tests: add test to check VirtQueue object
[qemu/ar7.git] / block / qcow2-cluster.c
bloba3fec27bf9a2c59ea96b7819306b56d0d465e796
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
35 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
37 BDRVQcow2State *s = bs->opaque;
38 int new_l1_size, i, ret;
40 if (exact_size >= s->l1_size) {
41 return 0;
44 new_l1_size = exact_size;
46 #ifdef DEBUG_ALLOC2
47 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48 #endif
50 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52 new_l1_size * sizeof(uint64_t),
53 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54 if (ret < 0) {
55 goto fail;
58 ret = bdrv_flush(bs->file->bs);
59 if (ret < 0) {
60 goto fail;
63 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66 continue;
68 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69 s->cluster_size, QCOW2_DISCARD_ALWAYS);
70 s->l1_table[i] = 0;
72 return 0;
74 fail:
76 * If the write in the l1_table failed the image may contain a partially
77 * overwritten l1_table. In this case it would be better to clear the
78 * l1_table in memory to avoid possible image corruption.
80 memset(s->l1_table + new_l1_size, 0,
81 (s->l1_size - new_l1_size) * sizeof(uint64_t));
82 return ret;
85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86 bool exact_size)
88 BDRVQcow2State *s = bs->opaque;
89 int new_l1_size2, ret, i;
90 uint64_t *new_l1_table;
91 int64_t old_l1_table_offset, old_l1_size;
92 int64_t new_l1_table_offset, new_l1_size;
93 uint8_t data[12];
95 if (min_size <= s->l1_size)
96 return 0;
98 /* Do a sanity check on min_size before trying to calculate new_l1_size
99 * (this prevents overflows during the while loop for the calculation of
100 * new_l1_size) */
101 if (min_size > INT_MAX / sizeof(uint64_t)) {
102 return -EFBIG;
105 if (exact_size) {
106 new_l1_size = min_size;
107 } else {
108 /* Bump size up to reduce the number of times we have to grow */
109 new_l1_size = s->l1_size;
110 if (new_l1_size == 0) {
111 new_l1_size = 1;
113 while (min_size > new_l1_size) {
114 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
120 return -EFBIG;
123 #ifdef DEBUG_ALLOC2
124 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125 s->l1_size, new_l1_size);
126 #endif
128 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
129 new_l1_table = qemu_try_blockalign(bs->file->bs,
130 align_offset(new_l1_size2, 512));
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
134 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143 if (new_l1_table_offset < 0) {
144 qemu_vfree(new_l1_table);
145 return new_l1_table_offset;
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
150 goto fail;
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156 new_l1_size2);
157 if (ret < 0) {
158 goto fail;
161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
165 new_l1_table, new_l1_size2);
166 if (ret < 0)
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
171 /* set new table */
172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173 stl_be_p(data, new_l1_size);
174 stq_be_p(data + 4, new_l1_table_offset);
175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176 data, sizeof(data));
177 if (ret < 0) {
178 goto fail;
180 qemu_vfree(s->l1_table);
181 old_l1_table_offset = s->l1_table_offset;
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
184 old_l1_size = s->l1_size;
185 s->l1_size = new_l1_size;
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187 QCOW2_DISCARD_OTHER);
188 return 0;
189 fail:
190 qemu_vfree(new_l1_table);
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
193 return ret;
197 * l2_load
199 * Loads a L2 table into memory. If the table is in the cache, the cache
200 * is used; otherwise the L2 table is loaded from the image file.
202 * Returns a pointer to the L2 table on success, or NULL if the read from
203 * the image file failed.
206 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
207 uint64_t **l2_table)
209 BDRVQcow2State *s = bs->opaque;
211 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
212 (void **)l2_table);
216 * Writes one sector of the L1 table to the disk (can't update single entries
217 * and we really don't want bdrv_pread to perform a read-modify-write)
219 #define L1_ENTRIES_PER_SECTOR (512 / 8)
220 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
222 BDRVQcow2State *s = bs->opaque;
223 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
224 int l1_start_index;
225 int i, ret;
227 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
228 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
229 i++)
231 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
234 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
235 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
236 if (ret < 0) {
237 return ret;
240 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
241 ret = bdrv_pwrite_sync(bs->file,
242 s->l1_table_offset + 8 * l1_start_index,
243 buf, sizeof(buf));
244 if (ret < 0) {
245 return ret;
248 return 0;
252 * l2_allocate
254 * Allocate a new l2 entry in the file. If l1_index points to an already
255 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
256 * table) copy the contents of the old L2 table into the newly allocated one.
257 * Otherwise the new table is initialized with zeros.
261 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
263 BDRVQcow2State *s = bs->opaque;
264 uint64_t old_l2_offset;
265 uint64_t *l2_table = NULL;
266 int64_t l2_offset;
267 int ret;
269 old_l2_offset = s->l1_table[l1_index];
271 trace_qcow2_l2_allocate(bs, l1_index);
273 /* allocate a new l2 entry */
275 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
276 if (l2_offset < 0) {
277 ret = l2_offset;
278 goto fail;
281 /* If we're allocating the table at offset 0 then something is wrong */
282 if (l2_offset == 0) {
283 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
284 "allocation of L2 table at offset 0");
285 ret = -EIO;
286 goto fail;
289 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
290 if (ret < 0) {
291 goto fail;
294 /* allocate a new entry in the l2 cache */
296 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
297 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
298 if (ret < 0) {
299 goto fail;
302 l2_table = *table;
304 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
305 /* if there was no old l2 table, clear the new table */
306 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
307 } else {
308 uint64_t* old_table;
310 /* if there was an old l2 table, read it from the disk */
311 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
312 ret = qcow2_cache_get(bs, s->l2_table_cache,
313 old_l2_offset & L1E_OFFSET_MASK,
314 (void**) &old_table);
315 if (ret < 0) {
316 goto fail;
319 memcpy(l2_table, old_table, s->cluster_size);
321 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
324 /* write the l2 table to the file */
325 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
327 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
328 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
329 ret = qcow2_cache_flush(bs, s->l2_table_cache);
330 if (ret < 0) {
331 goto fail;
334 /* update the L1 entry */
335 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
336 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
337 ret = qcow2_write_l1_entry(bs, l1_index);
338 if (ret < 0) {
339 goto fail;
342 *table = l2_table;
343 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
344 return 0;
346 fail:
347 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
348 if (l2_table != NULL) {
349 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
351 s->l1_table[l1_index] = old_l2_offset;
352 if (l2_offset > 0) {
353 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
354 QCOW2_DISCARD_ALWAYS);
356 return ret;
360 * Checks how many clusters in a given L2 table are contiguous in the image
361 * file. As soon as one of the flags in the bitmask stop_flags changes compared
362 * to the first cluster, the search is stopped and the cluster is not counted
363 * as contiguous. (This allows it, for example, to stop at the first compressed
364 * cluster which may require a different handling)
366 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
367 uint64_t *l2_table, uint64_t stop_flags)
369 int i;
370 QCow2ClusterType first_cluster_type;
371 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
372 uint64_t first_entry = be64_to_cpu(l2_table[0]);
373 uint64_t offset = first_entry & mask;
375 if (!offset) {
376 return 0;
379 /* must be allocated */
380 first_cluster_type = qcow2_get_cluster_type(first_entry);
381 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
382 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
384 for (i = 0; i < nb_clusters; i++) {
385 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
386 if (offset + (uint64_t) i * cluster_size != l2_entry) {
387 break;
391 return i;
395 * Checks how many consecutive unallocated clusters in a given L2
396 * table have the same cluster type.
