4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
32 uint32_t syndrome
, uint32_t target_el
)
34 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
36 assert(!excp_is_internal(excp
));
37 cs
->exception_index
= excp
;
38 env
->exception
.syndrome
= syndrome
;
39 env
->exception
.target_el
= target_el
;
43 static int exception_target_el(CPUARMState
*env
)
45 int target_el
= MAX(1, arm_current_el(env
));
47 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
48 * to EL3 in this case.
50 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
57 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
58 uint32_t rn
, uint32_t maxindex
)
65 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
67 for (shift
= 0; shift
< 32; shift
+= 8) {
68 index
= (ireg
>> shift
) & 0xff;
69 if (index
< maxindex
) {
70 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
73 val
|= def
& (0xff << shift
);
79 #if !defined(CONFIG_USER_ONLY)
81 static inline uint32_t merge_syn_data_abort(uint32_t template_syn
,
82 unsigned int target_el
,
84 bool s1ptw
, bool is_write
,
89 /* ISV is only set for data aborts routed to EL2 and
90 * never for stage-1 page table walks faulting on stage 2.
92 * Furthermore, ISV is only set for certain kinds of load/stores.
93 * If the template syndrome does not have ISV set, we should leave
96 * See ARMv8 specs, D7-1974:
97 * ISS encoding for an exception from a Data Abort, the
100 if (!(template_syn
& ARM_EL_ISV
) || target_el
!= 2 || s1ptw
) {
101 syn
= syn_data_abort_no_iss(same_el
,
102 0, 0, s1ptw
, is_write
, fsc
);
104 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
105 * syndrome created at translation time.
106 * Now we create the runtime syndrome with the remaining fields.
108 syn
= syn_data_abort_with_iss(same_el
,
110 0, 0, s1ptw
, is_write
, fsc
,
112 /* Merge the runtime syndrome with the template syndrome. */
118 /* try to fill the TLB and return an exception if error. If retaddr is
119 * NULL, it means that the function was called in C code (i.e. not
120 * from generated code or from helper.c)
122 void tlb_fill(CPUState
*cs
, target_ulong addr
, MMUAccessType access_type
,
123 int mmu_idx
, uintptr_t retaddr
)
127 ARMMMUFaultInfo fi
= {};
129 ret
= arm_tlb_fill(cs
, addr
, access_type
, mmu_idx
, &fsr
, &fi
);
131 ARMCPU
*cpu
= ARM_CPU(cs
);
132 CPUARMState
*env
= &cpu
->env
;
134 unsigned int target_el
;
138 /* now we have a real cpu fault */
139 cpu_restore_state(cs
, retaddr
);
142 target_el
= exception_target_el(env
);
145 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
147 same_el
= arm_current_el(env
) == target_el
;
148 /* AArch64 syndrome does not have an LPAE bit */
149 syn
= fsr
& ~(1 << 9);
151 /* For insn and data aborts we assume there is no instruction syndrome
152 * information; this is always true for exceptions reported to EL1.
