disas/arm: Avoid unintended sign extension
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
blob0b208560bde4c8c7125edde3703379f650f72270
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "cpu.h"
22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
24 ARMCPU *arm_cpu = ARM_CPU(cpu);
25 CPUARMState *env = &arm_cpu->env;
27 env->gicv3state = (void *)s;
30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
32 /* Given the CPU, find the right GICv3CPUState struct.
33 * Since we registered the CPU interface with the EL change hook as
34 * the opaque pointer, we can just directly get from the CPU to it.
36 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
39 static bool gicv3_use_ns_bank(CPUARMState *env)
41 /* Return true if we should use the NonSecure bank for a banked GIC
42 * CPU interface register. Note that this differs from the
43 * access_secure_reg() function because GICv3 banked registers are
44 * banked even for AArch64, unlike the other CPU system registers.
46 return !arm_is_secure_below_el3(env);
49 /* The minimum BPR for the virtual interface is a configurable property */
50 static inline int icv_min_vbpr(GICv3CPUState *cs)
52 return 7 - cs->vprebits;
55 /* Simple accessor functions for LR fields */
56 static uint32_t ich_lr_vintid(uint64_t lr)
58 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
61 static uint32_t ich_lr_pintid(uint64_t lr)
63 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
66 static uint32_t ich_lr_prio(uint64_t lr)
68 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
71 static int ich_lr_state(uint64_t lr)
73 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
76 static bool icv_access(CPUARMState *env, int hcr_flags)
78 /* Return true if this ICC_ register access should really be
79 * directed to an ICV_ access. hcr_flags is a mask of
80 * HCR_EL2 bits to check: we treat this as an ICV_ access
81 * if we are in NS EL1 and at least one of the specified
82 * HCR_EL2 bits is set.
84 * ICV registers fall into four categories:
85 * * access if NS EL1 and HCR_EL2.FMO == 1:
86 * all ICV regs with '0' in their name
87 * * access if NS EL1 and HCR_EL2.IMO == 1:
88 * all ICV regs with '1' in their name
89 * * access if NS EL1 and either IMO or FMO == 1:
90 * CTLR, DIR, PMR, RPR
92 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
93 && !arm_is_secure_below_el3(env);
96 static int read_vbpr(GICv3CPUState *cs, int grp)
98 /* Read VBPR value out of the VMCR field (caller must handle
99 * VCBPR effects if required)
101 if (grp == GICV3_G0) {
102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
103 ICH_VMCR_EL2_VBPR0_LENGTH);
104 } else {
105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
106 ICH_VMCR_EL2_VBPR1_LENGTH);
110 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
112 /* Write new VBPR1 value, handling the "writing a value less than
113 * the minimum sets it to the minimum" semantics.
115 int min = icv_min_vbpr(cs);
117 if (grp != GICV3_G0) {
118 min++;
121 value = MAX(value, min);
123 if (grp == GICV3_G0) {
124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
125 ICH_VMCR_EL2_VBPR0_LENGTH, value);
126 } else {
127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
128 ICH_VMCR_EL2_VBPR1_LENGTH, value);
132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
134 /* Return a mask word which clears the unimplemented priority bits
135 * from a priority value for a virtual interrupt. (Not to be confused
136 * with the group priority, whose mask depends on the value of VBPR
137 * for the interrupt group.)
139 return ~0U << (8 - cs->vpribits);
142 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
144 /* Calculate the current running priority based on the set bits
145 * in the ICH Active Priority Registers.
147 int i;
148 int aprmax = 1 << (cs->vprebits - 5);
150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
152 for (i = 0; i < aprmax; i++) {
153 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
154 cs->ich_apr[GICV3_G1NS][i];
156 if (!apr) {
157 continue;
159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
161 /* No current active interrupts: return idle priority */
162 return 0xff;
165 static int hppvi_index(GICv3CPUState *cs)
167 /* Return the list register index of the highest priority pending
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
171 int idx = -1;
172 int i;
173 /* Note that a list register entry with a priority of 0xff will
174 * never be reported by this function; this is the architecturally
175 * correct behaviour.
177 int prio = 0xff;
179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
180 /* Both groups disabled, definitely nothing to do */
181 return idx;
184 for (i = 0; i < cs->num_list_regs; i++) {
185 uint64_t lr = cs->ich_lr_el2[i];
186 int thisprio;
188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
189 /* Not Pending */
190 continue;
193 /* Ignore interrupts if relevant group enable not set */
194 if (lr & ICH_LR_EL2_GROUP) {
195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
196 continue;
198 } else {
199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
200 continue;
204 thisprio = ich_lr_prio(lr);
206 if (thisprio < prio) {
207 prio = thisprio;
208 idx = i;
212 return idx;
215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
217 /* Return a mask word which clears the subpriority bits from
218 * a priority value for a virtual interrupt in the specified group.
219 * This depends on the VBPR value:
220 * a BPR of 0 means the group priority bits are [7:1];
221 * a BPR of 1 means they are [7:2], and so on down to
222 * a BPR of 7 meaning no group priority bits at all.
223 * Which BPR to use depends on the group of the interrupt and
224 * the current ICH_VMCR_EL2.VCBPR settings.
226 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
227 group = GICV3_G0;
230 return ~0U << (read_vbpr(cs, group) + 1);
233 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
235 /* Return true if we can signal this virtual interrupt defined by
236 * the given list register value; see the pseudocode functions
237 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
238 * Compare also icc_hppi_can_preempt() which is the non-virtual
239 * equivalent of these checks.
241 int grp;
242 uint32_t mask, prio, rprio, vpmr;
244 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
245 /* Virtual interface disabled */
246 return false;
249 /* We don't need to check that this LR is in Pending state because
250 * that has already been done in hppvi_index().
253 prio = ich_lr_prio(lr);
254 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
255 ICH_VMCR_EL2_VPMR_LENGTH);
257 if (prio >= vpmr) {
258 /* Priority mask masks this interrupt */
259 return false;
262 rprio = ich_highest_active_virt_prio(cs);
263 if (rprio == 0xff) {
264 /* No running interrupt so we can preempt */
265 return true;
268 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
270 mask = icv_gprio_mask(cs, grp);
272 /* We only preempt a running interrupt if the pending interrupt's
273 * group priority is sufficient (the subpriorities are not considered).
275 if ((prio & mask) < (rprio & mask)) {
276 return true;
279 return false;
282 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
283 uint32_t *misr)
285 /* Return a set of bits indicating the EOI maintenance interrupt status
286 * for each list register. The EOI maintenance interrupt status is
287 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
288 * (see the GICv3 spec for the ICH_EISR_EL2 register).
289 * If misr is not NULL then we should also collect the information
290 * about the MISR.EOI, MISR.NP and MISR.U bits.
292 uint32_t value = 0;
293 int validcount = 0;
294 bool seenpending = false;
295 int i;
297 for (i = 0; i < cs->num_list_regs; i++) {
298 uint64_t lr = cs->ich_lr_el2[i];
300 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
301 == ICH_LR_EL2_EOI) {
302 value |= (1 << i);
304 if ((lr & ICH_LR_EL2_STATE_MASK)) {
305 validcount++;
307 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
308 seenpending = true;
312 if (misr) {
313 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
314 *misr |= ICH_MISR_EL2_U;
316 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
317 *misr |= ICH_MISR_EL2_NP;
319 if (value) {
320 *misr |= ICH_MISR_EL2_EOI;
323 return value;
326 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
328 /* Return a set of bits indicating the maintenance interrupt status
329 * (as seen in the ICH_MISR_EL2 register).
