target/hppa: Implement LCI
[qemu/ar7.git] / hw / ppc / spapr.c
blob32a876be5608b02515b082cb96fb6775acad26fd
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "qmp-commands.h"
79 #include <libfdt.h>
81 /* SLOF memory layout:
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
89 * We load our kernel at 4M, leaving space for SLOF initial image
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
99 #define MIN_RMA_SLOF 128UL
101 #define PHANDLE_XICP 0x00001111
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
107 Error *local_err = NULL;
108 Object *obj;
110 obj = object_new(type_ics);
111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
118 object_property_set_bool(obj, true, "realized", &local_err);
119 if (local_err) {
120 goto error;
123 return ICS_SIMPLE(obj);
125 error:
126 error_propagate(errp, local_err);
127 return NULL;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 static inline int xics_max_server_number(void)
166 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
171 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
174 if (kvm_enabled()) {
175 if (machine_kernel_irqchip_allowed(machine) &&
176 !xics_kvm_init(spapr, errp)) {
177 spapr->icp_type = TYPE_KVM_ICP;
178 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
180 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182 return;
186 if (!spapr->ics) {
187 xics_spapr_init(spapr);
188 spapr->icp_type = TYPE_ICP;
189 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190 if (!spapr->ics) {
191 return;
195 if (smc->pre_2_10_has_unused_icps) {
196 int i;
198 for (i = 0; i < xics_max_server_number(); i++) {
199 /* Dummy entries get deregistered when real ICPState objects
200 * are registered during CPU core hotplug.
202 pre_2_10_vmstate_register_dummy_icp(i);
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208 int smt_threads)
210 int i, ret = 0;
211 uint32_t servers_prop[smt_threads];
212 uint32_t gservers_prop[smt_threads * 2];
213 int index = spapr_vcpu_id(cpu);
215 if (cpu->compat_pvr) {
216 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217 if (ret < 0) {
218 return ret;
222 /* Build interrupt servers and gservers properties */
223 for (i = 0; i < smt_threads; i++) {
224 servers_prop[i] = cpu_to_be32(index + i);
225 /* Hack, direct the group queues back to cpu 0 */
226 gservers_prop[i*2] = cpu_to_be32(index + i);
227 gservers_prop[i*2 + 1] = 0;
229 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230 servers_prop, sizeof(servers_prop));
231 if (ret < 0) {
232 return ret;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235 gservers_prop, sizeof(gservers_prop));
237 return ret;
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
242 int index = spapr_vcpu_id(cpu);
243 uint32_t associativity[] = {cpu_to_be32(0x5),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(0x0),
247 cpu_to_be32(cpu->node_id),
248 cpu_to_be32(index)};
250 /* Advertise NUMA via ibm,associativity */
251 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252 sizeof(associativity));
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
257 PowerPCCPU *cpu,
258 void *fdt, int offset,
259 bool legacy_guest)
261 CPUPPCState *env = &cpu->env;
262 uint8_t pa_features_206[] = { 6, 0,
263 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
264 uint8_t pa_features_207[] = { 24, 0,
265 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
266 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
267 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
268 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
269 uint8_t pa_features_300[] = { 66, 0,
270 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
271 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
272 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
273 /* 6: DS207 */
274 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
275 /* 16: Vector */
276 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
277 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
278 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
279 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
280 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
281 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
282 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
283 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
285 /* 42: PM, 44: PC RA, 46: SC vec'd */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
287 /* 48: SIMD, 50: QP BFP, 52: String */
288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
289 /* 54: DecFP, 56: DecI, 58: SHA */
290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
291 /* 60: NM atomic, 62: RNG */
292 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
294 uint8_t *pa_features = NULL;
295 size_t pa_size;
297 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
298 pa_features = pa_features_206;
299 pa_size = sizeof(pa_features_206);
301 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
302 pa_features = pa_features_207;
303 pa_size = sizeof(pa_features_207);
305 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
306 pa_features = pa_features_300;
307 pa_size = sizeof(pa_features_300);
309 if (!pa_features) {
310 return;
313 if (env->ci_large_pages) {
315 * Note: we keep CI large pages off by default because a 64K capable
316 * guest provisioned with large pages might otherwise try to map a qemu
317 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
318 * even if that qemu runs on a 4k host.
319 * We dd this bit back here if we are confident this is not an issue
321 pa_features[3] |= 0x20;
323 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
324 pa_features[24] |= 0x80; /* Transactional memory support */
326 if (legacy_guest && pa_size > 40) {
327 /* Workaround for broken kernels that attempt (guest) radix
328 * mode when they can't handle it, if they see the radix bit set
329 * in pa-features. So hide it from them. */
330 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
333 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
336 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
338 int ret = 0, offset, cpus_offset;
339 CPUState *cs;
340 char cpu_model[32];
341 int smt = kvmppc_smt_threads();
342 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
344 CPU_FOREACH(cs) {
345 PowerPCCPU *cpu = POWERPC_CPU(cs);
346 DeviceClass *dc = DEVICE_GET_CLASS(cs);
347 int index = spapr_vcpu_id(cpu);
348 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
350 if ((index % smt) != 0) {
351 continue;
354 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
356 cpus_offset = fdt_path_offset(fdt, "/cpus");
357 if (cpus_offset < 0) {
358 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
359 if (cpus_offset < 0) {
360 return cpus_offset;
363 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
366 if (offset < 0) {
367 return offset;
371 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
372 pft_size_prop, sizeof(pft_size_prop));
373 if (ret < 0) {
374 return ret;
377 if (nb_numa_nodes > 1) {
378 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
379 if (ret < 0) {
380 return ret;
384 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
385 if (ret < 0) {
386 return ret;
389 spapr_populate_pa_features(spapr, cpu, fdt, offset,
390 spapr->cas_legacy_guest_workaround);
392 return ret;
395 static hwaddr spapr_node0_size(MachineState *machine)
397 if (nb_numa_nodes) {
398 int i;
399 for (i = 0; i < nb_numa_nodes; ++i) {
400 if (numa_info[i].node_mem) {
401 return MIN(pow2floor(numa_info[i].node_mem),
402 machine->ram_size);
406 return machine->ram_size;
409 static void add_str(GString *s, const gchar *s1)
411 g_string_append_len(s, s1, strlen(s1) + 1);
414 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
415 hwaddr size)
417 uint32_t associativity[] = {
418 cpu_to_be32(0x4), /* length */
419 cpu_to_be32(0x0), cpu_to_be32(0x0),
420 cpu_to_be32(0x0), cpu_to_be32(nodeid)
422 char mem_name[32];
423 uint64_t mem_reg_property[2];
424 int off;
426 mem_reg_property[0] = cpu_to_be64(start);
427 mem_reg_property[1] = cpu_to_be64(size);
429 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
430 off = fdt_add_subnode(fdt, 0, mem_name);
431 _FDT(off);
432 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
433 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
434 sizeof(mem_reg_property))));
435 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
436 sizeof(associativity))));
437 return off;
440 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
442 MachineState *machine = MACHINE(spapr);
443 hwaddr mem_start, node_size;
444 int i, nb_nodes = nb_numa_nodes;
445 NodeInfo *nodes = numa_info;
446 NodeInfo ramnode;
448 /* No NUMA nodes, assume there is just one node with whole RAM */
449 if (!nb_numa_nodes) {
450 nb_nodes = 1;
451 ramnode.node_mem = machine->ram_size;
452 nodes = &ramnode;
455 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
456 if (!nodes[i].node_mem) {
457 continue;
459 if (mem_start >= machine->ram_size) {
460 node_size = 0;
461 } else {
462 node_size = nodes[i].node_mem;
463 if (node_size > machine->ram_size - mem_start) {
464 node_size = machine->ram_size - mem_start;
467 if (!mem_start) {
468 /* ppc_spapr_init() checks for rma_size <= node0_size already */
469 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
470 mem_start += spapr->rma_size;
471 node_size -= spapr->rma_size;
473 for ( ; node_size; ) {
474 hwaddr sizetmp = pow2floor(node_size);
476 /* mem_start != 0 here */
477 if (ctzl(mem_start) < ctzl(sizetmp)) {
478 sizetmp = 1ULL << ctzl(mem_start);
481 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
482 node_size -= sizetmp;
483 mem_start += sizetmp;
487 return 0;
490 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
491 sPAPRMachineState *spapr)
493 PowerPCCPU *cpu = POWERPC_CPU(cs);
494 CPUPPCState *env = &cpu->env;
495 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
496 int index = spapr_vcpu_id(cpu);
497 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
498 0xffffffff, 0xffffffff};
499 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
500 : SPAPR_TIMEBASE_FREQ;
501 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
502 uint32_t page_sizes_prop[64];
503 size_t page_sizes_prop_size;
504 uint32_t vcpus_per_socket = smp_threads * smp_cores;
505 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
506 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
507 sPAPRDRConnector *drc;
508 int drc_index;
509 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
510 int i;
512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
513 if (drc) {
514 drc_index = spapr_drc_index(drc);
515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
518 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
519 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
521 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
523 env->dcache_line_size)));
524 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
525 env->dcache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
527 env->icache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
529 env->icache_line_size)));
531 if (pcc->l1_dcache_size) {
532 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
533 pcc->l1_dcache_size)));
534 } else {
535 warn_report("Unknown L1 dcache size for cpu");
537 if (pcc->l1_icache_size) {
538 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
539 pcc->l1_icache_size)));
540 } else {
541 warn_report("Unknown L1 icache size for cpu");
544 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
545 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
546 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
547 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
548 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
549 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
551 if (env->spr_cb[SPR_PURR].oea_read) {
552 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
555 if (env->mmu_model & POWERPC_MMU_1TSEG) {
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
557 segs, sizeof(segs))));
560 /* Advertise VSX (vector extensions) if available
561 * 1 == VMX / Altivec available
562 * 2 == VSX available
564 * Only CPUs for which we create core types in spapr_cpu_core.c
565 * are possible, and all of those have VMX */
566 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
567 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
568 } else {
569 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
572 /* Advertise DFP (Decimal Floating Point) if available
573 * 0 / no property == no DFP
574 * 1 == DFP available */
575 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
576 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
579 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
580 sizeof(page_sizes_prop));
581 if (page_sizes_prop_size) {
582 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
583 page_sizes_prop, page_sizes_prop_size)));
586 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
588 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
589 cs->cpu_index / vcpus_per_socket)));
591 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
592 pft_size_prop, sizeof(pft_size_prop))));
594 if (nb_numa_nodes > 1) {
595 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
598 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
600 if (pcc->radix_page_info) {
601 for (i = 0; i < pcc->radix_page_info->count; i++) {
602 radix_AP_encodings[i] =
603 cpu_to_be32(pcc->radix_page_info->entries[i]);
605 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
606 radix_AP_encodings,
607 pcc->radix_page_info->count *
608 sizeof(radix_AP_encodings[0]))));
612 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
614 CPUState *cs;
615 int cpus_offset;
616 char *nodename;
617 int smt = kvmppc_smt_threads();
619 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
620 _FDT(cpus_offset);
621 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
622 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
625 * We walk the CPUs in reverse order to ensure that CPU DT nodes
626 * created by fdt_add_subnode() end up in the right order in FDT
627 * for the guest kernel the enumerate the CPUs correctly.
629 CPU_FOREACH_REVERSE(cs) {
630 PowerPCCPU *cpu = POWERPC_CPU(cs);
631 int index = spapr_vcpu_id(cpu);
632 DeviceClass *dc = DEVICE_GET_CLASS(cs);
633 int offset;
635 if ((index % smt) != 0) {
636 continue;
639 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
640 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
641 g_free(nodename);
642 _FDT(offset);
643 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
648 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
650 MemoryDeviceInfoList *info;
652 for (info = list; info; info = info->next) {
653 MemoryDeviceInfo *value = info->value;
655 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
656 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
658 if (pcdimm_info->addr >= addr &&
659 addr < (pcdimm_info->addr + pcdimm_info->size)) {
660 return pcdimm_info->node;
665 return -1;
669 * Adds ibm,dynamic-reconfiguration-memory node.