398 static int count_contiguous_clusters_unallocated(int nb_clusters,
399 uint64_t *l2_table,
400 QCow2ClusterType wanted_type)
402 int i;
404 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
405 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
406 for (i = 0; i < nb_clusters; i++) {
407 uint64_t entry = be64_to_cpu(l2_table[i]);
408 QCow2ClusterType type = qcow2_get_cluster_type(entry);
410 if (type != wanted_type) {
411 break;
415 return i;
418 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
419 uint64_t src_cluster_offset,
420 unsigned offset_in_cluster,
421 QEMUIOVector *qiov)
423 int ret;
425 if (qiov->size == 0) {
426 return 0;
429 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
431 if (!bs->drv) {
432 return -ENOMEDIUM;
435 /* Call .bdrv_co_readv() directly instead of using the public block-layer
436 * interface. This avoids double I/O throttling and request tracking,
437 * which can lead to deadlock when block layer copy-on-read is enabled.
439 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
440 qiov->size, qiov, 0);
441 if (ret < 0) {
442 return ret;
445 return 0;
448 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
449 uint64_t src_cluster_offset,
450 uint64_t cluster_offset,
451 unsigned offset_in_cluster,
452 uint8_t *buffer,
453 unsigned bytes)
455 if (bytes && bs->encrypted) {
456 BDRVQcow2State *s = bs->opaque;
457 int64_t offset = (s->crypt_physical_offset ?
458 (cluster_offset + offset_in_cluster) :
459 (src_cluster_offset + offset_in_cluster));
460 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
461 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
462 assert(s->crypto);
463 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
464 return false;
467 return true;
470 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
471 uint64_t cluster_offset,
472 unsigned offset_in_cluster,
473 QEMUIOVector *qiov)
475 int ret;
477 if (qiov->size == 0) {
478 return 0;
481 ret = qcow2_pre_write_overlap_check(bs, 0,
482 cluster_offset + offset_in_cluster, qiov->size);
483 if (ret < 0) {
484 return ret;
487 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
488 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
489 qiov->size, qiov, 0);
490 if (ret < 0) {
491 return ret;
494 return 0;
499 * get_cluster_offset
501 * For a given offset of the virtual disk, find the cluster type and offset in
502 * the qcow2 file. The offset is stored in *cluster_offset.
504 * On entry, *bytes is the maximum number of contiguous bytes starting at
505 * offset that we are interested in.
507 * On exit, *bytes is the number of bytes starting at offset that have the same
508 * cluster type and (if applicable) are stored contiguously in the image file.
509 * Compressed clusters are always returned one by one.
511 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
512 * cases.
514 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
515 unsigned int *bytes, uint64_t *cluster_offset)
517 BDRVQcow2State *s = bs->opaque;
518 unsigned int l2_index;
519 uint64_t l1_index, l2_offset, *l2_table;
520 int l1_bits, c;
521 unsigned int offset_in_cluster;
522 uint64_t bytes_available, bytes_needed, nb_clusters;
523 QCow2ClusterType type;
524 int ret;
526 offset_in_cluster = offset_into_cluster(s, offset);
527 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
529 l1_bits = s->l2_bits + s->cluster_bits;
531 /* compute how many bytes there are between the start of the cluster
532 * containing offset and the end of the l1 entry */
533 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
534 + offset_in_cluster;
536 if (bytes_needed > bytes_available) {
537 bytes_needed = bytes_available;
540 *cluster_offset = 0;
542 /* seek to the l2 offset in the l1 table */
544 l1_index = offset >> l1_bits;
545 if (l1_index >= s->l1_size) {
546 type = QCOW2_CLUSTER_UNALLOCATED;
547 goto out;
550 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
551 if (!l2_offset) {
552 type = QCOW2_CLUSTER_UNALLOCATED;
553 goto out;
556 if (offset_into_cluster(s, l2_offset)) {
557 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
558 " unaligned (L1 index: %#" PRIx64 ")",
559 l2_offset, l1_index);
560 return -EIO;
563 /* load the l2 table in memory */
565 ret = l2_load(bs, l2_offset, &l2_table);
566 if (ret < 0) {
567 return ret;
570 /* find the cluster offset for the given disk offset */
572 l2_index = offset_to_l2_index(s, offset);
573 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
575 nb_clusters = size_to_clusters(s, bytes_needed);
576 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
577 * integers; the minimum cluster size is 512, so this assertion is always
578 * true */
579 assert(nb_clusters <= INT_MAX);
581 type = qcow2_get_cluster_type(*cluster_offset);
582 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
583 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
584 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
585 " in pre-v3 image (L2 offset: %#" PRIx64
586 ", L2 index: %#x)", l2_offset, l2_index);
587 ret = -EIO;
588 goto fail;
590 switch (type) {
591 case QCOW2_CLUSTER_COMPRESSED:
592 /* Compressed clusters can only be processed one by one */
593 c = 1;
594 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
595 break;
596 case QCOW2_CLUSTER_ZERO_PLAIN:
597 case QCOW2_CLUSTER_UNALLOCATED:
598 /* how many empty clusters ? */
599 c = count_contiguous_clusters_unallocated(nb_clusters,
600 &l2_table[l2_index], type);
601 *cluster_offset = 0;
602 break;
603 case QCOW2_CLUSTER_ZERO_ALLOC:
604 case QCOW2_CLUSTER_NORMAL:
605 /* how many allocated clusters ? */
606 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
607 &l2_table[l2_index], QCOW_OFLAG_ZERO);
608 *cluster_offset &= L2E_OFFSET_MASK;
609 if (offset_into_cluster(s, *cluster_offset)) {
610 qcow2_signal_corruption(bs, true, -1, -1,
611 "Cluster allocation offset %#"
612 PRIx64 " unaligned (L2 offset: %#" PRIx64
613 ", L2 index: %#x)", *cluster_offset,
614 l2_offset, l2_index);
615 ret = -EIO;
616 goto fail;
618 break;
619 default:
620 abort();
623 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
625 bytes_available = (int64_t)c * s->cluster_size;
627 out:
628 if (bytes_available > bytes_needed) {
629 bytes_available = bytes_needed;
632 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
633 * subtracting offset_in_cluster will therefore definitely yield something
634 * not exceeding UINT_MAX */
635 assert(bytes_available - offset_in_cluster <= UINT_MAX);
636 *bytes = bytes_available - offset_in_cluster;
638 return type;
640 fail:
641 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
642 return ret;
646 * get_cluster_table
648 * for a given disk offset, load (and allocate if needed)
649 * the l2 table.
