arm: Don't decode MRS(banked) or MSR(banked) for M profile
[qemu/ar7.git] / target / arm / op_helper.c
blobd64c8670fa4ab991305148adae2514e1a802b3e7
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static void raise_exception(CPUARMState *env, uint32_t excp,
32 uint32_t syndrome, uint32_t target_el)
34 CPUState *cs = CPU(arm_env_get_cpu(env));
36 assert(!excp_is_internal(excp));
37 cs->exception_index = excp;
38 env->exception.syndrome = syndrome;
39 env->exception.target_el = target_el;
40 cpu_loop_exit(cs);
43 static int exception_target_el(CPUARMState *env)
45 int target_el = MAX(1, arm_current_el(env));
47 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
48 * to EL3 in this case.
50 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
51 target_el = 3;
54 return target_el;
57 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
58 uint32_t rn, uint32_t maxindex)
60 uint32_t val;
61 uint32_t tmp;
62 int index;
63 int shift;
64 uint64_t *table;
65 table = (uint64_t *)&env->vfp.regs[rn];
66 val = 0;
67 for (shift = 0; shift < 32; shift += 8) {
68 index = (ireg >> shift) & 0xff;
69 if (index < maxindex) {
70 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
71 val |= tmp << shift;
72 } else {
73 val |= def & (0xff << shift);
76 return val;
79 #if !defined(CONFIG_USER_ONLY)
81 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
82 unsigned int target_el,
83 bool same_el,
84 bool s1ptw, bool is_write,
85 int fsc)
87 uint32_t syn;
89 /* ISV is only set for data aborts routed to EL2 and
90 * never for stage-1 page table walks faulting on stage 2.
92 * Furthermore, ISV is only set for certain kinds of load/stores.
93 * If the template syndrome does not have ISV set, we should leave
94 * it cleared.
96 * See ARMv8 specs, D7-1974:
97 * ISS encoding for an exception from a Data Abort, the
98 * ISV field.
100 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
101 syn = syn_data_abort_no_iss(same_el,
102 0, 0, s1ptw, is_write, fsc);
103 } else {
104 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
105 * syndrome created at translation time.
106 * Now we create the runtime syndrome with the remaining fields.
108 syn = syn_data_abort_with_iss(same_el,
109 0, 0, 0, 0, 0,
110 0, 0, s1ptw, is_write, fsc,
111 false);
112 /* Merge the runtime syndrome with the template syndrome. */
113 syn |= template_syn;
115 return syn;
118 /* try to fill the TLB and return an exception if error. If retaddr is
119 * NULL, it means that the function was called in C code (i.e. not
120 * from generated code or from helper.c)
122 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
123 int mmu_idx, uintptr_t retaddr)
125 bool ret;
126 uint32_t fsr = 0;
127 ARMMMUFaultInfo fi = {};
129 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
130 if (unlikely(ret)) {
131 ARMCPU *cpu = ARM_CPU(cs);
132 CPUARMState *env = &cpu->env;
133 uint32_t syn, exc;
134 unsigned int target_el;
135 bool same_el;
137 if (retaddr) {
138 /* now we have a real cpu fault */
139 cpu_restore_state(cs, retaddr);
142 target_el = exception_target_el(env);
143 if (fi.stage2) {
144 target_el = 2;
145 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
147 same_el = arm_current_el(env) == target_el;
148 /* AArch64 syndrome does not have an LPAE bit */
149 syn = fsr & ~(1 << 9);
151 /* For insn and data aborts we assume there is no instruction syndrome
152 * information; this is always true for exceptions reported to EL1.