670 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
671 * of this device tree node.
673 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
675 MachineState *machine = MACHINE(spapr);
676 int ret, i, offset;
677 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
678 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
679 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
680 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
681 memory_region_size(&spapr->hotplug_memory.mr)) /
682 lmb_size;
683 uint32_t *int_buf, *cur_index, buf_len;
684 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
685 MemoryDeviceInfoList *dimms = NULL;
688 * Don't create the node if there is no hotpluggable memory
690 if (machine->ram_size == machine->maxram_size) {
691 return 0;
695 * Allocate enough buffer size to fit in ibm,dynamic-memory
696 * or ibm,associativity-lookup-arrays
698 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
699 * sizeof(uint32_t);
700 cur_index = int_buf = g_malloc0(buf_len);
702 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
704 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
705 sizeof(prop_lmb_size));
706 if (ret < 0) {
707 goto out;
710 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
711 if (ret < 0) {
712 goto out;
715 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
716 if (ret < 0) {
717 goto out;
720 if (hotplug_lmb_start) {
721 MemoryDeviceInfoList **prev = &dimms;
722 qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
725 /* ibm,dynamic-memory */
726 int_buf[0] = cpu_to_be32(nr_lmbs);
727 cur_index++;
728 for (i = 0; i < nr_lmbs; i++) {
729 uint64_t addr = i * lmb_size;
730 uint32_t *dynamic_memory = cur_index;
732 if (i >= hotplug_lmb_start) {
733 sPAPRDRConnector *drc;
735 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
736 g_assert(drc);
738 dynamic_memory[0] = cpu_to_be32(addr >> 32);
739 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
740 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
741 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
742 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
743 if (memory_region_present(get_system_memory(), addr)) {
744 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
745 } else {
746 dynamic_memory[5] = cpu_to_be32(0);
748 } else {
750 * LMB information for RMA, boot time RAM and gap b/n RAM and
751 * hotplug memory region -- all these are marked as reserved
752 * and as having no valid DRC.
754 dynamic_memory[0] = cpu_to_be32(addr >> 32);
755 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
756 dynamic_memory[2] = cpu_to_be32(0);
757 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
758 dynamic_memory[4] = cpu_to_be32(-1);
759 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
760 SPAPR_LMB_FLAGS_DRC_INVALID);
763 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
765 qapi_free_MemoryDeviceInfoList(dimms);
766 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
767 if (ret < 0) {
768 goto out;
771 /* ibm,associativity-lookup-arrays */
772 cur_index = int_buf;
773 int_buf[0] = cpu_to_be32(nr_nodes);
774 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
775 cur_index += 2;
776 for (i = 0; i < nr_nodes; i++) {
777 uint32_t associativity[] = {
778 cpu_to_be32(0x0),
779 cpu_to_be32(0x0),
780 cpu_to_be32(0x0),
781 cpu_to_be32(i)
783 memcpy(cur_index, associativity, sizeof(associativity));
784 cur_index += 4;
786 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
787 (cur_index - int_buf) * sizeof(uint32_t));
788 out:
789 g_free(int_buf);
790 return ret;
793 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
794 sPAPROptionVector *ov5_updates)
796 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
797 int ret = 0, offset;
799 /* Generate ibm,dynamic-reconfiguration-memory node if required */
800 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
801 g_assert(smc->dr_lmb_enabled);
802 ret = spapr_populate_drconf_memory(spapr, fdt);
803 if (ret) {
804 goto out;
808 offset = fdt_path_offset(fdt, "/chosen");
809 if (offset < 0) {
810 offset = fdt_add_subnode(fdt, 0, "chosen");
811 if (offset < 0) {
812 return offset;
815 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
816 "ibm,architecture-vec-5");
818 out:
819 return ret;
822 static bool spapr_hotplugged_dev_before_cas(void)
824 Object *drc_container, *obj;
825 ObjectProperty *prop;
826 ObjectPropertyIterator iter;
828 drc_container = container_get(object_get_root(), "/dr-connector");
829 object_property_iter_init(&iter, drc_container);
830 while ((prop = object_property_iter_next(&iter))) {
831 if (!strstart(prop->type, "link<", NULL)) {
832 continue;
834 obj = object_property_get_link(drc_container, prop->name, NULL);
835 if (spapr_drc_needed(obj)) {
836 return true;
839 return false;
842 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
843 target_ulong addr, target_ulong size,
844 sPAPROptionVector *ov5_updates)
846 void *fdt, *fdt_skel;
847 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
849 if (spapr_hotplugged_dev_before_cas()) {
850 return 1;
853 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
854 error_report("SLOF provided an unexpected CAS buffer size "
855 TARGET_FMT_lu " (min: %zu, max: %u)",
856 size, sizeof(hdr), FW_MAX_SIZE);
857 exit(EXIT_FAILURE);
860 size -= sizeof(hdr);
862 /* Create skeleton */
863 fdt_skel = g_malloc0(size);
864 _FDT((fdt_create(fdt_skel, size)));
865 _FDT((fdt_begin_node(fdt_skel, "")));
866 _FDT((fdt_end_node(fdt_skel)));
867 _FDT((fdt_finish(fdt_skel)));
868 fdt = g_malloc0(size);
869 _FDT((fdt_open_into(fdt_skel, fdt, size)));
870 g_free(fdt_skel);
872 /* Fixup cpu nodes */
873 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
875 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
876 return -1;
879 /* Pack resulting tree */
880 _FDT((fdt_pack(fdt)));
882 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
883 trace_spapr_cas_failed(size);
884 return -1;
887 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
888 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
889 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
890 g_free(fdt);
892 return 0;
895 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
897 int rtas;
898 GString *hypertas = g_string_sized_new(256);
899 GString *qemu_hypertas = g_string_sized_new(256);
900 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
901 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
902 memory_region_size(&spapr->hotplug_memory.mr);
903 uint32_t lrdr_capacity[] = {
904 cpu_to_be32(max_hotplug_addr >> 32),
905 cpu_to_be32(max_hotplug_addr & 0xffffffff),
906 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
907 cpu_to_be32(max_cpus / smp_threads),
910 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
912 /* hypertas */
913 add_str(hypertas, "hcall-pft");
914 add_str(hypertas, "hcall-term");
915 add_str(hypertas, "hcall-dabr");
916 add_str(hypertas, "hcall-interrupt");
917 add_str(hypertas, "hcall-tce");
918 add_str(hypertas, "hcall-vio");
919 add_str(hypertas, "hcall-splpar");
920 add_str(hypertas, "hcall-bulk");
921 add_str(hypertas, "hcall-set-mode");
922 add_str(hypertas, "hcall-sprg0");
923 add_str(hypertas, "hcall-copy");
924 add_str(hypertas, "hcall-debug");
925 add_str(qemu_hypertas, "hcall-memop1");
927 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
928 add_str(hypertas, "hcall-multi-tce");
931 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
932 add_str(hypertas, "hcall-hpt-resize");
935 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
936 hypertas->str, hypertas->len));
937 g_string_free(hypertas, TRUE);
938 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
939 qemu_hypertas->str, qemu_hypertas->len));
940 g_string_free(qemu_hypertas, TRUE);
942 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
943 refpoints, sizeof(refpoints)));
945 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
946 RTAS_ERROR_LOG_MAX));
947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
948 RTAS_EVENT_SCAN_RATE));
950 g_assert(msi_nonbroken);
951 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
954 * According to PAPR, rtas ibm,os-term does not guarantee a return
955 * back to the guest cpu.
957 * While an additional ibm,extended-os-term property indicates
958 * that rtas call return will always occur. Set this property.
960 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
962 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
963 lrdr_capacity, sizeof(lrdr_capacity)));
965 spapr_dt_rtas_tokens(fdt, rtas);
968 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
969 * that the guest may request and thus the valid values for bytes 24..26 of
970 * option vector 5: */
971 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
973 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
975 char val[2 * 4] = {
976 23, 0x00, /* Xive mode, filled in below. */
977 24, 0x00, /* Hash/Radix, filled in below. */
978 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
979 26, 0x40, /* Radix options: GTSE == yes. */
982 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
983 first_ppc_cpu->compat_pvr)) {
984 /* If we're in a pre POWER9 compat mode then the guest should do hash */
985 val[3] = 0x00; /* Hash */
986 } else if (kvm_enabled()) {
987 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
988 val[3] = 0x80; /* OV5_MMU_BOTH */
989 } else if (kvmppc_has_cap_mmu_radix()) {
990 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
991 } else {
992 val[3] = 0x00; /* Hash */
994 } else {
995 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
996 val[3] = 0xC0;
998 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
999 val, sizeof(val)));
1002 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1004 MachineState *machine = MACHINE(spapr);
1005 int chosen;
1006 const char *boot_device = machine->boot_order;
1007 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1008 size_t cb = 0;
1009 char *bootlist = get_boot_devices_list(&cb, true);
1011 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1013 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1014 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1015 spapr->initrd_base));
1016 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1017 spapr->initrd_base + spapr->initrd_size));
1019 if (spapr->kernel_size) {
1020 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1021 cpu_to_be64(spapr->kernel_size) };
1023 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1024 &kprop, sizeof(kprop)));
1025 if (spapr->kernel_le) {
1026 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1029 if (boot_menu) {
1030 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1032 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1033 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1034 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1036 if (cb && bootlist) {
1037 int i;
1039 for (i = 0; i < cb; i++) {
1040 if (bootlist[i] == '\n') {
1041 bootlist[i] = ' ';
1044 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1047 if (boot_device && strlen(boot_device)) {
1048 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1051 if (!spapr->has_graphics && stdout_path) {
1052 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1055 spapr_dt_ov5_platform_support(fdt, chosen);
1057 g_free(stdout_path);
1058 g_free(bootlist);
1061 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1063 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1064 * KVM to work under pHyp with some guest co-operation */
1065 int hypervisor;
1066 uint8_t hypercall[16];
1068 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1069 /* indicate KVM hypercall interface */
1070 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1071 if (kvmppc_has_cap_fixup_hcalls()) {
1073 * Older KVM versions with older guest kernels were broken
1074 * with the magic page, don't allow the guest to map it.