651 * the l2 table offset in the qcow2 file and the cluster index
652 * in the l2 table are given to the caller.
654 * Returns 0 on success, -errno in failure case
656 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
657 uint64_t **new_l2_table,
658 int *new_l2_index)
660 BDRVQcow2State *s = bs->opaque;
661 unsigned int l2_index;
662 uint64_t l1_index, l2_offset;
663 uint64_t *l2_table = NULL;
664 int ret;
666 /* seek to the l2 offset in the l1 table */
668 l1_index = offset >> (s->l2_bits + s->cluster_bits);
669 if (l1_index >= s->l1_size) {
670 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
671 if (ret < 0) {
672 return ret;
676 assert(l1_index < s->l1_size);
677 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
678 if (offset_into_cluster(s, l2_offset)) {
679 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
680 " unaligned (L1 index: %#" PRIx64 ")",
681 l2_offset, l1_index);
682 return -EIO;
685 /* seek the l2 table of the given l2 offset */
687 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
688 /* load the l2 table in memory */
689 ret = l2_load(bs, l2_offset, &l2_table);
690 if (ret < 0) {
691 return ret;
693 } else {
694 /* First allocate a new L2 table (and do COW if needed) */
695 ret = l2_allocate(bs, l1_index, &l2_table);
696 if (ret < 0) {
697 return ret;
700 /* Then decrease the refcount of the old table */
701 if (l2_offset) {
702 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
703 QCOW2_DISCARD_OTHER);
707 /* find the cluster offset for the given disk offset */
709 l2_index = offset_to_l2_index(s, offset);
711 *new_l2_table = l2_table;
712 *new_l2_index = l2_index;
714 return 0;
718 * alloc_compressed_cluster_offset
720 * For a given offset of the disk image, return cluster offset in
721 * qcow2 file.
723 * If the offset is not found, allocate a new compressed cluster.
725 * Return the cluster offset if successful,
726 * Return 0, otherwise.
730 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
731 uint64_t offset,
732 int compressed_size)
734 BDRVQcow2State *s = bs->opaque;
735 int l2_index, ret;
736 uint64_t *l2_table;
737 int64_t cluster_offset;
738 int nb_csectors;
740 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
741 if (ret < 0) {
742 return 0;
745 /* Compression can't overwrite anything. Fail if the cluster was already
746 * allocated. */
747 cluster_offset = be64_to_cpu(l2_table[l2_index]);
748 if (cluster_offset & L2E_OFFSET_MASK) {
749 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
750 return 0;
753 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
754 if (cluster_offset < 0) {
755 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
756 return 0;
759 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
760 (cluster_offset >> 9);
762 cluster_offset |= QCOW_OFLAG_COMPRESSED |
763 ((uint64_t)nb_csectors << s->csize_shift);
765 /* update L2 table */
767 /* compressed clusters never have the copied flag */
769 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
770 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
771 l2_table[l2_index] = cpu_to_be64(cluster_offset);
772 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
774 return cluster_offset;
777 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
779 BDRVQcow2State *s = bs->opaque;
780 Qcow2COWRegion *start = &m->cow_start;
781 Qcow2COWRegion *end = &m->cow_end;
782 unsigned buffer_size;
783 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
784 bool merge_reads;
785 uint8_t *start_buffer, *end_buffer;
786 QEMUIOVector qiov;
787 int ret;
789 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
790 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
791 assert(start->offset + start->nb_bytes <= end->offset);
792 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
794 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
795 return 0;
798 /* If we have to read both the start and end COW regions and the
799 * middle region is not too large then perform just one read
800 * operation */
801 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
802 if (merge_reads) {
803 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
804 } else {
805 /* If we have to do two reads, add some padding in the middle
806 * if necessary to make sure that the end region is optimally
807 * aligned. */
808 size_t align = bdrv_opt_mem_align(bs);
809 assert(align > 0 && align <= UINT_MAX);
810 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
811 UINT_MAX - end->nb_bytes);
812 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
815 /* Reserve a buffer large enough to store all the data that we're
816 * going to read */
817 start_buffer = qemu_try_blockalign(bs, buffer_size);
818 if (start_buffer == NULL) {
819 return -ENOMEM;
821 /* The part of the buffer where the end region is located */
822 end_buffer = start_buffer + buffer_size - end->nb_bytes;
824 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
826 qemu_co_mutex_unlock(&s->lock);
827 /* First we read the existing data from both COW regions. We
828 * either read the whole region in one go, or the start and end
829 * regions separately. */
830 if (merge_reads) {
831 qemu_iovec_add(&qiov, start_buffer, buffer_size);
832 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
833 } else {
834 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
835 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
836 if (ret < 0) {
837 goto fail;
840 qemu_iovec_reset(&qiov);
841 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
842 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
844 if (ret < 0) {
845 goto fail;
848 /* Encrypt the data if necessary before writing it */
849 if (bs->encrypted) {
850 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
851 start->offset, start_buffer,
852 start->nb_bytes) ||
853 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
854 end->offset, end_buffer, end->nb_bytes)) {
855 ret = -EIO;
856 goto fail;
860 /* And now we can write everything. If we have the guest data we
861 * can write everything in one single operation */
862 if (m->data_qiov) {
863 qemu_iovec_reset(&qiov);
864 if (start->nb_bytes) {
865 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
867 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
868 if (end->nb_bytes) {
869 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
871 /* NOTE: we have a write_aio blkdebug event here followed by
872 * a cow_write one in do_perform_cow_write(), but there's only
873 * one single I/O operation */
874 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
875 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
876 } else {
877 /* If there's no guest data then write both COW regions separately */
878 qemu_iovec_reset(&qiov);
879 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
880 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
881 if (ret < 0) {
882 goto fail;
885 qemu_iovec_reset(&qiov);
886 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
887 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
890 fail:
891 qemu_co_mutex_lock(&s->lock);
894 * Before we update the L2 table to actually point to the new cluster, we
895 * need to be sure that the refcounts have been increased and COW was
896 * handled.
