we don't actually know whether KVM supports an
2333 * unbounded RMA (PR KVM) or is limited by the hash table size
2334 * (HV KVM using VRMA), so we always assume the latter
2336 * In that case, we also limit the initial allocations for RTAS
2337 * etc... to 256M since we have no way to know what the VRMA size
2338 * is going to be as it depends on the size of the hash table
2339 * isn't determined yet.
2341 if (kvm_enabled()) {
2342 spapr->vrma_adjust = 1;
2343 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2346 /* Actually we don't support unbounded RMA anymore since we
2347 * added proper emulation of HV mode. The max we can get is
2348 * 16G which also happens to be what we configure for PAPR
2349 * mode so make sure we don't do anything bigger than that
2351 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2354 if (spapr->rma_size > node0_size) {
2355 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2356 spapr->rma_size);
2357 exit(1);
2360 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2361 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2363 /* Set up Interrupt Controller before we create the VCPUs */
2364 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2366 /* Set up containers for ibm,client-architecture-support negotiated options
2368 spapr->ov5 = spapr_ovec_new();
2369 spapr->ov5_cas = spapr_ovec_new();
2371 if (smc->dr_lmb_enabled) {
2372 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2373 spapr_validate_node_memory(machine, &error_fatal);
2376 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2377 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2378 /* KVM and TCG always allow GTSE with radix... */
2379 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2381 /* ... but not with hash (currently). */
2383 /* advertise support for dedicated HP event source to guests */
2384 if (spapr->use_hotplug_event_source) {
2385 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2388 /* advertise support for HPT resizing */
2389 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2390 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2393 /* init CPUs */
2394 spapr_set_vsmt_mode(spapr, &error_fatal);
2396 spapr_init_cpus(spapr);
2398 if (kvm_enabled()) {
2399 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2400 kvmppc_enable_logical_ci_hcalls();
2401 kvmppc_enable_set_mode_hcall();
2403 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2404 kvmppc_enable_clear_ref_mod_hcalls();
2407 /* allocate RAM */
2408 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2409 machine->ram_size);
2410 memory_region_add_subregion(sysmem, 0, ram);
2412 if (rma_alloc_size && rma) {
2413 rma_region = g_new(MemoryRegion, 1);
2414 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2415 rma_alloc_size, rma);
2416 vmstate_register_ram_global(rma_region);
2417 memory_region_add_subregion(sysmem, 0, rma_region);
2420 /* initialize hotplug memory address space */
2421 if (machine->ram_size < machine->maxram_size) {
2422 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2424 * Limit the number of hotpluggable memory slots to half the number
2425 * slots that KVM supports, leaving the other half for PCI and other
2426 * devices. However ensure that number of slots doesn't drop below 32.
2428 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2429 SPAPR_MAX_RAM_SLOTS;
2431 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2432 max_memslots = SPAPR_MAX_RAM_SLOTS;
2434 if (machine->ram_slots > max_memslots) {
2435 error_report("Specified number of memory slots %"
2436 PRIu64" exceeds max supported %d",
2437 machine->ram_slots, max_memslots);
2438 exit(1);
2441 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2442 SPAPR_HOTPLUG_MEM_ALIGN);
2443 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2444 "hotplug-memory", hotplug_mem_size);
2445 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2446 &spapr->hotplug_memory.mr);
2449 if (smc->dr_lmb_enabled) {
2450 spapr_create_lmb_dr_connectors(spapr);
2453 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2454 if (!filename) {
2455 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2456 exit(1);
2458 spapr->rtas_size = get_image_size(filename);
2459 if (spapr->rtas_size < 0) {
2460 error_report("Could not get size of LPAR rtas '%s'", filename);
2461 exit(1);
2463 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2464 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2465 error_report("Could not load LPAR rtas '%s'", filename);
2466 exit(1);
2468 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2469 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2470 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2471 exit(1);
2473 g_free(filename);
2475 /* Set up RTAS event infrastructure */
2476 spapr_events_init(spapr);
2478 /* Set up the RTC RTAS interfaces */
2479 spapr_rtc_create(spapr);
2481 /* Set up VIO bus */
2482 spapr->vio_bus = spapr_vio_bus_init();
2484 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2485 if (serial_hds[i]) {
2486 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2490 /* We always have at least the nvram device on VIO */
2491 spapr_create_nvram(spapr);
2493 /* Set up PCI */
2494 spapr_pci_rtas_init();
2496 phb = spapr_create_phb(spapr, 0);
2498 for (i = 0; i < nb_nics; i++) {
2499 NICInfo *nd = &nd_table[i];
2501 if (!nd->model) {
2502 nd->model = g_strdup("ibmveth");
2505 if (strcmp(nd->model, "ibmveth") == 0) {
2506 spapr_vlan_create(spapr->vio_bus, nd);
2507 } else {
2508 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2512 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2513 spapr_vscsi_create(spapr->vio_bus);
2516 /* Graphics */
2517 if (spapr_vga_init(phb->bus, &error_fatal)) {
2518 spapr->has_graphics = true;
2519 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2522 if (machine->usb) {
2523 if (smc->use_ohci_by_default) {
2524 pci_create_simple(phb->bus, -1, "pci-ohci");
2525 } else {
2526 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2529 if (spapr->has_graphics) {
2530 USBBus *usb_bus = usb_bus_find(-1);
2532 usb_create_simple(usb_bus, "usb-kbd");
2533 usb_create_simple(usb_bus, "usb-mouse");
2537 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2538 error_report(
2539 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2540 MIN_RMA_SLOF);
2541 exit(1);
2544 if (kernel_filename) {
2545 uint64_t lowaddr = 0;
2547 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2548 NULL, NULL, &lowaddr, NULL, 1,
2549 PPC_ELF_MACHINE, 0, 0);