154 if (access_type
== MMU_INST_FETCH
) {
155 syn
= syn_insn_abort(same_el
, 0, fi
.s1ptw
, syn
);
156 exc
= EXCP_PREFETCH_ABORT
;
158 syn
= merge_syn_data_abort(env
->exception
.syndrome
, target_el
,
160 access_type
== MMU_DATA_STORE
, syn
);
161 if (access_type
== MMU_DATA_STORE
162 && arm_feature(env
, ARM_FEATURE_V6
)) {
165 exc
= EXCP_DATA_ABORT
;
168 env
->exception
.vaddress
= addr
;
169 env
->exception
.fsr
= fsr
;
170 raise_exception(env
, exc
, syn
, target_el
);
174 /* Raise a data fault alignment exception for the specified virtual address */
175 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
,
176 MMUAccessType access_type
,
177 int mmu_idx
, uintptr_t retaddr
)
179 ARMCPU
*cpu
= ARM_CPU(cs
);
180 CPUARMState
*env
= &cpu
->env
;
186 /* now we have a real cpu fault */
187 cpu_restore_state(cs
, retaddr
);
190 target_el
= exception_target_el(env
);
191 same_el
= (arm_current_el(env
) == target_el
);
193 env
->exception
.vaddress
= vaddr
;
195 /* the DFSR for an alignment fault depends on whether we're using
196 * the LPAE long descriptor format, or the short descriptor format
198 if (arm_s1_regime_using_lpae_format(env
, cpu_mmu_index(env
, false))) {
199 env
->exception
.fsr
= (1 << 9) | 0x21;
201 env
->exception
.fsr
= 0x1;
204 if (access_type
== MMU_DATA_STORE
&& arm_feature(env
, ARM_FEATURE_V6
)) {
205 env
->exception
.fsr
|= (1 << 11);
208 syn
= merge_syn_data_abort(env
->exception
.syndrome
, target_el
,
209 same_el
, 0, access_type
== MMU_DATA_STORE
,
211 raise_exception(env
, EXCP_DATA_ABORT
, syn
, target_el
);
214 #endif /* !defined(CONFIG_USER_ONLY) */
216 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
218 uint32_t res
= a
+ b
;
219 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
224 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
226 uint32_t res
= a
+ b
;
227 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
229 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
234 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
236 uint32_t res
= a
- b
;
237 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
239 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
244 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
247 if (val
>= 0x40000000) {
250 } else if (val
<= (int32_t)0xc0000000) {
259 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
261 uint32_t res
= a
+ b
;
269 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
271 uint32_t res
= a
- b
;
279 /* Signed saturation. */
280 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
286 mask
= (1u << shift
) - 1;
290 } else if (top
< -1) {
297 /* Unsigned saturation. */
298 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
302 max
= (1u << shift
) - 1;
306 } else if (val
> max
) {
313 /* Signed saturate. */
314 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
316 return do_ssat(env
, x
, shift
);
319 /* Dual halfword signed saturate. */
320 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
324 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
325 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
329 /* Unsigned saturate. */
330 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
332 return do_usat(env
, x
, shift
);
335 /* Dual halfword unsigned saturate. */
336 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
340 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
341 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
345 void HELPER(setend
)(CPUARMState
*env
)
347 env
->uncached_cpsr
^= CPSR_E
;
350 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
351 * The function returns the target EL (1-3) if the instruction is to be trapped;
352 * otherwise it returns 0 indicating it is not trapped.
354 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
356 int cur_el
= arm_current_el(env
);
359 /* If we are currently in EL0 then we need to check if SCTLR is set up for
360 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
362 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
365 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
366 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
367 /* Secure EL0 and Secure PL1 is at EL3 */
373 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
378 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
379 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
380 * bits will be zero indicating no trap.
382 if (cur_el
< 2 && !arm_is_secure(env
)) {
383 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
384 if (env
->cp15
.hcr_el2
& mask
) {
389 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
391 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
392 if (env
->cp15
.scr_el3
& mask
) {
400 void HELPER(wfi
)(CPUARMState
*env
)
402 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
403 int target_el
= check_wfx_trap(env
, false);
405 if (cpu_has_work(cs
)) {
406 /* Don't bother to go into our "low power state" if
407 * we would just wake up immediately.
414 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
417 cs
->exception_index
= EXCP_HLT
;
422 void HELPER(wfe
)(CPUARMState
*env
)
424 /* This is a hint instruction that is semantically different
425 * from YIELD even though we currently implement it identically.
426 * Don't actually halt the CPU, just yield back to top
427 * level loop. This is not going into a "low power state"
428 * (ie halting until some event occurs), so we never take
429 * a configurable trap to a different exception level.
434 void HELPER(yield
)(CPUARMState
*env
)
436 ARMCPU
*cpu
= arm_env_get_cpu(env
);
437 CPUState
*cs
= CPU(cpu
);
439 /* When running in MTTCG we don't generate jumps to the yield and
440 * WFE helpers as it won't affect the scheduling of other vCPUs.
441 * If we wanted to more completely model WFE/SEV so we don't busy
442 * spin unnecessarily we would need to do something more involved.