154 if (access_type == MMU_INST_FETCH) {
155 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
156 exc = EXCP_PREFETCH_ABORT;
157 } else {
158 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
159 same_el, fi.s1ptw,
160 access_type == MMU_DATA_STORE, syn);
161 if (access_type == MMU_DATA_STORE
162 && arm_feature(env, ARM_FEATURE_V6)) {
163 fsr |= (1 << 11);
165 exc = EXCP_DATA_ABORT;
168 env->exception.vaddress = addr;
169 env->exception.fsr = fsr;
170 raise_exception(env, exc, syn, target_el);
174 /* Raise a data fault alignment exception for the specified virtual address */
175 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
176 MMUAccessType access_type,
177 int mmu_idx, uintptr_t retaddr)
179 ARMCPU *cpu = ARM_CPU(cs);
180 CPUARMState *env = &cpu->env;
181 int target_el;
182 bool same_el;
183 uint32_t syn;
185 if (retaddr) {
186 /* now we have a real cpu fault */
187 cpu_restore_state(cs, retaddr);
190 target_el = exception_target_el(env);
191 same_el = (arm_current_el(env) == target_el);
193 env->exception.vaddress = vaddr;
195 /* the DFSR for an alignment fault depends on whether we're using
196 * the LPAE long descriptor format, or the short descriptor format
198 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
199 env->exception.fsr = (1 << 9) | 0x21;
200 } else {
201 env->exception.fsr = 0x1;
204 if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) {
205 env->exception.fsr |= (1 << 11);
208 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
209 same_el, 0, access_type == MMU_DATA_STORE,
210 0x21);
211 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
214 #endif /* !defined(CONFIG_USER_ONLY) */
216 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
218 uint32_t res = a + b;
219 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
220 env->QF = 1;
221 return res;
224 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
226 uint32_t res = a + b;
227 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
228 env->QF = 1;
229 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
231 return res;
234 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
236 uint32_t res = a - b;
237 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
238 env->QF = 1;
239 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
241 return res;
244 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
246 uint32_t res;
247 if (val >= 0x40000000) {
248 res = ~SIGNBIT;
249 env->QF = 1;
250 } else if (val <= (int32_t)0xc0000000) {
251 res = SIGNBIT;
252 env->QF = 1;
253 } else {
254 res = val << 1;
256 return res;
259 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
261 uint32_t res = a + b;
262 if (res < a) {
263 env->QF = 1;
264 res = ~0;
266 return res;
269 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
271 uint32_t res = a - b;
272 if (res > a) {
273 env->QF = 1;
274 res = 0;
276 return res;
279 /* Signed saturation. */
280 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
282 int32_t top;
283 uint32_t mask;
285 top = val >> shift;
286 mask = (1u << shift) - 1;
287 if (top > 0) {
288 env->QF = 1;
289 return mask;
290 } else if (top < -1) {
291 env->QF = 1;
292 return ~mask;
294 return val;
297 /* Unsigned saturation. */
298 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
300 uint32_t max;
302 max = (1u << shift) - 1;
303 if (val < 0) {
304 env->QF = 1;
305 return 0;
306 } else if (val > max) {
307 env->QF = 1;
308 return max;
310 return val;
313 /* Signed saturate. */
314 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
316 return do_ssat(env, x, shift);
319 /* Dual halfword signed saturate. */
320 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
322 uint32_t res;
324 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
325 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
326 return res;
329 /* Unsigned saturate. */
330 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
332 return do_usat(env, x, shift);
335 /* Dual halfword unsigned saturate. */
336 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
338 uint32_t res;
340 res = (uint16_t)do_usat(env, (int16_t)x, shift);
341 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
342 return res;
345 void HELPER(setend)(CPUARMState *env)
347 env->uncached_cpsr ^= CPSR_E;
350 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
351 * The function returns the target EL (1-3) if the instruction is to be trapped;
352 * otherwise it returns 0 indicating it is not trapped.
354 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
356 int cur_el = arm_current_el(env);
357 uint64_t mask;
359 /* If we are currently in EL0 then we need to check if SCTLR is set up for
360 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
362 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
363 int target_el;
365 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
366 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
367 /* Secure EL0 and Secure PL1 is at EL3 */
368 target_el = 3;
369 } else {
370 target_el = 1;
373 if (!(env->cp15.sctlr_el[target_el] & mask)) {
374 return target_el;
378 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
379 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
380 * bits will be zero indicating no trap.
382 if (cur_el < 2 && !arm_is_secure(env)) {
383 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
384 if (env->cp15.hcr_el2 & mask) {
385 return 2;
389 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
390 if (cur_el < 3) {
391 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
392 if (env->cp15.scr_el3 & mask) {
393 return 3;
397 return 0;
400 void HELPER(wfi)(CPUARMState *env)
402 CPUState *cs = CPU(arm_env_get_cpu(env));
403 int target_el = check_wfx_trap(env, false);
405 if (cpu_has_work(cs)) {
406 /* Don't bother to go into our "low power state" if
407 * we would just wake up immediately.