1076 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1077 sizeof(hypercall))) {
1078 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1079 hypercall, sizeof(hypercall)));
1084 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1085 hwaddr rtas_addr,
1086 hwaddr rtas_size)
1088 MachineState *machine = MACHINE(spapr);
1089 MachineClass *mc = MACHINE_GET_CLASS(machine);
1090 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1091 int ret;
1092 void *fdt;
1093 sPAPRPHBState *phb;
1094 char *buf;
1096 fdt = g_malloc0(FDT_MAX_SIZE);
1097 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1099 /* Root node */
1100 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1101 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1102 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1105 * Add info to guest to indentify which host is it being run on
1106 * and what is the uuid of the guest
1108 if (kvmppc_get_host_model(&buf)) {
1109 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1110 g_free(buf);
1112 if (kvmppc_get_host_serial(&buf)) {
1113 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1114 g_free(buf);
1117 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1119 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1120 if (qemu_uuid_set) {
1121 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1123 g_free(buf);
1125 if (qemu_get_vm_name()) {
1126 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1127 qemu_get_vm_name()));
1130 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1131 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1133 /* /interrupt controller */
1134 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1136 ret = spapr_populate_memory(spapr, fdt);
1137 if (ret < 0) {
1138 error_report("couldn't setup memory nodes in fdt");
1139 exit(1);
1142 /* /vdevice */
1143 spapr_dt_vdevice(spapr->vio_bus, fdt);
1145 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1146 ret = spapr_rng_populate_dt(fdt);
1147 if (ret < 0) {
1148 error_report("could not set up rng device in the fdt");
1149 exit(1);
1153 QLIST_FOREACH(phb, &spapr->phbs, list) {
1154 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1155 if (ret < 0) {
1156 error_report("couldn't setup PCI devices in fdt");
1157 exit(1);
1161 /* cpus */
1162 spapr_populate_cpus_dt_node(fdt, spapr);
1164 if (smc->dr_lmb_enabled) {
1165 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1168 if (mc->has_hotpluggable_cpus) {
1169 int offset = fdt_path_offset(fdt, "/cpus");
1170 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1171 SPAPR_DR_CONNECTOR_TYPE_CPU);
1172 if (ret < 0) {
1173 error_report("Couldn't set up CPU DR device tree properties");
1174 exit(1);
1178 /* /event-sources */
1179 spapr_dt_events(spapr, fdt);
1181 /* /rtas */
1182 spapr_dt_rtas(spapr, fdt);
1184 /* /chosen */
1185 spapr_dt_chosen(spapr, fdt);
1187 /* /hypervisor */
1188 if (kvm_enabled()) {
1189 spapr_dt_hypervisor(spapr, fdt);
1192 /* Build memory reserve map */
1193 if (spapr->kernel_size) {
1194 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1196 if (spapr->initrd_size) {
1197 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1200 /* ibm,client-architecture-support updates */
1201 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1202 if (ret < 0) {
1203 error_report("couldn't setup CAS properties fdt");
1204 exit(1);
1207 return fdt;
1210 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1212 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1215 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1216 PowerPCCPU *cpu)
1218 CPUPPCState *env = &cpu->env;
1220 /* The TCG path should also be holding the BQL at this point */
1221 g_assert(qemu_mutex_iothread_locked());
1223 if (msr_pr) {
1224 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1225 env->gpr[3] = H_PRIVILEGE;
1226 } else {
1227 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1231 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1233 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1235 return spapr->patb_entry;
1238 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1239 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1240 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1241 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1242 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1245 * Get the fd to access the kernel htab, re-opening it if necessary
1247 static int get_htab_fd(sPAPRMachineState *spapr)
1249 Error *local_err = NULL;
1251 if (spapr->htab_fd >= 0) {
1252 return spapr->htab_fd;
1255 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1256 if (spapr->htab_fd < 0) {
1257 error_report_err(local_err);
1260 return spapr->htab_fd;
1263 void close_htab_fd(sPAPRMachineState *spapr)
1265 if (spapr->htab_fd >= 0) {
1266 close(spapr->htab_fd);
1268 spapr->htab_fd = -1;
1271 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1273 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1275 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1278 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1280 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1282 assert(kvm_enabled());
1284 if (!spapr->htab) {
1285 return 0;
1288 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1291 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1292 hwaddr ptex, int n)
1294 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1295 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1297 if (!spapr->htab) {
1299 * HTAB is controlled by KVM. Fetch into temporary buffer
1301 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1302 kvmppc_read_hptes(hptes, ptex, n);
1303 return hptes;
1307 * HTAB is controlled by QEMU. Just point to the internally
1308 * accessible PTEG.
1310 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1313 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1314 const ppc_hash_pte64_t *hptes,
1315 hwaddr ptex, int n)
1317 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1319 if (!spapr->htab) {
1320 g_free((void *)hptes);
1323 /* Nothing to do for qemu managed HPT */
1326 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1327 uint64_t pte0, uint64_t pte1)
1329 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1330 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1332 if (!spapr->htab) {
1333 kvmppc_write_hpte(ptex, pte0, pte1);
1334 } else {
1335 stq_p(spapr->htab + offset, pte0);
1336 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1340 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1342 int shift;
1344 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1345 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1346 * that's much more than is needed for Linux guests */
1347 shift = ctz64(pow2ceil(ramsize)) - 7;
1348 shift = MAX(shift, 18); /* Minimum architected size */
1349 shift = MIN(shift, 46); /* Maximum architected size */
1350 return shift;
1353 void spapr_free_hpt(sPAPRMachineState *spapr)
1355 g_free(spapr->htab);
1356 spapr->htab = NULL;
1357 spapr->htab_shift = 0;
1358 close_htab_fd(spapr);
1361 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1362 Error **errp)
1364 long rc;
1366 /* Clean up any HPT info from a previous boot */
1367 spapr_free_hpt(spapr);
1369 rc = kvmppc_reset_htab(shift);
1370 if (rc < 0) {
1371 /* kernel-side HPT needed, but couldn't allocate one */
1372 error_setg_errno(errp, errno,
1373 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1374 shift);
1375 /* This is almost certainly fatal, but if the caller really
1376 * wants to carry on with shift == 0, it's welcome to try */
1377 } else if (rc > 0) {
1378 /* kernel-side HPT allocated */
1379 if (rc != shift) {
1380 error_setg(errp,
1381 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1382 shift, rc);
1385 spapr->htab_shift = shift;
1386 spapr->htab = NULL;
1387 } else {
1388 /* kernel-side HPT not needed, allocate in userspace instead */
1389 size_t size = 1ULL << shift;
1390 int i;
1392 spapr->htab = qemu_memalign(size, size);
1393 if (!spapr->htab) {
1394 error_setg_errno(errp, errno,
1395 "Could not allocate HPT of order %d", shift);
1396 return;
1399 memset(spapr->htab, 0, size);
1400 spapr->htab_shift = shift;
1402 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1403 DIRTY_HPTE(HPTE(spapr->htab, i));
1406 /* We're setting up a hash table, so that means we're not radix */
1407 spapr->patb_entry = 0;
1410 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1412 int hpt_shift;
1414 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1415 || (spapr->cas_reboot
1416 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1417 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1418 } else {
1419 uint64_t current_ram_size;
1421 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1422 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1424 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1426 if (spapr->vrma_adjust) {
1427 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1428 spapr->htab_shift);
1432 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1434 bool matched = false;
1436 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1437 matched = true;
1440 if (!matched) {
1441 error_report("Device %s is not supported by this machine yet.",
1442 qdev_fw_name(DEVICE(sbdev)));
1443 exit(1);
1447 static int spapr_reset_drcs(Object *child, void *opaque)
1449 sPAPRDRConnector *drc =
1450 (sPAPRDRConnector *) object_dynamic_cast(child,
1451 TYPE_SPAPR_DR_CONNECTOR);
1453 if (drc) {
1454 spapr_drc_reset(drc);
1457 return 0;
1460 static void spapr_machine_reset(void)
1462 MachineState *machine = MACHINE(qdev_get_machine());
1463 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1464 PowerPCCPU *first_ppc_cpu;
1465 uint32_t rtas_limit;
1466 hwaddr rtas_addr, fdt_addr;
1467 void *fdt;
1468 int rc;
1470 /* Check for unknown sysbus devices */
1471 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1473 spapr_caps_reset(spapr);
1475 first_ppc_cpu = POWERPC_CPU(first_cpu);
1476 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1477 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1478 spapr->max_compat_pvr)) {
1479 /* If using KVM with radix mode available, VCPUs can be started
1480 * without a HPT because KVM will start them in radix mode.
1481 * Set the GR bit in PATB so that we know there is no HPT. */
1482 spapr->patb_entry = PATBE1_GR;
1483 } else {
1484 spapr_setup_hpt_and_vrma(spapr);
1487 /* if this reset wasn't generated by CAS, we should reset our
1488 * negotiated options and start from scratch */
1489 if (!spapr->cas_reboot) {
1490 spapr_ovec_cleanup(spapr->ov5_cas);
1491 spapr->ov5_cas = spapr_ovec_new();
1493 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1496 qemu_devices_reset();
1498 /* DRC reset may cause a device to be unplugged. This will cause troubles
1499 * if this device is used by another device (eg, a running vhost backend
1500 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1501 * situations, we reset DRCs after all devices have been reset.
1503 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1505 spapr_clear_pending_events(spapr);
1508 * We place the device tree and RTAS just below either the top of the RMA,
1509 * or just below 2GB, whichever is lowere, so that it can be
1510 * processed with 32-bit real mode code if necessary
1512 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1513 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1514 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1516 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1518 spapr_load_rtas(spapr, fdt, rtas_addr);
1520 rc = fdt_pack(fdt);
1522 /* Should only fail if we've built a corrupted tree */
1523 assert(rc == 0);
1525 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1526 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1527 fdt_totalsize(fdt), FDT_MAX_SIZE);
1528 exit(1);
1531 /* Load the fdt */
1532 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1533 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1534 g_free(fdt);
1536 /* Set up the entry state */
1537 first_ppc_cpu->env.gpr[3] = fdt_addr;
1538 first_ppc_cpu->env.gpr[5] = 0;
1539 first_cpu->halted = 0;
1540 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1542 spapr->cas_reboot = false;
1545 static void spapr_create_nvram(sPAPRMachineState *spapr)
1547 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1548 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1550 if (dinfo) {
1551 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1552 &error_fatal);
1555 qdev_init_nofail(dev);
1557 spapr->nvram = (struct sPAPRNVRAM *)dev;
1560 static void spapr_rtc_create(sPAPRMachineState *spapr)
1562 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1563 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1564 &error_fatal);
1565 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1566 &error_fatal);
1567 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1568 "date", &error_fatal);
1571 /* Returns whether we want to use VGA or not */
1572 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1574 switch (vga_interface_type) {
1575 case VGA_NONE:
1576 return false;
1577 case VGA_DEVICE:
1578 return true;
1579 case VGA_STD:
1580 case VGA_VIRTIO:
1581 return pci_vga_init(pci_bus) != NULL;
1582 default:
1583 error_setg(errp,
1584 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1585 return false;
1589 static int spapr_pre_load(void *opaque)
1591 int rc;
1593 rc = spapr_caps_pre_load(opaque);
1594 if (rc) {
1595 return rc;
1598 return 0;
1601 static int spapr_post_load(void *opaque, int version_id)
1603 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1604 int err = 0;
1606 err = spapr_caps_post_migration(spapr);
1607 if (err) {
1608 return err;
1611 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1612 CPUState *cs;
1613 CPU_FOREACH(cs) {
1614 PowerPCCPU *cpu = POWERPC_CPU(cs);
1615 icp_resend(ICP(cpu->intc));
1619 /* In earlier versions, there was no separate qdev for the PAPR
1620 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1621 * So when migrating from those versions, poke the incoming offset
1622 * value into the RTC device */
1623 if (version_id < 3) {
1624 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1627 if (kvm_enabled() && spapr->patb_entry) {
1628 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1629 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1630 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1632 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1633 if (err) {
1634 error_report("Process table config unsupported by the host");
1635 return -EINVAL;
1639 return err;
1642 static int spapr_pre_save(void *opaque)
1644 int rc;
1646 rc = spapr_caps_pre_save(opaque);
1647 if (rc) {
1648 return rc;
1651 return 0;
1654 static bool version_before_3(void *opaque, int version_id)
1656 return version_id < 3;
1659 static bool spapr_pending_events_needed(void *opaque)
1661 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1662 return !QTAILQ_EMPTY(&spapr->pending_events);
1665 static const VMStateDescription vmstate_spapr_event_entry = {
1666 .name = "spapr_event_log_entry",
1667 .version_id = 1,
1668 .minimum_version_id = 1,
1669 .fields = (VMStateField[]) {
1670 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1671 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1672 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1673 NULL, extended_length),
1674 VMSTATE_END_OF_LIST()
1678 static const VMStateDescription vmstate_spapr_pending_events = {
1679 .name = "spapr_pending_events",
1680 .version_id = 1,
1681 .minimum_version_id = 1,
1682 .needed = spapr_pending_events_needed,
1683 .fields = (VMStateField[]) {
1684 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1685 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1686 VMSTATE_END_OF_LIST()
1690 static bool spapr_ov5_cas_needed(void *opaque)
1692 sPAPRMachineState *spapr = opaque;
1693 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1694 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1695 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1696 bool cas_needed;
1698 /* Prior to the introduction of sPAPROptionVector, we had two option
1699 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1700 * Both of these options encode machine topology into the device-tree
1701 * in such a way that the now-booted OS should still be able to interact
1702 * appropriately with QEMU regardless of what options were actually
1703 * negotiatied on the source side.