444 g_assert(!parallel_cpus
);
446 /* This is a non-trappable hint instruction that generally indicates
447 * that the guest is currently busy-looping. Yield control back to the
448 * top level loop so that a more deserving VCPU has a chance to run.
450 cs
->exception_index
= EXCP_YIELD
;
454 /* Raise an internal-to-QEMU exception. This is limited to only
455 * those EXCP values which are special cases for QEMU to interrupt
456 * execution and not to be used for exceptions which are passed to
457 * the guest (those must all have syndrome information and thus should
458 * use exception_with_syndrome).
460 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
462 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
464 assert(excp_is_internal(excp
));
465 cs
->exception_index
= excp
;
469 /* Raise an exception with the specified syndrome register value */
470 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
471 uint32_t syndrome
, uint32_t target_el
)
473 raise_exception(env
, excp
, syndrome
, target_el
);
476 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
478 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
481 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
483 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
486 /* Write the CPSR for a 32-bit exception return */
487 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
489 cpsr_write(env
, val
, CPSR_ERET_MASK
, CPSRWriteExceptionReturn
);
491 /* Generated code has already stored the new PC value, but
492 * without masking out its low bits, because which bits need
493 * masking depends on whether we're returning to Thumb or ARM
494 * state. Do the masking now.
496 env
->regs
[15] &= (env
->thumb
? ~1 : ~3);
498 qemu_mutex_lock_iothread();
499 arm_call_el_change_hook(arm_env_get_cpu(env
));
500 qemu_mutex_unlock_iothread();
503 /* Access to user mode registers from privileged modes. */
504 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
509 val
= env
->banked_r13
[BANK_USRSYS
];
510 } else if (regno
== 14) {
511 val
= env
->banked_r14
[BANK_USRSYS
];
512 } else if (regno
>= 8
513 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
514 val
= env
->usr_regs
[regno
- 8];
516 val
= env
->regs
[regno
];
521 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
524 env
->banked_r13
[BANK_USRSYS
] = val
;
525 } else if (regno
== 14) {
526 env
->banked_r14
[BANK_USRSYS
] = val
;
527 } else if (regno
>= 8
528 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
529 env
->usr_regs
[regno
- 8] = val
;
531 env
->regs
[regno
] = val
;
535 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
537 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
540 env
->banked_r13
[bank_number(mode
)] = val
;
544 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
546 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
547 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
548 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
550 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
551 exception_target_el(env
));
554 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
555 return env
->regs
[13];
557 return env
->banked_r13
[bank_number(mode
)];
561 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
564 /* Raise an exception if the requested access is one of the UNPREDICTABLE
565 * cases; otherwise return. This broadly corresponds to the pseudocode
566 * BankedRegisterAccessValid() and SPSRAccessValid(),
567 * except that we have already handled some cases at translate time.
569 int curmode
= env
->uncached_cpsr
& CPSR_M
;
571 if (curmode
== tgtmode
) {
575 if (tgtmode
== ARM_CPU_MODE_USR
) {
578 if (curmode
!= ARM_CPU_MODE_FIQ
) {
583 if (curmode
== ARM_CPU_MODE_SYS
) {
588 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
597 if (tgtmode
== ARM_CPU_MODE_HYP
) {
599 case 17: /* ELR_Hyp */
600 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
605 if (curmode
!= ARM_CPU_MODE_MON
) {
615 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
616 exception_target_el(env
));
619 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
622 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
626 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
628 case 17: /* ELR_Hyp */
629 env
->elr_el
[2] = value
;
632 env
->banked_r13
[bank_number(tgtmode
)] = value
;
635 env
->banked_r14
[bank_number(tgtmode
)] = value
;
639 case ARM_CPU_MODE_USR
:
640 env
->usr_regs
[regno
- 8] = value
;
642 case ARM_CPU_MODE_FIQ
:
643 env
->fiq_regs
[regno
- 8] = value
;
646 g_assert_not_reached();
650 g_assert_not_reached();
654 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
656 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
660 return env
->banked_spsr
[bank_number(tgtmode
)];
661 case 17: /* ELR_Hyp */
662 return env
->elr_el
[2];
664 return env
->banked_r13
[bank_number(tgtmode
)];
666 return env
->banked_r14
[bank_number(tgtmode
)];
669 case ARM_CPU_MODE_USR
:
670 return env
->usr_regs
[regno
- 8];
671 case ARM_CPU_MODE_FIQ
:
672 return env
->fiq_regs
[regno
- 8];
674 g_assert_not_reached();
677 g_assert_not_reached();
681 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
684 const ARMCPRegInfo
*ri
= rip
;
687 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
688 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
689 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
696 switch (ri
->accessfn(env
, ri
, isread
)) {
700 target_el
= exception_target_el(env
);
702 case CP_ACCESS_TRAP_EL2
:
703 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
704 * a bug in the access function.