409 return;
412 if (target_el) {
413 env->pc -= 4;
414 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
417 cs->exception_index = EXCP_HLT;
418 cs->halted = 1;
419 cpu_loop_exit(cs);
422 void HELPER(wfe)(CPUARMState *env)
424 /* This is a hint instruction that is semantically different
425 * from YIELD even though we currently implement it identically.
426 * Don't actually halt the CPU, just yield back to top
427 * level loop. This is not going into a "low power state"
428 * (ie halting until some event occurs), so we never take
429 * a configurable trap to a different exception level.
431 HELPER(yield)(env);
434 void HELPER(yield)(CPUARMState *env)
436 ARMCPU *cpu = arm_env_get_cpu(env);
437 CPUState *cs = CPU(cpu);
439 /* When running in MTTCG we don't generate jumps to the yield and
440 * WFE helpers as it won't affect the scheduling of other vCPUs.
441 * If we wanted to more completely model WFE/SEV so we don't busy
442 * spin unnecessarily we would need to do something more involved.
444 g_assert(!parallel_cpus);
446 /* This is a non-trappable hint instruction that generally indicates
447 * that the guest is currently busy-looping. Yield control back to the
448 * top level loop so that a more deserving VCPU has a chance to run.
450 cs->exception_index = EXCP_YIELD;
451 cpu_loop_exit(cs);
454 /* Raise an internal-to-QEMU exception. This is limited to only
455 * those EXCP values which are special cases for QEMU to interrupt
456 * execution and not to be used for exceptions which are passed to
457 * the guest (those must all have syndrome information and thus should
458 * use exception_with_syndrome).
460 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
462 CPUState *cs = CPU(arm_env_get_cpu(env));
464 assert(excp_is_internal(excp));
465 cs->exception_index = excp;
466 cpu_loop_exit(cs);
469 /* Raise an exception with the specified syndrome register value */
470 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
471 uint32_t syndrome, uint32_t target_el)
473 raise_exception(env, excp, syndrome, target_el);
476 uint32_t HELPER(cpsr_read)(CPUARMState *env)
478 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
481 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
483 cpsr_write(env, val, mask, CPSRWriteByInstr);
486 /* Write the CPSR for a 32-bit exception return */
487 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
489 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
491 /* Generated code has already stored the new PC value, but
492 * without masking out its low bits, because which bits need
493 * masking depends on whether we're returning to Thumb or ARM
494 * state. Do the masking now.
496 env->regs[15] &= (env->thumb ? ~1 : ~3);
498 qemu_mutex_lock_iothread();
499 arm_call_el_change_hook(arm_env_get_cpu(env));
500 qemu_mutex_unlock_iothread();
503 /* Access to user mode registers from privileged modes. */
504 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
506 uint32_t val;
508 if (regno == 13) {
509 val = env->banked_r13[BANK_USRSYS];
510 } else if (regno == 14) {
511 val = env->banked_r14[BANK_USRSYS];
512 } else if (regno >= 8
513 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
514 val = env->usr_regs[regno - 8];
515 } else {
516 val = env->regs[regno];
518 return val;
521 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
523 if (regno == 13) {
524 env->banked_r13[BANK_USRSYS] = val;
525 } else if (regno == 14) {
526 env->banked_r14[BANK_USRSYS] = val;
527 } else if (regno >= 8
528 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
529 env->usr_regs[regno - 8] = val;
530 } else {
531 env->regs[regno] = val;
535 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
537 if ((env->uncached_cpsr & CPSR_M) == mode) {
538 env->regs[13] = val;
539 } else {
540 env->banked_r13[bank_number(mode)] = val;
544 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
546 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
547 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
548 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
550 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
551 exception_target_el(env));
554 if ((env->uncached_cpsr & CPSR_M) == mode) {
555 return env->regs[13];
556 } else {
557 return env->banked_r13[bank_number(mode)];
561 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
562 uint32_t regno)
564 /* Raise an exception if the requested access is one of the UNPREDICTABLE
565 * cases; otherwise return. This broadly corresponds to the pseudocode
566 * BankedRegisterAccessValid() and SPSRAccessValid(),
567 * except that we have already handled some cases at translate time.
