disas/arm: Avoid unintended sign extension
[qemu/ar7.git] / kvm-all.c
blob9040bd50a40345730ac34eed63aaa7db0efc4f08
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "hw/hw.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace-root.h"
38 #include "hw/irq.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
43 #ifdef CONFIG_EVENTFD
44 #include <sys/eventfd.h>
45 #endif
47 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
48 * need to use the real host PAGE_SIZE, as that's what KVM will use.
50 #define PAGE_SIZE getpagesize()
52 //#define DEBUG_KVM
54 #ifdef DEBUG_KVM
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF(fmt, ...) \
59 do { } while (0)
60 #endif
62 #define KVM_MSI_HASHTAB_SIZE 256
64 struct KVMParkedVcpu {
65 unsigned long vcpu_id;
66 int kvm_fd;
67 QLIST_ENTRY(KVMParkedVcpu) node;
70 struct KVMState
72 AccelState parent_obj;
74 int nr_slots;
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int vcpu_events;
82 int robust_singlestep;
83 int debugregs;
84 #ifdef KVM_CAP_SET_GUEST_DEBUG
85 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
86 #endif
87 int many_ioeventfds;
88 int intx_set_mask;
89 /* The man page (and posix) say ioctl numbers are signed int, but
90 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
91 * unsigned, and treating them as signed here can break things */
92 unsigned irq_set_ioctl;
93 unsigned int sigmask_len;
94 GHashTable *gsimap;
95 #ifdef KVM_CAP_IRQ_ROUTING
96 struct kvm_irq_routing *irq_routes;
97 int nr_allocated_irq_routes;
98 unsigned long *used_gsi_bitmap;
99 unsigned int gsi_count;
100 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
101 #endif
102 KVMMemoryListener memory_listener;
103 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
106 KVMState *kvm_state;
107 bool kvm_kernel_irqchip;
108 bool kvm_split_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_halt_in_kernel_allowed;
111 bool kvm_eventfds_allowed;
112 bool kvm_irqfds_allowed;
113 bool kvm_resamplefds_allowed;
114 bool kvm_msi_via_irqfd_allowed;
115 bool kvm_gsi_routing_allowed;
116 bool kvm_gsi_direct_mapping;
117 bool kvm_allowed;
118 bool kvm_readonly_mem_allowed;
119 bool kvm_vm_attributes_allowed;
120 bool kvm_direct_msi_allowed;
121 bool kvm_ioeventfd_any_length_allowed;
122 bool kvm_msi_use_devid;
123 static bool kvm_immediate_exit;
125 static const KVMCapabilityInfo kvm_required_capabilites[] = {
126 KVM_CAP_INFO(USER_MEMORY),
127 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
128 KVM_CAP_LAST_INFO
131 int kvm_get_max_memslots(void)
133 KVMState *s = KVM_STATE(current_machine->accelerator);
135 return s->nr_slots;
138 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
140 KVMState *s = kvm_state;
141 int i;
143 for (i = 0; i < s->nr_slots; i++) {
144 if (kml->slots[i].memory_size == 0) {
145 return &kml->slots[i];
149 return NULL;
152 bool kvm_has_free_slot(MachineState *ms)
154 KVMState *s = KVM_STATE(ms->accelerator);
156 return kvm_get_free_slot(&s->memory_listener);
159 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
161 KVMSlot *slot = kvm_get_free_slot(kml);
163 if (slot) {
164 return slot;
167 fprintf(stderr, "%s: no free slot available\n", __func__);
168 abort();
171 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
172 hwaddr start_addr,
173 hwaddr end_addr)
175 KVMState *s = kvm_state;
176 int i;
178 for (i = 0; i < s->nr_slots; i++) {
179 KVMSlot *mem = &kml->slots[i];
181 if (start_addr == mem->start_addr &&
182 end_addr == mem->start_addr + mem->memory_size) {
183 return mem;
187 return NULL;
191 * Find overlapping slot with lowest start address
193 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
194 hwaddr start_addr,
195 hwaddr end_addr)
197 KVMState *s = kvm_state;
198 KVMSlot *found = NULL;
199 int i;
201 for (i = 0; i < s->nr_slots; i++) {
202 KVMSlot *mem = &kml->slots[i];
204 if (mem->memory_size == 0 ||
205 (found && found->start_addr < mem->start_addr)) {
206 continue;
209 if (end_addr > mem->start_addr &&
210 start_addr < mem->start_addr + mem->memory_size) {
211 found = mem;
215 return found;
218 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
219 hwaddr *phys_addr)
221 KVMMemoryListener *kml = &s->memory_listener;
222 int i;
224 for (i = 0; i < s->nr_slots; i++) {
225 KVMSlot *mem = &kml->slots[i];
227 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
228 *phys_addr = mem->start_addr + (ram - mem->ram);
229 return 1;
233 return 0;
236 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
238 KVMState *s = kvm_state;
239 struct kvm_userspace_memory_region mem;
241 mem.slot = slot->slot | (kml->as_id << 16);
242 mem.guest_phys_addr = slot->start_addr;
243 mem.userspace_addr = (unsigned long)slot->ram;
244 mem.flags = slot->flags;
246 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
247 /* Set the slot size to 0 before setting the slot to the desired
248 * value. This is needed based on KVM commit 75d61fbc. */
249 mem.memory_size = 0;
250 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
252 mem.memory_size = slot->memory_size;
253 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
256 int kvm_destroy_vcpu(CPUState *cpu)
258 KVMState *s = kvm_state;
259 long mmap_size;
260 struct KVMParkedVcpu *vcpu = NULL;
261 int ret = 0;
263 DPRINTF("kvm_destroy_vcpu\n");
265 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
266 if (mmap_size < 0) {
267 ret = mmap_size;
268 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
269 goto err;
272 ret = munmap(cpu->kvm_run, mmap_size);
273 if (ret < 0) {
274 goto err;
277 vcpu = g_malloc0(sizeof(*vcpu));
278 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
279 vcpu->kvm_fd = cpu->kvm_fd;
280 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
281 err:
282 return ret;
285 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
287 struct KVMParkedVcpu *cpu;
289 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
290 if (cpu->vcpu_id == vcpu_id) {
291 int kvm_fd;
293 QLIST_REMOVE(cpu, node);
294 kvm_fd = cpu->kvm_fd;
295 g_free(cpu);
296 return kvm_fd;
300 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
303 int kvm_init_vcpu(CPUState *cpu)
305 KVMState *s = kvm_state;
306 long mmap_size;
307 int ret;
309 DPRINTF("kvm_init_vcpu\n");
311 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
312 if (ret < 0) {
313 DPRINTF("kvm_create_vcpu failed\n");
314 goto err;
317 cpu->kvm_fd = ret;
318 cpu->kvm_state = s;
319 cpu->kvm_vcpu_dirty = true;
321 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
322 if (mmap_size < 0) {
323 ret = mmap_size;
324 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
325 goto err;
328 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
329 cpu->kvm_fd, 0);
330 if (cpu->kvm_run == MAP_FAILED) {
331 ret = -errno;
332 DPRINTF("mmap'ing vcpu state failed\n");
333 goto err;
336 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
337 s->coalesced_mmio_ring =
338 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
341 ret = kvm_arch_init_vcpu(cpu);
342 err:
343 return ret;
347 * dirty pages logging control
350 static int kvm_mem_flags(MemoryRegion *mr)
352 bool readonly = mr->readonly || memory_region_is_romd(mr);
353 int flags = 0;
355 if (memory_region_get_dirty_log_mask(mr) != 0) {
356 flags |= KVM_MEM_LOG_DIRTY_PAGES;
358 if (readonly && kvm_readonly_mem_allowed) {
359 flags |= KVM_MEM_READONLY;
361 return flags;
364 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
365 MemoryRegion *mr)
367 int old_flags;
369 old_flags = mem->flags;
370 mem->flags = kvm_mem_flags(mr);
372 /* If nothing changed effectively, no need to issue ioctl */
373 if (mem->flags == old_flags) {
374 return 0;
377 return kvm_set_user_memory_region(kml, mem);
380 static int kvm_section_update_flags(KVMMemoryListener *kml,
381 MemoryRegionSection *section)
383 hwaddr phys_addr = section->offset_within_address_space;
384 ram_addr_t size = int128_get64(section->size);
385 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
387 if (mem == NULL) {
388 return 0;
389 } else {
390 return kvm_slot_update_flags(kml, mem, section->mr);
394 static void kvm_log_start(MemoryListener *listener,
395 MemoryRegionSection *section,
396 int old, int new)
398 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
399 int r;
401 if (old != 0) {
402 return;
405 r = kvm_section_update_flags(kml, section);
406 if (r < 0) {
407 abort();
411 static void kvm_log_stop(MemoryListener *listener,
412 MemoryRegionSection *section,
413 int old, int new)
415 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
416 int r;
418 if (new != 0) {
419 return;
422 r = kvm_section_update_flags(kml, section);
423 if (r < 0) {
424 abort();
428 /* get kvm's dirty pages bitmap and update qemu's */
429 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
430 unsigned long *bitmap)
432 ram_addr_t start = section->offset_within_region +
433 memory_region_get_ram_addr(section->mr);
434 ram_addr_t pages = int128_get64(section->size) / getpagesize();
436 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
437 return 0;
440 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
443 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
444 * This function updates qemu's dirty bitmap using
445 * memory_region_set_dirty(). This means all bits are set
446 * to dirty.