331 uint32_t value = 0;
333 /* Scan list registers and fill in the U, NP and EOI bits */
334 eoi_maintenance_interrupt_state(cs, &value);
336 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
337 value |= ICH_MISR_EL2_LRENP;
340 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
341 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
342 value |= ICH_MISR_EL2_VGRP0E;
345 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
346 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
347 value |= ICH_MISR_EL2_VGRP0D;
349 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
350 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
351 value |= ICH_MISR_EL2_VGRP1E;
354 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
355 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
356 value |= ICH_MISR_EL2_VGRP1D;
359 return value;
362 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
364 /* Tell the CPU about any pending virtual interrupts or
365 * maintenance interrupts, following a change to the state
366 * of the CPU interface relevant to virtual interrupts.
368 * CAUTION: this function will call qemu_set_irq() on the
369 * CPU maintenance IRQ line, which is typically wired up
370 * to the GIC as a per-CPU interrupt. This means that it
371 * will recursively call back into the GIC code via
372 * gicv3_redist_set_irq() and thus into the CPU interface code's
373 * gicv3_cpuif_update(). It is therefore important that this
374 * function is only called as the final action of a CPU interface
375 * register write implementation, after all the GIC state
376 * fields have been updated. gicv3_cpuif_update() also must
377 * not cause this function to be called, but that happens
378 * naturally as a result of there being no architectural
379 * linkage between the physical and virtual GIC logic.
381 int idx;
382 int irqlevel = 0;
383 int fiqlevel = 0;
384 int maintlevel = 0;
386 idx = hppvi_index(cs);
387 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
388 if (idx >= 0) {
389 uint64_t lr = cs->ich_lr_el2[idx];
391 if (icv_hppi_can_preempt(cs, lr)) {
392 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
393 if (lr & ICH_LR_EL2_GROUP) {
394 irqlevel = 1;
395 } else {
396 fiqlevel = 1;
401 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
402 maintlevel = maintenance_interrupt_state(cs);
405 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
406 irqlevel, maintlevel);
408 qemu_set_irq(cs->parent_vfiq, fiqlevel);
409 qemu_set_irq(cs->parent_virq, irqlevel);
410 qemu_set_irq(cs->maintenance_irq, maintlevel);
413 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
415 GICv3CPUState *cs = icc_cs_from_env(env);
416 int regno = ri->opc2 & 3;
417 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
418 uint64_t value = cs->ich_apr[grp][regno];
420 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
421 return value;
424 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
427 GICv3CPUState *cs = icc_cs_from_env(env);
428 int regno = ri->opc2 & 3;
429 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
431 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
433 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
435 gicv3_cpuif_virt_update(cs);
436 return;
439 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
441 GICv3CPUState *cs = icc_cs_from_env(env);
442 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
443 uint64_t bpr;
444 bool satinc = false;
446 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
447 /* reads return bpr0 + 1 saturated to 7, writes ignored */
448 grp = GICV3_G0;
449 satinc = true;
452 bpr = read_vbpr(cs, grp);
454 if (satinc) {
455 bpr++;
456 bpr = MIN(bpr, 7);
459 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
461 return bpr;
464 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
465 uint64_t value)
467 GICv3CPUState *cs = icc_cs_from_env(env);
468 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
470 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
471 gicv3_redist_affid(cs), value);
473 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
474 /* reads return bpr0 + 1 saturated to 7, writes ignored */
475 return;
478 write_vbpr(cs, grp, value);
480 gicv3_cpuif_virt_update(cs);
483 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
485 GICv3CPUState *cs = icc_cs_from_env(env);
486 uint64_t value;
488 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
489 ICH_VMCR_EL2_VPMR_LENGTH);
491 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
492 return value;
495 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
496 uint64_t value)
498 GICv3CPUState *cs = icc_cs_from_env(env);
500 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
502 value &= icv_fullprio_mask(cs);
504 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
505 ICH_VMCR_EL2_VPMR_LENGTH, value);
507 gicv3_cpuif_virt_update(cs);
510 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
512 GICv3CPUState *cs = icc_cs_from_env(env);
513 int enbit;
514 uint64_t value;
516 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
517 value = extract64(cs->ich_vmcr_el2, enbit, 1);
519 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
520 gicv3_redist_affid(cs), value);
521 return value;
524 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 uint64_t value)
527 GICv3CPUState *cs = icc_cs_from_env(env);
528 int enbit;
530 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
531 gicv3_redist_affid(cs), value);
533 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
535 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
536 gicv3_cpuif_virt_update(cs);
539 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
541 GICv3CPUState *cs = icc_cs_from_env(env);
542 uint64_t value;
544 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
545 * should match the ones reported in ich_vtr_read().
547 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
548 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
550 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
551 value |= ICC_CTLR_EL1_EOIMODE;
554 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
555 value |= ICC_CTLR_EL1_CBPR;
558 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
559 return value;
562 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
563 uint64_t value)
565 GICv3CPUState *cs = icc_cs_from_env(env);
567 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
569 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
570 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
571 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
572 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
574 gicv3_cpuif_virt_update(cs);
577 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
579 GICv3CPUState *cs = icc_cs_from_env(env);
580 int prio = ich_highest_active_virt_prio(cs);
582 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
583 return prio;
586 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
588 GICv3CPUState *cs = icc_cs_from_env(env);
589 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
590 int idx = hppvi_index(cs);
591 uint64_t value = INTID_SPURIOUS;
593 if (idx >= 0) {
594 uint64_t lr = cs->ich_lr_el2[idx];
595 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
597 if (grp == thisgrp) {
598 value = ich_lr_vintid(lr);
602 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
603 return value;
606 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
608 /* Activate the interrupt in the specified list register
609 * by moving it from Pending to Active state, and update the
610 * Active Priority Registers.
612 uint32_t mask = icv_gprio_mask(cs, grp);
613 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
614 int aprbit = prio >> (8 - cs->vprebits);
615 int regno = aprbit / 32;
616 int regbit = aprbit % 32;
618 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
619 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
620 cs->ich_apr[grp][regno] |= (1 << regbit);
623 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
625 GICv3CPUState *cs = icc_cs_from_env(env);
626 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
627 int idx = hppvi_index(cs);
628 uint64_t intid = INTID_SPURIOUS;
630 if (idx >= 0) {
631 uint64_t lr = cs->ich_lr_el2[idx];
632 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
634 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
635 intid = ich_lr_vintid(lr);
636 if (intid < INTID_SECURE) {
637 icv_activate_irq(cs, idx, grp);
638 } else {
639 /* Interrupt goes from Pending to Invalid */
640 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
641 /* We will now return the (bogus) ID from the list register,
642 * as per the pseudocode.
648 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
649 gicv3_redist_affid(cs), intid);
650 return intid;
653 static int icc_highest_active_prio(GICv3CPUState *cs)
655 /* Calculate the current running priority based on the set bits
656 * in the Active Priority Registers.
658 int i;
660 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
661 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
662 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
664 if (!apr) {
665 continue;
667 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
669 /* No current active interrupts: return idle priority */
670 return 0xff;
673 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
675 /* Return a mask word which clears the subpriority bits from
676 * a priority value for an interrupt in the specified group.