569 int curmode = env->uncached_cpsr & CPSR_M;
571 if (curmode == tgtmode) {
572 goto undef;
575 if (tgtmode == ARM_CPU_MODE_USR) {
576 switch (regno) {
577 case 8 ... 12:
578 if (curmode != ARM_CPU_MODE_FIQ) {
579 goto undef;
581 break;
582 case 13:
583 if (curmode == ARM_CPU_MODE_SYS) {
584 goto undef;
586 break;
587 case 14:
588 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
589 goto undef;
591 break;
592 default:
593 break;
597 if (tgtmode == ARM_CPU_MODE_HYP) {
598 switch (regno) {
599 case 17: /* ELR_Hyp */
600 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
601 goto undef;
603 break;
604 default:
605 if (curmode != ARM_CPU_MODE_MON) {
606 goto undef;
608 break;
612 return;
614 undef:
615 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
616 exception_target_el(env));
619 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
620 uint32_t regno)
622 msr_mrs_banked_exc_checks(env, tgtmode, regno);
624 switch (regno) {
625 case 16: /* SPSRs */
626 env->banked_spsr[bank_number(tgtmode)] = value;
627 break;
628 case 17: /* ELR_Hyp */
629 env->elr_el[2] = value;
630 break;
631 case 13:
632 env->banked_r13[bank_number(tgtmode)] = value;
633 break;
634 case 14:
635 env->banked_r14[bank_number(tgtmode)] = value;
636 break;
637 case 8 ... 12:
638 switch (tgtmode) {
639 case ARM_CPU_MODE_USR:
640 env->usr_regs[regno - 8] = value;
641 break;
642 case ARM_CPU_MODE_FIQ:
643 env->fiq_regs[regno - 8] = value;
644 break;
645 default:
646 g_assert_not_reached();
648 break;
649 default:
650 g_assert_not_reached();
654 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
656 msr_mrs_banked_exc_checks(env, tgtmode, regno);
658 switch (regno) {
659 case 16: /* SPSRs */
660 return env->banked_spsr[bank_number(tgtmode)];
661 case 17: /* ELR_Hyp */
662 return env->elr_el[2];
663 case 13:
664 return env->banked_r13[bank_number(tgtmode)];
665 case 14:
666 return env->banked_r14[bank_number(tgtmode)];
667 case 8 ... 12:
668 switch (tgtmode) {
669 case ARM_CPU_MODE_USR:
670 return env->usr_regs[regno - 8];
671 case ARM_CPU_MODE_FIQ:
672 return env->fiq_regs[regno - 8];
673 default:
674 g_assert_not_reached();
676 default:
677 g_assert_not_reached();
681 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
682 uint32_t isread)
684 const ARMCPRegInfo *ri = rip;
685 int target_el;
687 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
688 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
689 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
692 if (!ri->accessfn) {
693 return;
696 switch (ri->accessfn(env, ri, isread)) {
697 case CP_ACCESS_OK:
698 return;
699 case CP_ACCESS_TRAP:
700 target_el = exception_target_el(env);
701 break;
702 case CP_ACCESS_TRAP_EL2:
703 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
704 * a bug in the access function.
706 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
707 target_el = 2;
708 break;
709 case CP_ACCESS_TRAP_EL3:
710 target_el = 3;
711 break;
712 case CP_ACCESS_TRAP_UNCATEGORIZED:
713 target_el = exception_target_el(env);
714 syndrome = syn_uncategorized();
715 break;
716 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
717 target_el = 2;
718 syndrome = syn_uncategorized();
719 break;
720 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
721 target_el = 3;
722 syndrome = syn_uncategorized();
723 break;
724 case CP_ACCESS_TRAP_FP_EL2:
725 target_el = 2;
726 /* Since we are an implementation that takes exceptions on a trapped
727 * conditional insn only if the insn has passed its condition code
728 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
729 * (which is also the required value for AArch64 traps).