706 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
709 case CP_ACCESS_TRAP_EL3
:
712 case CP_ACCESS_TRAP_UNCATEGORIZED
:
713 target_el
= exception_target_el(env
);
714 syndrome
= syn_uncategorized();
716 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
718 syndrome
= syn_uncategorized();
720 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
722 syndrome
= syn_uncategorized();
724 case CP_ACCESS_TRAP_FP_EL2
:
726 /* Since we are an implementation that takes exceptions on a trapped
727 * conditional insn only if the insn has passed its condition code
728 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
729 * (which is also the required value for AArch64 traps).
731 syndrome
= syn_fp_access_trap(1, 0xe, false);
733 case CP_ACCESS_TRAP_FP_EL3
:
735 syndrome
= syn_fp_access_trap(1, 0xe, false);
738 g_assert_not_reached();
741 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
744 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
746 const ARMCPRegInfo
*ri
= rip
;
748 if (ri
->type
& ARM_CP_IO
) {
749 qemu_mutex_lock_iothread();
750 ri
->writefn(env
, ri
, value
);
751 qemu_mutex_unlock_iothread();
753 ri
->writefn(env
, ri
, value
);
757 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
759 const ARMCPRegInfo
*ri
= rip
;
762 if (ri
->type
& ARM_CP_IO
) {
763 qemu_mutex_lock_iothread();
764 res
= ri
->readfn(env
, ri
);
765 qemu_mutex_unlock_iothread();
767 res
= ri
->readfn(env
, ri
);
773 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
775 const ARMCPRegInfo
*ri
= rip
;
777 if (ri
->type
& ARM_CP_IO
) {
778 qemu_mutex_lock_iothread();
779 ri
->writefn(env
, ri
, value
);
780 qemu_mutex_unlock_iothread();
782 ri
->writefn(env
, ri
, value
);
786 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
788 const ARMCPRegInfo
*ri
= rip
;
791 if (ri
->type
& ARM_CP_IO
) {
792 qemu_mutex_lock_iothread();
793 res
= ri
->readfn(env
, ri
);
794 qemu_mutex_unlock_iothread();
796 res
= ri
->readfn(env
, ri
);
802 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
804 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
805 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
806 * to catch that case at translate time.
808 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
809 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
810 extract32(op
, 3, 3), 4,
812 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
816 case 0x05: /* SPSel */
817 update_spsel(env
, imm
);
819 case 0x1e: /* DAIFSet */
820 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
822 case 0x1f: /* DAIFClear */
823 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
826 g_assert_not_reached();
830 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
832 env
->pstate
&= ~PSTATE_SS
;
835 void HELPER(pre_hvc
)(CPUARMState
*env
)
837 ARMCPU
*cpu
= arm_env_get_cpu(env
);
838 int cur_el
= arm_current_el(env
);
839 /* FIXME: Use actual secure state. */
843 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
844 /* If PSCI is enabled and this looks like a valid PSCI call then
845 * that overrides the architecturally mandated HVC behaviour.
850 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
851 /* If EL2 doesn't exist, HVC always UNDEFs */
853 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
854 /* EL3.HCE has priority over EL2.HCD. */
855 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
857 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
860 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
861 * For ARMv8/AArch64, HVC is allowed in EL3.