677 * This depends on the BPR value:
678 * a BPR of 0 means the group priority bits are [7:1];
679 * a BPR of 1 means they are [7:2], and so on down to
680 * a BPR of 7 meaning no group priority bits at all.
681 * Which BPR to use depends on the group of the interrupt and
682 * the current ICC_CTLR.CBPR settings.
684 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
685 (group == GICV3_G1NS &&
686 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
687 group = GICV3_G0;
690 return ~0U << ((cs->icc_bpr[group] & 7) + 1);
693 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
695 /* Return true if there is no pending interrupt, or the
696 * highest priority pending interrupt is in a group which has been
697 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
699 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
702 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
704 /* Return true if we have a pending interrupt of sufficient
705 * priority to preempt.
707 int rprio;
708 uint32_t mask;
710 if (icc_no_enabled_hppi(cs)) {
711 return false;
714 if (cs->hppi.prio >= cs->icc_pmr_el1) {
715 /* Priority mask masks this interrupt */
716 return false;
719 rprio = icc_highest_active_prio(cs);
720 if (rprio == 0xff) {
721 /* No currently running interrupt so we can preempt */
722 return true;
725 mask = icc_gprio_mask(cs, cs->hppi.grp);
727 /* We only preempt a running interrupt if the pending interrupt's
728 * group priority is sufficient (the subpriorities are not considered).
730 if ((cs->hppi.prio & mask) < (rprio & mask)) {
731 return true;
734 return false;
737 void gicv3_cpuif_update(GICv3CPUState *cs)
739 /* Tell the CPU about its highest priority pending interrupt */
740 int irqlevel = 0;
741 int fiqlevel = 0;
742 ARMCPU *cpu = ARM_CPU(cs->cpu);
743 CPUARMState *env = &cpu->env;
745 g_assert(qemu_mutex_iothread_locked());
747 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
748 cs->hppi.grp, cs->hppi.prio);
750 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
751 /* If a Security-enabled GIC sends a G1S interrupt to a
752 * Security-disabled CPU, we must treat it as if it were G0.
754 cs->hppi.grp = GICV3_G0;
757 if (icc_hppi_can_preempt(cs)) {
758 /* We have an interrupt: should we signal it as IRQ or FIQ?
759 * This is described in the GICv3 spec section 4.6.2.
761 bool isfiq;
763 switch (cs->hppi.grp) {
764 case GICV3_G0:
765 isfiq = true;
766 break;
767 case GICV3_G1:
768 isfiq = (!arm_is_secure(env) ||
769 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
770 break;
771 case GICV3_G1NS:
772 isfiq = arm_is_secure(env);
773 break;
774 default:
775 g_assert_not_reached();
778 if (isfiq) {
779 fiqlevel = 1;
780 } else {
781 irqlevel = 1;
785 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
787 qemu_set_irq(cs->parent_fiq, fiqlevel);
788 qemu_set_irq(cs->parent_irq, irqlevel);
791 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
793 GICv3CPUState *cs = icc_cs_from_env(env);
794 uint32_t value = cs->icc_pmr_el1;
796 if (icv_access(env, HCR_FMO | HCR_IMO)) {
797 return icv_pmr_read(env, ri);
800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
801 (env->cp15.scr_el3 & SCR_FIQ)) {
802 /* NS access and Group 0 is inaccessible to NS: return the
803 * NS view of the current priority
805 if (value & 0x80) {
806 /* Secure priorities not visible to NS */
807 value = 0;
808 } else if (value != 0xff) {
809 value = (value << 1) & 0xff;
813 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
815 return value;
818 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
819 uint64_t value)
821 GICv3CPUState *cs = icc_cs_from_env(env);
823 if (icv_access(env, HCR_FMO | HCR_IMO)) {
824 return icv_pmr_write(env, ri, value);
827 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
829 value &= 0xff;
831 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
832 (env->cp15.scr_el3 & SCR_FIQ)) {
833 /* NS access and Group 0 is inaccessible to NS: return the
834 * NS view of the current priority
836 if (!(cs->icc_pmr_el1 & 0x80)) {
837 /* Current PMR in the secure range, don't allow NS to change it */
838 return;
840 value = (value >> 1) & 0x80;
842 cs->icc_pmr_el1 = value;
843 gicv3_cpuif_update(cs);
846 static void icc_activate_irq(GICv3CPUState *cs, int irq)
848 /* Move the interrupt from the Pending state to Active, and update
849 * the Active Priority Registers
851 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
852 int prio = cs->hppi.prio & mask;
853 int aprbit = prio >> 1;
854 int regno = aprbit / 32;
855 int regbit = aprbit % 32;
857 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
859 if (irq < GIC_INTERNAL) {
860 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
861 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
862 gicv3_redist_update(cs);
863 } else {
864 gicv3_gicd_active_set(cs->gic, irq);
865 gicv3_gicd_pending_clear(cs->gic, irq);
866 gicv3_update(cs->gic, irq, 1);
870 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
872 /* Return the highest priority pending interrupt register value
873 * for group 0.
875 bool irq_is_secure;
877 if (cs->hppi.prio == 0xff) {
878 return INTID_SPURIOUS;
881 /* Check whether we can return the interrupt or if we should return
882 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
883 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
884 * is always zero.)
886 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
887 (cs->hppi.grp != GICV3_G1NS));
889 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
890 return INTID_SPURIOUS;
892 if (irq_is_secure && !arm_is_secure(env)) {
893 /* Secure interrupts not visible to Nonsecure */
894 return INTID_SPURIOUS;
897 if (cs->hppi.grp != GICV3_G0) {
898 /* Indicate to EL3 that there's a Group 1 interrupt for the other
899 * state pending.
901 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
904 return cs->hppi.irq;
907 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
909 /* Return the highest priority pending interrupt register value
910 * for group 1.
912 bool irq_is_secure;
914 if (cs->hppi.prio == 0xff) {
915 return INTID_SPURIOUS;
918 /* Check whether we can return the interrupt or if we should return
919 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
920 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
921 * is always zero.)
923 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
924 (cs->hppi.grp != GICV3_G1NS));
926 if (cs->hppi.grp == GICV3_G0) {
927 /* Group 0 interrupts not visible via HPPIR1 */
928 return INTID_SPURIOUS;
930 if (irq_is_secure) {
931 if (!arm_is_secure(env)) {
932 /* Secure interrupts not visible in Non-secure */
933 return INTID_SPURIOUS;
935 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
936 /* Group 1 non-secure interrupts not visible in Secure EL1 */
937 return INTID_SPURIOUS;
940 return cs->hppi.irq;
943 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
945 GICv3CPUState *cs = icc_cs_from_env(env);
946 uint64_t intid;
948 if (icv_access(env, HCR_FMO)) {
949 return icv_iar_read(env, ri);
952 if (!icc_hppi_can_preempt(cs)) {
953 intid = INTID_SPURIOUS;
954 } else {
955 intid = icc_hppir0_value(cs, env);
958 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
959 icc_activate_irq(cs, intid);
962 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
963 return intid;
966 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
968 GICv3CPUState *cs = icc_cs_from_env(env);
969 uint64_t intid;
971 if (icv_access(env, HCR_IMO)) {
972 return icv_iar_read(env, ri);
975 if (!icc_hppi_can_preempt(cs)) {
976 intid = INTID_SPURIOUS;
977 } else {
978 intid = icc_hppir1_value(cs, env);
981 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
982 icc_activate_irq(cs, intid);
985 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
986 return intid;
989 static void icc_drop_prio(GICv3CPUState *cs, int grp)
991 /* Drop the priority of the currently active interrupt in
992 * the specified group.