731 syndrome = syn_fp_access_trap(1, 0xe, false);
732 break;
733 case CP_ACCESS_TRAP_FP_EL3:
734 target_el = 3;
735 syndrome = syn_fp_access_trap(1, 0xe, false);
736 break;
737 default:
738 g_assert_not_reached();
741 raise_exception(env, EXCP_UDEF, syndrome, target_el);
744 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
746 const ARMCPRegInfo *ri = rip;
748 if (ri->type & ARM_CP_IO) {
749 qemu_mutex_lock_iothread();
750 ri->writefn(env, ri, value);
751 qemu_mutex_unlock_iothread();
752 } else {
753 ri->writefn(env, ri, value);
757 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
759 const ARMCPRegInfo *ri = rip;
760 uint32_t res;
762 if (ri->type & ARM_CP_IO) {
763 qemu_mutex_lock_iothread();
764 res = ri->readfn(env, ri);
765 qemu_mutex_unlock_iothread();
766 } else {
767 res = ri->readfn(env, ri);
770 return res;
773 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
775 const ARMCPRegInfo *ri = rip;
777 if (ri->type & ARM_CP_IO) {
778 qemu_mutex_lock_iothread();
779 ri->writefn(env, ri, value);
780 qemu_mutex_unlock_iothread();
781 } else {
782 ri->writefn(env, ri, value);
786 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
788 const ARMCPRegInfo *ri = rip;
789 uint64_t res;
791 if (ri->type & ARM_CP_IO) {
792 qemu_mutex_lock_iothread();
793 res = ri->readfn(env, ri);
794 qemu_mutex_unlock_iothread();
795 } else {
796 res = ri->readfn(env, ri);
799 return res;
802 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
804 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
805 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
806 * to catch that case at translate time.
808 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
809 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
810 extract32(op, 3, 3), 4,
811 imm, 0x1f, 0);
812 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
815 switch (op) {
816 case 0x05: /* SPSel */
817 update_spsel(env, imm);
818 break;
819 case 0x1e: /* DAIFSet */
820 env->daif |= (imm << 6) & PSTATE_DAIF;
821 break;
822 case 0x1f: /* DAIFClear */
823 env->daif &= ~((imm << 6) & PSTATE_DAIF);
824 break;
825 default:
826 g_assert_not_reached();
830 void HELPER(clear_pstate_ss)(CPUARMState *env)
832 env->pstate &= ~PSTATE_SS;
835 void HELPER(pre_hvc)(CPUARMState *env)
837 ARMCPU *cpu = arm_env_get_cpu(env);
838 int cur_el = arm_current_el(env);
839 /* FIXME: Use actual secure state. */
840 bool secure = false;
841 bool undef;
843 if (arm_is_psci_call(cpu, EXCP_HVC)) {
844 /* If PSCI is enabled and this looks like a valid PSCI call then
845 * that overrides the architecturally mandated HVC behaviour.
847 return;
850 if (!arm_feature(env, ARM_FEATURE_EL2)) {
851 /* If EL2 doesn't exist, HVC always UNDEFs */
852 undef = true;
853 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
854 /* EL3.HCE has priority over EL2.HCD. */
855 undef = !(env->cp15.scr_el3 & SCR_HCE);
856 } else {
857 undef = env->cp15.hcr_el2 & HCR_HCD;
860 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
861 * For ARMv8/AArch64, HVC is allowed in EL3.
862 * Note that we've already trapped HVC from EL0 at translation
863 * time.
865 if (secure && (!is_a64(env) || cur_el == 1)) {
866 undef = true;
869 if (undef) {
870 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
871 exception_target_el(env));
875 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
877 ARMCPU *cpu = arm_env_get_cpu(env);
878 int cur_el = arm_current_el(env);
879 bool secure = arm_is_secure(env);
880 bool smd = env->cp15.scr_el3 & SCR_SMD;
881 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
882 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
883 * extensions, SMD only applies to NS state.
884 * On ARMv7 without the Virtualization extensions, the SMD bit
885 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
886 * so we need not special case this here.
888 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
890 if (arm_is_psci_call(cpu, EXCP_SMC)) {
891 /* If PSCI is enabled and this looks like a valid PSCI call then
892 * that overrides the architecturally mandated SMC behaviour.
894 return;
897 if (!arm_feature(env, ARM_FEATURE_EL3)) {
898 /* If we have no EL3 then SMC always UNDEFs */
899 undef = true;
900 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
901 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
902 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
905 if (undef) {
906 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
907 exception_target_el(env));
911 static int el_from_spsr(uint32_t spsr)
913 /* Return the exception level that this SPSR is requesting a return to,
914 * or -1 if it is invalid (an illegal return)
916 if (spsr & PSTATE_nRW) {
917 switch (spsr & CPSR_M) {
918 case ARM_CPU_MODE_USR:
919 return 0;
920 case ARM_CPU_MODE_HYP:
921 return 2;
922 case ARM_CPU_MODE_FIQ:
923 case ARM_CPU_MODE_IRQ:
924 case ARM_CPU_MODE_SVC:
925 case ARM_CPU_MODE_ABT:
926 case ARM_CPU_MODE_UND:
927 case ARM_CPU_MODE_SYS:
928 return 1;
929 case ARM_CPU_MODE_MON:
930 /* Returning to Mon from AArch64 is never possible,
931 * so this is an illegal return.