2550 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2551 spapr->kernel_size = load_elf(kernel_filename,
2552 translate_kernel_address, NULL, NULL,
2553 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2554 0, 0);
2555 spapr->kernel_le = spapr->kernel_size > 0;
2557 if (spapr->kernel_size < 0) {
2558 error_report("error loading %s: %s", kernel_filename,
2559 load_elf_strerror(spapr->kernel_size));
2560 exit(1);
2563 /* load initrd */
2564 if (initrd_filename) {
2565 /* Try to locate the initrd in the gap between the kernel
2566 * and the firmware. Add a bit of space just in case
2568 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2569 + 0x1ffff) & ~0xffff;
2570 spapr->initrd_size = load_image_targphys(initrd_filename,
2571 spapr->initrd_base,
2572 load_limit
2573 - spapr->initrd_base);
2574 if (spapr->initrd_size < 0) {
2575 error_report("could not load initial ram disk '%s'",
2576 initrd_filename);
2577 exit(1);
2582 if (bios_name == NULL) {
2583 bios_name = FW_FILE_NAME;
2585 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2586 if (!filename) {
2587 error_report("Could not find LPAR firmware '%s'", bios_name);
2588 exit(1);
2590 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2591 if (fw_size <= 0) {
2592 error_report("Could not load LPAR firmware '%s'", filename);
2593 exit(1);
2595 g_free(filename);
2597 /* FIXME: Should register things through the MachineState's qdev
2598 * interface, this is a legacy from the sPAPREnvironment structure
2599 * which predated MachineState but had a similar function */
2600 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2601 register_savevm_live(NULL, "spapr/htab", -1, 1,
2602 &savevm_htab_handlers, spapr);
2604 qemu_register_boot_set(spapr_boot_set, spapr);
2606 if (kvm_enabled()) {
2607 /* to stop and start vmclock */
2608 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2609 &spapr->tb);
2611 kvmppc_spapr_enable_inkernel_multitce();
2615 static int spapr_kvm_type(const char *vm_type)
2617 if (!vm_type) {
2618 return 0;
2621 if (!strcmp(vm_type, "HV")) {
2622 return 1;
2625 if (!strcmp(vm_type, "PR")) {
2626 return 2;
2629 error_report("Unknown kvm-type specified '%s'", vm_type);
2630 exit(1);
2634 * Implementation of an interface to adjust firmware path
2635 * for the bootindex property handling.
2637 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2638 DeviceState *dev)
2640 #define CAST(type, obj, name) \
2641 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2642 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2643 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2644 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2646 if (d) {
2647 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2648 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2649 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2651 if (spapr) {
2653 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2654 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2655 * in the top 16 bits of the 64-bit LUN
2657 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2658 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2659 (uint64_t)id << 48);
2660 } else if (virtio) {
2662 * We use SRP luns of the form 01000000 | (target << 8) | lun
2663 * in the top 32 bits of the 64-bit LUN
2664 * Note: the quote above is from SLOF and it is wrong,
2665 * the actual binding is:
2666 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2668 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2669 if (d->lun >= 256) {
2670 /* Use the LUN "flat space addressing method" */
2671 id |= 0x4000;
2673 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2674 (uint64_t)id << 32);
2675 } else if (usb) {
2677 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2678 * in the top 32 bits of the 64-bit LUN
2680 unsigned usb_port = atoi(usb->port->path);
2681 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2682 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2683 (uint64_t)id << 32);
2688 * SLOF probes the USB devices, and if it recognizes that the device is a
2689 * storage device, it changes its name to "storage" instead of "usb-host",
2690 * and additionally adds a child node for the SCSI LUN, so the correct
2691 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2693 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2694 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2695 if (usb_host_dev_is_scsi_storage(usbdev)) {
2696 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2700 if (phb) {
2701 /* Replace "pci" with "pci@800000020000000" */
2702 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2705 if (vsc) {
2706 /* Same logic as virtio above */
2707 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2708 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2711 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2712 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2713 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2714 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2717 return NULL;
2720 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2722 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2724 return g_strdup(spapr->kvm_type);
2727 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2729 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2731 g_free(spapr->kvm_type);
2732 spapr->kvm_type = g_strdup(value);
2735 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2737 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2739 return spapr->use_hotplug_event_source;
2742 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2743 Error **errp)
2745 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2747 spapr->use_hotplug_event_source = value;
2750 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2752 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2754 switch (spapr->resize_hpt) {
2755 case SPAPR_RESIZE_HPT_DEFAULT:
2756 return g_strdup("default");
2757 case SPAPR_RESIZE_HPT_DISABLED:
2758 return g_strdup("disabled");
2759 case SPAPR_RESIZE_HPT_ENABLED:
2760 return g_strdup("enabled");
2761 case SPAPR_RESIZE_HPT_REQUIRED:
2762 return g_strdup("required");
2764 g_assert_not_reached();
2767 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2769 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2771 if (strcmp(value, "default") == 0) {
2772 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2773 } else if (strcmp(value, "disabled") == 0) {
2774 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2775 } else if (strcmp(value, "enabled") == 0) {