994 * Note that we can guarantee (because of the requirement to nest
995 * ICC_IAR reads [which activate an interrupt and raise priority]
996 * with ICC_EOIR writes [which drop the priority for the interrupt])
997 * that the interrupt we're being called for is the highest priority
998 * active interrupt, meaning that it has the lowest set bit in the
999 * APR registers.
1001 * If the guest does not honour the ordering constraints then the
1002 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1003 * the values of the APR registers might become incorrect and the
1004 * running priority will be wrong, so interrupts that should preempt
1005 * might not do so, and interrupts that should not preempt might do so.
1007 int i;
1009 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1010 uint64_t *papr = &cs->icc_apr[grp][i];
1012 if (!*papr) {
1013 continue;
1015 /* Clear the lowest set bit */
1016 *papr &= *papr - 1;
1017 break;
1020 /* running priority change means we need an update for this cpu i/f */
1021 gicv3_cpuif_update(cs);
1024 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1026 /* Return true if we should split priority drop and interrupt
1027 * deactivation, ie whether the relevant EOIMode bit is set.
1029 if (arm_is_el3_or_mon(env)) {
1030 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1032 if (arm_is_secure_below_el3(env)) {
1033 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1034 } else {
1035 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1039 static int icc_highest_active_group(GICv3CPUState *cs)
1041 /* Return the group with the highest priority active interrupt.
1042 * We can do this by just comparing the APRs to see which one
1043 * has the lowest set bit.
1044 * (If more than one group is active at the same priority then
1045 * we're in UNPREDICTABLE territory.)
1047 int i;
1049 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1050 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1051 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1052 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1054 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1055 return GICV3_G1NS;
1057 if (g1ctz < g0ctz) {
1058 return GICV3_G1;
1060 if (g0ctz < 32) {
1061 return GICV3_G0;
1064 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1065 * ignores the spurious EOI attempt.
1067 return -1;
1070 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1072 if (irq < GIC_INTERNAL) {
1073 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1074 gicv3_redist_update(cs);
1075 } else {
1076 gicv3_gicd_active_clear(cs->gic, irq);
1077 gicv3_update(cs->gic, irq, 1);
1081 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1083 /* Return true if we should split priority drop and interrupt
1084 * deactivation, ie whether the virtual EOIMode bit is set.
1086 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1089 static int icv_find_active(GICv3CPUState *cs, int irq)
1091 /* Given an interrupt number for an active interrupt, return the index
1092 * of the corresponding list register, or -1 if there is no match.
1093 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1095 int i;
1097 for (i = 0; i < cs->num_list_regs; i++) {
1098 uint64_t lr = cs->ich_lr_el2[i];
1100 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1101 return i;
1105 return -1;
1108 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1110 /* Deactivate the interrupt in the specified list register index */
1111 uint64_t lr = cs->ich_lr_el2[idx];
1113 if (lr & ICH_LR_EL2_HW) {
1114 /* Deactivate the associated physical interrupt */
1115 int pirq = ich_lr_pintid(lr);
1117 if (pirq < INTID_SECURE) {
1118 icc_deactivate_irq(cs, pirq);
1122 /* Clear the 'active' part of the state, so ActivePending->Pending
1123 * and Active->Invalid.
1125 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1126 cs->ich_lr_el2[idx] = lr;
1129 static void icv_increment_eoicount(GICv3CPUState *cs)
1131 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1132 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1133 ICH_HCR_EL2_EOICOUNT_LENGTH);
1135 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1136 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1139 static int icv_drop_prio(GICv3CPUState *cs)
1141 /* Drop the priority of the currently active virtual interrupt
1142 * (favouring group 0 if there is a set active bit at
1143 * the same priority for both group 0 and group 1).
1144 * Return the priority value for the bit we just cleared,
1145 * or 0xff if no bits were set in the AP registers at all.
1146 * Note that though the ich_apr[] are uint64_t only the low
1147 * 32 bits are actually relevant.
1149 int i;
1150 int aprmax = 1 << (cs->vprebits - 5);
1152 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1154 for (i = 0; i < aprmax; i++) {
1155 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1156 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1157 int apr0count, apr1count;
1159 if (!*papr0 && !*papr1) {
1160 continue;
1163 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1164 * because we need to return the bit number we cleared so
1165 * it can be compared against the list register's priority field.
1167 apr0count = ctz32(*papr0);
1168 apr1count = ctz32(*papr1);
1170 if (apr0count <= apr1count) {
1171 *papr0 &= *papr0 - 1;
1172 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1173 } else {
1174 *papr1 &= *papr1 - 1;
1175 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1178 return 0xff;
1181 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1182 uint64_t value)
1184 /* Deactivate interrupt */
1185 GICv3CPUState *cs = icc_cs_from_env(env);
1186 int idx;
1187 int irq = value & 0xffffff;
1189 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1191 if (irq >= cs->gic->num_irq) {
1192 /* Also catches special interrupt numbers and LPIs */
1193 return;
1196 if (!icv_eoi_split(env, cs)) {
1197 return;
1200 idx = icv_find_active(cs, irq);
1202 if (idx < 0) {
1203 /* No list register matching this, so increment the EOI count
1204 * (might trigger a maintenance interrupt)
1206 icv_increment_eoicount(cs);
1207 } else {
1208 icv_deactivate_irq(cs, idx);
1211 gicv3_cpuif_virt_update(cs);
1214 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1215 uint64_t value)
1217 /* End of Interrupt */
1218 GICv3CPUState *cs = icc_cs_from_env(env);
1219 int irq = value & 0xffffff;
1220 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1221 int idx, dropprio;
1223 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1224 gicv3_redist_affid(cs), value);
1226 if (irq >= cs->gic->num_irq) {
1227 /* Also catches special interrupt numbers and LPIs */
1228 return;
1231 /* We implement the IMPDEF choice of "drop priority before doing
1232 * error checks" (because that lets us avoid scanning the AP
1233 * registers twice).
1235 dropprio = icv_drop_prio(cs);
1236 if (dropprio == 0xff) {
1237 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1238 * whether the list registers are checked in this
1239 * situation; we choose not to.
1241 return;
1244 idx = icv_find_active(cs, irq);
1246 if (idx < 0) {
1247 /* No valid list register corresponding to EOI ID */
1248 icv_increment_eoicount(cs);
1249 } else {
1250 uint64_t lr = cs->ich_lr_el2[idx];
1251 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1252 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1254 if (thisgrp == grp && lr_gprio == dropprio) {
1255 if (!icv_eoi_split(env, cs)) {
1256 /* Priority drop and deactivate not split: deactivate irq now */
1257 icv_deactivate_irq(cs, idx);
1262 gicv3_cpuif_virt_update(cs);
1265 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1266 uint64_t value)
1268 /* End of Interrupt */
1269 GICv3CPUState *cs = icc_cs_from_env(env);
1270 int irq = value & 0xffffff;
1271 int grp;
1273 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1274 icv_eoir_write(env, ri, value);
1275 return;
1278 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1279 gicv3_redist_affid(cs), value);
1281 if (ri->crm == 8) {
1282 /* EOIR0 */
1283 grp = GICV3_G0;
1284 } else {
1285 /* EOIR1 */
1286 if (arm_is_secure(env)) {
1287 grp = GICV3_G1;
1288 } else {
1289 grp = GICV3_G1NS;
1293 if (irq >= cs->gic->num_irq) {
1294 /* This handles two cases:
1295 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1296 * to the GICC_EOIR, the GIC ignores that write.