862 * Note that we've already trapped HVC from EL0 at translation
865 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
870 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
871 exception_target_el(env
));
875 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
877 ARMCPU
*cpu
= arm_env_get_cpu(env
);
878 int cur_el
= arm_current_el(env
);
879 bool secure
= arm_is_secure(env
);
880 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
881 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
882 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
883 * extensions, SMD only applies to NS state.
884 * On ARMv7 without the Virtualization extensions, the SMD bit
885 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
886 * so we need not special case this here.
888 bool undef
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd
: smd
&& !secure
;
890 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
891 /* If PSCI is enabled and this looks like a valid PSCI call then
892 * that overrides the architecturally mandated SMC behaviour.
897 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
898 /* If we have no EL3 then SMC always UNDEFs */
900 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
901 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
902 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
906 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
907 exception_target_el(env
));
911 static int el_from_spsr(uint32_t spsr
)
913 /* Return the exception level that this SPSR is requesting a return to,
914 * or -1 if it is invalid (an illegal return)
916 if (spsr
& PSTATE_nRW
) {
917 switch (spsr
& CPSR_M
) {
918 case ARM_CPU_MODE_USR
:
920 case ARM_CPU_MODE_HYP
:
922 case ARM_CPU_MODE_FIQ
:
923 case ARM_CPU_MODE_IRQ
:
924 case ARM_CPU_MODE_SVC
:
925 case ARM_CPU_MODE_ABT
:
926 case ARM_CPU_MODE_UND
:
927 case ARM_CPU_MODE_SYS
:
929 case ARM_CPU_MODE_MON
:
930 /* Returning to Mon from AArch64 is never possible,
931 * so this is an illegal return.
937 if (extract32(spsr
, 1, 1)) {
938 /* Return with reserved M[1] bit set */
941 if (extract32(spsr
, 0, 4) == 1) {
942 /* return to EL0 with M[0] bit set */
945 return extract32(spsr
, 2, 2);
949 void HELPER(exception_return
)(CPUARMState
*env
)
951 int cur_el
= arm_current_el(env
);
952 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
953 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
955 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
957 aarch64_save_sp(env
, cur_el
);
959 env
->exclusive_addr
= -1;
961 /* We must squash the PSTATE.SS bit to zero unless both of the
963 * 1. debug exceptions are currently disabled
964 * 2. singlestep will be active in the EL we return to
965 * We check 1 here and 2 after we've done the pstate/cpsr write() to
966 * transition to the EL we're going to.
968 if (arm_generate_debug_exceptions(env
)) {
972 new_el
= el_from_spsr(spsr
);
977 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
978 /* Disallow return to an EL which is unimplemented or higher
979 * than the current one.
984 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
985 /* Return to an EL which is configured for a different register width */
989 if (new_el
== 2 && arm_is_secure_below_el3(env
)) {
990 /* Return to the non-existent secure-EL2 */
994 if (new_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TGE
)
995 && !arm_is_secure_below_el3(env
)) {
999 if (!return_to_aa64
) {
1001 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1002 * will sort the register banks out for us, and we've already
1003 * caught all the bad-mode cases in el_from_spsr().
1005 cpsr_write(env
, spsr
, ~0, CPSRWriteRaw
);
1006 if (!arm_singlestep_active(env
)) {
1007 env
->uncached_cpsr
&= ~PSTATE_SS
;
1009 aarch64_sync_64_to_32(env
);
1011 if (spsr
& CPSR_T
) {
1012 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x1;
1014 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x3;
1016 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1017 "AArch32 EL%d PC 0x%" PRIx32
"\n",
1018 cur_el
, new_el
, env
->regs
[15]);
1021 pstate_write(env
, spsr
);
1022 if (!arm_singlestep_active(env
)) {
1023 env
->pstate
&= ~PSTATE_SS
;
1025 aarch64_restore_sp(env
, new_el
);
1026 env
->pc
= env
->elr_el
[cur_el
];
1027 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1028 "AArch64 EL%d PC 0x%" PRIx64
"\n",
1029 cur_el
, new_el
, env
->pc
);
1032 qemu_mutex_lock_iothread();
1033 arm_call_el_change_hook(arm_env_get_cpu(env
));
1034 qemu_mutex_unlock_iothread();
1039 /* Illegal return events of various kinds have architecturally
1040 * mandated behaviour:
1041 * restore NZCV and DAIF from SPSR_ELx
1043 * restore PC from ELR_ELx
1044 * no change to exception level, execution state or stack pointer
1046 env
->pstate
|= PSTATE_IL
;
1047 env
->pc
= env
->elr_el
[cur_el
];
1048 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
1049 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
1050 pstate_write(env
, spsr
);
1051 if (!arm_singlestep_active(env
)) {
1052 env
->pstate
&= ~PSTATE_SS
;
1054 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal exception return at EL%d: "
1055 "resuming execution at 0x%" PRIx64
"\n", cur_el
, env
->pc
);
1058 /* Return true if the linked breakpoint entry lbn passes its checks */
1059 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
1061 CPUARMState
*env
= &cpu
->env
;
1062 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
1063 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
1064 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
1066 uint32_t contextidr
;
1068 /* Links to unimplemented or non-context aware breakpoints are
1069 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1070 * as if linked to an UNKNOWN context-aware breakpoint (in which
1071 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1072 * We choose the former.