2776 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2777 } else if (strcmp(value, "required") == 0) {
2778 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2779 } else {
2780 error_setg(errp, "Bad value for \"resize-hpt\" property");
2784 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2785 void *opaque, Error **errp)
2787 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2790 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2791 void *opaque, Error **errp)
2793 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2796 static void spapr_machine_initfn(Object *obj)
2798 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2800 spapr->htab_fd = -1;
2801 spapr->use_hotplug_event_source = true;
2802 object_property_add_str(obj, "kvm-type",
2803 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2804 object_property_set_description(obj, "kvm-type",
2805 "Specifies the KVM virtualization mode (HV, PR)",
2806 NULL);
2807 object_property_add_bool(obj, "modern-hotplug-events",
2808 spapr_get_modern_hotplug_events,
2809 spapr_set_modern_hotplug_events,
2810 NULL);
2811 object_property_set_description(obj, "modern-hotplug-events",
2812 "Use dedicated hotplug event mechanism in"
2813 " place of standard EPOW events when possible"
2814 " (required for memory hot-unplug support)",
2815 NULL);
2817 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2818 "Maximum permitted CPU compatibility mode",
2819 &error_fatal);
2821 object_property_add_str(obj, "resize-hpt",
2822 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2823 object_property_set_description(obj, "resize-hpt",
2824 "Resizing of the Hash Page Table (enabled, disabled, required)",
2825 NULL);
2826 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2827 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2828 object_property_set_description(obj, "vsmt",
2829 "Virtual SMT: KVM behaves as if this were"
2830 " the host's SMT mode", &error_abort);
2833 static void spapr_machine_finalizefn(Object *obj)
2835 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2837 g_free(spapr->kvm_type);
2840 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2842 cpu_synchronize_state(cs);
2843 ppc_cpu_do_system_reset(cs);
2846 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2848 CPUState *cs;
2850 CPU_FOREACH(cs) {
2851 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2855 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2856 uint32_t node, bool dedicated_hp_event_source,
2857 Error **errp)
2859 sPAPRDRConnector *drc;
2860 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2861 int i, fdt_offset, fdt_size;
2862 void *fdt;
2863 uint64_t addr = addr_start;
2864 bool hotplugged = spapr_drc_hotplugged(dev);
2865 Error *local_err = NULL;
2867 for (i = 0; i < nr_lmbs; i++) {
2868 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2869 addr / SPAPR_MEMORY_BLOCK_SIZE);
2870 g_assert(drc);
2872 fdt = create_device_tree(&fdt_size);
2873 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2874 SPAPR_MEMORY_BLOCK_SIZE);
2876 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2877 if (local_err) {
2878 while (addr > addr_start) {
2879 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2880 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2881 addr / SPAPR_MEMORY_BLOCK_SIZE);
2882 spapr_drc_detach(drc);
2884 g_free(fdt);
2885 error_propagate(errp, local_err);
2886 return;
2888 if (!hotplugged) {
2889 spapr_drc_reset(drc);
2891 addr += SPAPR_MEMORY_BLOCK_SIZE;
2893 /* send hotplug notification to the
2894 * guest only in case of hotplugged memory
2896 if (hotplugged) {
2897 if (dedicated_hp_event_source) {
2898 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2899 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2900 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2901 nr_lmbs,
2902 spapr_drc_index(drc));
2903 } else {
2904 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2905 nr_lmbs);
2910 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2911 uint32_t node, Error **errp)
2913 Error *local_err = NULL;
2914 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2915 PCDIMMDevice *dimm = PC_DIMM(dev);
2916 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2917 MemoryRegion *mr;
2918 uint64_t align, size, addr;
2920 mr = ddc->get_memory_region(dimm, &local_err);
2921 if (local_err) {
2922 goto out;
2924 align = memory_region_get_alignment(mr);
2925 size = memory_region_size(mr);
2927 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2928 if (local_err) {
2929 goto out;
2932 addr = object_property_get_uint(OBJECT(dimm),
2933 PC_DIMM_ADDR_PROP, &local_err);
2934 if (local_err) {
2935 goto out_unplug;
2938 spapr_add_lmbs(dev, addr, size, node,
2939 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2940 &local_err);
2941 if (local_err) {
2942 goto out_unplug;
2945 return;
2947 out_unplug:
2948 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2949 out:
2950 error_propagate(errp, local_err);
2953 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2954 Error **errp)
2956 PCDIMMDevice *dimm = PC_DIMM(dev);
2957 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2958 MemoryRegion *mr;
2959 uint64_t size;
2960 char *mem_dev;
2962 mr = ddc->get_memory_region(dimm, errp);
2963 if (!mr) {
2964 return;
2966 size = memory_region_size(mr);
2968 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2969 error_setg(errp, "Hotplugged memory size must be a multiple of "
2970 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2971 return;
2974 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2975 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2976 error_setg(errp, "Memory backend has bad page size. "
2977 "Use 'memory-backend-file' with correct mem-path.");
2978 goto out;
2981 out:
2982 g_free(mem_dev);
2985 struct sPAPRDIMMState {
2986 PCDIMMDevice *dimm;
2987 uint32_t nr_lmbs;
2988 QTAILQ_ENTRY(sPAPRDIMMState) next;
2991 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2992 PCDIMMDevice *dimm)
2994 sPAPRDIMMState *dimm_state = NULL;
2996 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2997 if (dimm_state->dimm == dimm) {
2998 break;
3001 return dimm_state;
3004 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3005 uint32_t nr_lmbs,
3006 PCDIMMDevice *dimm)
3008 sPAPRDIMMState *ds = NULL;
3011 * If this request is for a DIMM whose removal had failed earlier
3012 * (due to guest's refusal to remove the LMBs), we would have this
3013 * dimm already in the pending_dimm_unplugs list. In that
3014 * case don't add again.