933 default:
934 return -1;
936 } else {
937 if (extract32(spsr, 1, 1)) {
938 /* Return with reserved M[1] bit set */
939 return -1;
941 if (extract32(spsr, 0, 4) == 1) {
942 /* return to EL0 with M[0] bit set */
943 return -1;
945 return extract32(spsr, 2, 2);
949 void HELPER(exception_return)(CPUARMState *env)
951 int cur_el = arm_current_el(env);
952 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
953 uint32_t spsr = env->banked_spsr[spsr_idx];
954 int new_el;
955 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
957 aarch64_save_sp(env, cur_el);
959 env->exclusive_addr = -1;
961 /* We must squash the PSTATE.SS bit to zero unless both of the
962 * following hold:
963 * 1. debug exceptions are currently disabled
964 * 2. singlestep will be active in the EL we return to
965 * We check 1 here and 2 after we've done the pstate/cpsr write() to
966 * transition to the EL we're going to.
968 if (arm_generate_debug_exceptions(env)) {
969 spsr &= ~PSTATE_SS;
972 new_el = el_from_spsr(spsr);
973 if (new_el == -1) {
974 goto illegal_return;
976 if (new_el > cur_el
977 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
978 /* Disallow return to an EL which is unimplemented or higher
979 * than the current one.
981 goto illegal_return;
984 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
985 /* Return to an EL which is configured for a different register width */
986 goto illegal_return;
989 if (new_el == 2 && arm_is_secure_below_el3(env)) {
990 /* Return to the non-existent secure-EL2 */
991 goto illegal_return;
994 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
995 && !arm_is_secure_below_el3(env)) {
996 goto illegal_return;
999 if (!return_to_aa64) {
1000 env->aarch64 = 0;
1001 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1002 * will sort the register banks out for us, and we've already
1003 * caught all the bad-mode cases in el_from_spsr().
1005 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1006 if (!arm_singlestep_active(env)) {
1007 env->uncached_cpsr &= ~PSTATE_SS;
1009 aarch64_sync_64_to_32(env);
1011 if (spsr & CPSR_T) {
1012 env->regs[15] = env->elr_el[cur_el] & ~0x1;
1013 } else {
1014 env->regs[15] = env->elr_el[cur_el] & ~0x3;
1016 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1017 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1018 cur_el, new_el, env->regs[15]);
1019 } else {
1020 env->aarch64 = 1;
1021 pstate_write(env, spsr);
1022 if (!arm_singlestep_active(env)) {
1023 env->pstate &= ~PSTATE_SS;
1025 aarch64_restore_sp(env, new_el);
1026 env->pc = env->elr_el[cur_el];
1027 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1028 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1029 cur_el, new_el, env->pc);
1032 qemu_mutex_lock_iothread();
1033 arm_call_el_change_hook(arm_env_get_cpu(env));
1034 qemu_mutex_unlock_iothread();
1036 return;
1038 illegal_return:
1039 /* Illegal return events of various kinds have architecturally
1040 * mandated behaviour:
1041 * restore NZCV and DAIF from SPSR_ELx
1042 * set PSTATE.IL
1043 * restore PC from ELR_ELx
1044 * no change to exception level, execution state or stack pointer
1046 env->pstate |= PSTATE_IL;
1047 env->pc = env->elr_el[cur_el];
1048 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1049 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1050 pstate_write(env, spsr);
1051 if (!arm_singlestep_active(env)) {
1052 env->pstate &= ~PSTATE_SS;
1054 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1055 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1058 /* Return true if the linked breakpoint entry lbn passes its checks */
1059 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1061 CPUARMState *env = &cpu->env;
1062 uint64_t bcr = env->cp15.dbgbcr[lbn];
1063 int brps = extract32(cpu->dbgdidr, 24, 4);
1064 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1065 int bt;
1066 uint32_t contextidr;
1068 /* Links to unimplemented or non-context aware breakpoints are
1069 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1070 * as if linked to an UNKNOWN context-aware breakpoint (in which
1071 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1072 * We choose the former.