1297 * 2. If software writes the number of a non-existent interrupt
1298 * this must be a subcase of "value written does not match the last
1299 * valid interrupt value read from the Interrupt Acknowledge
1300 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1302 return;
1305 if (icc_highest_active_group(cs) != grp) {
1306 return;
1309 icc_drop_prio(cs, grp);
1311 if (!icc_eoi_split(env, cs)) {
1312 /* Priority drop and deactivate not split: deactivate irq now */
1313 icc_deactivate_irq(cs, irq);
1317 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1319 GICv3CPUState *cs = icc_cs_from_env(env);
1320 uint64_t value;
1322 if (icv_access(env, HCR_FMO)) {
1323 return icv_hppir_read(env, ri);
1326 value = icc_hppir0_value(cs, env);
1327 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1328 return value;
1331 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1333 GICv3CPUState *cs = icc_cs_from_env(env);
1334 uint64_t value;
1336 if (icv_access(env, HCR_IMO)) {
1337 return icv_hppir_read(env, ri);
1340 value = icc_hppir1_value(cs, env);
1341 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1342 return value;
1345 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1347 GICv3CPUState *cs = icc_cs_from_env(env);
1348 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1349 bool satinc = false;
1350 uint64_t bpr;
1352 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1353 return icv_bpr_read(env, ri);
1356 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1357 grp = GICV3_G1NS;
1360 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1361 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1362 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1363 * modify BPR0
1365 grp = GICV3_G0;
1368 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1369 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1370 /* reads return bpr0 + 1 sat to 7, writes ignored */
1371 grp = GICV3_G0;
1372 satinc = true;
1375 bpr = cs->icc_bpr[grp];
1376 if (satinc) {
1377 bpr++;
1378 bpr = MIN(bpr, 7);
1381 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1383 return bpr;
1386 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1387 uint64_t value)
1389 GICv3CPUState *cs = icc_cs_from_env(env);
1390 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1392 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1393 icv_bpr_write(env, ri, value);
1394 return;
1397 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1398 gicv3_redist_affid(cs), value);
1400 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1401 grp = GICV3_G1NS;
1404 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1405 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1406 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1407 * modify BPR0
1409 grp = GICV3_G0;
1412 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1413 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1414 /* reads return bpr0 + 1 sat to 7, writes ignored */
1415 return;
1418 cs->icc_bpr[grp] = value & 7;
1419 gicv3_cpuif_update(cs);
1422 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1424 GICv3CPUState *cs = icc_cs_from_env(env);
1425 uint64_t value;
1427 int regno = ri->opc2 & 3;
1428 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1430 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1431 return icv_ap_read(env, ri);
1434 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1435 grp = GICV3_G1NS;
1438 value = cs->icc_apr[grp][regno];
1440 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1441 return value;
1444 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1445 uint64_t value)
1447 GICv3CPUState *cs = icc_cs_from_env(env);
1449 int regno = ri->opc2 & 3;
1450 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1452 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1453 icv_ap_write(env, ri, value);
1454 return;
1457 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1459 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1460 grp = GICV3_G1NS;
1463 /* It's not possible to claim that a Non-secure interrupt is active
1464 * at a priority outside the Non-secure range (128..255), since this
1465 * would otherwise allow malicious NS code to block delivery of S interrupts
1466 * by writing a bad value to these registers.
1468 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1469 return;
1472 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1473 gicv3_cpuif_update(cs);
1476 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1477 uint64_t value)
1479 /* Deactivate interrupt */
1480 GICv3CPUState *cs = icc_cs_from_env(env);
1481 int irq = value & 0xffffff;
1482 bool irq_is_secure, single_sec_state, irq_is_grp0;
1483 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1485 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1486 icv_dir_write(env, ri, value);
1487 return;
1490 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1492 if (irq >= cs->gic->num_irq) {
1493 /* Also catches special interrupt numbers and LPIs */
1494 return;
1497 if (!icc_eoi_split(env, cs)) {
1498 return;
1501 int grp = gicv3_irq_group(cs->gic, cs, irq);
1503 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1504 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1505 irq_is_grp0 = grp == GICV3_G0;
1507 /* Check whether we're allowed to deactivate this interrupt based
1508 * on its group and the current CPU state.
1509 * These checks are laid out to correspond to the spec's pseudocode.
1511 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1512 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1513 /* No need to include !IsSecure in route_*_to_el2 as it's only
1514 * tested in cases where we know !IsSecure is true.
1516 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1517 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1519 switch (arm_current_el(env)) {
1520 case 3:
1521 break;
1522 case 2:
1523 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1524 break;
1526 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1527 break;
1529 return;
1530 case 1:
1531 if (!arm_is_secure_below_el3(env)) {
1532 if (single_sec_state && irq_is_grp0 &&
1533 !route_fiq_to_el3 && !route_fiq_to_el2) {
1534 break;
1536 if (!irq_is_secure && !irq_is_grp0 &&
1537 !route_irq_to_el3 && !route_irq_to_el2) {
1538 break;
1540 } else {
1541 if (irq_is_grp0 && !route_fiq_to_el3) {
1542 break;
1544 if (!irq_is_grp0 &&
1545 (!irq_is_secure || !single_sec_state) &&
1546 !route_irq_to_el3) {
1547 break;
1550 return;
1551 default:
1552 g_assert_not_reached();
1555 icc_deactivate_irq(cs, irq);
1558 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1560 GICv3CPUState *cs = icc_cs_from_env(env);
1561 int prio;
1563 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1564 return icv_rpr_read(env, ri);
1567 prio = icc_highest_active_prio(cs);
1569 if (arm_feature(env, ARM_FEATURE_EL3) &&
1570 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1571 /* NS GIC access and Group 0 is inaccessible to NS */
1572 if (prio & 0x80) {
1573 /* NS mustn't see priorities in the Secure half of the range */
1574 prio = 0;
1575 } else if (prio != 0xff) {
1576 /* Non-idle priority: show the Non-secure view of it */
1577 prio = (prio << 1) & 0xff;
1581 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1582 return prio;
1585 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1586 uint64_t value, int grp, bool ns)
1588 GICv3State *s = cs->gic;
1590 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1591 uint64_t aff = extract64(value, 48, 8) << 16 |
1592 extract64(value, 32, 8) << 8 |
1593 extract64(value, 16, 8);
1594 uint32_t targetlist = extract64(value, 0, 16);
1595 uint32_t irq = extract64(value, 24, 4);
1596 bool irm = extract64(value, 40, 1);
1597 int i;
1599 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1600 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1601 * interrupts as Group 0 interrupts and must send Secure Group 0
1602 * interrupts to the target CPUs.