898 if (ret == 0) {
899 qcow2_cache_depends_on_flush(s->l2_table_cache);
902 qemu_vfree(start_buffer);
903 qemu_iovec_destroy(&qiov);
904 return ret;
907 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
909 BDRVQcow2State *s = bs->opaque;
910 int i, j = 0, l2_index, ret;
911 uint64_t *old_cluster, *l2_table;
912 uint64_t cluster_offset = m->alloc_offset;
914 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
915 assert(m->nb_clusters > 0);
917 old_cluster = g_try_new(uint64_t, m->nb_clusters);
918 if (old_cluster == NULL) {
919 ret = -ENOMEM;
920 goto err;
923 /* copy content of unmodified sectors */
924 ret = perform_cow(bs, m);
925 if (ret < 0) {
926 goto err;
929 /* Update L2 table. */
930 if (s->use_lazy_refcounts) {
931 qcow2_mark_dirty(bs);
933 if (qcow2_need_accurate_refcounts(s)) {
934 qcow2_cache_set_dependency(bs, s->l2_table_cache,
935 s->refcount_block_cache);
938 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
939 if (ret < 0) {
940 goto err;
942 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
944 assert(l2_index + m->nb_clusters <= s->l2_size);
945 for (i = 0; i < m->nb_clusters; i++) {
946 /* if two concurrent writes happen to the same unallocated cluster
947 * each write allocates separate cluster and writes data concurrently.
948 * The first one to complete updates l2 table with pointer to its
949 * cluster the second one has to do RMW (which is done above by
950 * perform_cow()), update l2 table with its cluster pointer and free
951 * old cluster. This is what this loop does */
952 if (l2_table[l2_index + i] != 0) {
953 old_cluster[j++] = l2_table[l2_index + i];
956 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
957 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
961 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
964 * If this was a COW, we need to decrease the refcount of the old cluster.
966 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
967 * clusters), the next write will reuse them anyway.
969 if (!m->keep_old_clusters && j != 0) {
970 for (i = 0; i < j; i++) {
971 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
972 QCOW2_DISCARD_NEVER);
976 ret = 0;
977 err:
978 g_free(old_cluster);
979 return ret;
983 * Returns the number of contiguous clusters that can be used for an allocating
984 * write, but require COW to be performed (this includes yet unallocated space,
985 * which must copy from the backing file)
987 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
988 uint64_t *l2_table, int l2_index)
990 int i;
992 for (i = 0; i < nb_clusters; i++) {
993 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
994 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
996 switch(cluster_type) {
997 case QCOW2_CLUSTER_NORMAL:
998 if (l2_entry & QCOW_OFLAG_COPIED) {
999 goto out;
1001 break;
1002 case QCOW2_CLUSTER_UNALLOCATED:
1003 case QCOW2_CLUSTER_COMPRESSED:
1004 case QCOW2_CLUSTER_ZERO_PLAIN:
1005 case QCOW2_CLUSTER_ZERO_ALLOC:
1006 break;
1007 default:
1008 abort();
1012 out:
1013 assert(i <= nb_clusters);
1014 return i;
1018 * Check if there already is an AIO write request in flight which allocates
1019 * the same cluster. In this case we need to wait until the previous
1020 * request has completed and updated the L2 table accordingly.
1022 * Returns:
1023 * 0 if there was no dependency. *cur_bytes indicates the number of
1024 * bytes from guest_offset that can be read before the next
1025 * dependency must be processed (or the request is complete)
1027 * -EAGAIN if we had to wait for another request, previously gathered
1028 * information on cluster allocation may be invalid now. The caller
1029 * must start over anyway, so consider *cur_bytes undefined.
1031 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1032 uint64_t *cur_bytes, QCowL2Meta **m)
1034 BDRVQcow2State *s = bs->opaque;
1035 QCowL2Meta *old_alloc;
1036 uint64_t bytes = *cur_bytes;
1038 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1040 uint64_t start = guest_offset;
1041 uint64_t end = start + bytes;
1042 uint64_t old_start = l2meta_cow_start(old_alloc);
1043 uint64_t old_end = l2meta_cow_end(old_alloc);
1045 if (end <= old_start || start >= old_end) {
1046 /* No intersection */
1047 } else {
1048 if (start < old_start) {
1049 /* Stop at the start of a running allocation */
1050 bytes = old_start - start;
1051 } else {
1052 bytes = 0;
1055 /* Stop if already an l2meta exists. After yielding, it wouldn't
1056 * be valid any more, so we'd have to clean up the old L2Metas
1057 * and deal with requests depending on them before starting to
1058 * gather new ones. Not worth the trouble. */
1059 if (bytes == 0 && *m) {
1060 *cur_bytes = 0;
1061 return 0;
1064 if (bytes == 0) {
1065 /* Wait for the dependency to complete. We need to recheck
1066 * the free/allocated clusters when we continue. */
1067 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1068 return -EAGAIN;
1073 /* Make sure that existing clusters and new allocations are only used up to
1074 * the next dependency if we shortened the request above */
1075 *cur_bytes = bytes;
1077 return 0;
1081 * Checks how many already allocated clusters that don't require a copy on
1082 * write there are at the given guest_offset (up to *bytes). If
1083 * *host_offset is not zero, only physically contiguous clusters beginning at
1084 * this host offset are counted.
1086 * Note that guest_offset may not be cluster aligned. In this case, the
1087 * returned *host_offset points to exact byte referenced by guest_offset and
1088 * therefore isn't cluster aligned as well.
1090 * Returns:
1091 * 0: if no allocated clusters are available at the given offset.
1092 * *bytes is normally unchanged. It is set to 0 if the cluster
1093 * is allocated and doesn't need COW, but doesn't have the right
1094 * physical offset.
1096 * 1: if allocated clusters that don't require a COW are available at
1097 * the requested offset. *bytes may have decreased and describes
1098 * the length of the area that can be written to.