1705 * As such, we can avoid migrating the CAS-negotiated options if these
1706 * are the only options available on the current machine/platform.
1707 * Since these are the only options available for pseries-2.7 and
1708 * earlier, this allows us to maintain old->new/new->old migration
1709 * compatibility.
1711 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1712 * via default pseries-2.8 machines and explicit command-line parameters.
1713 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1714 * of the actual CAS-negotiated values to continue working properly. For
1715 * example, availability of memory unplug depends on knowing whether
1716 * OV5_HP_EVT was negotiated via CAS.
1718 * Thus, for any cases where the set of available CAS-negotiatable
1719 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1720 * include the CAS-negotiated options in the migration stream.
1722 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1723 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1725 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1726 * the mask itself since in the future it's possible "legacy" bits may be
1727 * removed via machine options, which could generate a false positive
1728 * that breaks migration.
1730 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1731 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1733 spapr_ovec_cleanup(ov5_mask);
1734 spapr_ovec_cleanup(ov5_legacy);
1735 spapr_ovec_cleanup(ov5_removed);
1737 return cas_needed;
1740 static const VMStateDescription vmstate_spapr_ov5_cas = {
1741 .name = "spapr_option_vector_ov5_cas",
1742 .version_id = 1,
1743 .minimum_version_id = 1,
1744 .needed = spapr_ov5_cas_needed,
1745 .fields = (VMStateField[]) {
1746 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1747 vmstate_spapr_ovec, sPAPROptionVector),
1748 VMSTATE_END_OF_LIST()
1752 static bool spapr_patb_entry_needed(void *opaque)
1754 sPAPRMachineState *spapr = opaque;
1756 return !!spapr->patb_entry;
1759 static const VMStateDescription vmstate_spapr_patb_entry = {
1760 .name = "spapr_patb_entry",
1761 .version_id = 1,
1762 .minimum_version_id = 1,
1763 .needed = spapr_patb_entry_needed,
1764 .fields = (VMStateField[]) {
1765 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1766 VMSTATE_END_OF_LIST()
1770 static const VMStateDescription vmstate_spapr = {
1771 .name = "spapr",
1772 .version_id = 3,
1773 .minimum_version_id = 1,
1774 .pre_load = spapr_pre_load,
1775 .post_load = spapr_post_load,
1776 .pre_save = spapr_pre_save,
1777 .fields = (VMStateField[]) {
1778 /* used to be @next_irq */
1779 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1781 /* RTC offset */
1782 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1784 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1785 VMSTATE_END_OF_LIST()
1787 .subsections = (const VMStateDescription*[]) {
1788 &vmstate_spapr_ov5_cas,
1789 &vmstate_spapr_patb_entry,
1790 &vmstate_spapr_pending_events,
1791 &vmstate_spapr_cap_htm,
1792 &vmstate_spapr_cap_vsx,
1793 &vmstate_spapr_cap_dfp,
1794 &vmstate_spapr_cap_cfpc,
1795 &vmstate_spapr_cap_sbbc,
1796 &vmstate_spapr_cap_ibs,
1797 NULL
1801 static int htab_save_setup(QEMUFile *f, void *opaque)
1803 sPAPRMachineState *spapr = opaque;
1805 /* "Iteration" header */
1806 if (!spapr->htab_shift) {
1807 qemu_put_be32(f, -1);
1808 } else {
1809 qemu_put_be32(f, spapr->htab_shift);
1812 if (spapr->htab) {
1813 spapr->htab_save_index = 0;
1814 spapr->htab_first_pass = true;
1815 } else {
1816 if (spapr->htab_shift) {
1817 assert(kvm_enabled());
1822 return 0;
1825 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1826 int chunkstart, int n_valid, int n_invalid)
1828 qemu_put_be32(f, chunkstart);
1829 qemu_put_be16(f, n_valid);
1830 qemu_put_be16(f, n_invalid);
1831 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1832 HASH_PTE_SIZE_64 * n_valid);
1835 static void htab_save_end_marker(QEMUFile *f)
1837 qemu_put_be32(f, 0);
1838 qemu_put_be16(f, 0);
1839 qemu_put_be16(f, 0);
1842 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1843 int64_t max_ns)
1845 bool has_timeout = max_ns != -1;
1846 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1847 int index = spapr->htab_save_index;
1848 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1850 assert(spapr->htab_first_pass);
1852 do {
1853 int chunkstart;
1855 /* Consume invalid HPTEs */
1856 while ((index < htabslots)
1857 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1858 CLEAN_HPTE(HPTE(spapr->htab, index));
1859 index++;
1862 /* Consume valid HPTEs */
1863 chunkstart = index;
1864 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1865 && HPTE_VALID(HPTE(spapr->htab, index))) {
1866 CLEAN_HPTE(HPTE(spapr->htab, index));
1867 index++;
1870 if (index > chunkstart) {
1871 int n_valid = index - chunkstart;
1873 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1875 if (has_timeout &&
1876 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1877 break;
1880 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1882 if (index >= htabslots) {
1883 assert(index == htabslots);
1884 index = 0;
1885 spapr->htab_first_pass = false;
1887 spapr->htab_save_index = index;
1890 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1891 int64_t max_ns)
1893 bool final = max_ns < 0;
1894 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1895 int examined = 0, sent = 0;
1896 int index = spapr->htab_save_index;
1897 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1899 assert(!spapr->htab_first_pass);
1901 do {
1902 int chunkstart, invalidstart;
1904 /* Consume non-dirty HPTEs */
1905 while ((index < htabslots)
1906 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1907 index++;
1908 examined++;
1911 chunkstart = index;
1912 /* Consume valid dirty HPTEs */
1913 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1914 && HPTE_DIRTY(HPTE(spapr->htab, index))
1915 && HPTE_VALID(HPTE(spapr->htab, index))) {
1916 CLEAN_HPTE(HPTE(spapr->htab, index));
1917 index++;
1918 examined++;
1921 invalidstart = index;
1922 /* Consume invalid dirty HPTEs */
1923 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1924 && HPTE_DIRTY(HPTE(spapr->htab, index))
1925 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1926 CLEAN_HPTE(HPTE(spapr->htab, index));
1927 index++;
1928 examined++;
1931 if (index > chunkstart) {
1932 int n_valid = invalidstart - chunkstart;
1933 int n_invalid = index - invalidstart;
1935 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1936 sent += index - chunkstart;
1938 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1939 break;
1943 if (examined >= htabslots) {
1944 break;
1947 if (index >= htabslots) {
1948 assert(index == htabslots);
1949 index = 0;
1951 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1953 if (index >= htabslots) {
1954 assert(index == htabslots);
1955 index = 0;
1958 spapr->htab_save_index = index;
1960 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1963 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1964 #define MAX_KVM_BUF_SIZE 2048
1966 static int htab_save_iterate(QEMUFile *f, void *opaque)
1968 sPAPRMachineState *spapr = opaque;
1969 int fd;
1970 int rc = 0;
1972 /* Iteration header */
1973 if (!spapr->htab_shift) {
1974 qemu_put_be32(f, -1);
1975 return 1;
1976 } else {
1977 qemu_put_be32(f, 0);
1980 if (!spapr->htab) {
1981 assert(kvm_enabled());
1983 fd = get_htab_fd(spapr);
1984 if (fd < 0) {
1985 return fd;
1988 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1989 if (rc < 0) {
1990 return rc;
1992 } else if (spapr->htab_first_pass) {
1993 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1994 } else {
1995 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1998 htab_save_end_marker(f);
2000 return rc;
2003 static int htab_save_complete(QEMUFile *f, void *opaque)
2005 sPAPRMachineState *spapr = opaque;
2006 int fd;
2008 /* Iteration header */
2009 if (!spapr->htab_shift) {
2010 qemu_put_be32(f, -1);
2011 return 0;
2012 } else {
2013 qemu_put_be32(f, 0);
2016 if (!spapr->htab) {
2017 int rc;
2019 assert(kvm_enabled());
2021 fd = get_htab_fd(spapr);
2022 if (fd < 0) {
2023 return fd;
2026 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2027 if (rc < 0) {
2028 return rc;
2030 } else {
2031 if (spapr->htab_first_pass) {
2032 htab_save_first_pass(f, spapr, -1);
2034 htab_save_later_pass(f, spapr, -1);
2037 /* End marker */
2038 htab_save_end_marker(f);
2040 return 0;
2043 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2045 sPAPRMachineState *spapr = opaque;
2046 uint32_t section_hdr;
2047 int fd = -1;
2048 Error *local_err = NULL;
2050 if (version_id < 1 || version_id > 1) {
2051 error_report("htab_load() bad version");
2052 return -EINVAL;
2055 section_hdr = qemu_get_be32(f);
2057 if (section_hdr == -1) {
2058 spapr_free_hpt(spapr);
2059 return 0;
2062 if (section_hdr) {
2063 /* First section gives the htab size */
2064 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2065 if (local_err) {
2066 error_report_err(local_err);
2067 return -EINVAL;
2069 return 0;
2072 if (!spapr->htab) {
2073 assert(kvm_enabled());
2075 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2076 if (fd < 0) {
2077 error_report_err(local_err);
2078 return fd;
2082 while (true) {
2083 uint32_t index;
2084 uint16_t n_valid, n_invalid;
2086 index = qemu_get_be32(f);
2087 n_valid = qemu_get_be16(f);
2088 n_invalid = qemu_get_be16(f);
2090 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2091 /* End of Stream */
2092 break;
2095 if ((index + n_valid + n_invalid) >
2096 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2097 /* Bad index in stream */
2098 error_report(
2099 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2100 index, n_valid, n_invalid, spapr->htab_shift);
2101 return -EINVAL;
2104 if (spapr->htab) {
2105 if (n_valid) {
2106 qemu_get_buffer(f, HPTE(spapr->htab, index),
2107 HASH_PTE_SIZE_64 * n_valid);
2109 if (n_invalid) {
2110 memset(HPTE(spapr->htab, index + n_valid), 0,
2111 HASH_PTE_SIZE_64 * n_invalid);
2113 } else {
2114 int rc;
2116 assert(fd >= 0);
2118 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2119 if (rc < 0) {
2120 return rc;
2125 if (!spapr->htab) {
2126 assert(fd >= 0);
2127 close(fd);
2130 return 0;
2133 static void htab_save_cleanup(void *opaque)
2135 sPAPRMachineState *spapr = opaque;
2137 close_htab_fd(spapr);
2140 static SaveVMHandlers savevm_htab_handlers = {
2141 .save_setup = htab_save_setup,
2142 .save_live_iterate = htab_save_iterate,
2143 .save_live_complete_precopy = htab_save_complete,
2144 .save_cleanup = htab_save_cleanup,
2145 .load_state = htab_load,
2148 static void spapr_boot_set(void *opaque, const char *boot_device,
2149 Error **errp)
2151 MachineState *machine = MACHINE(opaque);
2152 machine->boot_order = g_strdup(boot_device);