448 * @start_add: start of logged region.
449 * @end_addr: end of logged region.
451 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
452 MemoryRegionSection *section)
454 KVMState *s = kvm_state;
455 unsigned long size, allocated_size = 0;
456 struct kvm_dirty_log d = {};
457 KVMSlot *mem;
458 int ret = 0;
459 hwaddr start_addr = section->offset_within_address_space;
460 hwaddr end_addr = start_addr + int128_get64(section->size);
462 d.dirty_bitmap = NULL;
463 while (start_addr < end_addr) {
464 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
465 if (mem == NULL) {
466 break;
469 /* XXX bad kernel interface alert
470 * For dirty bitmap, kernel allocates array of size aligned to
471 * bits-per-long. But for case when the kernel is 64bits and
472 * the userspace is 32bits, userspace can't align to the same
473 * bits-per-long, since sizeof(long) is different between kernel
474 * and user space. This way, userspace will provide buffer which
475 * may be 4 bytes less than the kernel will use, resulting in
476 * userspace memory corruption (which is not detectable by valgrind
477 * too, in most cases).
478 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
479 * a hope that sizeof(long) won't become >8 any time soon.
481 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
482 /*HOST_LONG_BITS*/ 64) / 8;
483 if (!d.dirty_bitmap) {
484 d.dirty_bitmap = g_malloc(size);
485 } else if (size > allocated_size) {
486 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
488 allocated_size = size;
489 memset(d.dirty_bitmap, 0, allocated_size);
491 d.slot = mem->slot | (kml->as_id << 16);
492 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
493 DPRINTF("ioctl failed %d\n", errno);
494 ret = -1;
495 break;
498 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
499 start_addr = mem->start_addr + mem->memory_size;
501 g_free(d.dirty_bitmap);
503 return ret;
506 static void kvm_coalesce_mmio_region(MemoryListener *listener,
507 MemoryRegionSection *secion,
508 hwaddr start, hwaddr size)
510 KVMState *s = kvm_state;
512 if (s->coalesced_mmio) {
513 struct kvm_coalesced_mmio_zone zone;
515 zone.addr = start;
516 zone.size = size;
517 zone.pad = 0;
519 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
523 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
524 MemoryRegionSection *secion,
525 hwaddr start, hwaddr size)
527 KVMState *s = kvm_state;
529 if (s->coalesced_mmio) {
530 struct kvm_coalesced_mmio_zone zone;
532 zone.addr = start;
533 zone.size = size;
534 zone.pad = 0;
536 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
540 int kvm_check_extension(KVMState *s, unsigned int extension)
542 int ret;
544 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
545 if (ret < 0) {
546 ret = 0;
549 return ret;
552 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
554 int ret;
556 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
557 if (ret < 0) {
558 /* VM wide version not implemented, use global one instead */
559 ret = kvm_check_extension(s, extension);
562 return ret;
565 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
567 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
568 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
569 * endianness, but the memory core hands them in target endianness.
570 * For example, PPC is always treated as big-endian even if running
571 * on KVM and on PPC64LE. Correct here.
573 switch (size) {
574 case 2:
575 val = bswap16(val);
576 break;
577 case 4:
578 val = bswap32(val);
579 break;
581 #endif
582 return val;
585 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
586 bool assign, uint32_t size, bool datamatch)
588 int ret;
589 struct kvm_ioeventfd iofd = {
590 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
591 .addr = addr,
592 .len = size,
593 .flags = 0,
594 .fd = fd,
597 if (!kvm_enabled()) {
598 return -ENOSYS;
601 if (datamatch) {
602 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
604 if (!assign) {
605 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
608 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
610 if (ret < 0) {
611 return -errno;
614 return 0;
617 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
618 bool assign, uint32_t size, bool datamatch)
620 struct kvm_ioeventfd kick = {
621 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
622 .addr = addr,
623 .flags = KVM_IOEVENTFD_FLAG_PIO,
624 .len = size,
625 .fd = fd,
627 int r;
628 if (!kvm_enabled()) {
629 return -ENOSYS;
631 if (datamatch) {
632 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
634 if (!assign) {
635 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
637 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
638 if (r < 0) {
639 return r;
641 return 0;
645 static int kvm_check_many_ioeventfds(void)
647 /* Userspace can use ioeventfd for io notification. This requires a host
648 * that supports eventfd(2) and an I/O thread; since eventfd does not
649 * support SIGIO it cannot interrupt the vcpu.
651 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
652 * can avoid creating too many ioeventfds.