1100 * -errno: in error cases
1102 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1103 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1105 BDRVQcow2State *s = bs->opaque;
1106 int l2_index;
1107 uint64_t cluster_offset;
1108 uint64_t *l2_table;
1109 uint64_t nb_clusters;
1110 unsigned int keep_clusters;
1111 int ret;
1113 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1114 *bytes);
1116 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
1117 == offset_into_cluster(s, *host_offset));
1120 * Calculate the number of clusters to look for. We stop at L2 table
1121 * boundaries to keep things simple.
1123 nb_clusters =
1124 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1126 l2_index = offset_to_l2_index(s, guest_offset);
1127 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1128 assert(nb_clusters <= INT_MAX);
1130 /* Find L2 entry for the first involved cluster */
1131 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1132 if (ret < 0) {
1133 return ret;
1136 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1138 /* Check how many clusters are already allocated and don't need COW */
1139 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1140 && (cluster_offset & QCOW_OFLAG_COPIED))
1142 /* If a specific host_offset is required, check it */
1143 bool offset_matches =
1144 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1146 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1147 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1148 "%#llx unaligned (guest offset: %#" PRIx64
1149 ")", cluster_offset & L2E_OFFSET_MASK,
1150 guest_offset);
1151 ret = -EIO;
1152 goto out;
1155 if (*host_offset != 0 && !offset_matches) {
1156 *bytes = 0;
1157 ret = 0;
1158 goto out;
1161 /* We keep all QCOW_OFLAG_COPIED clusters */
1162 keep_clusters =
1163 count_contiguous_clusters(nb_clusters, s->cluster_size,
1164 &l2_table[l2_index],
1165 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1166 assert(keep_clusters <= nb_clusters);
1168 *bytes = MIN(*bytes,
1169 keep_clusters * s->cluster_size
1170 - offset_into_cluster(s, guest_offset));
1172 ret = 1;
1173 } else {
1174 ret = 0;
1177 /* Cleanup */
1178 out:
1179 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1181 /* Only return a host offset if we actually made progress. Otherwise we
1182 * would make requirements for handle_alloc() that it can't fulfill */
1183 if (ret > 0) {
1184 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1185 + offset_into_cluster(s, guest_offset);
1188 return ret;
1192 * Allocates new clusters for the given guest_offset.
1194 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1195 * contain the number of clusters that have been allocated and are contiguous
1196 * in the image file.
1198 * If *host_offset is non-zero, it specifies the offset in the image file at
1199 * which the new clusters must start. *nb_clusters can be 0 on return in this
1200 * case if the cluster at host_offset is already in use. If *host_offset is
1201 * zero, the clusters can be allocated anywhere in the image file.
1203 * *host_offset is updated to contain the offset into the image file at which
1204 * the first allocated cluster starts.
1206 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1207 * function has been waiting for another request and the allocation must be
1208 * restarted, but the whole request should not be failed.
1210 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1211 uint64_t *host_offset, uint64_t *nb_clusters)
1213 BDRVQcow2State *s = bs->opaque;
1215 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1216 *host_offset, *nb_clusters);
1218 /* Allocate new clusters */
1219 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1220 if (*host_offset == 0) {
1221 int64_t cluster_offset =
1222 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1223 if (cluster_offset < 0) {
1224 return cluster_offset;
1226 *host_offset = cluster_offset;
1227 return 0;
1228 } else {
1229 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1230 if (ret < 0) {
1231 return ret;
1233 *nb_clusters = ret;
1234 return 0;
1239 * Allocates new clusters for an area that either is yet unallocated or needs a
1240 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1241 * the new allocation can match the specified host offset.
1243 * Note that guest_offset may not be cluster aligned. In this case, the
1244 * returned *host_offset points to exact byte referenced by guest_offset and
1245 * therefore isn't cluster aligned as well.
1247 * Returns:
1248 * 0: if no clusters could be allocated. *bytes is set to 0,
1249 * *host_offset is left unchanged.
1251 * 1: if new clusters were allocated. *bytes may be decreased if the
1252 * new allocation doesn't cover all of the requested area.
1253 * *host_offset is updated to contain the host offset of the first
1254 * newly allocated cluster.
1256 * -errno: in error cases
1258 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1259 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1261 BDRVQcow2State *s = bs->opaque;
1262 int l2_index;
1263 uint64_t *l2_table;
1264 uint64_t entry;
1265 uint64_t nb_clusters;
1266 int ret;
1267 bool keep_old_clusters = false;
1269 uint64_t alloc_cluster_offset = 0;
1271 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1272 *bytes);
1273 assert(*bytes > 0);
1276 * Calculate the number of clusters to look for. We stop at L2 table
1277 * boundaries to keep things simple.
1279 nb_clusters =
1280 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1282 l2_index = offset_to_l2_index(s, guest_offset);
1283 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1284 assert(nb_clusters <= INT_MAX);
1286 /* Find L2 entry for the first involved cluster */
1287 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1288 if (ret < 0) {
1289 return ret;
1292 entry = be64_to_cpu(l2_table[l2_index]);
1294 /* For the moment, overwrite compressed clusters one by one */
1295 if (entry & QCOW_OFLAG_COMPRESSED) {
1296 nb_clusters = 1;
1297 } else {
1298 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1301 /* This function is only called when there were no non-COW clusters, so if
1302 * we can't find any unallocated or COW clusters either, something is
1303 * wrong with our code. */
1304 assert(nb_clusters > 0);
1306 if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1307 (entry & QCOW_OFLAG_COPIED) &&
1308 (!*host_offset ||
1309 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1311 int preallocated_nb_clusters;
1313 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1314 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1315 "cluster offset %#llx unaligned (guest "
1316 "offset: %#" PRIx64 ")",
1317 entry & L2E_OFFSET_MASK, guest_offset);
1318 ret = -EIO;
1319 goto fail;
1322 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1323 * would be fine, too, but count_cow_clusters() above has limited
1324 * nb_clusters already to a range of COW clusters */
1325 preallocated_nb_clusters =
1326 count_contiguous_clusters(nb_clusters, s->cluster_size,
1327 &l2_table[l2_index], QCOW_OFLAG_COPIED);
1328 assert(preallocated_nb_clusters > 0);
1330 nb_clusters = preallocated_nb_clusters;
1331 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1333 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1334 * should not free them. */
1335 keep_old_clusters = true;
1338 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1340 if (!alloc_cluster_offset) {
1341 /* Allocate, if necessary at a given offset in the image file */
1342 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1343 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1344 &nb_clusters);
1345 if (ret < 0) {
1346 goto fail;
1349 /* Can't extend contiguous allocation */
1350 if (nb_clusters == 0) {
1351 *bytes = 0;
1352 return 0;
1355 /* !*host_offset would overwrite the image header and is reserved for
1356 * "no host offset preferred". If 0 was a valid host offset, it'd
1357 * trigger the following overlap check; do that now to avoid having an
1358 * invalid value in *host_offset. */
1359 if (!alloc_cluster_offset) {
1360 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1361 nb_clusters * s->cluster_size);
1362 assert(ret < 0);
1363 goto fail;
1368 * Save info needed for meta data update.