2155 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2157 MachineState *machine = MACHINE(spapr);
2158 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2159 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2160 int i;
2162 for (i = 0; i < nr_lmbs; i++) {
2163 uint64_t addr;
2165 addr = i * lmb_size + spapr->hotplug_memory.base;
2166 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2167 addr / lmb_size);
2172 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2173 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2174 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2176 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2178 int i;
2180 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2181 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2182 " is not aligned to %llu MiB",
2183 machine->ram_size,
2184 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2185 return;
2188 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2189 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2190 " is not aligned to %llu MiB",
2191 machine->ram_size,
2192 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2193 return;
2196 for (i = 0; i < nb_numa_nodes; i++) {
2197 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2198 error_setg(errp,
2199 "Node %d memory size 0x%" PRIx64
2200 " is not aligned to %llu MiB",
2201 i, numa_info[i].node_mem,
2202 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2203 return;
2208 /* find cpu slot in machine->possible_cpus by core_id */
2209 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2211 int index = id / smp_threads;
2213 if (index >= ms->possible_cpus->len) {
2214 return NULL;
2216 if (idx) {
2217 *idx = index;
2219 return &ms->possible_cpus->cpus[index];
2222 static void spapr_init_cpus(sPAPRMachineState *spapr)
2224 MachineState *machine = MACHINE(spapr);
2225 MachineClass *mc = MACHINE_GET_CLASS(machine);
2226 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2227 int smt = kvmppc_smt_threads();
2228 const CPUArchIdList *possible_cpus;
2229 int boot_cores_nr = smp_cpus / smp_threads;
2230 int i;
2232 possible_cpus = mc->possible_cpu_arch_ids(machine);
2233 if (mc->has_hotpluggable_cpus) {
2234 if (smp_cpus % smp_threads) {
2235 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2236 smp_cpus, smp_threads);
2237 exit(1);
2239 if (max_cpus % smp_threads) {
2240 error_report("max_cpus (%u) must be multiple of threads (%u)",
2241 max_cpus, smp_threads);
2242 exit(1);
2244 } else {
2245 if (max_cpus != smp_cpus) {
2246 error_report("This machine version does not support CPU hotplug");
2247 exit(1);
2249 boot_cores_nr = possible_cpus->len;
2252 for (i = 0; i < possible_cpus->len; i++) {
2253 int core_id = i * smp_threads;
2255 if (mc->has_hotpluggable_cpus) {
2256 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2257 (core_id / smp_threads) * smt);
2260 if (i < boot_cores_nr) {
2261 Object *core = object_new(type);
2262 int nr_threads = smp_threads;
2264 /* Handle the partially filled core for older machine types */
2265 if ((i + 1) * smp_threads >= smp_cpus) {
2266 nr_threads = smp_cpus - i * smp_threads;
2269 object_property_set_int(core, nr_threads, "nr-threads",
2270 &error_fatal);
2271 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2272 &error_fatal);
2273 object_property_set_bool(core, true, "realized", &error_fatal);
2278 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2280 Error *local_err = NULL;
2281 bool vsmt_user = !!spapr->vsmt;
2282 int kvm_smt = kvmppc_smt_threads();
2283 int ret;
2285 if (!kvm_enabled() && (smp_threads > 1)) {
2286 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2287 "on a pseries machine");
2288 goto out;
2290 if (!is_power_of_2(smp_threads)) {
2291 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2292 "machine because it must be a power of 2", smp_threads);
2293 goto out;
2296 /* Detemine the VSMT mode to use: */
2297 if (vsmt_user) {
2298 if (spapr->vsmt < smp_threads) {
2299 error_setg(&local_err, "Cannot support VSMT mode %d"
2300 " because it must be >= threads/core (%d)",
2301 spapr->vsmt, smp_threads);
2302 goto out;
2304 /* In this case, spapr->vsmt has been set by the command line */
2305 } else {
2307 * Default VSMT value is tricky, because we need it to be as
2308 * consistent as possible (for migration), but this requires
2309 * changing it for at least some existing cases. We pick 8 as
2310 * the value that we'd get with KVM on POWER8, the
2311 * overwhelmingly common case in production systems.
2313 spapr->vsmt = 8;
2316 /* KVM: If necessary, set the SMT mode: */
2317 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2318 ret = kvmppc_set_smt_threads(spapr->vsmt);
2319 if (ret) {
2320 /* Looks like KVM isn't able to change VSMT mode */
2321 error_setg(&local_err,
2322 "Failed to set KVM's VSMT mode to %d (errno %d)",
2323 spapr->vsmt, ret);
2324 /* We can live with that if the default one is big enough
2325 * for the number of threads, and a submultiple of the one
2326 * we want. In this case we'll waste some vcpu ids, but
2327 * behaviour will be correct */
2328 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2329 warn_report_err(local_err);
2330 local_err = NULL;
2331 goto out;
2332 } else {
2333 if (!vsmt_user) {
2334 error_append_hint(&local_err,
2335 "On PPC, a VM with %d threads/core"
2336 " on a host with %d threads/core"
2337 " requires the use of VSMT mode %d.\n",
2338 smp_threads, kvm_smt, spapr->vsmt);
2340 kvmppc_hint_smt_possible(&local_err);
2341 goto out;
2345 /* else TCG: nothing to do currently */
2346 out:
2347 error_propagate(errp, local_err);
2350 /* pSeries LPAR / sPAPR hardware init */
2351 static void spapr_machine_init(MachineState *machine)
2353 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2354 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2355 const char *kernel_filename = machine->kernel_filename;
2356 const char *initrd_filename = machine->initrd_filename;
2357 PCIHostState *phb;
2358 int i;
2359 MemoryRegion *sysmem = get_system_memory();
2360 MemoryRegion *ram = g_new(MemoryRegion, 1);
2361 MemoryRegion *rma_region;
2362 void *rma = NULL;
2363 hwaddr rma_alloc_size;
2364 hwaddr node0_size = spapr_node0_size(machine);
2365 long load_limit, fw_size;
2366 char *filename;
2367 Error *resize_hpt_err = NULL;
2369 msi_nonbroken = true;
2371 QLIST_INIT(&spapr->phbs);
2372 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2374 /* Check HPT resizing availability */
2375 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2376 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2378 * If the user explicitly requested a mode we should either
2379 * supply it, or fail completely (which we do below). But if
2380 * it's not set explicitly, we reset our mode to something
2381 * that works
2383 if (resize_hpt_err) {
2384 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2385 error_free(resize_hpt_err);
2386 resize_hpt_err = NULL;
2387 } else {
2388 spapr->resize_hpt = smc->resize_hpt_default;
2392 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2394 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2396 * User requested HPT resize, but this host can't supply it. Bail out
2398 error_report_err(resize_hpt_err);
2399 exit(1);
2402 /* Allocate RMA if necessary */
2403 rma_alloc_size = kvmppc_alloc_rma(&rma);
2405 if (rma_alloc_size == -1) {
2406 error_report("Unable to create RMA");
2407 exit(1);
2410 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2411 spapr->rma_size = rma_alloc_size;
2412 } else {
2413 spapr->rma_size = node0_size;
2415 /* With KVM, we don't actually know whether KVM supports an
2416 * unbounded RMA (PR KVM) or is limited by the hash table size
2417 * (HV KVM using VRMA), so we always assume the latter
2419 * In that case, we also limit the initial allocations for RTAS
2420 * etc... to 256M since we have no way to know what the VRMA size
2421 * is going to be as it depends on the size of the hash table
2422 * isn't determined yet.
2424 if (kvm_enabled()) {
2425 spapr->vrma_adjust = 1;
2426 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2429 /* Actually we don't support unbounded RMA anymore since we
2430 * added proper emulation of HV mode. The max we can get is
2431 * 16G which also happens to be what we configure for PAPR
2432 * mode so make sure we don't do anything bigger than that
2434 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2437 if (spapr->rma_size > node0_size) {
2438 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2439 spapr->rma_size);
2440 exit(1);
2443 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2444 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2446 /* Set up Interrupt Controller before we create the VCPUs */
2447 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2449 /* Set up containers for ibm,client-architecture-support negotiated options
2451 spapr->ov5 = spapr_ovec_new();
2452 spapr->ov5_cas = spapr_ovec_new();
2454 if (smc->dr_lmb_enabled) {
2455 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2456 spapr_validate_node_memory(machine, &error_fatal);
2459 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2460 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2461 /* KVM and TCG always allow GTSE with radix... */
2462 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2464 /* ... but not with hash (currently). */
2466 /* advertise support for dedicated HP event source to guests */
2467 if (spapr->use_hotplug_event_source) {
2468 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2471 /* advertise support for HPT resizing */
2472 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2473 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2476 /* init CPUs */
2477 spapr_set_vsmt_mode(spapr, &error_fatal);
2479 spapr_init_cpus(spapr);
2481 if (kvm_enabled()) {
2482 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2483 kvmppc_enable_logical_ci_hcalls();
2484 kvmppc_enable_set_mode_hcall();
2486 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2487 kvmppc_enable_clear_ref_mod_hcalls();
2490 /* allocate RAM */
2491 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2492 machine->ram_size);
2493 memory_region_add_subregion(sysmem, 0, ram);
2495 if (rma_alloc_size && rma) {
2496 rma_region = g_new(MemoryRegion, 1);
2497 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2498 rma_alloc_size, rma);
2499 vmstate_register_ram_global(rma_region);
2500 memory_region_add_subregion(sysmem, 0, rma_region);
2503 /* initialize hotplug memory address space */
2504 if (machine->ram_size < machine->maxram_size) {
2505 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2507 * Limit the number of hotpluggable memory slots to half the number
2508 * slots that KVM supports, leaving the other half for PCI and other
2509 * devices. However ensure that number of slots doesn't drop below 32.