654 #if defined(CONFIG_EVENTFD)
655 int ioeventfds[7];
656 int i, ret = 0;
657 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
658 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
659 if (ioeventfds[i] < 0) {
660 break;
662 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
663 if (ret < 0) {
664 close(ioeventfds[i]);
665 break;
669 /* Decide whether many devices are supported or not */
670 ret = i == ARRAY_SIZE(ioeventfds);
672 while (i-- > 0) {
673 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
674 close(ioeventfds[i]);
676 return ret;
677 #else
678 return 0;
679 #endif
682 static const KVMCapabilityInfo *
683 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
685 while (list->name) {
686 if (!kvm_check_extension(s, list->value)) {
687 return list;
689 list++;
691 return NULL;
694 static void kvm_set_phys_mem(KVMMemoryListener *kml,
695 MemoryRegionSection *section, bool add)
697 KVMState *s = kvm_state;
698 KVMSlot *mem, old;
699 int err;
700 MemoryRegion *mr = section->mr;
701 bool writeable = !mr->readonly && !mr->rom_device;
702 hwaddr start_addr = section->offset_within_address_space;
703 ram_addr_t size = int128_get64(section->size);
704 void *ram = NULL;
705 unsigned delta;
707 /* kvm works in page size chunks, but the function may be called
708 with sub-page size and unaligned start address. Pad the start
709 address to next and truncate size to previous page boundary. */
710 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
711 delta &= ~qemu_real_host_page_mask;
712 if (delta > size) {
713 return;
715 start_addr += delta;
716 size -= delta;
717 size &= qemu_real_host_page_mask;
718 if (!size || (start_addr & ~qemu_real_host_page_mask)) {
719 return;
722 if (!memory_region_is_ram(mr)) {
723 if (writeable || !kvm_readonly_mem_allowed) {
724 return;
725 } else if (!mr->romd_mode) {
726 /* If the memory device is not in romd_mode, then we actually want
727 * to remove the kvm memory slot so all accesses will trap. */
728 add = false;
732 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
734 while (1) {
735 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
736 if (!mem) {
737 break;
740 if (add && start_addr >= mem->start_addr &&
741 (start_addr + size <= mem->start_addr + mem->memory_size) &&
742 (ram - start_addr == mem->ram - mem->start_addr)) {
743 /* The new slot fits into the existing one and comes with
744 * identical parameters - update flags and done. */
745 kvm_slot_update_flags(kml, mem, mr);
746 return;
749 old = *mem;
751 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
752 kvm_physical_sync_dirty_bitmap(kml, section);
755 /* unregister the overlapping slot */
756 mem->memory_size = 0;
757 err = kvm_set_user_memory_region(kml, mem);
758 if (err) {
759 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
760 __func__, strerror(-err));
761 abort();
764 /* Workaround for older KVM versions: we can't join slots, even not by
765 * unregistering the previous ones and then registering the larger
766 * slot. We have to maintain the existing fragmentation. Sigh.
768 * This workaround assumes that the new slot starts at the same
769 * address as the first existing one. If not or if some overlapping
770 * slot comes around later, we will fail (not seen in practice so far)
771 * - and actually require a recent KVM version. */
772 if (s->broken_set_mem_region &&
773 old.start_addr == start_addr && old.memory_size < size && add) {
774 mem = kvm_alloc_slot(kml);
775 mem->memory_size = old.memory_size;
776 mem->start_addr = old.start_addr;
777 mem->ram = old.ram;
778 mem->flags = kvm_mem_flags(mr);
780 err = kvm_set_user_memory_region(kml, mem);
781 if (err) {
782 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
783 strerror(-err));
784 abort();
787 start_addr += old.memory_size;
788 ram += old.memory_size;
789 size -= old.memory_size;
790 continue;
793 /* register prefix slot */
794 if (old.start_addr < start_addr) {
795 mem = kvm_alloc_slot(kml);
796 mem->memory_size = start_addr - old.start_addr;
797 mem->start_addr = old.start_addr;
798 mem->ram = old.ram;
799 mem->flags = kvm_mem_flags(mr);
801 err = kvm_set_user_memory_region(kml, mem);
802 if (err) {
803 fprintf(stderr, "%s: error registering prefix slot: %s\n",
804 __func__, strerror(-err));
805 #ifdef TARGET_PPC
806 fprintf(stderr, "%s: This is probably because your kernel's " \
807 "PAGE_SIZE is too big. Please try to use 4k " \
808 "PAGE_SIZE!\n", __func__);
809 #endif
810 abort();
814 /* register suffix slot */
815 if (old.start_addr + old.memory_size > start_addr + size) {
816 ram_addr_t size_delta;
818 mem = kvm_alloc_slot(kml);
819 mem->start_addr = start_addr + size;
820 size_delta = mem->start_addr - old.start_addr;
821 mem->memory_size = old.memory_size - size_delta;
822 mem->ram = old.ram + size_delta;
823 mem->flags = kvm_mem_flags(mr);
825 err = kvm_set_user_memory_region(kml, mem);
826 if (err) {
827 fprintf(stderr, "%s: error registering suffix slot: %s\n",
828 __func__, strerror(-err));
829 abort();
834 /* in case the KVM bug workaround already "consumed" the new slot */
835 if (!size) {
836 return;
838 if (!add) {
839 return;
841 mem = kvm_alloc_slot(kml);
842 mem->memory_size = size;
843 mem->start_addr = start_addr;
844 mem->ram = ram;
845 mem->flags = kvm_mem_flags(mr);
847 err = kvm_set_user_memory_region(kml, mem);
848 if (err) {
849 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
850 strerror(-err));
851 abort();
855 static void kvm_region_add(MemoryListener *listener,
856 MemoryRegionSection *section)
858 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
860 memory_region_ref(section->mr);
861 kvm_set_phys_mem(kml, section, true);
864 static void kvm_region_del(MemoryListener *listener,
865 MemoryRegionSection *section)
867 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
869 kvm_set_phys_mem(kml, section, false);
870 memory_region_unref(section->mr);
873 static void kvm_log_sync(MemoryListener *listener,
874 MemoryRegionSection *section)
876 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
877 int r;
879 r = kvm_physical_sync_dirty_bitmap(kml, section);
880 if (r < 0) {
881 abort();
885 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
886 MemoryRegionSection *section,
887 bool match_data, uint64_t data,
888 EventNotifier *e)
890 int fd = event_notifier_get_fd(e);
891 int r;
893 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
894 data, true, int128_get64(section->size),
895 match_data);
896 if (r < 0) {
897 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
898 __func__, strerror(-r));
899 abort();
903 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
904 MemoryRegionSection *section,
905 bool match_data, uint64_t data,
906 EventNotifier *e)
908 int fd = event_notifier_get_fd(e);
909 int r;
911 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
912 data, false, int128_get64(section->size),
913 match_data);
914 if (r < 0) {
915 abort();
919 static void kvm_io_ioeventfd_add(MemoryListener *listener,
920 MemoryRegionSection *section,
921 bool match_data, uint64_t data,
922 EventNotifier *e)
924 int fd = event_notifier_get_fd(e);
925 int r;
927 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
928 data, true, int128_get64(section->size),
929 match_data);
930 if (r < 0) {
931 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
932 __func__, strerror(-r));
933 abort();
937 static void kvm_io_ioeventfd_del(MemoryListener *listener,
938 MemoryRegionSection *section,
939 bool match_data, uint64_t data,
940 EventNotifier *e)
943 int fd = event_notifier_get_fd(e);