1370 * requested_bytes: Number of bytes from the start of the first
1371 * newly allocated cluster to the end of the (possibly shortened
1372 * before) write request.
1374 * avail_bytes: Number of bytes from the start of the first
1375 * newly allocated to the end of the last newly allocated cluster.
1377 * nb_bytes: The number of bytes from the start of the first
1378 * newly allocated cluster to the end of the area that the write
1379 * request actually writes to (excluding COW at the end)
1381 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1382 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1383 int nb_bytes = MIN(requested_bytes, avail_bytes);
1384 QCowL2Meta *old_m = *m;
1386 *m = g_malloc0(sizeof(**m));
1388 **m = (QCowL2Meta) {
1389 .next = old_m,
1391 .alloc_offset = alloc_cluster_offset,
1392 .offset = start_of_cluster(s, guest_offset),
1393 .nb_clusters = nb_clusters,
1395 .keep_old_clusters = keep_old_clusters,
1397 .cow_start = {
1398 .offset = 0,
1399 .nb_bytes = offset_into_cluster(s, guest_offset),
1401 .cow_end = {
1402 .offset = nb_bytes,
1403 .nb_bytes = avail_bytes - nb_bytes,
1406 qemu_co_queue_init(&(*m)->dependent_requests);
1407 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1409 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1410 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1411 assert(*bytes != 0);
1413 return 1;
1415 fail:
1416 if (*m && (*m)->nb_clusters > 0) {
1417 QLIST_REMOVE(*m, next_in_flight);
1419 return ret;
1423 * alloc_cluster_offset
1425 * For a given offset on the virtual disk, find the cluster offset in qcow2
1426 * file. If the offset is not found, allocate a new cluster.
1428 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1429 * other fields in m are meaningless.
1431 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1432 * contiguous clusters that have been allocated. In this case, the other
1433 * fields of m are valid and contain information about the first allocated
1434 * cluster.
1436 * If the request conflicts with another write request in flight, the coroutine
1437 * is queued and will be reentered when the dependency has completed.
1439 * Return 0 on success and -errno in error cases
1441 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1442 unsigned int *bytes, uint64_t *host_offset,
1443 QCowL2Meta **m)
1445 BDRVQcow2State *s = bs->opaque;
1446 uint64_t start, remaining;
1447 uint64_t cluster_offset;
1448 uint64_t cur_bytes;
1449 int ret;
1451 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1453 again:
1454 start = offset;
1455 remaining = *bytes;
1456 cluster_offset = 0;
1457 *host_offset = 0;
1458 cur_bytes = 0;
1459 *m = NULL;
1461 while (true) {
1463 if (!*host_offset) {
1464 *host_offset = start_of_cluster(s, cluster_offset);
1467 assert(remaining >= cur_bytes);
1469 start += cur_bytes;
1470 remaining -= cur_bytes;
1471 cluster_offset += cur_bytes;
1473 if (remaining == 0) {
1474 break;
1477 cur_bytes = remaining;
1480 * Now start gathering as many contiguous clusters as possible:
1482 * 1. Check for overlaps with in-flight allocations
1484 * a) Overlap not in the first cluster -> shorten this request and
1485 * let the caller handle the rest in its next loop iteration.
1487 * b) Real overlaps of two requests. Yield and restart the search
1488 * for contiguous clusters (the situation could have changed
1489 * while we were sleeping)
1491 * c) TODO: Request starts in the same cluster as the in-flight
1492 * allocation ends. Shorten the COW of the in-fight allocation,
1493 * set cluster_offset to write to the same cluster and set up
1494 * the right synchronisation between the in-flight request and
1495 * the new one.
1497 ret = handle_dependencies(bs, start, &cur_bytes, m);
1498 if (ret == -EAGAIN) {
1499 /* Currently handle_dependencies() doesn't yield if we already had
1500 * an allocation. If it did, we would have to clean up the L2Meta
1501 * structs before starting over. */
1502 assert(*m == NULL);
1503 goto again;
1504 } else if (ret < 0) {
1505 return ret;
1506 } else if (cur_bytes == 0) {
1507 break;
1508 } else {
1509 /* handle_dependencies() may have decreased cur_bytes (shortened
1510 * the allocations below) so that the next dependency is processed
1511 * correctly during the next loop iteration. */
1515 * 2. Count contiguous COPIED clusters.
1517 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1518 if (ret < 0) {
1519 return ret;
1520 } else if (ret) {
1521 continue;
1522 } else if (cur_bytes == 0) {
1523 break;
1527 * 3. If the request still hasn't completed, allocate new clusters,
1528 * considering any cluster_offset of steps 1c or 2.
1530 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1531 if (ret < 0) {
1532 return ret;
1533 } else if (ret) {
1534 continue;
1535 } else {
1536 assert(cur_bytes == 0);
1537 break;
1541 *bytes -= remaining;
1542 assert(*bytes > 0);
1543 assert(*host_offset != 0);
1545 return 0;
1548 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1549 const uint8_t *buf, int buf_size)
1551 z_stream strm1, *strm = &strm1;
1552 int ret, out_len;
1554 memset(strm, 0, sizeof(*strm));
1556 strm->next_in = (uint8_t *)buf;
1557 strm->avail_in = buf_size;
1558 strm->next_out = out_buf;
1559 strm->avail_out = out_buf_size;
1561 ret = inflateInit2(strm, -12);
1562 if (ret != Z_OK)
1563 return -1;
1564 ret = inflate(strm, Z_FINISH);
1565 out_len = strm->next_out - out_buf;
1566 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1567 out_len != out_buf_size) {
1568 inflateEnd(strm);
1569 return -1;
1571 inflateEnd(strm);
1572 return 0;
1575 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1577 BDRVQcow2State *s = bs->opaque;
1578 int ret, csize, nb_csectors, sector_offset;
1579 uint64_t coffset;
1581 coffset = cluster_offset & s->cluster_offset_mask;
1582 if (s->cluster_cache_offset != coffset) {
1583 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1584 sector_offset = coffset & 511;
1585 csize = nb_csectors * 512 - sector_offset;
1587 /* Allocate buffers on first decompress operation, most images are
1588 * uncompressed and the memory overhead can be avoided. The buffers
1589 * are freed in .bdrv_close().