3016 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3017 if (!ds) {
3018 ds = g_malloc0(sizeof(sPAPRDIMMState));
3019 ds->nr_lmbs = nr_lmbs;
3020 ds->dimm = dimm;
3021 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3023 return ds;
3026 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3027 sPAPRDIMMState *dimm_state)
3029 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3030 g_free(dimm_state);
3033 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3034 PCDIMMDevice *dimm)
3036 sPAPRDRConnector *drc;
3037 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3038 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3039 uint64_t size = memory_region_size(mr);
3040 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3041 uint32_t avail_lmbs = 0;
3042 uint64_t addr_start, addr;
3043 int i;
3045 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3046 &error_abort);
3048 addr = addr_start;
3049 for (i = 0; i < nr_lmbs; i++) {
3050 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3051 addr / SPAPR_MEMORY_BLOCK_SIZE);
3052 g_assert(drc);
3053 if (drc->dev) {
3054 avail_lmbs++;
3056 addr += SPAPR_MEMORY_BLOCK_SIZE;
3059 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3062 /* Callback to be called during DRC release. */
3063 void spapr_lmb_release(DeviceState *dev)
3065 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3066 PCDIMMDevice *dimm = PC_DIMM(dev);
3067 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3068 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3069 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3071 /* This information will get lost if a migration occurs
3072 * during the unplug process. In this case recover it. */
3073 if (ds == NULL) {
3074 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3075 g_assert(ds);
3076 /* The DRC being examined by the caller at least must be counted */
3077 g_assert(ds->nr_lmbs);
3080 if (--ds->nr_lmbs) {
3081 return;
3085 * Now that all the LMBs have been removed by the guest, call the
3086 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3088 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3089 object_unparent(OBJECT(dev));
3090 spapr_pending_dimm_unplugs_remove(spapr, ds);
3093 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3094 DeviceState *dev, Error **errp)
3096 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3097 Error *local_err = NULL;
3098 PCDIMMDevice *dimm = PC_DIMM(dev);
3099 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3100 MemoryRegion *mr;
3101 uint32_t nr_lmbs;
3102 uint64_t size, addr_start, addr;
3103 int i;
3104 sPAPRDRConnector *drc;
3106 mr = ddc->get_memory_region(dimm, &local_err);
3107 if (local_err) {
3108 goto out;
3110 size = memory_region_size(mr);
3111 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3113 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3114 &local_err);
3115 if (local_err) {
3116 goto out;
3120 * An existing pending dimm state for this DIMM means that there is an
3121 * unplug operation in progress, waiting for the spapr_lmb_release
3122 * callback to complete the job (BQL can't cover that far). In this case,
3123 * bail out to avoid detaching DRCs that were already released.
3125 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3126 error_setg(&local_err,
3127 "Memory unplug already in progress for device %s",
3128 dev->id);
3129 goto out;
3132 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3134 addr = addr_start;
3135 for (i = 0; i < nr_lmbs; i++) {
3136 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3137 addr / SPAPR_MEMORY_BLOCK_SIZE);
3138 g_assert(drc);
3140 spapr_drc_detach(drc);
3141 addr += SPAPR_MEMORY_BLOCK_SIZE;
3144 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3145 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3146 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3147 nr_lmbs, spapr_drc_index(drc));
3148 out:
3149 error_propagate(errp, local_err);
3152 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3153 sPAPRMachineState *spapr)
3155 PowerPCCPU *cpu = POWERPC_CPU(cs);
3156 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3157 int id = spapr_vcpu_id(cpu);
3158 void *fdt;
3159 int offset, fdt_size;
3160 char *nodename;
3162 fdt = create_device_tree(&fdt_size);
3163 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3164 offset = fdt_add_subnode(fdt, 0, nodename);
3166 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3167 g_free(nodename);
3169 *fdt_offset = offset;
3170 return fdt;
3173 /* Callback to be called during DRC release. */
3174 void spapr_core_release(DeviceState *dev)
3176 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3177 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3178 CPUCore *cc = CPU_CORE(dev);
3179 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3181 if (smc->pre_2_10_has_unused_icps) {
3182 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3183 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3184 size_t size = object_type_get_instance_size(scc->cpu_type);
3185 int i;
3187 for (i = 0; i < cc->nr_threads; i++) {
3188 CPUState *cs = CPU(sc->threads + i * size);
3190 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3194 assert(core_slot);
3195 core_slot->cpu = NULL;
3196 object_unparent(OBJECT(dev));