944 int r;
946 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
947 data, false, int128_get64(section->size),
948 match_data);
949 if (r < 0) {
950 abort();
954 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
955 AddressSpace *as, int as_id)
957 int i;
959 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
960 kml->as_id = as_id;
962 for (i = 0; i < s->nr_slots; i++) {
963 kml->slots[i].slot = i;
966 kml->listener.region_add = kvm_region_add;
967 kml->listener.region_del = kvm_region_del;
968 kml->listener.log_start = kvm_log_start;
969 kml->listener.log_stop = kvm_log_stop;
970 kml->listener.log_sync = kvm_log_sync;
971 kml->listener.priority = 10;
973 memory_listener_register(&kml->listener, as);
976 static MemoryListener kvm_io_listener = {
977 .eventfd_add = kvm_io_ioeventfd_add,
978 .eventfd_del = kvm_io_ioeventfd_del,
979 .priority = 10,
982 static void kvm_handle_interrupt(CPUState *cpu, int mask)
984 cpu->interrupt_request |= mask;
986 if (!qemu_cpu_is_self(cpu)) {
987 qemu_cpu_kick(cpu);
991 int kvm_set_irq(KVMState *s, int irq, int level)
993 struct kvm_irq_level event;
994 int ret;
996 assert(kvm_async_interrupts_enabled());
998 event.level = level;
999 event.irq = irq;
1000 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1001 if (ret < 0) {
1002 perror("kvm_set_irq");
1003 abort();
1006 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1009 #ifdef KVM_CAP_IRQ_ROUTING
1010 typedef struct KVMMSIRoute {
1011 struct kvm_irq_routing_entry kroute;
1012 QTAILQ_ENTRY(KVMMSIRoute) entry;
1013 } KVMMSIRoute;
1015 static void set_gsi(KVMState *s, unsigned int gsi)
1017 set_bit(gsi, s->used_gsi_bitmap);
1020 static void clear_gsi(KVMState *s, unsigned int gsi)
1022 clear_bit(gsi, s->used_gsi_bitmap);
1025 void kvm_init_irq_routing(KVMState *s)
1027 int gsi_count, i;
1029 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1030 if (gsi_count > 0) {
1031 /* Round up so we can search ints using ffs */
1032 s->used_gsi_bitmap = bitmap_new(gsi_count);
1033 s->gsi_count = gsi_count;
1036 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1037 s->nr_allocated_irq_routes = 0;
1039 if (!kvm_direct_msi_allowed) {
1040 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1041 QTAILQ_INIT(&s->msi_hashtab[i]);
1045 kvm_arch_init_irq_routing(s);
1048 void kvm_irqchip_commit_routes(KVMState *s)
1050 int ret;
1052 if (kvm_gsi_direct_mapping()) {
1053 return;
1056 if (!kvm_gsi_routing_enabled()) {
1057 return;
1060 s->irq_routes->flags = 0;
1061 trace_kvm_irqchip_commit_routes();
1062 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1063 assert(ret == 0);
1066 static void kvm_add_routing_entry(KVMState *s,
1067 struct kvm_irq_routing_entry *entry)
1069 struct kvm_irq_routing_entry *new;
1070 int n, size;
1072 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1073 n = s->nr_allocated_irq_routes * 2;
1074 if (n < 64) {
1075 n = 64;
1077 size = sizeof(struct kvm_irq_routing);
1078 size += n * sizeof(*new);
1079 s->irq_routes = g_realloc(s->irq_routes, size);
1080 s->nr_allocated_irq_routes = n;
1082 n = s->irq_routes->nr++;
1083 new = &s->irq_routes->entries[n];
1085 *new = *entry;
1087 set_gsi(s, entry->gsi);
1090 static int kvm_update_routing_entry(KVMState *s,
1091 struct kvm_irq_routing_entry *new_entry)
1093 struct kvm_irq_routing_entry *entry;
1094 int n;
1096 for (n = 0; n < s->irq_routes->nr; n++) {
1097 entry = &s->irq_routes->entries[n];
1098 if (entry->gsi != new_entry->gsi) {
1099 continue;
1102 if(!memcmp(entry, new_entry, sizeof *entry)) {
1103 return 0;
1106 *entry = *new_entry;
1108 return 0;
1111 return -ESRCH;
1114 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1116 struct kvm_irq_routing_entry e = {};
1118 assert(pin < s->gsi_count);
1120 e.gsi = irq;
1121 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1122 e.flags = 0;
1123 e.u.irqchip.irqchip = irqchip;
1124 e.u.irqchip.pin = pin;
1125 kvm_add_routing_entry(s, &e);
1128 void kvm_irqchip_release_virq(KVMState *s, int virq)
1130 struct kvm_irq_routing_entry *e;
1131 int i;
1133 if (kvm_gsi_direct_mapping()) {
1134 return;
1137 for (i = 0; i < s->irq_routes->nr; i++) {
1138 e = &s->irq_routes->entries[i];
1139 if (e->gsi == virq) {
1140 s->irq_routes->nr--;
1141 *e = s->irq_routes->entries[s->irq_routes->nr];
1144 clear_gsi(s, virq);
1145 kvm_arch_release_virq_post(virq);
1148 static unsigned int kvm_hash_msi(uint32_t data)
1150 /* This is optimized for IA32 MSI layout. However, no other arch shall
1151 * repeat the mistake of not providing a direct MSI injection API. */
1152 return data & 0xff;
1155 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1157 KVMMSIRoute *route, *next;
1158 unsigned int hash;
1160 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1161 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1162 kvm_irqchip_release_virq(s, route->kroute.gsi);
1163 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1164 g_free(route);
1169 static int kvm_irqchip_get_virq(KVMState *s)
1171 int next_virq;
1174 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1175 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1176 * number can succeed even though a new route entry cannot be added.
1177 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1179 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1180 kvm_flush_dynamic_msi_routes(s);
1183 /* Return the lowest unused GSI in the bitmap */
1184 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1185 if (next_virq >= s->gsi_count) {
1186 return -ENOSPC;
1187 } else {
1188 return next_virq;
1192 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1194 unsigned int hash = kvm_hash_msi(msg.data);
1195 KVMMSIRoute *route;
1197 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1198 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1199 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1200 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1201 return route;
1204 return NULL;
1207 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1209 struct kvm_msi msi;
1210 KVMMSIRoute *route;
1212 if (kvm_direct_msi_allowed) {
1213 msi.address_lo = (uint32_t)msg.address;
1214 msi.address_hi = msg.address >> 32;
1215 msi.data = le32_to_cpu(msg.data);
1216 msi.flags = 0;
1217 memset(msi.pad, 0, sizeof(msi.pad));
1219 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1222 route = kvm_lookup_msi_route(s, msg);
1223 if (!route) {
1224 int virq;
1226 virq = kvm_irqchip_get_virq(s);
1227 if (virq < 0) {
1228 return virq;
1231 route = g_malloc0(sizeof(KVMMSIRoute));
1232 route->kroute.gsi = virq;
1233 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1234 route->kroute.flags = 0;
1235 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1236 route->kroute.u.msi.address_hi = msg.address >> 32;
1237 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1239 kvm_add_routing_entry(s, &route->kroute);
1240 kvm_irqchip_commit_routes(s);
1242 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1243 entry);
1246 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1248 return kvm_set_irq(s, route->kroute.gsi, 1);
1251 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1253 struct kvm_irq_routing_entry kroute = {};
1254 int virq;
1255 MSIMessage msg = {0, 0};
1257 if (dev) {
1258 msg = pci_get_msi_message(dev, vector);
1261 if (kvm_gsi_direct_mapping()) {
1262 return kvm_arch_msi_data_to_gsi(msg.data);
1265 if (!kvm_gsi_routing_enabled()) {
1266 return -ENOSYS;
1269 virq = kvm_irqchip_get_virq(s);
1270 if (virq < 0) {
1271 return virq;
1274 kroute.gsi = virq;