1604 grp = GICV3_G0;
1607 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1608 aff, targetlist);
1610 for (i = 0; i < s->num_cpu; i++) {
1611 GICv3CPUState *ocs = &s->cpu[i];
1613 if (irm) {
1614 /* IRM == 1 : route to all CPUs except self */
1615 if (cs == ocs) {
1616 continue;
1618 } else {
1619 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1620 * where the corresponding bit is set in targetlist
1622 int aff0;
1624 if (ocs->gicr_typer >> 40 != aff) {
1625 continue;
1627 aff0 = extract64(ocs->gicr_typer, 32, 8);
1628 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1629 continue;
1633 /* The redistributor will check against its own GICR_NSACR as needed */
1634 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1638 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1639 uint64_t value)
1641 /* Generate Secure Group 0 SGI. */
1642 GICv3CPUState *cs = icc_cs_from_env(env);
1643 bool ns = !arm_is_secure(env);
1645 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1648 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1649 uint64_t value)
1651 /* Generate Group 1 SGI for the current Security state */
1652 GICv3CPUState *cs = icc_cs_from_env(env);
1653 int grp;
1654 bool ns = !arm_is_secure(env);
1656 grp = ns ? GICV3_G1NS : GICV3_G1;
1657 icc_generate_sgi(env, cs, value, grp, ns);
1660 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1661 uint64_t value)
1663 /* Generate Group 1 SGI for the Security state that is not
1664 * the current state
1666 GICv3CPUState *cs = icc_cs_from_env(env);
1667 int grp;
1668 bool ns = !arm_is_secure(env);
1670 grp = ns ? GICV3_G1 : GICV3_G1NS;
1671 icc_generate_sgi(env, cs, value, grp, ns);
1674 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1676 GICv3CPUState *cs = icc_cs_from_env(env);
1677 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1678 uint64_t value;
1680 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1681 return icv_igrpen_read(env, ri);
1684 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1685 grp = GICV3_G1NS;
1688 value = cs->icc_igrpen[grp];
1689 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1690 gicv3_redist_affid(cs), value);
1691 return value;
1694 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1695 uint64_t value)
1697 GICv3CPUState *cs = icc_cs_from_env(env);
1698 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1700 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1701 icv_igrpen_write(env, ri, value);
1702 return;
1705 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1706 gicv3_redist_affid(cs), value);
1708 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1709 grp = GICV3_G1NS;
1712 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1713 gicv3_cpuif_update(cs);
1716 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1718 GICv3CPUState *cs = icc_cs_from_env(env);
1719 uint64_t value;
1721 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1722 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1723 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1724 return value;
1727 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1728 uint64_t value)
1730 GICv3CPUState *cs = icc_cs_from_env(env);
1732 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1734 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1735 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1736 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1737 gicv3_cpuif_update(cs);
1740 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1742 GICv3CPUState *cs = icc_cs_from_env(env);
1743 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1744 uint64_t value;
1746 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1747 return icv_ctlr_read(env, ri);
1750 value = cs->icc_ctlr_el1[bank];
1751 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1752 return value;
1755 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 uint64_t value)
1758 GICv3CPUState *cs = icc_cs_from_env(env);
1759 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1760 uint64_t mask;
1762 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1763 icv_ctlr_write(env, ri, value);
1764 return;
1767 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1769 /* Only CBPR and EOIMODE can be RW;
1770 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1771 * the asseciated priority-based routing of them);
1772 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1774 if (arm_feature(env, ARM_FEATURE_EL3) &&
1775 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1776 mask = ICC_CTLR_EL1_EOIMODE;
1777 } else {
1778 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1781 cs->icc_ctlr_el1[bank] &= ~mask;
1782 cs->icc_ctlr_el1[bank] |= (value & mask);
1783 gicv3_cpuif_update(cs);
1787 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1789 GICv3CPUState *cs = icc_cs_from_env(env);
1790 uint64_t value;
1792 value = cs->icc_ctlr_el3;
1793 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1794 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1796 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1797 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1799 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1800 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1802 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1803 value |= ICC_CTLR_EL3_CBPR_EL1S;
1806 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1807 return value;
1810 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1811 uint64_t value)
1813 GICv3CPUState *cs = icc_cs_from_env(env);
1814 uint64_t mask;
1816 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1818 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1819 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1820 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1821 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1823 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1824 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1827 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1828 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1829 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1831 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1832 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1835 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1836 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1838 cs->icc_ctlr_el3 &= ~mask;
1839 cs->icc_ctlr_el3 |= (value & mask);
1840 gicv3_cpuif_update(cs);
1843 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1844 const ARMCPRegInfo *ri, bool isread)
1846 CPAccessResult r = CP_ACCESS_OK;
1847 GICv3CPUState *cs = icc_cs_from_env(env);
1848 int el = arm_current_el(env);
1850 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1851 el == 1 && !arm_is_secure_below_el3(env)) {
1852 /* Takes priority over a possible EL3 trap */
1853 return CP_ACCESS_TRAP_EL2;
1856 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1857 switch (el) {
1858 case 1:
1859 if (arm_is_secure_below_el3(env) ||
1860 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1861 r = CP_ACCESS_TRAP_EL3;
1863 break;
1864 case 2:
1865 r = CP_ACCESS_TRAP_EL3;
1866 break;
1867 case 3:
1868 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1869 r = CP_ACCESS_TRAP_EL3;
1871 break;
1872 default:
1873 g_assert_not_reached();
1877 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1878 r = CP_ACCESS_TRAP;
1880 return r;
1883 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1884 const ARMCPRegInfo *ri, bool isread)
1886 GICv3CPUState *cs = icc_cs_from_env(env);
1888 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1889 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1890 /* Takes priority over a possible EL3 trap */
1891 return CP_ACCESS_TRAP_EL2;
1894 return gicv3_irqfiq_access(env, ri, isread);
1897 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1898 const ARMCPRegInfo *ri, bool isread)
1900 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
1901 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1902 /* Takes priority over a possible EL3 trap */
1903 return CP_ACCESS_TRAP_EL2;
1906 return gicv3_irqfiq_access(env, ri, isread);
1909 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1910 const ARMCPRegInfo *ri, bool isread)
1912 CPAccessResult r = CP_ACCESS_OK;
1913 GICv3CPUState *cs = icc_cs_from_env(env);
1914 int el = arm_current_el(env);
1916 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1917 el == 1 && !arm_is_secure_below_el3(env)) {
1918 /* Takes priority over a possible EL3 trap */
1919 return CP_ACCESS_TRAP_EL2;
1922 if (env->cp15.scr_el3 & SCR_FIQ) {
1923 switch (el) {
1924 case 1:
1925 if (arm_is_secure_below_el3(env) ||
1926 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1927 r = CP_ACCESS_TRAP_EL3;
1929 break;
1930 case 2:
1931 r = CP_ACCESS_TRAP_EL3;
1932 break;
1933 case 3:
1934 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1935 r = CP_ACCESS_TRAP_EL3;
1937 break;
1938 default:
1939 g_assert_not_reached();
1943 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1944 r = CP_ACCESS_TRAP;
1946 return r;
1949 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1950 const ARMCPRegInfo *ri, bool isread)
1952 CPAccessResult r = CP_ACCESS_OK;
1953 GICv3CPUState *cs = icc_cs_from_env(env);
1954 int el = arm_current_el(env);
1956 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1957 el == 1 && !arm_is_secure_below_el3(env)) {
1958 /* Takes priority over a possible EL3 trap */
1959 return CP_ACCESS_TRAP_EL2;
1962 if (env->cp15.scr_el3 & SCR_IRQ) {
1963 switch (el) {
1964 case 1:
1965 if (arm_is_secure_below_el3(env) ||
1966 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1967 r = CP_ACCESS_TRAP_EL3;
1969 break;
1970 case 2:
1971 r = CP_ACCESS_TRAP_EL3;
1972 break;
1973 case 3:
1974 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1975 r = CP_ACCESS_TRAP_EL3;
1977 break;
1978 default:
1979 g_assert_not_reached();
1983 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1984 r = CP_ACCESS_TRAP;
1986 return r;
1989 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1991 GICv3CPUState *cs = icc_cs_from_env(env);
1993 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
1994 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1995 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1996 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
1997 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1998 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1999 cs->icc_pmr_el1 = 0;
2000 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2001 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2002 if (arm_feature(env, ARM_FEATURE_EL3)) {
2003 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2004 } else {
2005 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
2007 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2008 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2009 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2010 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2011 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2013 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2014 cs->ich_hcr_el2 = 0;
2015 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2016 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2017 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2018 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2021 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2022 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2023 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2024 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2025 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2026 .readfn = icc_pmr_read,