3199 static
3200 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3201 Error **errp)
3203 int index;
3204 sPAPRDRConnector *drc;
3205 CPUCore *cc = CPU_CORE(dev);
3206 int smt = kvmppc_smt_threads();
3208 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3209 error_setg(errp, "Unable to find CPU core with core-id: %d",
3210 cc->core_id);
3211 return;
3213 if (index == 0) {
3214 error_setg(errp, "Boot CPU core may not be unplugged");
3215 return;
3218 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3219 g_assert(drc);
3221 spapr_drc_detach(drc);
3223 spapr_hotplug_req_remove_by_index(drc);
3226 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3227 Error **errp)
3229 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3230 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3231 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3232 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3233 CPUCore *cc = CPU_CORE(dev);
3234 CPUState *cs = CPU(core->threads);
3235 sPAPRDRConnector *drc;
3236 Error *local_err = NULL;
3237 int smt = kvmppc_smt_threads();
3238 CPUArchId *core_slot;
3239 int index;
3240 bool hotplugged = spapr_drc_hotplugged(dev);
3242 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3243 if (!core_slot) {
3244 error_setg(errp, "Unable to find CPU core with core-id: %d",
3245 cc->core_id);
3246 return;
3248 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3250 g_assert(drc || !mc->has_hotpluggable_cpus);
3252 if (drc) {
3253 void *fdt;
3254 int fdt_offset;
3256 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3258 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3259 if (local_err) {
3260 g_free(fdt);
3261 error_propagate(errp, local_err);
3262 return;
3265 if (hotplugged) {
3267 * Send hotplug notification interrupt to the guest only
3268 * in case of hotplugged CPUs.
3270 spapr_hotplug_req_add_by_index(drc);
3271 } else {
3272 spapr_drc_reset(drc);
3276 core_slot->cpu = OBJECT(dev);
3278 if (smc->pre_2_10_has_unused_icps) {
3279 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3280 size_t size = object_type_get_instance_size(scc->cpu_type);
3281 int i;
3283 for (i = 0; i < cc->nr_threads; i++) {
3284 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3285 void *obj = sc->threads + i * size;
3287 cs = CPU(obj);
3288 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3293 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3294 Error **errp)
3296 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3297 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3298 Error *local_err = NULL;
3299 CPUCore *cc = CPU_CORE(dev);
3300 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3301 const char *type = object_get_typename(OBJECT(dev));
3302 CPUArchId *core_slot;
3303 int index;
3305 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3306 error_setg(&local_err, "CPU hotplug not supported for this machine");
3307 goto out;
3310 if (strcmp(base_core_type, type)) {
3311 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3312 goto out;
3315 if (cc->core_id % smp_threads) {
3316 error_setg(&local_err, "invalid core id %d", cc->core_id);
3317 goto out;
3321 * In general we should have homogeneous threads-per-core, but old
3322 * (pre hotplug support) machine types allow the last core to have
3323 * reduced threads as a compatibility hack for when we allowed
3324 * total vcpus not a multiple of threads-per-core.
3326 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3327 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3328 cc->nr_threads, smp_threads);
3329 goto out;
3332 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3333 if (!core_slot) {
3334 error_setg(&local_err, "core id %d out of range", cc->core_id);
3335 goto out;
3338 if (core_slot->cpu) {
3339 error_setg(&local_err, "core %d already populated", cc->core_id);
3340 goto out;
3343 numa_cpu_pre_plug(core_slot, dev, &local_err);
3345 out:
3346 error_propagate(errp, local_err);
3349 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3350 DeviceState *dev, Error **errp)
3352 MachineState *ms = MACHINE(hotplug_dev);
3353 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3355 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3356 int node;
3358 if (!smc->dr_lmb_enabled) {
3359 error_setg(errp, "Memory hotplug not supported for this machine");
3360 return;
3362 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3363 if (*errp) {
3364 return;
3366 if (node < 0 || node >= MAX_NODES) {
3367 error_setg(errp, "Invaild node %d", node);
3368 return;
3372 * Currently PowerPC kernel doesn't allow hot-adding memory to
3373 * memory-less node, but instead will silently add the memory
3374 * to the first node that has some memory. This causes two
3375 * unexpected behaviours for the user.
3377 * - Memory gets hotplugged to a different node than what the user
3378 * specified.
3379 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3380 * to memory-less node, a reboot will set things accordingly
3381 * and the previously hotplugged memory now ends in the right node.
3382 * This appears as if some memory moved from one node to another.
3384 * So until kernel starts supporting memory hotplug to memory-less
3385 * nodes, just prevent such attempts upfront in QEMU.