1275 kroute.type = KVM_IRQ_ROUTING_MSI;
1276 kroute.flags = 0;
1277 kroute.u.msi.address_lo = (uint32_t)msg.address;
1278 kroute.u.msi.address_hi = msg.address >> 32;
1279 kroute.u.msi.data = le32_to_cpu(msg.data);
1280 if (kvm_msi_devid_required()) {
1281 kroute.flags = KVM_MSI_VALID_DEVID;
1282 kroute.u.msi.devid = pci_requester_id(dev);
1284 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1285 kvm_irqchip_release_virq(s, virq);
1286 return -EINVAL;
1289 trace_kvm_irqchip_add_msi_route(virq);
1291 kvm_add_routing_entry(s, &kroute);
1292 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1293 kvm_irqchip_commit_routes(s);
1295 return virq;
1298 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1299 PCIDevice *dev)
1301 struct kvm_irq_routing_entry kroute = {};
1303 if (kvm_gsi_direct_mapping()) {
1304 return 0;
1307 if (!kvm_irqchip_in_kernel()) {
1308 return -ENOSYS;
1311 kroute.gsi = virq;
1312 kroute.type = KVM_IRQ_ROUTING_MSI;
1313 kroute.flags = 0;
1314 kroute.u.msi.address_lo = (uint32_t)msg.address;
1315 kroute.u.msi.address_hi = msg.address >> 32;
1316 kroute.u.msi.data = le32_to_cpu(msg.data);
1317 if (kvm_msi_devid_required()) {
1318 kroute.flags = KVM_MSI_VALID_DEVID;
1319 kroute.u.msi.devid = pci_requester_id(dev);
1321 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1322 return -EINVAL;
1325 trace_kvm_irqchip_update_msi_route(virq);
1327 return kvm_update_routing_entry(s, &kroute);
1330 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1331 bool assign)
1333 struct kvm_irqfd irqfd = {
1334 .fd = fd,
1335 .gsi = virq,
1336 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1339 if (rfd != -1) {
1340 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1341 irqfd.resamplefd = rfd;
1344 if (!kvm_irqfds_enabled()) {
1345 return -ENOSYS;
1348 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1351 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1353 struct kvm_irq_routing_entry kroute = {};
1354 int virq;
1356 if (!kvm_gsi_routing_enabled()) {
1357 return -ENOSYS;
1360 virq = kvm_irqchip_get_virq(s);
1361 if (virq < 0) {
1362 return virq;
1365 kroute.gsi = virq;
1366 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1367 kroute.flags = 0;
1368 kroute.u.adapter.summary_addr = adapter->summary_addr;
1369 kroute.u.adapter.ind_addr = adapter->ind_addr;
1370 kroute.u.adapter.summary_offset = adapter->summary_offset;
1371 kroute.u.adapter.ind_offset = adapter->ind_offset;
1372 kroute.u.adapter.adapter_id = adapter->adapter_id;
1374 kvm_add_routing_entry(s, &kroute);
1376 return virq;
1379 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1381 struct kvm_irq_routing_entry kroute = {};
1382 int virq;
1384 if (!kvm_gsi_routing_enabled()) {
1385 return -ENOSYS;
1387 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1388 return -ENOSYS;
1390 virq = kvm_irqchip_get_virq(s);
1391 if (virq < 0) {
1392 return virq;
1395 kroute.gsi = virq;
1396 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1397 kroute.flags = 0;
1398 kroute.u.hv_sint.vcpu = vcpu;
1399 kroute.u.hv_sint.sint = sint;
1401 kvm_add_routing_entry(s, &kroute);
1402 kvm_irqchip_commit_routes(s);
1404 return virq;
1407 #else /* !KVM_CAP_IRQ_ROUTING */
1409 void kvm_init_irq_routing(KVMState *s)
1413 void kvm_irqchip_release_virq(KVMState *s, int virq)
1417 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1419 abort();
1422 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1424 return -ENOSYS;
1427 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1429 return -ENOSYS;
1432 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1434 return -ENOSYS;
1437 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1439 abort();
1442 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1444 return -ENOSYS;
1446 #endif /* !KVM_CAP_IRQ_ROUTING */
1448 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1449 EventNotifier *rn, int virq)
1451 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1452 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1455 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1456 int virq)
1458 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1459 false);
1462 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1463 EventNotifier *rn, qemu_irq irq)
1465 gpointer key, gsi;
1466 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1468 if (!found) {
1469 return -ENXIO;
1471 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1474 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1475 qemu_irq irq)
1477 gpointer key, gsi;
1478 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1480 if (!found) {
1481 return -ENXIO;
1483 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1486 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1488 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1491 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1493 int ret;
1495 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1497 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1498 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1499 if (ret < 0) {
1500 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1501 exit(1);
1503 } else {
1504 return;
1507 /* First probe and see if there's a arch-specific hook to create the
1508 * in-kernel irqchip for us */
1509 ret = kvm_arch_irqchip_create(machine, s);
1510 if (ret == 0) {
1511 if (machine_kernel_irqchip_split(machine)) {
1512 perror("Split IRQ chip mode not supported.");
1513 exit(1);
1514 } else {
1515 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1518 if (ret < 0) {
1519 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1520 exit(1);
1523 kvm_kernel_irqchip = true;
1524 /* If we have an in-kernel IRQ chip then we must have asynchronous
1525 * interrupt delivery (though the reverse is not necessarily true)
1527 kvm_async_interrupts_allowed = true;
1528 kvm_halt_in_kernel_allowed = true;
1530 kvm_init_irq_routing(s);
1532 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1535 /* Find number of supported CPUs using the recommended
1536 * procedure from the kernel API documentation to cope with
1537 * older kernels that may be missing capabilities.
1539 static int kvm_recommended_vcpus(KVMState *s)
1541 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1542 return (ret) ? ret : 4;
1545 static int kvm_max_vcpus(KVMState *s)
1547 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1548 return (ret) ? ret : kvm_recommended_vcpus(s);
1551 static int kvm_max_vcpu_id(KVMState *s)
1553 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1554 return (ret) ? ret : kvm_max_vcpus(s);
1557 bool kvm_vcpu_id_is_valid(int vcpu_id)
1559 KVMState *s = KVM_STATE(current_machine->accelerator);
1560 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1563 static int kvm_init(MachineState *ms)
1565 MachineClass *mc = MACHINE_GET_CLASS(ms);
1566 static const char upgrade_note[] =
1567 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1568 "(see http://sourceforge.net/projects/kvm).\n";
1569 struct {
1570 const char *name;
1571 int num;
1572 } num_cpus[] = {
1573 { "SMP", smp_cpus },
1574 { "hotpluggable", max_cpus },
1575 { NULL, }
1576 }, *nc = num_cpus;
1577 int soft_vcpus_limit, hard_vcpus_limit;
1578 KVMState *s;
1579 const KVMCapabilityInfo *missing_cap;
1580 int ret;
1581 int type = 0;
1582 const char *kvm_type;
1584 s = KVM_STATE(ms->accelerator);
1587 * On systems where the kernel can support different base page
1588 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1589 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1590 * page size for the system though.