2511 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2512 SPAPR_MAX_RAM_SLOTS;
2514 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2515 max_memslots = SPAPR_MAX_RAM_SLOTS;
2517 if (machine->ram_slots > max_memslots) {
2518 error_report("Specified number of memory slots %"
2519 PRIu64" exceeds max supported %d",
2520 machine->ram_slots, max_memslots);
2521 exit(1);
2524 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2525 SPAPR_HOTPLUG_MEM_ALIGN);
2526 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2527 "hotplug-memory", hotplug_mem_size);
2528 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2529 &spapr->hotplug_memory.mr);
2532 if (smc->dr_lmb_enabled) {
2533 spapr_create_lmb_dr_connectors(spapr);
2536 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2537 if (!filename) {
2538 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2539 exit(1);
2541 spapr->rtas_size = get_image_size(filename);
2542 if (spapr->rtas_size < 0) {
2543 error_report("Could not get size of LPAR rtas '%s'", filename);
2544 exit(1);
2546 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2547 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2548 error_report("Could not load LPAR rtas '%s'", filename);
2549 exit(1);
2551 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2552 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2553 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2554 exit(1);
2556 g_free(filename);
2558 /* Set up RTAS event infrastructure */
2559 spapr_events_init(spapr);
2561 /* Set up the RTC RTAS interfaces */
2562 spapr_rtc_create(spapr);
2564 /* Set up VIO bus */
2565 spapr->vio_bus = spapr_vio_bus_init();
2567 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2568 if (serial_hds[i]) {
2569 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2573 /* We always have at least the nvram device on VIO */
2574 spapr_create_nvram(spapr);
2576 /* Set up PCI */
2577 spapr_pci_rtas_init();
2579 phb = spapr_create_phb(spapr, 0);
2581 for (i = 0; i < nb_nics; i++) {
2582 NICInfo *nd = &nd_table[i];
2584 if (!nd->model) {
2585 nd->model = g_strdup("ibmveth");
2588 if (strcmp(nd->model, "ibmveth") == 0) {
2589 spapr_vlan_create(spapr->vio_bus, nd);
2590 } else {
2591 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2595 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2596 spapr_vscsi_create(spapr->vio_bus);
2599 /* Graphics */
2600 if (spapr_vga_init(phb->bus, &error_fatal)) {
2601 spapr->has_graphics = true;
2602 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2605 if (machine->usb) {
2606 if (smc->use_ohci_by_default) {
2607 pci_create_simple(phb->bus, -1, "pci-ohci");
2608 } else {
2609 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2612 if (spapr->has_graphics) {
2613 USBBus *usb_bus = usb_bus_find(-1);
2615 usb_create_simple(usb_bus, "usb-kbd");
2616 usb_create_simple(usb_bus, "usb-mouse");
2620 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2621 error_report(
2622 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2623 MIN_RMA_SLOF);
2624 exit(1);
2627 if (kernel_filename) {
2628 uint64_t lowaddr = 0;
2630 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2631 NULL, NULL, &lowaddr, NULL, 1,
2632 PPC_ELF_MACHINE, 0, 0);
2633 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2634 spapr->kernel_size = load_elf(kernel_filename,
2635 translate_kernel_address, NULL, NULL,
2636 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2637 0, 0);
2638 spapr->kernel_le = spapr->kernel_size > 0;
2640 if (spapr->kernel_size < 0) {
2641 error_report("error loading %s: %s", kernel_filename,
2642 load_elf_strerror(spapr->kernel_size));
2643 exit(1);
2646 /* load initrd */
2647 if (initrd_filename) {
2648 /* Try to locate the initrd in the gap between the kernel
2649 * and the firmware. Add a bit of space just in case
2651 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2652 + 0x1ffff) & ~0xffff;
2653 spapr->initrd_size = load_image_targphys(initrd_filename,
2654 spapr->initrd_base,
2655 load_limit
2656 - spapr->initrd_base);
2657 if (spapr->initrd_size < 0) {
2658 error_report("could not load initial ram disk '%s'",
2659 initrd_filename);
2660 exit(1);
2665 if (bios_name == NULL) {
2666 bios_name = FW_FILE_NAME;
2668 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2669 if (!filename) {
2670 error_report("Could not find LPAR firmware '%s'", bios_name);
2671 exit(1);
2673 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2674 if (fw_size <= 0) {
2675 error_report("Could not load LPAR firmware '%s'", filename);
2676 exit(1);
2678 g_free(filename);
2680 /* FIXME: Should register things through the MachineState's qdev
2681 * interface, this is a legacy from the sPAPREnvironment structure
2682 * which predated MachineState but had a similar function */
2683 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2684 register_savevm_live(NULL, "spapr/htab", -1, 1,
2685 &savevm_htab_handlers, spapr);
2687 qemu_register_boot_set(spapr_boot_set, spapr);
2689 if (kvm_enabled()) {
2690 /* to stop and start vmclock */
2691 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2692 &spapr->tb);
2694 kvmppc_spapr_enable_inkernel_multitce();
2698 static int spapr_kvm_type(const char *vm_type)
2700 if (!vm_type) {
2701 return 0;
2704 if (!strcmp(vm_type, "HV")) {
2705 return 1;
2708 if (!strcmp(vm_type, "PR")) {
2709 return 2;
2712 error_report("Unknown kvm-type specified '%s'", vm_type);
2713 exit(1);
2717 * Implementation of an interface to adjust firmware path
2718 * for the bootindex property handling.
2720 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2721 DeviceState *dev)
2723 #define CAST(type, obj, name) \
2724 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2725 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2726 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2727 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2729 if (d) {
2730 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2731 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2732 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2734 if (spapr) {
2736 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2737 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2738 * in the top 16 bits of the 64-bit LUN
2740 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2741 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2742 (uint64_t)id << 48);
2743 } else if (virtio) {
2745 * We use SRP luns of the form 01000000 | (target << 8) | lun
2746 * in the top 32 bits of the 64-bit LUN
2747 * Note: the quote above is from SLOF and it is wrong,
2748 * the actual binding is:
2749 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2751 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2752 if (d->lun >= 256) {
2753 /* Use the LUN "flat space addressing method" */
2754 id |= 0x4000;
2756 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2757 (uint64_t)id << 32);
2758 } else if (usb) {
2760 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2761 * in the top 32 bits of the 64-bit LUN
2763 unsigned usb_port = atoi(usb->port->path);
2764 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2765 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2766 (uint64_t)id << 32);
2771 * SLOF probes the USB devices, and if it recognizes that the device is a
2772 * storage device, it changes its name to "storage" instead of "usb-host",
2773 * and additionally adds a child node for the SCSI LUN, so the correct
2774 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2776 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2777 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2778 if (usb_host_dev_is_scsi_storage(usbdev)) {
2779 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2783 if (phb) {
2784 /* Replace "pci" with "pci@800000020000000" */
2785 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2788 if (vsc) {
2789 /* Same logic as virtio above */
2790 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2791 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2794 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2795 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2796 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2797 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2800 return NULL;
2803 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2805 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2807 return g_strdup(spapr->kvm_type);
2810 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2812 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2814 g_free(spapr->kvm_type);
2815 spapr->kvm_type = g_strdup(value);
2818 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2820 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2822 return spapr->use_hotplug_event_source;
2825 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2826 Error **errp)
2828 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2830 spapr->use_hotplug_event_source = value;
2833 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2835 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2837 switch (spapr->resize_hpt) {
2838 case SPAPR_RESIZE_HPT_DEFAULT:
2839 return g_strdup("default");
2840 case SPAPR_RESIZE_HPT_DISABLED:
2841 return g_strdup("disabled");
2842 case SPAPR_RESIZE_HPT_ENABLED:
2843 return g_strdup("enabled");
2844 case SPAPR_RESIZE_HPT_REQUIRED:
2845 return g_strdup("required");
2847 g_assert_not_reached();
2850 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2852 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2854 if (strcmp(value, "default") == 0) {
2855 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2856 } else if (strcmp(value, "disabled") == 0) {
2857 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2858 } else if (strcmp(value, "enabled") == 0) {
2859 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2860 } else if (strcmp(value, "required") == 0) {
2861 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2862 } else {
2863 error_setg(errp, "Bad value for \"resize-hpt\" property");
2867 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2868 void *opaque, Error **errp)
2870 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2873 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2874 void *opaque, Error **errp)
2876 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2879 static void spapr_instance_init(Object *obj)
2881 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2883 spapr->htab_fd = -1;
2884 spapr->use_hotplug_event_source = true;
2885 object_property_add_str(obj, "kvm-type",
2886 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2887 object_property_set_description(obj, "kvm-type",
2888 "Specifies the KVM virtualization mode (HV, PR)",
2889 NULL);
2890 object_property_add_bool(obj, "modern-hotplug-events",
2891 spapr_get_modern_hotplug_events,
2892 spapr_set_modern_hotplug_events,
2893 NULL);
2894 object_property_set_description(obj, "modern-hotplug-events",
2895 "Use dedicated hotplug event mechanism in"
2896 " place of standard EPOW events when possible"
2897 " (required for memory hot-unplug support)",
2898 NULL);
2900 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2901 "Maximum permitted CPU compatibility mode",
2902 &error_fatal);
2904 object_property_add_str(obj, "resize-hpt",
2905 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2906 object_property_set_description(obj, "resize-hpt",
2907 "Resizing of the Hash Page Table (enabled, disabled, required)",
2908 NULL);
2909 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2910 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2911 object_property_set_description(obj, "vsmt",
2912 "Virtual SMT: KVM behaves as if this were"
2913 " the host's SMT mode", &error_abort);
2916 static void spapr_machine_finalizefn(Object *obj)
2918 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2920 g_free(spapr->kvm_type);
2923 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2925 cpu_synchronize_state(cs);
2926 ppc_cpu_do_system_reset(cs);
2929 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2931 CPUState *cs;
2933 CPU_FOREACH(cs) {
2934 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2938 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2939 uint32_t node, bool dedicated_hp_event_source,
2940 Error **errp)
2942 sPAPRDRConnector *drc;
2943 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2944 int i, fdt_offset, fdt_size;
2945 void *fdt;
2946 uint64_t addr = addr_start;
2947 bool hotplugged = spapr_drc_hotplugged(dev);
2948 Error *local_err = NULL;
2950 for (i = 0; i < nr_lmbs; i++) {
2951 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2952 addr / SPAPR_MEMORY_BLOCK_SIZE);
2953 g_assert(drc);
2955 fdt = create_device_tree(&fdt_size);
2956 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2957 SPAPR_MEMORY_BLOCK_SIZE);
2959 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2960 if (local_err) {
2961 while (addr > addr_start) {
2962 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2963 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2964 addr / SPAPR_MEMORY_BLOCK_SIZE);
2965 spapr_drc_detach(drc);
2967 g_free(fdt);
2968 error_propagate(errp, local_err);
2969 return;
2971 if (!hotplugged) {
2972 spapr_drc_reset(drc);
2974 addr += SPAPR_MEMORY_BLOCK_SIZE;
2976 /* send hotplug notification to the
2977 * guest only in case of hotplugged memory
2979 if (hotplugged) {
2980 if (dedicated_hp_event_source) {
2981 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2982 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2983 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2984 nr_lmbs,
2985 spapr_drc_index(drc));
2986 } else {
2987 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2988 nr_lmbs);
2993 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2994 uint32_t node, Error **errp)
2996 Error *local_err = NULL;
2997 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2998 PCDIMMDevice *dimm = PC_DIMM(dev);
2999 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3000 MemoryRegion *mr;
3001 uint64_t align, size, addr;
3003 mr = ddc->get_memory_region(dimm, &local_err);
3004 if (local_err) {
3005 goto out;
3007 align = memory_region_get_alignment(mr);
3008 size = memory_region_size(mr);
3010 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3011 if (local_err) {
3012 goto out;
3015 addr = object_property_get_uint(OBJECT(dimm),
3016 PC_DIMM_ADDR_PROP, &local_err);
3017 if (local_err) {
3018 goto out_unplug;
3021 spapr_add_lmbs(dev, addr, size, node,
3022 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3023 &local_err);
3024 if (local_err) {
3025 goto out_unplug;
3028 return;
3030 out_unplug:
3031 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3032 out:
3033 error_propagate(errp, local_err);
3036 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3037 Error **errp)
3039 PCDIMMDevice *dimm = PC_DIMM(dev);
3040 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3041 MemoryRegion *mr;
3042 uint64_t size;
3043 char *mem_dev;
3045 mr = ddc->get_memory_region(dimm, errp);
3046 if (!mr) {
3047 return;
3049 size = memory_region_size(mr);
3051 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3052 error_setg(errp, "Hotplugged memory size must be a multiple of "
3053 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3054 return;
3057 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3058 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3059 error_setg(errp, "Memory backend has bad page size. "
3060 "Use 'memory-backend-file' with correct mem-path.");
3061 goto out;
3064 out:
3065 g_free(mem_dev);
3068 struct sPAPRDIMMState {
3069 PCDIMMDevice *dimm;
3070 uint32_t nr_lmbs;
3071 QTAILQ_ENTRY(sPAPRDIMMState) next;
3074 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3075 PCDIMMDevice *dimm)
3077 sPAPRDIMMState *dimm_state = NULL;
3079 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3080 if (dimm_state->dimm == dimm) {
3081 break;
3084 return dimm_state;
3087 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3088 uint32_t nr_lmbs,
3089 PCDIMMDevice *dimm)
3091 sPAPRDIMMState *ds = NULL;
3094 * If this request is for a DIMM whose removal had failed earlier
3095 * (due to guest's refusal to remove the LMBs), we would have this
3096 * dimm already in the pending_dimm_unplugs list. In that
3097 * case don't add again.