3387 if (nb_numa_nodes && !numa_info[node].node_mem) {
3388 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3389 node);
3390 return;
3393 spapr_memory_plug(hotplug_dev, dev, node, errp);
3394 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3395 spapr_core_plug(hotplug_dev, dev, errp);
3399 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3400 DeviceState *dev, Error **errp)
3402 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3403 MachineClass *mc = MACHINE_GET_CLASS(sms);
3405 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3406 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3407 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3408 } else {
3409 /* NOTE: this means there is a window after guest reset, prior to
3410 * CAS negotiation, where unplug requests will fail due to the
3411 * capability not being detected yet. This is a bit different than
3412 * the case with PCI unplug, where the events will be queued and
3413 * eventually handled by the guest after boot
3415 error_setg(errp, "Memory hot unplug not supported for this guest");
3417 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3418 if (!mc->has_hotpluggable_cpus) {
3419 error_setg(errp, "CPU hot unplug not supported on this machine");
3420 return;
3422 spapr_core_unplug_request(hotplug_dev, dev, errp);
3426 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3427 DeviceState *dev, Error **errp)
3429 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3430 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3431 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3432 spapr_core_pre_plug(hotplug_dev, dev, errp);
3436 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3437 DeviceState *dev)
3439 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3440 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3441 return HOTPLUG_HANDLER(machine);
3443 return NULL;
3446 static CpuInstanceProperties
3447 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3449 CPUArchId *core_slot;
3450 MachineClass *mc = MACHINE_GET_CLASS(machine);
3452 /* make sure possible_cpu are intialized */
3453 mc->possible_cpu_arch_ids(machine);
3454 /* get CPU core slot containing thread that matches cpu_index */
3455 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3456 assert(core_slot);
3457 return core_slot->props;
3460 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3462 return idx / smp_cores % nb_numa_nodes;
3465 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3467 int i;
3468 int spapr_max_cores = max_cpus / smp_threads;
3469 MachineClass *mc = MACHINE_GET_CLASS(machine);
3471 if (!mc->has_hotpluggable_cpus) {
3472 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3474 if (machine->possible_cpus) {
3475 assert(machine->possible_cpus->len == spapr_max_cores);
3476 return machine->possible_cpus;
3479 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3480 sizeof(CPUArchId) * spapr_max_cores);
3481 machine->possible_cpus->len = spapr_max_cores;
3482 for (i = 0; i < machine->possible_cpus->len; i++) {
3483 int core_id = i * smp_threads;
3485 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3486 machine->possible_cpus->cpus[i].arch_id = core_id;
3487 machine->possible_cpus->cpus[i].props.has_core_id = true;
3488 machine->possible_cpus->cpus[i].props.core_id = core_id;
3490 return machine->possible_cpus;
3493 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3494 uint64_t *buid, hwaddr *pio,
3495 hwaddr *mmio32, hwaddr *mmio64,
3496 unsigned n_dma, uint32_t *liobns, Error **errp)
3499 * New-style PHB window placement.
3501 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3502 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3503 * windows.
3505 * Some guest kernels can't work with MMIO windows above 1<<46
3506 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3508 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3509 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3510 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3511 * 1TiB 64-bit MMIO windows for each PHB.
3513 const uint64_t base_buid = 0x800000020000000ULL;
3514 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3515 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3516 int i;
3518 /* Sanity check natural alignments */
3519 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3520 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3521 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3522 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3523 /* Sanity check bounds */
3524 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3525 SPAPR_PCI_MEM32_WIN_SIZE);
3526 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3527 SPAPR_PCI_MEM64_WIN_SIZE);
3529 if (index >= SPAPR_MAX_PHBS) {
3530 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3531 SPAPR_MAX_PHBS - 1);
3532 return;
3535 *buid = base_buid + index;
3536 for (i = 0; i < n_dma; ++i) {
3537 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3540 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3541 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3542 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3545 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3547 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3549 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3552 static void spapr_ics_resend(XICSFabric *dev)
3554 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3556 ics_resend(spapr->ics);
3559 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3561 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3563 return cpu ? ICP(cpu->intc) : NULL;
3566 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3567 Monitor *mon)
3569 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3570 CPUState *cs;
3572 CPU_FOREACH(cs) {
3573 PowerPCCPU *cpu = POWERPC_CPU(cs);
3575 icp_pic_print_info(ICP(cpu->intc), mon);
3578 ics_pic_print_info(spapr->ics, mon);
3581 int spapr_vcpu_id(PowerPCCPU *cpu)
3583 CPUState *cs = CPU(cpu);
3585 if (kvm_enabled()) {
3586 return kvm_arch_vcpu_id(cs);
3587 } else {
3588 return cs->cpu_index;
3592 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3594 CPUState *cs;