1074 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
1078 bcr
= env
->cp15
.dbgbcr
[lbn
];
1080 if (extract64(bcr
, 0, 1) == 0) {
1081 /* Linked breakpoint disabled : generate no events */
1085 bt
= extract64(bcr
, 20, 4);
1087 /* We match the whole register even if this is AArch32 using the
1088 * short descriptor format (in which case it holds both PROCID and ASID),
1089 * since we don't implement the optional v7 context ID masking.
1091 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
1094 case 3: /* linked context ID match */
1095 if (arm_current_el(env
) > 1) {
1096 /* Context matches never fire in EL2 or (AArch64) EL3 */
1099 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
1100 case 5: /* linked address mismatch (reserved in AArch64) */
1101 case 9: /* linked VMID match (reserved if no EL2) */
1102 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1104 /* Links to Unlinked context breakpoints must generate no
1105 * events; we choose to do the same for reserved values too.
1113 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
1115 CPUARMState
*env
= &cpu
->env
;
1117 int pac
, hmc
, ssc
, wt
, lbn
;
1118 /* Note that for watchpoints the check is against the CPU security
1119 * state, not the S/NS attribute on the offending data access.
1121 bool is_secure
= arm_is_secure(env
);
1122 int access_el
= arm_current_el(env
);
1125 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
1127 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
1130 cr
= env
->cp15
.dbgwcr
[n
];
1131 if (wp
->hitattrs
.user
) {
1132 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1133 * match watchpoints as if they were accesses done at EL0, even if
1134 * the CPU is at EL1 or higher.
1139 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1141 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
1144 cr
= env
->cp15
.dbgbcr
[n
];
1146 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1147 * enabled and that the address and access type match; for breakpoints
1148 * we know the address matched; check the remaining fields, including
1149 * linked breakpoints. We rely on WCR and BCR having the same layout
1150 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1151 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1152 * must act either like some valid combination or as if the watchpoint
1153 * were disabled. We choose the former, and use this together with
1154 * the fact that EL3 must always be Secure and EL2 must always be
1155 * Non-Secure to simplify the code slightly compared to the full
1156 * table in the ARM ARM.
1158 pac
= extract64(cr
, 1, 2);
1159 hmc
= extract64(cr
, 13, 1);
1160 ssc
= extract64(cr
, 14, 2);
1178 switch (access_el
) {
1186 if (extract32(pac
, 0, 1) == 0) {
1191 if (extract32(pac
, 1, 1) == 0) {
1196 g_assert_not_reached();
1199 wt
= extract64(cr
, 20, 1);
1200 lbn
= extract64(cr
, 16, 4);
1202 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
1209 static bool check_watchpoints(ARMCPU
*cpu
)
1211 CPUARMState
*env
= &cpu
->env
;
1214 /* If watchpoints are disabled globally or we can't take debug
1215 * exceptions here then watchpoint firings are ignored.