3099 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3100 if (!ds) {
3101 ds = g_malloc0(sizeof(sPAPRDIMMState));
3102 ds->nr_lmbs = nr_lmbs;
3103 ds->dimm = dimm;
3104 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3106 return ds;
3109 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3110 sPAPRDIMMState *dimm_state)
3112 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3113 g_free(dimm_state);
3116 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3117 PCDIMMDevice *dimm)
3119 sPAPRDRConnector *drc;
3120 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3121 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3122 uint64_t size = memory_region_size(mr);
3123 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3124 uint32_t avail_lmbs = 0;
3125 uint64_t addr_start, addr;
3126 int i;
3128 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3129 &error_abort);
3131 addr = addr_start;
3132 for (i = 0; i < nr_lmbs; i++) {
3133 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3134 addr / SPAPR_MEMORY_BLOCK_SIZE);
3135 g_assert(drc);
3136 if (drc->dev) {
3137 avail_lmbs++;
3139 addr += SPAPR_MEMORY_BLOCK_SIZE;
3142 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3145 /* Callback to be called during DRC release. */
3146 void spapr_lmb_release(DeviceState *dev)
3148 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3149 PCDIMMDevice *dimm = PC_DIMM(dev);
3150 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3151 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3152 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3154 /* This information will get lost if a migration occurs
3155 * during the unplug process. In this case recover it. */
3156 if (ds == NULL) {
3157 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3158 g_assert(ds);
3159 /* The DRC being examined by the caller at least must be counted */
3160 g_assert(ds->nr_lmbs);
3163 if (--ds->nr_lmbs) {
3164 return;
3168 * Now that all the LMBs have been removed by the guest, call the
3169 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3171 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3172 object_unparent(OBJECT(dev));
3173 spapr_pending_dimm_unplugs_remove(spapr, ds);
3176 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3177 DeviceState *dev, Error **errp)
3179 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3180 Error *local_err = NULL;
3181 PCDIMMDevice *dimm = PC_DIMM(dev);
3182 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3183 MemoryRegion *mr;
3184 uint32_t nr_lmbs;
3185 uint64_t size, addr_start, addr;
3186 int i;
3187 sPAPRDRConnector *drc;
3189 mr = ddc->get_memory_region(dimm, &local_err);
3190 if (local_err) {
3191 goto out;
3193 size = memory_region_size(mr);
3194 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3196 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3197 &local_err);
3198 if (local_err) {
3199 goto out;
3203 * An existing pending dimm state for this DIMM means that there is an
3204 * unplug operation in progress, waiting for the spapr_lmb_release
3205 * callback to complete the job (BQL can't cover that far). In this case,
3206 * bail out to avoid detaching DRCs that were already released.
3208 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3209 error_setg(&local_err,
3210 "Memory unplug already in progress for device %s",
3211 dev->id);
3212 goto out;
3215 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3217 addr = addr_start;
3218 for (i = 0; i < nr_lmbs; i++) {
3219 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3220 addr / SPAPR_MEMORY_BLOCK_SIZE);
3221 g_assert(drc);
3223 spapr_drc_detach(drc);
3224 addr += SPAPR_MEMORY_BLOCK_SIZE;
3227 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3228 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3229 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3230 nr_lmbs, spapr_drc_index(drc));
3231 out:
3232 error_propagate(errp, local_err);
3235 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3236 sPAPRMachineState *spapr)
3238 PowerPCCPU *cpu = POWERPC_CPU(cs);
3239 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3240 int id = spapr_vcpu_id(cpu);
3241 void *fdt;
3242 int offset, fdt_size;
3243 char *nodename;
3245 fdt = create_device_tree(&fdt_size);
3246 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3247 offset = fdt_add_subnode(fdt, 0, nodename);
3249 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3250 g_free(nodename);
3252 *fdt_offset = offset;
3253 return fdt;
3256 /* Callback to be called during DRC release. */
3257 void spapr_core_release(DeviceState *dev)
3259 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3260 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3261 CPUCore *cc = CPU_CORE(dev);
3262 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3264 if (smc->pre_2_10_has_unused_icps) {
3265 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3266 int i;
3268 for (i = 0; i < cc->nr_threads; i++) {
3269 CPUState *cs = CPU(sc->threads[i]);
3271 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3275 assert(core_slot);
3276 core_slot->cpu = NULL;
3277 object_unparent(OBJECT(dev));
3280 static
3281 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3282 Error **errp)
3284 int index;
3285 sPAPRDRConnector *drc;
3286 CPUCore *cc = CPU_CORE(dev);
3287 int smt = kvmppc_smt_threads();
3289 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3290 error_setg(errp, "Unable to find CPU core with core-id: %d",
3291 cc->core_id);
3292 return;
3294 if (index == 0) {
3295 error_setg(errp, "Boot CPU core may not be unplugged");
3296 return;
3299 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3300 g_assert(drc);
3302 spapr_drc_detach(drc);
3304 spapr_hotplug_req_remove_by_index(drc);
3307 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3308 Error **errp)
3310 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3311 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3312 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3313 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3314 CPUCore *cc = CPU_CORE(dev);
3315 CPUState *cs = CPU(core->threads[0]);
3316 sPAPRDRConnector *drc;
3317 Error *local_err = NULL;
3318 int smt = kvmppc_smt_threads();
3319 CPUArchId *core_slot;
3320 int index;
3321 bool hotplugged = spapr_drc_hotplugged(dev);
3323 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3324 if (!core_slot) {
3325 error_setg(errp, "Unable to find CPU core with core-id: %d",
3326 cc->core_id);
3327 return;
3329 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3331 g_assert(drc || !mc->has_hotpluggable_cpus);
3333 if (drc) {
3334 void *fdt;
3335 int fdt_offset;
3337 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3339 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3340 if (local_err) {
3341 g_free(fdt);
3342 error_propagate(errp, local_err);
3343 return;
3346 if (hotplugged) {
3348 * Send hotplug notification interrupt to the guest only
3349 * in case of hotplugged CPUs.
3351 spapr_hotplug_req_add_by_index(drc);
3352 } else {
3353 spapr_drc_reset(drc);
3357 core_slot->cpu = OBJECT(dev);
3359 if (smc->pre_2_10_has_unused_icps) {
3360 int i;
3362 for (i = 0; i < cc->nr_threads; i++) {
3363 cs = CPU(core->threads[i]);
3364 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3369 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3370 Error **errp)
3372 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3373 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3374 Error *local_err = NULL;
3375 CPUCore *cc = CPU_CORE(dev);
3376 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3377 const char *type = object_get_typename(OBJECT(dev));
3378 CPUArchId *core_slot;
3379 int index;
3381 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3382 error_setg(&local_err, "CPU hotplug not supported for this machine");
3383 goto out;
3386 if (strcmp(base_core_type, type)) {
3387 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3388 goto out;
3391 if (cc->core_id % smp_threads) {
3392 error_setg(&local_err, "invalid core id %d", cc->core_id);
3393 goto out;
3397 * In general we should have homogeneous threads-per-core, but old
3398 * (pre hotplug support) machine types allow the last core to have
3399 * reduced threads as a compatibility hack for when we allowed
3400 * total vcpus not a multiple of threads-per-core.
3402 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3403 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3404 cc->nr_threads, smp_threads);
3405 goto out;
3408 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3409 if (!core_slot) {
3410 error_setg(&local_err, "core id %d out of range", cc->core_id);
3411 goto out;
3414 if (core_slot->cpu) {
3415 error_setg(&local_err, "core %d already populated", cc->core_id);
3416 goto out;
3419 numa_cpu_pre_plug(core_slot, dev, &local_err);
3421 out:
3422 error_propagate(errp, local_err);
3425 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3426 DeviceState *dev, Error **errp)
3428 MachineState *ms = MACHINE(hotplug_dev);
3429 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3431 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3432 int node;
3434 if (!smc->dr_lmb_enabled) {
3435 error_setg(errp, "Memory hotplug not supported for this machine");
3436 return;
3438 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3439 if (*errp) {
3440 return;
3442 if (node < 0 || node >= MAX_NODES) {
3443 error_setg(errp, "Invaild node %d", node);
3444 return;
3448 * Currently PowerPC kernel doesn't allow hot-adding memory to
3449 * memory-less node, but instead will silently add the memory
3450 * to the first node that has some memory. This causes two
3451 * unexpected behaviours for the user.
3453 * - Memory gets hotplugged to a different node than what the user
3454 * specified.
3455 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3456 * to memory-less node, a reboot will set things accordingly
3457 * and the previously hotplugged memory now ends in the right node.
3458 * This appears as if some memory moved from one node to another.
3460 * So until kernel starts supporting memory hotplug to memory-less
3461 * nodes, just prevent such attempts upfront in QEMU.
3463 if (nb_numa_nodes && !numa_info[node].node_mem) {
3464 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3465 node);
3466 return;
3469 spapr_memory_plug(hotplug_dev, dev, node, errp);
3470 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3471 spapr_core_plug(hotplug_dev, dev, errp);
3475 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3476 DeviceState *dev, Error **errp)
3478 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3479 MachineClass *mc = MACHINE_GET_CLASS(sms);
3481 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3482 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3483 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3484 } else {
3485 /* NOTE: this means there is a window after guest reset, prior to
3486 * CAS negotiation, where unplug requests will fail due to the
3487 * capability not being detected yet. This is a bit different than
3488 * the case with PCI unplug, where the events will be queued and
3489 * eventually handled by the guest after boot
3491 error_setg(errp, "Memory hot unplug not supported for this guest");
3493 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3494 if (!mc->has_hotpluggable_cpus) {
3495 error_setg(errp, "CPU hot unplug not supported on this machine");
3496 return;
3498 spapr_core_unplug_request(hotplug_dev, dev, errp);
3502 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3503 DeviceState *dev, Error **errp)
3505 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3506 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3507 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3508 spapr_core_pre_plug(hotplug_dev, dev, errp);
3512 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3513 DeviceState *dev)
3515 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3516 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3517 return HOTPLUG_HANDLER(machine);
3519 return NULL;
3522 static CpuInstanceProperties
3523 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3525 CPUArchId *core_slot;
3526 MachineClass *mc = MACHINE_GET_CLASS(machine);
3528 /* make sure possible_cpu are intialized */
3529 mc->possible_cpu_arch_ids(machine);
3530 /* get CPU core slot containing thread that matches cpu_index */
3531 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3532 assert(core_slot);
3533 return core_slot->props;
3536 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3538 return idx / smp_cores % nb_numa_nodes;
3541 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3543 int i;
3544 const char *core_type;
3545 int spapr_max_cores = max_cpus / smp_threads;
3546 MachineClass *mc = MACHINE_GET_CLASS(machine);
3548 if (!mc->has_hotpluggable_cpus) {
3549 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3551 if (machine->possible_cpus) {
3552 assert(machine->possible_cpus->len == spapr_max_cores);
3553 return machine->possible_cpus;
3556 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3557 if (!core_type) {
3558 error_report("Unable to find sPAPR CPU Core definition");
3559 exit(1);
3562 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3563 sizeof(CPUArchId) * spapr_max_cores);
3564 machine->possible_cpus->len = spapr_max_cores;
3565 for (i = 0; i < machine->possible_cpus->len; i++) {
3566 int core_id = i * smp_threads;
3568 machine->possible_cpus->cpus[i].type = core_type;
3569 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3570 machine->possible_cpus->cpus[i].arch_id = core_id;
3571 machine->possible_cpus->cpus[i].props.has_core_id = true;
3572 machine->possible_cpus->cpus[i].props.core_id = core_id;
3574 return machine->possible_cpus;
3577 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3578 uint64_t *buid, hwaddr *pio,
3579 hwaddr *mmio32, hwaddr *mmio64,
3580 unsigned n_dma, uint32_t *liobns, Error **errp)
3583 * New-style PHB window placement.