1592 assert(TARGET_PAGE_SIZE <= getpagesize());
1594 s->sigmask_len = 8;
1596 #ifdef KVM_CAP_SET_GUEST_DEBUG
1597 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1598 #endif
1599 QLIST_INIT(&s->kvm_parked_vcpus);
1600 s->vmfd = -1;
1601 s->fd = qemu_open("/dev/kvm", O_RDWR);
1602 if (s->fd == -1) {
1603 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1604 ret = -errno;
1605 goto err;
1608 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1609 if (ret < KVM_API_VERSION) {
1610 if (ret >= 0) {
1611 ret = -EINVAL;
1613 fprintf(stderr, "kvm version too old\n");
1614 goto err;
1617 if (ret > KVM_API_VERSION) {
1618 ret = -EINVAL;
1619 fprintf(stderr, "kvm version not supported\n");
1620 goto err;
1623 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1624 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1626 /* If unspecified, use the default value */
1627 if (!s->nr_slots) {
1628 s->nr_slots = 32;
1631 /* check the vcpu limits */
1632 soft_vcpus_limit = kvm_recommended_vcpus(s);
1633 hard_vcpus_limit = kvm_max_vcpus(s);
1635 while (nc->name) {
1636 if (nc->num > soft_vcpus_limit) {
1637 fprintf(stderr,
1638 "Warning: Number of %s cpus requested (%d) exceeds "
1639 "the recommended cpus supported by KVM (%d)\n",
1640 nc->name, nc->num, soft_vcpus_limit);
1642 if (nc->num > hard_vcpus_limit) {
1643 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1644 "the maximum cpus supported by KVM (%d)\n",
1645 nc->name, nc->num, hard_vcpus_limit);
1646 exit(1);
1649 nc++;
1652 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1653 if (mc->kvm_type) {
1654 type = mc->kvm_type(kvm_type);
1655 } else if (kvm_type) {
1656 ret = -EINVAL;
1657 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1658 goto err;
1661 do {
1662 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1663 } while (ret == -EINTR);
1665 if (ret < 0) {
1666 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1667 strerror(-ret));
1669 #ifdef TARGET_S390X
1670 if (ret == -EINVAL) {
1671 fprintf(stderr,
1672 "Host kernel setup problem detected. Please verify:\n");
1673 fprintf(stderr, "- for kernels supporting the switch_amode or"
1674 " user_mode parameters, whether\n");
1675 fprintf(stderr,
1676 " user space is running in primary address space\n");
1677 fprintf(stderr,
1678 "- for kernels supporting the vm.allocate_pgste sysctl, "
1679 "whether it is enabled\n");
1681 #endif
1682 goto err;
1685 s->vmfd = ret;
1686 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1687 if (!missing_cap) {
1688 missing_cap =
1689 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1691 if (missing_cap) {
1692 ret = -EINVAL;
1693 fprintf(stderr, "kvm does not support %s\n%s",
1694 missing_cap->name, upgrade_note);
1695 goto err;
1698 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1700 s->broken_set_mem_region = 1;
1701 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1702 if (ret > 0) {
1703 s->broken_set_mem_region = 0;
1706 #ifdef KVM_CAP_VCPU_EVENTS
1707 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1708 #endif
1710 s->robust_singlestep =
1711 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1713 #ifdef KVM_CAP_DEBUGREGS
1714 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1715 #endif
1717 #ifdef KVM_CAP_IRQ_ROUTING
1718 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1719 #endif
1721 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1723 s->irq_set_ioctl = KVM_IRQ_LINE;
1724 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1725 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1728 #ifdef KVM_CAP_READONLY_MEM
1729 kvm_readonly_mem_allowed =
1730 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1731 #endif
1733 kvm_eventfds_allowed =
1734 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1736 kvm_irqfds_allowed =
1737 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1739 kvm_resamplefds_allowed =
1740 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1742 kvm_vm_attributes_allowed =
1743 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1745 kvm_ioeventfd_any_length_allowed =
1746 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1748 ret = kvm_arch_init(ms, s);
1749 if (ret < 0) {
1750 goto err;
1753 if (machine_kernel_irqchip_allowed(ms)) {
1754 kvm_irqchip_create(ms, s);
1757 kvm_state = s;
1759 if (kvm_eventfds_allowed) {
1760 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1761 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1763 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1764 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1766 kvm_memory_listener_register(s, &s->memory_listener,
1767 &address_space_memory, 0);
1768 memory_listener_register(&kvm_io_listener,
1769 &address_space_io);
1771 s->many_ioeventfds = kvm_check_many_ioeventfds();
1773 cpu_interrupt_handler = kvm_handle_interrupt;
1775 return 0;
1777 err:
1778 assert(ret < 0);
1779 if (s->vmfd >= 0) {
1780 close(s->vmfd);
1782 if (s->fd != -1) {
1783 close(s->fd);
1785 g_free(s->memory_listener.slots);
1787 return ret;
1790 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1792 s->sigmask_len = sigmask_len;
1795 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1796 int size, uint32_t count)
1798 int i;
1799 uint8_t *ptr = data;
1801 for (i = 0; i < count; i++) {
1802 address_space_rw(&address_space_io, port, attrs,
1803 ptr, size,
1804 direction == KVM_EXIT_IO_OUT);
1805 ptr += size;
1809 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1811 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1812 run->internal.suberror);
1814 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1815 int i;
1817 for (i = 0; i < run->internal.ndata; ++i) {
1818 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1819 i, (uint64_t)run->internal.data[i]);
1822 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1823 fprintf(stderr, "emulation failure\n");
1824 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1825 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1826 return EXCP_INTERRUPT;
1829 /* FIXME: Should trigger a qmp message to let management know
1830 * something went wrong.
1832 return -1;
1835 void kvm_flush_coalesced_mmio_buffer(void)
1837 KVMState *s = kvm_state;
1839 if (s->coalesced_flush_in_progress) {
1840 return;
1843 s->coalesced_flush_in_progress = true;
1845 if (s->coalesced_mmio_ring) {
1846 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1847 while (ring->first != ring->last) {
1848 struct kvm_coalesced_mmio *ent;
1850 ent = &ring->coalesced_mmio[ring->first];
1852 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1853 smp_wmb();
1854 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1858 s->coalesced_flush_in_progress = false;
1861 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1863 if (!cpu->kvm_vcpu_dirty) {
1864 kvm_arch_get_registers(cpu);
1865 cpu->kvm_vcpu_dirty = true;
1869 void kvm_cpu_synchronize_state(CPUState *cpu)
1871 if (!cpu->kvm_vcpu_dirty) {
1872 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1876 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1878 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1879 cpu->kvm_vcpu_dirty = false;
1882 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1884 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1887 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1889 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1890 cpu->kvm_vcpu_dirty = false;
1893 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1895 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1898 #ifdef KVM_HAVE_MCE_INJECTION
1899 static __thread void *pending_sigbus_addr;
1900 static __thread int pending_sigbus_code;
1901 static __thread bool have_sigbus_pending;
1902 #endif
1904 static void kvm_cpu_kick(CPUState *cpu)
1906 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1909 static void kvm_cpu_kick_self(void)
1911 if (kvm_immediate_exit) {
1912 kvm_cpu_kick(current_cpu);
1913 } else {
1914 qemu_cpu_kick_self();
1918 static void kvm_eat_signals(CPUState *cpu)
1920 struct timespec ts = { 0, 0 };
1921 siginfo_t siginfo;
1922 sigset_t waitset;
1923 sigset_t chkset;
1924 int r;
1926 if (kvm_immediate_exit) {
1927 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1928 /* Write kvm_run->immediate_exit before the cpu->exit_request
1929 * write in kvm_cpu_exec.
1931 smp_wmb();
1932 return;
1935 sigemptyset(&waitset);
1936 sigaddset(&waitset, SIG_IPI);
1938 do {
1939 r = sigtimedwait(&waitset, &siginfo, &ts);
1940 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1941 perror("sigtimedwait");
1942 exit(1);
1945 r = sigpending(&chkset);
1946 if (r == -1) {
1947 perror("sigpending");
1948 exit(1);
1950 } while (sigismember(&chkset, SIG_IPI));
1953 int kvm_cpu_exec(CPUState *cpu)
1955 struct kvm_run *run = cpu->kvm_run;
1956 int ret, run_ret;
1958 DPRINTF("kvm_cpu_exec()\n");
1960 if (kvm_arch_process_async_events(cpu)) {
1961 atomic_set(&cpu->exit_request, 0);
1962 return EXCP_HLT;
1965 qemu_mutex_unlock_iothread();
1967 do {
1968 MemTxAttrs attrs;
1970 if (cpu->kvm_vcpu_dirty) {
1971 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1972 cpu->kvm_vcpu_dirty = false;
1975 kvm_arch_pre_run(cpu, run);
1976 if (atomic_read(&cpu->exit_request)) {
1977 DPRINTF("interrupt exit requested\n");
1979 * KVM requires us to reenter the kernel after IO exits to complete
1980 * instruction emulation. This self-signal will ensure that we
1981 * leave ASAP again.