2027 .writefn = icc_pmr_write,
2028 /* We hang the whole cpu interface reset routine off here
2029 * rather than parcelling it out into one little function
2030 * per register
2032 .resetfn = icc_reset,
2034 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2035 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2036 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2037 .access = PL1_R, .accessfn = gicv3_fiq_access,
2038 .readfn = icc_iar0_read,
2040 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2041 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2042 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2043 .access = PL1_W, .accessfn = gicv3_fiq_access,
2044 .writefn = icc_eoir_write,
2046 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2047 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2048 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2049 .access = PL1_R, .accessfn = gicv3_fiq_access,
2050 .readfn = icc_hppir0_read,
2052 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2053 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2054 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2055 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2056 .readfn = icc_bpr_read,
2057 .writefn = icc_bpr_write,
2059 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2060 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2061 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2062 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2063 .readfn = icc_ap_read,
2064 .writefn = icc_ap_write,
2066 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2067 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2068 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2069 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2070 .readfn = icc_ap_read,
2071 .writefn = icc_ap_write,
2073 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2074 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2075 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2076 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2077 .readfn = icc_ap_read,
2078 .writefn = icc_ap_write,
2080 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2081 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2082 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2083 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2084 .readfn = icc_ap_read,
2085 .writefn = icc_ap_write,
2087 /* All the ICC_AP1R*_EL1 registers are banked */
2088 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2089 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2090 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2091 .access = PL1_RW, .accessfn = gicv3_irq_access,
2092 .readfn = icc_ap_read,
2093 .writefn = icc_ap_write,
2095 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2096 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2097 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2098 .access = PL1_RW, .accessfn = gicv3_irq_access,
2099 .readfn = icc_ap_read,
2100 .writefn = icc_ap_write,
2102 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2104 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2105 .access = PL1_RW, .accessfn = gicv3_irq_access,
2106 .readfn = icc_ap_read,
2107 .writefn = icc_ap_write,
2109 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2110 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2111 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2112 .access = PL1_RW, .accessfn = gicv3_irq_access,
2113 .readfn = icc_ap_read,
2114 .writefn = icc_ap_write,
2116 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2117 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2118 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2119 .access = PL1_W, .accessfn = gicv3_dir_access,
2120 .writefn = icc_dir_write,
2122 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2124 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2125 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2126 .readfn = icc_rpr_read,
2128 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2129 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2130 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2131 .access = PL1_W, .accessfn = gicv3_sgi_access,
2132 .writefn = icc_sgi1r_write,
2134 { .name = "ICC_SGI1R",
2135 .cp = 15, .opc1 = 0, .crm = 12,
2136 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2137 .access = PL1_W, .accessfn = gicv3_sgi_access,
2138 .writefn = icc_sgi1r_write,
2140 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2141 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2142 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2143 .access = PL1_W, .accessfn = gicv3_sgi_access,
2144 .writefn = icc_asgi1r_write,
2146 { .name = "ICC_ASGI1R",
2147 .cp = 15, .opc1 = 1, .crm = 12,
2148 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2149 .access = PL1_W, .accessfn = gicv3_sgi_access,
2150 .writefn = icc_asgi1r_write,
2152 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2153 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2154 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2155 .access = PL1_W, .accessfn = gicv3_sgi_access,
2156 .writefn = icc_sgi0r_write,
2158 { .name = "ICC_SGI0R",
2159 .cp = 15, .opc1 = 2, .crm = 12,
2160 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2161 .access = PL1_W, .accessfn = gicv3_sgi_access,
2162 .writefn = icc_sgi0r_write,
2164 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2165 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2166 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2167 .access = PL1_R, .accessfn = gicv3_irq_access,
2168 .readfn = icc_iar1_read,
2170 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2171 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2172 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2173 .access = PL1_W, .accessfn = gicv3_irq_access,
2174 .writefn = icc_eoir_write,
2176 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2177 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2178 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2179 .access = PL1_R, .accessfn = gicv3_irq_access,
2180 .readfn = icc_hppir1_read,
2182 /* This register is banked */
2183 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2184 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2185 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2186 .access = PL1_RW, .accessfn = gicv3_irq_access,
2187 .readfn = icc_bpr_read,
2188 .writefn = icc_bpr_write,
2190 /* This register is banked */
2191 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2192 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2193 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2194 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2195 .readfn = icc_ctlr_el1_read,
2196 .writefn = icc_ctlr_el1_write,
2198 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2200 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2201 .access = PL1_RW,
2202 /* We don't support IRQ/FIQ bypass and system registers are
2203 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2204 * This register is banked but since it's constant we don't
2205 * need to do anything special.
2207 .resetvalue = 0x7,
2209 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2210 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2211 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2212 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2213 .readfn = icc_igrpen_read,
2214 .writefn = icc_igrpen_write,
2216 /* This register is banked */
2217 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2218 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2219 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2220 .access = PL1_RW, .accessfn = gicv3_irq_access,
2221 .readfn = icc_igrpen_read,
2222 .writefn = icc_igrpen_write,
2224 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2225 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2226 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2227 .access = PL2_RW,
2228 /* We don't support IRQ/FIQ bypass and system registers are
2229 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2231 .resetvalue = 0xf,
2233 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2234 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2235 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2236 .access = PL3_RW,
2237 .readfn = icc_ctlr_el3_read,
2238 .writefn = icc_ctlr_el3_write,
2240 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2241 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2242 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2243 .access = PL3_RW,
2244 /* We don't support IRQ/FIQ bypass and system registers are
2245 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2247 .resetvalue = 0xf,
2249 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2250 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2251 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2252 .access = PL3_RW,
2253 .readfn = icc_igrpen1_el3_read,
2254 .writefn = icc_igrpen1_el3_write,
2256 REGINFO_SENTINEL
2259 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2261 GICv3CPUState *cs = icc_cs_from_env(env);
2262 int regno = ri->opc2 & 3;
2263 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2264 uint64_t value;
2266 value = cs->ich_apr[grp][regno];
2267 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2268 return value;
2271 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2272 uint64_t value)
2274 GICv3CPUState *cs = icc_cs_from_env(env);
2275 int regno = ri->opc2 & 3;
2276 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2278 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2280 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2281 gicv3_cpuif_virt_update(cs);
2284 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2286 GICv3CPUState *cs = icc_cs_from_env(env);
2287 uint64_t value = cs->ich_hcr_el2;
2289 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2290 return value;
2293 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2294 uint64_t value)
2296 GICv3CPUState *cs = icc_cs_from_env(env);
2298 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2300 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2301 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2302 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2303 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2304 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2306 cs->ich_hcr_el2 = value;
2307 gicv3_cpuif_virt_update(cs);
2310 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2312 GICv3CPUState *cs = icc_cs_from_env(env);
2313 uint64_t value = cs->ich_vmcr_el2;
2315 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2316 return value;
2319 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2320 uint64_t value)
2322 GICv3CPUState *cs = icc_cs_from_env(env);
2324 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2326 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2327 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2328 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2329 value |= ICH_VMCR_EL2_VFIQEN;
2331 cs->ich_vmcr_el2 = value;
2332 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2333 * by reading and writing back the fields.