1074 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1075 return false;
1078 bcr = env->cp15.dbgbcr[lbn];
1080 if (extract64(bcr, 0, 1) == 0) {
1081 /* Linked breakpoint disabled : generate no events */
1082 return false;
1085 bt = extract64(bcr, 20, 4);
1087 /* We match the whole register even if this is AArch32 using the
1088 * short descriptor format (in which case it holds both PROCID and ASID),
1089 * since we don't implement the optional v7 context ID masking.
1091 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1093 switch (bt) {
1094 case 3: /* linked context ID match */
1095 if (arm_current_el(env) > 1) {
1096 /* Context matches never fire in EL2 or (AArch64) EL3 */
1097 return false;
1099 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1100 case 5: /* linked address mismatch (reserved in AArch64) */
1101 case 9: /* linked VMID match (reserved if no EL2) */
1102 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1103 default:
1104 /* Links to Unlinked context breakpoints must generate no
1105 * events; we choose to do the same for reserved values too.
1107 return false;
1110 return false;
1113 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1115 CPUARMState *env = &cpu->env;
1116 uint64_t cr;
1117 int pac, hmc, ssc, wt, lbn;
1118 /* Note that for watchpoints the check is against the CPU security
1119 * state, not the S/NS attribute on the offending data access.
1121 bool is_secure = arm_is_secure(env);
1122 int access_el = arm_current_el(env);
1124 if (is_wp) {
1125 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1127 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1128 return false;
1130 cr = env->cp15.dbgwcr[n];
1131 if (wp->hitattrs.user) {
1132 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1133 * match watchpoints as if they were accesses done at EL0, even if
1134 * the CPU is at EL1 or higher.
1136 access_el = 0;
1138 } else {
1139 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1141 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1142 return false;
1144 cr = env->cp15.dbgbcr[n];
1146 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1147 * enabled and that the address and access type match; for breakpoints
1148 * we know the address matched; check the remaining fields, including
1149 * linked breakpoints. We rely on WCR and BCR having the same layout
1150 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1151 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1152 * must act either like some valid combination or as if the watchpoint
1153 * were disabled. We choose the former, and use this together with
1154 * the fact that EL3 must always be Secure and EL2 must always be
1155 * Non-Secure to simplify the code slightly compared to the full
1156 * table in the ARM ARM.
1158 pac = extract64(cr, 1, 2);
1159 hmc = extract64(cr, 13, 1);
1160 ssc = extract64(cr, 14, 2);
1162 switch (ssc) {
1163 case 0:
1164 break;
1165 case 1:
1166 case 3:
1167 if (is_secure) {
1168 return false;
1170 break;
1171 case 2:
1172 if (!is_secure) {
1173 return false;
1175 break;
1178 switch (access_el) {
1179 case 3:
1180 case 2:
1181 if (!hmc) {
1182 return false;
1184 break;
1185 case 1:
1186 if (extract32(pac, 0, 1) == 0) {
1187 return false;
1189 break;
1190 case 0:
1191 if (extract32(pac, 1, 1) == 0) {
1192 return false;
1194 break;
1195 default:
1196 g_assert_not_reached();
1199 wt = extract64(cr, 20, 1);
1200 lbn = extract64(cr, 16, 4);
1202 if (wt && !linked_bp_matches(cpu, lbn)) {
1203 return false;
1206 return true;
1209 static bool check_watchpoints(ARMCPU *cpu)
1211 CPUARMState *env = &cpu->env;
1212 int n;
1214 /* If watchpoints are disabled globally or we can't take debug
1215 * exceptions here then watchpoint firings are ignored.
1217 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1218 || !arm_generate_debug_exceptions(env)) {
1219 return false;
1222 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1223 if (bp_wp_matches(cpu, n, true)) {
1224 return true;
1227 return false;
1230 static bool check_breakpoints(ARMCPU *cpu)
1232 CPUARMState *env = &cpu->env;
1233 int n;
1235 /* If breakpoints are disabled globally or we can't take debug
1236 * exceptions here then breakpoint firings are ignored.