1983 kvm_cpu_kick_self();
1986 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1987 * Matching barrier in kvm_eat_signals.
1989 smp_rmb();
1991 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1993 attrs = kvm_arch_post_run(cpu, run);
1995 #ifdef KVM_HAVE_MCE_INJECTION
1996 if (unlikely(have_sigbus_pending)) {
1997 qemu_mutex_lock_iothread();
1998 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1999 pending_sigbus_addr);
2000 have_sigbus_pending = false;
2001 qemu_mutex_unlock_iothread();
2003 #endif
2005 if (run_ret < 0) {
2006 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2007 DPRINTF("io window exit\n");
2008 kvm_eat_signals(cpu);
2009 ret = EXCP_INTERRUPT;
2010 break;
2012 fprintf(stderr, "error: kvm run failed %s\n",
2013 strerror(-run_ret));
2014 #ifdef TARGET_PPC
2015 if (run_ret == -EBUSY) {
2016 fprintf(stderr,
2017 "This is probably because your SMT is enabled.\n"
2018 "VCPU can only run on primary threads with all "
2019 "secondary threads offline.\n");
2021 #endif
2022 ret = -1;
2023 break;
2026 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2027 switch (run->exit_reason) {
2028 case KVM_EXIT_IO:
2029 DPRINTF("handle_io\n");
2030 /* Called outside BQL */
2031 kvm_handle_io(run->io.port, attrs,
2032 (uint8_t *)run + run->io.data_offset,
2033 run->io.direction,
2034 run->io.size,
2035 run->io.count);
2036 ret = 0;
2037 break;
2038 case KVM_EXIT_MMIO:
2039 DPRINTF("handle_mmio\n");
2040 /* Called outside BQL */
2041 address_space_rw(&address_space_memory,
2042 run->mmio.phys_addr, attrs,
2043 run->mmio.data,
2044 run->mmio.len,
2045 run->mmio.is_write);
2046 ret = 0;
2047 break;
2048 case KVM_EXIT_IRQ_WINDOW_OPEN:
2049 DPRINTF("irq_window_open\n");
2050 ret = EXCP_INTERRUPT;
2051 break;
2052 case KVM_EXIT_SHUTDOWN:
2053 DPRINTF("shutdown\n");
2054 qemu_system_reset_request();
2055 ret = EXCP_INTERRUPT;
2056 break;
2057 case KVM_EXIT_UNKNOWN:
2058 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2059 (uint64_t)run->hw.hardware_exit_reason);
2060 ret = -1;
2061 break;
2062 case KVM_EXIT_INTERNAL_ERROR:
2063 ret = kvm_handle_internal_error(cpu, run);
2064 break;
2065 case KVM_EXIT_SYSTEM_EVENT:
2066 switch (run->system_event.type) {
2067 case KVM_SYSTEM_EVENT_SHUTDOWN:
2068 qemu_system_shutdown_request();
2069 ret = EXCP_INTERRUPT;
2070 break;
2071 case KVM_SYSTEM_EVENT_RESET:
2072 qemu_system_reset_request();
2073 ret = EXCP_INTERRUPT;
2074 break;
2075 case KVM_SYSTEM_EVENT_CRASH:
2076 kvm_cpu_synchronize_state(cpu);
2077 qemu_mutex_lock_iothread();
2078 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2079 qemu_mutex_unlock_iothread();
2080 ret = 0;
2081 break;
2082 default:
2083 DPRINTF("kvm_arch_handle_exit\n");
2084 ret = kvm_arch_handle_exit(cpu, run);
2085 break;
2087 break;
2088 default:
2089 DPRINTF("kvm_arch_handle_exit\n");
2090 ret = kvm_arch_handle_exit(cpu, run);
2091 break;
2093 } while (ret == 0);
2095 qemu_mutex_lock_iothread();
2097 if (ret < 0) {
2098 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2099 vm_stop(RUN_STATE_INTERNAL_ERROR);
2102 atomic_set(&cpu->exit_request, 0);
2103 return ret;
2106 int kvm_ioctl(KVMState *s, int type, ...)
2108 int ret;
2109 void *arg;
2110 va_list ap;
2112 va_start(ap, type);
2113 arg = va_arg(ap, void *);
2114 va_end(ap);
2116 trace_kvm_ioctl(type, arg);
2117 ret = ioctl(s->fd, type, arg);
2118 if (ret == -1) {
2119 ret = -errno;
2121 return ret;
2124 int kvm_vm_ioctl(KVMState *s, int type, ...)
2126 int ret;
2127 void *arg;
2128 va_list ap;
2130 va_start(ap, type);
2131 arg = va_arg(ap, void *);
2132 va_end(ap);
2134 trace_kvm_vm_ioctl(type, arg);
2135 ret = ioctl(s->vmfd, type, arg);
2136 if (ret == -1) {
2137 ret = -errno;
2139 return ret;
2142 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2144 int ret;
2145 void *arg;
2146 va_list ap;
2148 va_start(ap, type);
2149 arg = va_arg(ap, void *);
2150 va_end(ap);
2152 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2153 ret = ioctl(cpu->kvm_fd, type, arg);
2154 if (ret == -1) {
2155 ret = -errno;
2157 return ret;
2160 int kvm_device_ioctl(int fd, int type, ...)