1217 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1218 || !arm_generate_debug_exceptions(env
)) {
1222 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
1223 if (bp_wp_matches(cpu
, n
, true)) {
1230 static bool check_breakpoints(ARMCPU
*cpu
)
1232 CPUARMState
*env
= &cpu
->env
;
1235 /* If breakpoints are disabled globally or we can't take debug
1236 * exceptions here then breakpoint firings are ignored.
1238 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1239 || !arm_generate_debug_exceptions(env
)) {
1243 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
1244 if (bp_wp_matches(cpu
, n
, false)) {
1251 void HELPER(check_breakpoints
)(CPUARMState
*env
)
1253 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1255 if (check_breakpoints(cpu
)) {
1256 HELPER(exception_internal(env
, EXCP_DEBUG
));
1260 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
)
1262 /* Called by core code when a CPU watchpoint fires; need to check if this
1263 * is also an architectural watchpoint match.
1265 ARMCPU
*cpu
= ARM_CPU(cs
);
1267 return check_watchpoints(cpu
);
1270 vaddr
arm_adjust_watchpoint_address(CPUState
*cs
, vaddr addr
, int len
)
1272 ARMCPU
*cpu
= ARM_CPU(cs
);
1273 CPUARMState
*env
= &cpu
->env
;
1275 /* In BE32 system mode, target memory is stored byteswapped (on a
1276 * little-endian host system), and by the time we reach here (via an
1277 * opcode helper) the addresses of subword accesses have been adjusted
1278 * to account for that, which means that watchpoints will not match.
1279 * Undo the adjustment here.
1281 if (arm_sctlr_b(env
)) {
1284 } else if (len
== 2) {
1292 void arm_debug_excp_handler(CPUState
*cs
)
1294 /* Called by core code when a watchpoint or breakpoint fires;
1295 * need to check which one and raise the appropriate exception.
1297 ARMCPU
*cpu
= ARM_CPU(cs
);
1298 CPUARMState
*env
= &cpu
->env
;
1299 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
1302 if (wp_hit
->flags
& BP_CPU
) {
1303 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
1304 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
1306 cs
->watchpoint_hit
= NULL
;
1308 if (extended_addresses_enabled(env
)) {
1309 env
->exception
.fsr
= (1 << 9) | 0x22;
1311 env
->exception
.fsr
= 0x2;
1313 env
->exception
.vaddress
= wp_hit
->hitaddr
;
1314 raise_exception(env
, EXCP_DATA_ABORT
,
1315 syn_watchpoint(same_el
, 0, wnr
),
1316 arm_debug_target_el(env
));
1319 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1320 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
1322 /* (1) GDB breakpoints should be handled first.
1323 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1324 * since singlestep is also done by generating a debug internal
1327 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
1328 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
1332 if (extended_addresses_enabled(env
)) {
1333 env
->exception
.fsr
= (1 << 9) | 0x22;
1335 env
->exception
.fsr
= 0x2;
1337 /* FAR is UNKNOWN, so doesn't need setting */
1338 raise_exception(env
, EXCP_PREFETCH_ABORT
,
1339 syn_breakpoint(same_el
),
1340 arm_debug_target_el(env
));
1344 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1345 The only way to do that in TCG is a conditional branch, which clobbers
1346 all our temporaries. For now implement these as helper functions. */
1348 /* Similarly for variable shift instructions. */
1350 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1352 int shift
= i
& 0xff;
1359 } else if (shift
!= 0) {
1360 env
->CF
= (x
>> (32 - shift
)) & 1;
1366 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1368 int shift
= i
& 0xff;
1371 env
->CF
= (x
>> 31) & 1;
1375 } else if (shift
!= 0) {
1376 env
->CF
= (x
>> (shift
- 1)) & 1;
1382 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1384 int shift
= i
& 0xff;
1386 env
->CF
= (x
>> 31) & 1;
1387 return (int32_t)x
>> 31;
1388 } else if (shift
!= 0) {
1389 env
->CF
= (x
>> (shift
- 1)) & 1;
1390 return (int32_t)x
>> shift
;
1395 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1399 shift
= shift1
& 0x1f;
1402 env
->CF
= (x
>> 31) & 1;
1405 env
->CF
= (x
>> (shift
- 1)) & 1;
1406 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));