1238 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1239 || !arm_generate_debug_exceptions(env)) {
1240 return false;
1243 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1244 if (bp_wp_matches(cpu, n, false)) {
1245 return true;
1248 return false;
1251 void HELPER(check_breakpoints)(CPUARMState *env)
1253 ARMCPU *cpu = arm_env_get_cpu(env);
1255 if (check_breakpoints(cpu)) {
1256 HELPER(exception_internal(env, EXCP_DEBUG));
1260 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1262 /* Called by core code when a CPU watchpoint fires; need to check if this
1263 * is also an architectural watchpoint match.
1265 ARMCPU *cpu = ARM_CPU(cs);
1267 return check_watchpoints(cpu);
1270 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1272 ARMCPU *cpu = ARM_CPU(cs);
1273 CPUARMState *env = &cpu->env;
1275 /* In BE32 system mode, target memory is stored byteswapped (on a
1276 * little-endian host system), and by the time we reach here (via an
1277 * opcode helper) the addresses of subword accesses have been adjusted
1278 * to account for that, which means that watchpoints will not match.
1279 * Undo the adjustment here.
1281 if (arm_sctlr_b(env)) {
1282 if (len == 1) {
1283 addr ^= 3;
1284 } else if (len == 2) {
1285 addr ^= 2;
1289 return addr;
1292 void arm_debug_excp_handler(CPUState *cs)
1294 /* Called by core code when a watchpoint or breakpoint fires;
1295 * need to check which one and raise the appropriate exception.
1297 ARMCPU *cpu = ARM_CPU(cs);
1298 CPUARMState *env = &cpu->env;
1299 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1301 if (wp_hit) {
1302 if (wp_hit->flags & BP_CPU) {
1303 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1304 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1306 cs->watchpoint_hit = NULL;
1308 if (extended_addresses_enabled(env)) {
1309 env->exception.fsr = (1 << 9) | 0x22;
1310 } else {
1311 env->exception.fsr = 0x2;
1313 env->exception.vaddress = wp_hit->hitaddr;
1314 raise_exception(env, EXCP_DATA_ABORT,
1315 syn_watchpoint(same_el, 0, wnr),
1316 arm_debug_target_el(env));
1318 } else {
1319 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1320 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1322 /* (1) GDB breakpoints should be handled first.
1323 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1324 * since singlestep is also done by generating a debug internal
1325 * exception.
1327 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1328 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1329 return;
1332 if (extended_addresses_enabled(env)) {
1333 env->exception.fsr = (1 << 9) | 0x22;
1334 } else {
1335 env->exception.fsr = 0x2;
1337 /* FAR is UNKNOWN, so doesn't need setting */
1338 raise_exception(env, EXCP_PREFETCH_ABORT,
1339 syn_breakpoint(same_el),
1340 arm_debug_target_el(env));
1344 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1345 The only way to do that in TCG is a conditional branch, which clobbers
1346 all our temporaries. For now implement these as helper functions. */
1348 /* Similarly for variable shift instructions. */
1350 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1352 int shift = i & 0xff;
1353 if (shift >= 32) {
1354 if (shift == 32)
1355 env->CF = x & 1;
1356 else
1357 env->CF = 0;
1358 return 0;
1359 } else if (shift != 0) {
1360 env->CF = (x >> (32 - shift)) & 1;
1361 return x << shift;
1363 return x;
1366 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1368 int shift = i & 0xff;
1369 if (shift >= 32) {
1370 if (shift == 32)
1371 env->CF = (x >> 31) & 1;
1372 else
1373 env->CF = 0;
1374 return 0;
1375 } else if (shift != 0) {
1376 env->CF = (x >> (shift - 1)) & 1;
1377 return x >> shift;
1379 return x;
1382 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1384 int shift = i & 0xff;
1385 if (shift >= 32) {
1386 env->CF = (x >> 31) & 1;
1387 return (int32_t)x >> 31;
1388 } else if (shift != 0) {
1389 env->CF = (x >> (shift - 1)) & 1;
1390 return (int32_t)x >> shift;
1392 return x;
1395 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1397 int shift1, shift;
1398 shift1 = i & 0xff;
1399 shift = shift1 & 0x1f;
1400 if (shift == 0) {
1401 if (shift1 != 0)
1402 env->CF = (x >> 31) & 1;
1403 return x;
1404 } else {
1405 env->CF = (x >> (shift - 1)) & 1;
1406 return ((uint32_t)x >> shift) | (x << (32 - shift));