2335 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2336 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2338 gicv3_cpuif_virt_update(cs);
2341 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2343 GICv3CPUState *cs = icc_cs_from_env(env);
2344 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2345 uint64_t value;
2347 /* This read function handles all of:
2348 * 64-bit reads of the whole LR
2349 * 32-bit reads of the low half of the LR
2350 * 32-bit reads of the high half of the LR
2352 if (ri->state == ARM_CP_STATE_AA32) {
2353 if (ri->crm >= 14) {
2354 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2355 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2356 } else {
2357 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2358 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2360 } else {
2361 value = cs->ich_lr_el2[regno];
2362 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2365 return value;
2368 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2369 uint64_t value)
2371 GICv3CPUState *cs = icc_cs_from_env(env);
2372 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2374 /* This write function handles all of:
2375 * 64-bit writes to the whole LR
2376 * 32-bit writes to the low half of the LR
2377 * 32-bit writes to the high half of the LR
2379 if (ri->state == ARM_CP_STATE_AA32) {
2380 if (ri->crm >= 14) {
2381 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2382 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2383 } else {
2384 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2385 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2387 } else {
2388 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2391 /* Enforce RES0 bits in priority field */
2392 if (cs->vpribits < 8) {
2393 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2394 8 - cs->vpribits, 0);
2397 cs->ich_lr_el2[regno] = value;
2398 gicv3_cpuif_virt_update(cs);
2401 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2403 GICv3CPUState *cs = icc_cs_from_env(env);
2404 uint64_t value;
2406 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2407 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2408 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2409 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2410 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2412 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2413 return value;
2416 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2418 GICv3CPUState *cs = icc_cs_from_env(env);
2419 uint64_t value = maintenance_interrupt_state(cs);
2421 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2422 return value;
2425 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2427 GICv3CPUState *cs = icc_cs_from_env(env);
2428 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2430 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2431 return value;
2434 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436 GICv3CPUState *cs = icc_cs_from_env(env);
2437 uint64_t value = 0;
2438 int i;
2440 for (i = 0; i < cs->num_list_regs; i++) {
2441 uint64_t lr = cs->ich_lr_el2[i];
2443 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2444 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2445 value |= (1 << i);
2449 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2450 return value;
2453 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2454 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2455 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2456 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2457 .access = PL2_RW,
2458 .readfn = ich_ap_read,
2459 .writefn = ich_ap_write,
2461 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2462 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2463 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2464 .access = PL2_RW,
2465 .readfn = ich_ap_read,
2466 .writefn = ich_ap_write,
2468 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2469 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2470 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2471 .access = PL2_RW,
2472 .readfn = ich_hcr_read,
2473 .writefn = ich_hcr_write,
2475 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2476 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2477 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2478 .access = PL2_R,
2479 .readfn = ich_vtr_read,
2481 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2482 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2483 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2484 .access = PL2_R,
2485 .readfn = ich_misr_read,
2487 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2488 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2489 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2490 .access = PL2_R,
2491 .readfn = ich_eisr_read,
2493 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2495 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2496 .access = PL2_R,
2497 .readfn = ich_elrsr_read,
2499 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2500 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2501 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2502 .access = PL2_RW,
2503 .readfn = ich_vmcr_read,
2504 .writefn = ich_vmcr_write,
2506 REGINFO_SENTINEL
2509 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2510 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2511 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2512 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2513 .access = PL2_RW,
2514 .readfn = ich_ap_read,
2515 .writefn = ich_ap_write,
2517 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2518 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2519 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2520 .access = PL2_RW,
2521 .readfn = ich_ap_read,
2522 .writefn = ich_ap_write,
2524 REGINFO_SENTINEL
2527 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2528 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2529 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2530 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2531 .access = PL2_RW,
2532 .readfn = ich_ap_read,
2533 .writefn = ich_ap_write,
2535 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2536 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2537 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2538 .access = PL2_RW,
2539 .readfn = ich_ap_read,
2540 .writefn = ich_ap_write,
2542 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2543 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2544 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2545 .access = PL2_RW,
2546 .readfn = ich_ap_read,
2547 .writefn = ich_ap_write,
2549 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2551 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2552 .access = PL2_RW,
2553 .readfn = ich_ap_read,
2554 .writefn = ich_ap_write,
2556 REGINFO_SENTINEL
2559 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2561 GICv3CPUState *cs = opaque;
2563 gicv3_cpuif_update(cs);
2566 void gicv3_init_cpuif(GICv3State *s)
2568 /* Called from the GICv3 realize function; register our system
2569 * registers with the CPU
2571 int i;
2573 for (i = 0; i < s->num_cpu; i++) {
2574 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2575 GICv3CPUState *cs = &s->cpu[i];
2577 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2578 * in define_arm_cp_regs_with_opaque(), because when we're called back
2579 * it might be with code translated by CPU 0 but run by CPU 1, in
2580 * which case we'd get the wrong value.
2581 * So instead we define the regs with no ri->opaque info, and
2582 * get back to the GICv3CPUState from the ARMCPU by reading back
2583 * the opaque pointer from the el_change_hook, which we're going
2584 * to need to register anyway.
2586 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2587 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2588 && cpu->gic_num_lrs) {
2589 int j;
2591 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2593 cs->num_list_regs = cpu->gic_num_lrs;
2594 cs->vpribits = cpu->gic_vpribits;
2595 cs->vprebits = cpu->gic_vprebits;
2597 /* Check against architectural constraints: getting these
2598 * wrong would be a bug in the CPU code defining these,
2599 * and the implementation relies on them holding.
2601 g_assert(cs->vprebits <= cs->vpribits);
2602 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2603 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2605 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2607 for (j = 0; j < cs->num_list_regs; j++) {
2608 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2609 * are split into two cp15 regs, LR (the low part, with the
2610 * same encoding as the AArch64 LR) and LRC (the high part).
2612 ARMCPRegInfo lr_regset[] = {
2613 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2614 .opc0 = 3, .opc1 = 4, .crn = 12,
2615 .crm = 12 + (j >> 3), .opc2 = j & 7,
2616 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2617 .access = PL2_RW,
2618 .readfn = ich_lr_read,
2619 .writefn = ich_lr_write,
2621 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2622 .cp = 15, .opc1 = 4, .crn = 12,
2623 .crm = 14 + (j >> 3), .opc2 = j & 7,
2624 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2625 .access = PL2_RW,
2626 .readfn = ich_lr_read,
2627 .writefn = ich_lr_write,
2629 REGINFO_SENTINEL
2631 define_arm_cp_regs(cpu, lr_regset);
2633 if (cs->vprebits >= 6) {
2634 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2636 if (cs->vprebits == 7) {
2637 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2640 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);