2162 int ret;
2163 void *arg;
2164 va_list ap;
2166 va_start(ap, type);
2167 arg = va_arg(ap, void *);
2168 va_end(ap);
2170 trace_kvm_device_ioctl(fd, type, arg);
2171 ret = ioctl(fd, type, arg);
2172 if (ret == -1) {
2173 ret = -errno;
2175 return ret;
2178 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2180 int ret;
2181 struct kvm_device_attr attribute = {
2182 .group = group,
2183 .attr = attr,
2186 if (!kvm_vm_attributes_allowed) {
2187 return 0;
2190 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2191 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2192 return ret ? 0 : 1;
2195 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2197 struct kvm_device_attr attribute = {
2198 .group = group,
2199 .attr = attr,
2200 .flags = 0,
2203 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2206 void kvm_device_access(int fd, int group, uint64_t attr,
2207 void *val, bool write)
2209 struct kvm_device_attr kvmattr;
2210 int err;
2212 kvmattr.flags = 0;
2213 kvmattr.group = group;
2214 kvmattr.attr = attr;
2215 kvmattr.addr = (uintptr_t)val;
2217 err = kvm_device_ioctl(fd,
2218 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2219 &kvmattr);
2220 if (err < 0) {
2221 error_report("KVM_%s_DEVICE_ATTR failed: %s",
2222 write ? "SET" : "GET", strerror(-err));
2223 error_printf("Group %d attr 0x%016" PRIx64 "\n", group, attr);
2224 abort();
2228 /* Return 1 on success, 0 on failure */
2229 int kvm_has_sync_mmu(void)
2231 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2234 int kvm_has_vcpu_events(void)
2236 return kvm_state->vcpu_events;
2239 int kvm_has_robust_singlestep(void)
2241 return kvm_state->robust_singlestep;
2244 int kvm_has_debugregs(void)
2246 return kvm_state->debugregs;
2249 int kvm_has_many_ioeventfds(void)
2251 if (!kvm_enabled()) {
2252 return 0;
2254 return kvm_state->many_ioeventfds;
2257 int kvm_has_gsi_routing(void)
2259 #ifdef KVM_CAP_IRQ_ROUTING
2260 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2261 #else
2262 return false;
2263 #endif
2266 int kvm_has_intx_set_mask(void)
2268 return kvm_state->intx_set_mask;
2271 #ifdef KVM_CAP_SET_GUEST_DEBUG
2272 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2273 target_ulong pc)
2275 struct kvm_sw_breakpoint *bp;
2277 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2278 if (bp->pc == pc) {
2279 return bp;
2282 return NULL;
2285 int kvm_sw_breakpoints_active(CPUState *cpu)
2287 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2290 struct kvm_set_guest_debug_data {
2291 struct kvm_guest_debug dbg;
2292 int err;
2295 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2297 struct kvm_set_guest_debug_data *dbg_data =
2298 (struct kvm_set_guest_debug_data *) data.host_ptr;
2300 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2301 &dbg_data->dbg);
2304 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2306 struct kvm_set_guest_debug_data data;
2308 data.dbg.control = reinject_trap;
2310 if (cpu->singlestep_enabled) {
2311 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2313 kvm_arch_update_guest_debug(cpu, &data.dbg);
2315 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2316 RUN_ON_CPU_HOST_PTR(&data));
2317 return data.err;
2320 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2321 target_ulong len, int type)
2323 struct kvm_sw_breakpoint *bp;
2324 int err;
2326 if (type == GDB_BREAKPOINT_SW) {
2327 bp = kvm_find_sw_breakpoint(cpu, addr);
2328 if (bp) {
2329 bp->use_count++;
2330 return 0;
2333 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2334 bp->pc = addr;
2335 bp->use_count = 1;
2336 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2337 if (err) {
2338 g_free(bp);
2339 return err;
2342 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2343 } else {
2344 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2345 if (err) {
2346 return err;
2350 CPU_FOREACH(cpu) {
2351 err = kvm_update_guest_debug(cpu, 0);
2352 if (err) {
2353 return err;
2356 return 0;
2359 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2360 target_ulong len, int type)
2362 struct kvm_sw_breakpoint *bp;
2363 int err;
2365 if (type == GDB_BREAKPOINT_SW) {
2366 bp = kvm_find_sw_breakpoint(cpu, addr);
2367 if (!bp) {
2368 return -ENOENT;
2371 if (bp->use_count > 1) {
2372 bp->use_count--;
2373 return 0;
2376 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2377 if (err) {
2378 return err;
2381 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2382 g_free(bp);
2383 } else {
2384 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2385 if (err) {
2386 return err;
2390 CPU_FOREACH(cpu) {
2391 err = kvm_update_guest_debug(cpu, 0);
2392 if (err) {
2393 return err;
2396 return 0;
2399 void kvm_remove_all_breakpoints(CPUState *cpu)
2401 struct kvm_sw_breakpoint *bp, *next;
2402 KVMState *s = cpu->kvm_state;
2403 CPUState *tmpcpu;
2405 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2406 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2407 /* Try harder to find a CPU that currently sees the breakpoint. */
2408 CPU_FOREACH(tmpcpu) {
2409 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2410 break;
2414 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2415 g_free(bp);
2417 kvm_arch_remove_all_hw_breakpoints();
2419 CPU_FOREACH(cpu) {
2420 kvm_update_guest_debug(cpu, 0);
2424 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2426 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2428 return -EINVAL;
2431 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2432 target_ulong len, int type)
2434 return -EINVAL;
2437 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2438 target_ulong len, int type)
2440 return -EINVAL;
2443 void kvm_remove_all_breakpoints(CPUState *cpu)
2446 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2448 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2450 KVMState *s = kvm_state;
2451 struct kvm_signal_mask *sigmask;
2452 int r;
2454 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2456 sigmask->len = s->sigmask_len;
2457 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2458 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2459 g_free(sigmask);
2461 return r;
2464 static void kvm_ipi_signal(int sig)
2466 if (current_cpu) {
2467 assert(kvm_immediate_exit);
2468 kvm_cpu_kick(current_cpu);
2472 void kvm_init_cpu_signals(CPUState *cpu)
2474 int r;
2475 sigset_t set;
2476 struct sigaction sigact;
2478 memset(&sigact, 0, sizeof(sigact));
2479 sigact.sa_handler = kvm_ipi_signal;
2480 sigaction(SIG_IPI, &sigact, NULL);
2482 pthread_sigmask(SIG_BLOCK, NULL, &set);
2483 #if defined KVM_HAVE_MCE_INJECTION
2484 sigdelset(&set, SIGBUS);
2485 pthread_sigmask(SIG_SETMASK, &set, NULL);
2486 #endif
2487 sigdelset(&set, SIG_IPI);
2488 if (kvm_immediate_exit) {
2489 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2490 } else {
2491 r = kvm_set_signal_mask(cpu, &set);
2493 if (r) {
2494 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2495 exit(1);
2499 /* Called asynchronously in VCPU thread. */
2500 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2502 #ifdef KVM_HAVE_MCE_INJECTION
2503 if (have_sigbus_pending) {
2504 return 1;
2506 have_sigbus_pending = true;
2507 pending_sigbus_addr = addr;
2508 pending_sigbus_code = code;
2509 atomic_set(&cpu->exit_request, 1);
2510 return 0;
2511 #else
2512 return 1;
2513 #endif
2516 /* Called synchronously (via signalfd) in main thread. */
2517 int kvm_on_sigbus(int code, void *addr)
2519 #ifdef KVM_HAVE_MCE_INJECTION
2520 /* Action required MCE kills the process if SIGBUS is blocked. Because
2521 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2522 * we can only get action optional here.
2524 assert(code != BUS_MCEERR_AR);
2525 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2526 return 0;
2527 #else
2528 return 1;
2529 #endif
2532 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2534 int ret;
2535 struct kvm_create_device create_dev;
2537 create_dev.type = type;
2538 create_dev.fd = -1;
2539 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2541 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2542 return -ENOTSUP;
2545 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2546 if (ret) {
2547 return ret;
2550 return test ? 0 : create_dev.fd;
2553 bool kvm_device_supported(int vmfd, uint64_t type)
2555 struct kvm_create_device create_dev = {
2556 .type = type,
2557 .fd = -1,
2558 .flags = KVM_CREATE_DEVICE_TEST,
2561 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2562 return false;
2565 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2568 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2570 struct kvm_one_reg reg;
2571 int r;
2573 reg.id = id;
2574 reg.addr = (uintptr_t) source;
2575 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2576 if (r) {
2577 trace_kvm_failed_reg_set(id, strerror(-r));
2579 return r;
2582 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2584 struct kvm_one_reg reg;
2585 int r;
2587 reg.id = id;
2588 reg.addr = (uintptr_t) target;
2589 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2590 if (r) {
2591 trace_kvm_failed_reg_get(id, strerror(-r));
2593 return r;
2596 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2598 AccelClass *ac = ACCEL_CLASS(oc);
2599 ac->name = "KVM";
2600 ac->init_machine = kvm_init;
2601 ac->allowed = &kvm_allowed;
2604 static const TypeInfo kvm_accel_type = {
2605 .name = TYPE_KVM_ACCEL,
2606 .parent = TYPE_ACCEL,
2607 .class_init = kvm_accel_class_init,
2608 .instance_size = sizeof(KVMState),
2611 static void kvm_type_init(void)
2613 type_register_static(&kvm_accel_type);
2616 type_init(kvm_type_init);