1591 if (!s->cluster_data) {
1592 /* one more sector for decompressed data alignment */
1593 s->cluster_data = qemu_try_blockalign(bs->file->bs,
1594 QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1595 if (!s->cluster_data) {
1596 return -ENOMEM;
1599 if (!s->cluster_cache) {
1600 s->cluster_cache = g_malloc(s->cluster_size);
1603 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1604 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1605 nb_csectors);
1606 if (ret < 0) {
1607 return ret;
1609 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1610 s->cluster_data + sector_offset, csize) < 0) {
1611 return -EIO;
1613 s->cluster_cache_offset = coffset;
1615 return 0;
1619 * This discards as many clusters of nb_clusters as possible at once (i.e.
1620 * all clusters in the same L2 table) and returns the number of discarded
1621 * clusters.
1623 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1624 uint64_t nb_clusters, enum qcow2_discard_type type,
1625 bool full_discard)
1627 BDRVQcow2State *s = bs->opaque;
1628 uint64_t *l2_table;
1629 int l2_index;
1630 int ret;
1631 int i;
1633 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1634 if (ret < 0) {
1635 return ret;
1638 /* Limit nb_clusters to one L2 table */
1639 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1640 assert(nb_clusters <= INT_MAX);
1642 for (i = 0; i < nb_clusters; i++) {
1643 uint64_t old_l2_entry;
1645 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1648 * If full_discard is false, make sure that a discarded area reads back
1649 * as zeroes for v3 images (we cannot do it for v2 without actually
1650 * writing a zero-filled buffer). We can skip the operation if the
1651 * cluster is already marked as zero, or if it's unallocated and we
1652 * don't have a backing file.
1654 * TODO We might want to use bdrv_block_status(bs) here, but we're
1655 * holding s->lock, so that doesn't work today.
1657 * If full_discard is true, the sector should not read back as zeroes,
1658 * but rather fall through to the backing file.
1660 switch (qcow2_get_cluster_type(old_l2_entry)) {
1661 case QCOW2_CLUSTER_UNALLOCATED:
1662 if (full_discard || !bs->backing) {
1663 continue;
1665 break;
1667 case QCOW2_CLUSTER_ZERO_PLAIN:
1668 if (!full_discard) {
1669 continue;
1671 break;
1673 case QCOW2_CLUSTER_ZERO_ALLOC:
1674 case QCOW2_CLUSTER_NORMAL:
1675 case QCOW2_CLUSTER_COMPRESSED:
1676 break;
1678 default:
1679 abort();
1682 /* First remove L2 entries */
1683 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1684 if (!full_discard && s->qcow_version >= 3) {
1685 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1686 } else {
1687 l2_table[l2_index + i] = cpu_to_be64(0);
1690 /* Then decrease the refcount */
1691 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1694 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1696 return nb_clusters;
1699 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1700 uint64_t bytes, enum qcow2_discard_type type,
1701 bool full_discard)
1703 BDRVQcow2State *s = bs->opaque;
1704 uint64_t end_offset = offset + bytes;
1705 uint64_t nb_clusters;
1706 int64_t cleared;
1707 int ret;
1709 /* Caller must pass aligned values, except at image end */
1710 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1711 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1712 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1714 nb_clusters = size_to_clusters(s, bytes);
1716 s->cache_discards = true;
1718 /* Each L2 table is handled by its own loop iteration */
1719 while (nb_clusters > 0) {
1720 cleared = discard_single_l2(bs, offset, nb_clusters, type,
1721 full_discard);
1722 if (cleared < 0) {
1723 ret = cleared;
1724 goto fail;
1727 nb_clusters -= cleared;
1728 offset += (cleared * s->cluster_size);
1731 ret = 0;
1732 fail:
1733 s->cache_discards = false;
1734 qcow2_process_discards(bs, ret);
1736 return ret;
1740 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1741 * all clusters in the same L2 table) and returns the number of zeroed
1742 * clusters.
1744 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1745 uint64_t nb_clusters, int flags)
1747 BDRVQcow2State *s = bs->opaque;
1748 uint64_t *l2_table;
1749 int l2_index;
1750 int ret;
1751 int i;
1752 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1754 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1755 if (ret < 0) {
1756 return ret;
1759 /* Limit nb_clusters to one L2 table */
1760 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1761 assert(nb_clusters <= INT_MAX);
1763 for (i = 0; i < nb_clusters; i++) {
1764 uint64_t old_offset;
1765 QCow2ClusterType cluster_type;
1767 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1770 * Minimize L2 changes if the cluster already reads back as
1771 * zeroes with correct allocation.
1773 cluster_type = qcow2_get_cluster_type(old_offset);
1774 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1775 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1776 continue;
1779 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1780 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1781 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1782 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1783 } else {
1784 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1788 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1790 return nb_clusters;
1793 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1794 uint64_t bytes, int flags)
1796 BDRVQcow2State *s = bs->opaque;
1797 uint64_t end_offset = offset + bytes;
1798 uint64_t nb_clusters;
1799 int64_t cleared;
1800 int ret;
1802 /* Caller must pass aligned values, except at image end */
1803 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1804 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1805 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1807 /* The zero flag is only supported by version 3 and newer */
1808 if (s->qcow_version < 3) {
1809 return -ENOTSUP;
1812 /* Each L2 table is handled by its own loop iteration */
1813 nb_clusters = size_to_clusters(s, bytes);
1815 s->cache_discards = true;
1817 while (nb_clusters > 0) {
1818 cleared = zero_single_l2(bs, offset, nb_clusters, flags);
1819 if (cleared < 0) {
1820 ret = cleared;
1821 goto fail;
1824 nb_clusters -= cleared;
1825 offset += (cleared * s->cluster_size);
1828 ret = 0;
1829 fail:
1830 s->cache_discards = false;
1831 qcow2_process_discards(bs, ret);
1833 return ret;
1837 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1838 * non-backed non-pre-allocated zero clusters).
1840 * l1_entries and *visited_l1_entries are used to keep track of progress for
1841 * status_cb(). l1_entries contains the total number of L1 entries and
1842 * *visited_l1_entries counts all visited L1 entries.