3596 CPU_FOREACH(cs) {
3597 PowerPCCPU *cpu = POWERPC_CPU(cs);
3599 if (spapr_vcpu_id(cpu) == vcpu_id) {
3600 return cpu;
3604 return NULL;
3607 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3609 MachineClass *mc = MACHINE_CLASS(oc);
3610 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3611 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3612 NMIClass *nc = NMI_CLASS(oc);
3613 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3614 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3615 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3616 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3618 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3621 * We set up the default / latest behaviour here. The class_init
3622 * functions for the specific versioned machine types can override
3623 * these details for backwards compatibility
3625 mc->init = ppc_spapr_init;
3626 mc->reset = ppc_spapr_reset;
3627 mc->block_default_type = IF_SCSI;
3628 mc->max_cpus = 1024;
3629 mc->no_parallel = 1;
3630 mc->default_boot_order = "";
3631 mc->default_ram_size = 512 * M_BYTE;
3632 mc->kvm_type = spapr_kvm_type;
3633 mc->has_dynamic_sysbus = true;
3634 mc->pci_allow_0_address = true;
3635 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3636 hc->pre_plug = spapr_machine_device_pre_plug;
3637 hc->plug = spapr_machine_device_plug;
3638 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3639 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3640 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3641 hc->unplug_request = spapr_machine_device_unplug_request;
3643 smc->dr_lmb_enabled = true;
3644 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3645 mc->has_hotpluggable_cpus = true;
3646 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3647 fwc->get_dev_path = spapr_get_fw_dev_path;
3648 nc->nmi_monitor_handler = spapr_nmi;
3649 smc->phb_placement = spapr_phb_placement;
3650 vhc->hypercall = emulate_spapr_hypercall;
3651 vhc->hpt_mask = spapr_hpt_mask;
3652 vhc->map_hptes = spapr_map_hptes;
3653 vhc->unmap_hptes = spapr_unmap_hptes;
3654 vhc->store_hpte = spapr_store_hpte;
3655 vhc->get_patbe = spapr_get_patbe;
3656 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3657 xic->ics_get = spapr_ics_get;
3658 xic->ics_resend = spapr_ics_resend;
3659 xic->icp_get = spapr_icp_get;
3660 ispc->print_info = spapr_pic_print_info;
3661 /* Force NUMA node memory size to be a multiple of
3662 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3663 * in which LMBs are represented and hot-added
3665 mc->numa_mem_align_shift = 28;
3668 static const TypeInfo spapr_machine_info = {
3669 .name = TYPE_SPAPR_MACHINE,
3670 .parent = TYPE_MACHINE,
3671 .abstract = true,
3672 .instance_size = sizeof(sPAPRMachineState),
3673 .instance_init = spapr_machine_initfn,
3674 .instance_finalize = spapr_machine_finalizefn,
3675 .class_size = sizeof(sPAPRMachineClass),
3676 .class_init = spapr_machine_class_init,
3677 .interfaces = (InterfaceInfo[]) {
3678 { TYPE_FW_PATH_PROVIDER },
3679 { TYPE_NMI },
3680 { TYPE_HOTPLUG_HANDLER },
3681 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3682 { TYPE_XICS_FABRIC },
3683 { TYPE_INTERRUPT_STATS_PROVIDER },
3688 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3689 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3690 void *data) \
3692 MachineClass *mc = MACHINE_CLASS(oc); \
3693 spapr_machine_##suffix##_class_options(mc); \
3694 if (latest) { \
3695 mc->alias = "pseries"; \
3696 mc->is_default = 1; \
3699 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3701 MachineState *machine = MACHINE(obj); \
3702 spapr_machine_##suffix##_instance_options(machine); \
3704 static const TypeInfo spapr_machine_##suffix##_info = { \
3705 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3706 .parent = TYPE_SPAPR_MACHINE, \
3707 .class_init = spapr_machine_##suffix##_class_init, \
3708 .instance_init = spapr_machine_##suffix##_instance_init, \
3709 }; \
3710 static void spapr_machine_register_##suffix(void) \
3712 type_register(&spapr_machine_##suffix##_info); \
3714 type_init(spapr_machine_register_##suffix)
3717 * pseries-2.11
3719 static void spapr_machine_2_11_instance_options(MachineState *machine)
3723 static void spapr_machine_2_11_class_options(MachineClass *mc)
3725 /* Defaults for the latest behaviour inherited from the base class */
3728 DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
3731 * pseries-2.10
3733 #define SPAPR_COMPAT_2_10 \
3734 HW_COMPAT_2_10 \
3736 static void spapr_machine_2_10_instance_options(MachineState *machine)
3740 static void spapr_machine_2_10_class_options(MachineClass *mc)
3742 spapr_machine_2_11_class_options(mc);
3743 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3746 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3749 * pseries-2.9
3751 #define SPAPR_COMPAT_2_9 \
3752 HW_COMPAT_2_9 \
3754 .driver = TYPE_POWERPC_CPU, \
3755 .property = "pre-2.10-migration", \
3756 .value = "on", \
3757 }, \
3759 static void spapr_machine_2_9_instance_options(MachineState *machine)
3761 spapr_machine_2_10_instance_options(machine);
3764 static void spapr_machine_2_9_class_options(MachineClass *mc)
3766 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3768 spapr_machine_2_10_class_options(mc);
3769 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3770 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3771 smc->pre_2_10_has_unused_icps = true;
3772 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3775 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3778 * pseries-2.8
3780 #define SPAPR_COMPAT_2_8 \
3781 HW_COMPAT_2_8 \
3783 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3784 .property = "pcie-extended-configuration-space", \
3785 .value = "off", \
3788 static void spapr_machine_2_8_instance_options(MachineState *machine)
3790 spapr_machine_2_9_instance_options(machine);
3793 static void spapr_machine_2_8_class_options(MachineClass *mc)
3795 spapr_machine_2_9_class_options(mc);
3796 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3797 mc->numa_mem_align_shift = 23;
3800 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3803 * pseries-2.7