1844 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1845 int l1_size, int64_t *visited_l1_entries,
1846 int64_t l1_entries,
1847 BlockDriverAmendStatusCB *status_cb,
1848 void *cb_opaque)
1850 BDRVQcow2State *s = bs->opaque;
1851 bool is_active_l1 = (l1_table == s->l1_table);
1852 uint64_t *l2_table = NULL;
1853 int ret;
1854 int i, j;
1856 if (!is_active_l1) {
1857 /* inactive L2 tables require a buffer to be stored in when loading
1858 * them from disk */
1859 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1860 if (l2_table == NULL) {
1861 return -ENOMEM;
1865 for (i = 0; i < l1_size; i++) {
1866 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1867 bool l2_dirty = false;
1868 uint64_t l2_refcount;
1870 if (!l2_offset) {
1871 /* unallocated */
1872 (*visited_l1_entries)++;
1873 if (status_cb) {
1874 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1876 continue;
1879 if (offset_into_cluster(s, l2_offset)) {
1880 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1881 PRIx64 " unaligned (L1 index: %#x)",
1882 l2_offset, i);
1883 ret = -EIO;
1884 goto fail;
1887 if (is_active_l1) {
1888 /* get active L2 tables from cache */
1889 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1890 (void **)&l2_table);
1891 } else {
1892 /* load inactive L2 tables from disk */
1893 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1894 (void *)l2_table, s->cluster_sectors);
1896 if (ret < 0) {
1897 goto fail;
1900 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1901 &l2_refcount);
1902 if (ret < 0) {
1903 goto fail;
1906 for (j = 0; j < s->l2_size; j++) {
1907 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1908 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1909 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1911 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1912 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1913 continue;
1916 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1917 if (!bs->backing) {
1918 /* not backed; therefore we can simply deallocate the
1919 * cluster */
1920 l2_table[j] = 0;
1921 l2_dirty = true;
1922 continue;
1925 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1926 if (offset < 0) {
1927 ret = offset;
1928 goto fail;
1931 if (l2_refcount > 1) {
1932 /* For shared L2 tables, set the refcount accordingly (it is
1933 * already 1 and needs to be l2_refcount) */
1934 ret = qcow2_update_cluster_refcount(bs,
1935 offset >> s->cluster_bits,
1936 refcount_diff(1, l2_refcount), false,
1937 QCOW2_DISCARD_OTHER);
1938 if (ret < 0) {
1939 qcow2_free_clusters(bs, offset, s->cluster_size,
1940 QCOW2_DISCARD_OTHER);
1941 goto fail;
1946 if (offset_into_cluster(s, offset)) {
1947 qcow2_signal_corruption(bs, true, -1, -1,
1948 "Cluster allocation offset "
1949 "%#" PRIx64 " unaligned (L2 offset: %#"
1950 PRIx64 ", L2 index: %#x)", offset,
1951 l2_offset, j);
1952 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1953 qcow2_free_clusters(bs, offset, s->cluster_size,
1954 QCOW2_DISCARD_ALWAYS);
1956 ret = -EIO;
1957 goto fail;
1960 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1961 if (ret < 0) {
1962 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1963 qcow2_free_clusters(bs, offset, s->cluster_size,
1964 QCOW2_DISCARD_ALWAYS);
1966 goto fail;
1969 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1970 if (ret < 0) {
1971 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1972 qcow2_free_clusters(bs, offset, s->cluster_size,
1973 QCOW2_DISCARD_ALWAYS);
1975 goto fail;
1978 if (l2_refcount == 1) {
1979 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1980 } else {
1981 l2_table[j] = cpu_to_be64(offset);
1983 l2_dirty = true;
1986 if (is_active_l1) {
1987 if (l2_dirty) {
1988 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1989 qcow2_cache_depends_on_flush(s->l2_table_cache);
1991 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1992 } else {
1993 if (l2_dirty) {
1994 ret = qcow2_pre_write_overlap_check(bs,
1995 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1996 s->cluster_size);
1997 if (ret < 0) {
1998 goto fail;
2001 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
2002 (void *)l2_table, s->cluster_sectors);
2003 if (ret < 0) {
2004 goto fail;
2009 (*visited_l1_entries)++;
2010 if (status_cb) {
2011 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2015 ret = 0;
2017 fail:
2018 if (l2_table) {
2019 if (!is_active_l1) {
2020 qemu_vfree(l2_table);
2021 } else {
2022 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
2025 return ret;
2029 * For backed images, expands all zero clusters on the image. For non-backed
2030 * images, deallocates all non-pre-allocated zero clusters (and claims the
2031 * allocation for pre-allocated ones). This is important for downgrading to a
2032 * qcow2 version which doesn't yet support metadata zero clusters.
2034 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2035 BlockDriverAmendStatusCB *status_cb,
2036 void *cb_opaque)
2038 BDRVQcow2State *s = bs->opaque;
2039 uint64_t *l1_table = NULL;
2040 int64_t l1_entries = 0, visited_l1_entries = 0;
2041 int ret;
2042 int i, j;
2044 if (status_cb) {
2045 l1_entries = s->l1_size;
2046 for (i = 0; i < s->nb_snapshots; i++) {
2047 l1_entries += s->snapshots[i].l1_size;
2051 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2052 &visited_l1_entries, l1_entries,
2053 status_cb, cb_opaque);
2054 if (ret < 0) {
2055 goto fail;
2058 /* Inactive L1 tables may point to active L2 tables - therefore it is
2059 * necessary to flush the L2 table cache before trying to access the L2
2060 * tables pointed to by inactive L1 entries (else we might try to expand
2061 * zero clusters that have already been expanded); furthermore, it is also
2062 * necessary to empty the L2 table cache, since it may contain tables which
2063 * are now going to be modified directly on disk, bypassing the cache.
2064 * qcow2_cache_empty() does both for us. */
2065 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2066 if (ret < 0) {
2067 goto fail;
2070 for (i = 0; i < s->nb_snapshots; i++) {
2071 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
2072 sizeof(uint64_t), BDRV_SECTOR_SIZE);
2074 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
2076 ret = bdrv_read(bs->file,
2077 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
2078 (void *)l1_table, l1_sectors);
2079 if (ret < 0) {
2080 goto fail;
2083 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2084 be64_to_cpus(&l1_table[j]);
2087 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2088 &visited_l1_entries, l1_entries,
2089 status_cb, cb_opaque);
2090 if (ret < 0) {
2091 goto fail;
2095 ret = 0;
2097 fail:
2098 g_free(l1_table);
2099 return ret;