3805 #define SPAPR_COMPAT_2_7 \
3806 HW_COMPAT_2_7 \
3808 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3809 .property = "mem_win_size", \
3810 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3811 }, \
3813 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3814 .property = "mem64_win_size", \
3815 .value = "0", \
3816 }, \
3818 .driver = TYPE_POWERPC_CPU, \
3819 .property = "pre-2.8-migration", \
3820 .value = "on", \
3821 }, \
3823 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3824 .property = "pre-2.8-migration", \
3825 .value = "on", \
3828 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3829 uint64_t *buid, hwaddr *pio,
3830 hwaddr *mmio32, hwaddr *mmio64,
3831 unsigned n_dma, uint32_t *liobns, Error **errp)
3833 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3834 const uint64_t base_buid = 0x800000020000000ULL;
3835 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3836 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3837 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3838 const uint32_t max_index = 255;
3839 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3841 uint64_t ram_top = MACHINE(spapr)->ram_size;
3842 hwaddr phb0_base, phb_base;
3843 int i;
3845 /* Do we have hotpluggable memory? */
3846 if (MACHINE(spapr)->maxram_size > ram_top) {
3847 /* Can't just use maxram_size, because there may be an
3848 * alignment gap between normal and hotpluggable memory
3849 * regions */
3850 ram_top = spapr->hotplug_memory.base +
3851 memory_region_size(&spapr->hotplug_memory.mr);
3854 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3856 if (index > max_index) {
3857 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3858 max_index);
3859 return;
3862 *buid = base_buid + index;
3863 for (i = 0; i < n_dma; ++i) {
3864 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3867 phb_base = phb0_base + index * phb_spacing;
3868 *pio = phb_base + pio_offset;
3869 *mmio32 = phb_base + mmio_offset;
3871 * We don't set the 64-bit MMIO window, relying on the PHB's
3872 * fallback behaviour of automatically splitting a large "32-bit"
3873 * window into contiguous 32-bit and 64-bit windows
3877 static void spapr_machine_2_7_instance_options(MachineState *machine)
3879 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3881 spapr_machine_2_8_instance_options(machine);
3882 spapr->use_hotplug_event_source = false;
3885 static void spapr_machine_2_7_class_options(MachineClass *mc)
3887 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3889 spapr_machine_2_8_class_options(mc);
3890 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
3891 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3892 smc->phb_placement = phb_placement_2_7;
3895 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3898 * pseries-2.6
3900 #define SPAPR_COMPAT_2_6 \
3901 HW_COMPAT_2_6 \
3903 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3904 .property = "ddw",\
3905 .value = stringify(off),\
3908 static void spapr_machine_2_6_instance_options(MachineState *machine)
3910 spapr_machine_2_7_instance_options(machine);
3913 static void spapr_machine_2_6_class_options(MachineClass *mc)
3915 spapr_machine_2_7_class_options(mc);
3916 mc->has_hotpluggable_cpus = false;
3917 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3920 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3923 * pseries-2.5
3925 #define SPAPR_COMPAT_2_5 \
3926 HW_COMPAT_2_5 \
3928 .driver = "spapr-vlan", \
3929 .property = "use-rx-buffer-pools", \
3930 .value = "off", \
3933 static void spapr_machine_2_5_instance_options(MachineState *machine)
3935 spapr_machine_2_6_instance_options(machine);
3938 static void spapr_machine_2_5_class_options(MachineClass *mc)
3940 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3942 spapr_machine_2_6_class_options(mc);
3943 smc->use_ohci_by_default = true;
3944 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3947 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3950 * pseries-2.4
3952 #define SPAPR_COMPAT_2_4 \
3953 HW_COMPAT_2_4
3955 static void spapr_machine_2_4_instance_options(MachineState *machine)
3957 spapr_machine_2_5_instance_options(machine);
3960 static void spapr_machine_2_4_class_options(MachineClass *mc)
3962 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3964 spapr_machine_2_5_class_options(mc);
3965 smc->dr_lmb_enabled = false;
3966 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3969 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3972 * pseries-2.3
3974 #define SPAPR_COMPAT_2_3 \
3975 HW_COMPAT_2_3 \
3977 .driver = "spapr-pci-host-bridge",\
3978 .property = "dynamic-reconfiguration",\
3979 .value = "off",\
3982 static void spapr_machine_2_3_instance_options(MachineState *machine)
3984 spapr_machine_2_4_instance_options(machine);
3987 static void spapr_machine_2_3_class_options(MachineClass *mc)
3989 spapr_machine_2_4_class_options(mc);
3990 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3992 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3995 * pseries-2.2
3998 #define SPAPR_COMPAT_2_2 \
3999 HW_COMPAT_2_2 \
4001 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4002 .property = "mem_win_size",\
4003 .value = "0x20000000",\
4006 static void spapr_machine_2_2_instance_options(MachineState *machine)
4008 spapr_machine_2_3_instance_options(machine);
4009 machine->suppress_vmdesc = true;
4012 static void spapr_machine_2_2_class_options(MachineClass *mc)
4014 spapr_machine_2_3_class_options(mc);
4015 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4017 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4020 * pseries-2.1
4022 #define SPAPR_COMPAT_2_1 \
4023 HW_COMPAT_2_1
4025 static void spapr_machine_2_1_instance_options(MachineState *machine)
4027 spapr_machine_2_2_instance_options(machine);
4030 static void spapr_machine_2_1_class_options(MachineClass *mc)
4032 spapr_machine_2_2_class_options(mc);
4033 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4035 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4037 static void spapr_machine_register_types(void)
4039 type_register_static(&spapr_machine_info);
4042 type_init(spapr_machine_register_types)