3585 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3586 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3587 * windows.
3589 * Some guest kernels can't work with MMIO windows above 1<<46
3590 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3592 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3593 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3594 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3595 * 1TiB 64-bit MMIO windows for each PHB.
3597 const uint64_t base_buid = 0x800000020000000ULL;
3598 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3599 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3600 int i;
3602 /* Sanity check natural alignments */
3603 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3604 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3605 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3606 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3607 /* Sanity check bounds */
3608 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3609 SPAPR_PCI_MEM32_WIN_SIZE);
3610 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3611 SPAPR_PCI_MEM64_WIN_SIZE);
3613 if (index >= SPAPR_MAX_PHBS) {
3614 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3615 SPAPR_MAX_PHBS - 1);
3616 return;
3619 *buid = base_buid + index;
3620 for (i = 0; i < n_dma; ++i) {
3621 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3624 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3625 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3626 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3629 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3631 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3633 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3636 static void spapr_ics_resend(XICSFabric *dev)
3638 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3640 ics_resend(spapr->ics);
3643 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3645 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3647 return cpu ? ICP(cpu->intc) : NULL;
3650 #define ICS_IRQ_FREE(ics, srcno) \
3651 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3653 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3655 int first, i;
3657 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3658 if (num > (ics->nr_irqs - first)) {
3659 return -1;
3661 for (i = first; i < first + num; ++i) {
3662 if (!ICS_IRQ_FREE(ics, i)) {
3663 break;
3666 if (i == (first + num)) {
3667 return first;
3671 return -1;
3675 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3677 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3679 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3682 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3683 Error **errp)
3685 ICSState *ics = spapr->ics;
3686 int irq;
3688 if (!ics) {
3689 return -1;
3691 if (irq_hint) {
3692 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3693 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3694 return -1;
3696 irq = irq_hint;
3697 } else {
3698 irq = ics_find_free_block(ics, 1, 1);
3699 if (irq < 0) {
3700 error_setg(errp, "can't allocate IRQ: no IRQ left");
3701 return -1;
3703 irq += ics->offset;
3706 spapr_irq_set_lsi(spapr, irq, lsi);
3707 trace_spapr_irq_alloc(irq);
3709 return irq;
3713 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3714 * the block. If align==true, aligns the first IRQ number to num.
3716 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3717 bool align, Error **errp)
3719 ICSState *ics = spapr->ics;
3720 int i, first = -1;
3722 if (!ics) {
3723 return -1;
3727 * MSIMesage::data is used for storing VIRQ so
3728 * it has to be aligned to num to support multiple
3729 * MSI vectors. MSI-X is not affected by this.
3730 * The hint is used for the first IRQ, the rest should
3731 * be allocated continuously.
3733 if (align) {
3734 assert((num == 1) || (num == 2) || (num == 4) ||
3735 (num == 8) || (num == 16) || (num == 32));
3736 first = ics_find_free_block(ics, num, num);
3737 } else {
3738 first = ics_find_free_block(ics, num, 1);
3740 if (first < 0) {
3741 error_setg(errp, "can't find a free %d-IRQ block", num);
3742 return -1;
3745 first += ics->offset;
3746 for (i = first; i < first + num; ++i) {
3747 spapr_irq_set_lsi(spapr, i, lsi);
3750 trace_spapr_irq_alloc_block(first, num, lsi, align);
3752 return first;
3755 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3757 ICSState *ics = spapr->ics;
3758 int srcno = irq - ics->offset;
3759 int i;
3761 if (ics_valid_irq(ics, irq)) {
3762 trace_spapr_irq_free(0, irq, num);
3763 for (i = srcno; i < srcno + num; ++i) {
3764 if (ICS_IRQ_FREE(ics, i)) {
3765 trace_spapr_irq_free_warn(0, i + ics->offset);
3767 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3772 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3774 ICSState *ics = spapr->ics;
3776 if (ics_valid_irq(ics, irq)) {
3777 return ics->qirqs[irq - ics->offset];
3780 return NULL;
3783 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3784 Monitor *mon)
3786 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3787 CPUState *cs;
3789 CPU_FOREACH(cs) {
3790 PowerPCCPU *cpu = POWERPC_CPU(cs);
3792 icp_pic_print_info(ICP(cpu->intc), mon);
3795 ics_pic_print_info(spapr->ics, mon);
3798 int spapr_vcpu_id(PowerPCCPU *cpu)
3800 CPUState *cs = CPU(cpu);
3802 if (kvm_enabled()) {
3803 return kvm_arch_vcpu_id(cs);
3804 } else {
3805 return cs->cpu_index;
3809 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3811 CPUState *cs;
3813 CPU_FOREACH(cs) {
3814 PowerPCCPU *cpu = POWERPC_CPU(cs);
3816 if (spapr_vcpu_id(cpu) == vcpu_id) {
3817 return cpu;
3821 return NULL;
3824 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3826 MachineClass *mc = MACHINE_CLASS(oc);
3827 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3828 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3829 NMIClass *nc = NMI_CLASS(oc);
3830 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3831 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3832 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3833 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3835 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3838 * We set up the default / latest behaviour here. The class_init
3839 * functions for the specific versioned machine types can override
3840 * these details for backwards compatibility
3842 mc->init = spapr_machine_init;
3843 mc->reset = spapr_machine_reset;
3844 mc->block_default_type = IF_SCSI;
3845 mc->max_cpus = 1024;
3846 mc->no_parallel = 1;
3847 mc->default_boot_order = "";
3848 mc->default_ram_size = 512 * M_BYTE;
3849 mc->kvm_type = spapr_kvm_type;
3850 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3851 mc->pci_allow_0_address = true;
3852 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3853 hc->pre_plug = spapr_machine_device_pre_plug;
3854 hc->plug = spapr_machine_device_plug;
3855 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3856 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3857 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3858 hc->unplug_request = spapr_machine_device_unplug_request;
3860 smc->dr_lmb_enabled = true;
3861 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3862 mc->has_hotpluggable_cpus = true;
3863 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3864 fwc->get_dev_path = spapr_get_fw_dev_path;
3865 nc->nmi_monitor_handler = spapr_nmi;
3866 smc->phb_placement = spapr_phb_placement;
3867 vhc->hypercall = emulate_spapr_hypercall;
3868 vhc->hpt_mask = spapr_hpt_mask;
3869 vhc->map_hptes = spapr_map_hptes;
3870 vhc->unmap_hptes = spapr_unmap_hptes;
3871 vhc->store_hpte = spapr_store_hpte;
3872 vhc->get_patbe = spapr_get_patbe;
3873 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3874 xic->ics_get = spapr_ics_get;
3875 xic->ics_resend = spapr_ics_resend;
3876 xic->icp_get = spapr_icp_get;
3877 ispc->print_info = spapr_pic_print_info;
3878 /* Force NUMA node memory size to be a multiple of
3879 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3880 * in which LMBs are represented and hot-added
3882 mc->numa_mem_align_shift = 28;
3884 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3885 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3886 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3887 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3888 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3889 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3890 spapr_caps_add_properties(smc, &error_abort);
3893 static const TypeInfo spapr_machine_info = {
3894 .name = TYPE_SPAPR_MACHINE,
3895 .parent = TYPE_MACHINE,
3896 .abstract = true,
3897 .instance_size = sizeof(sPAPRMachineState),
3898 .instance_init = spapr_instance_init,
3899 .instance_finalize = spapr_machine_finalizefn,
3900 .class_size = sizeof(sPAPRMachineClass),
3901 .class_init = spapr_machine_class_init,
3902 .interfaces = (InterfaceInfo[]) {
3903 { TYPE_FW_PATH_PROVIDER },
3904 { TYPE_NMI },
3905 { TYPE_HOTPLUG_HANDLER },
3906 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3907 { TYPE_XICS_FABRIC },
3908 { TYPE_INTERRUPT_STATS_PROVIDER },
3913 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3914 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3915 void *data) \
3917 MachineClass *mc = MACHINE_CLASS(oc); \
3918 spapr_machine_##suffix##_class_options(mc); \
3919 if (latest) { \
3920 mc->alias = "pseries"; \
3921 mc->is_default = 1; \
3924 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3926 MachineState *machine = MACHINE(obj); \
3927 spapr_machine_##suffix##_instance_options(machine); \
3929 static const TypeInfo spapr_machine_##suffix##_info = { \
3930 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3931 .parent = TYPE_SPAPR_MACHINE, \
3932 .class_init = spapr_machine_##suffix##_class_init, \
3933 .instance_init = spapr_machine_##suffix##_instance_init, \
3934 }; \
3935 static void spapr_machine_register_##suffix(void) \
3937 type_register(&spapr_machine_##suffix##_info); \
3939 type_init(spapr_machine_register_##suffix)
3942 * pseries-2.12
3944 static void spapr_machine_2_12_instance_options(MachineState *machine)
3948 static void spapr_machine_2_12_class_options(MachineClass *mc)
3950 /* Defaults for the latest behaviour inherited from the base class */
3953 DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
3956 * pseries-2.11
3958 #define SPAPR_COMPAT_2_11 \
3959 HW_COMPAT_2_11
3961 static void spapr_machine_2_11_instance_options(MachineState *machine)
3963 spapr_machine_2_12_instance_options(machine);
3966 static void spapr_machine_2_11_class_options(MachineClass *mc)
3968 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3970 spapr_machine_2_12_class_options(mc);
3971 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
3972 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
3975 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
3978 * pseries-2.10
3980 #define SPAPR_COMPAT_2_10 \
3981 HW_COMPAT_2_10
3983 static void spapr_machine_2_10_instance_options(MachineState *machine)
3985 spapr_machine_2_11_instance_options(machine);
3988 static void spapr_machine_2_10_class_options(MachineClass *mc)
3990 spapr_machine_2_11_class_options(mc);
3991 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3994 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3997 * pseries-2.9
3999 #define SPAPR_COMPAT_2_9 \
4000 HW_COMPAT_2_9 \
4002 .driver = TYPE_POWERPC_CPU, \
4003 .property = "pre-2.10-migration", \
4004 .value = "on", \
4005 }, \
4007 static void spapr_machine_2_9_instance_options(MachineState *machine)
4009 spapr_machine_2_10_instance_options(machine);
4012 static void spapr_machine_2_9_class_options(MachineClass *mc)
4014 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4016 spapr_machine_2_10_class_options(mc);
4017 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4018 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4019 smc->pre_2_10_has_unused_icps = true;
4020 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4023 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4026 * pseries-2.8
4028 #define SPAPR_COMPAT_2_8 \
4029 HW_COMPAT_2_8 \
4031 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4032 .property = "pcie-extended-configuration-space", \
4033 .value = "off", \
4036 static void spapr_machine_2_8_instance_options(MachineState *machine)
4038 spapr_machine_2_9_instance_options(machine);
4041 static void spapr_machine_2_8_class_options(MachineClass *mc)
4043 spapr_machine_2_9_class_options(mc);
4044 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4045 mc->numa_mem_align_shift = 23;
4048 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4051 * pseries-2.7
4053 #define SPAPR_COMPAT_2_7 \
4054 HW_COMPAT_2_7 \
4056 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4057 .property = "mem_win_size", \
4058 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4059 }, \
4061 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4062 .property = "mem64_win_size", \
4063 .value = "0", \
4064 }, \
4066 .driver = TYPE_POWERPC_CPU, \
4067 .property = "pre-2.8-migration", \
4068 .value = "on", \
4069 }, \
4071 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4072 .property = "pre-2.8-migration", \
4073 .value = "on", \
4076 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4077 uint64_t *buid, hwaddr *pio,
4078 hwaddr *mmio32, hwaddr *mmio64,
4079 unsigned n_dma, uint32_t *liobns, Error **errp)
4081 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4082 const uint64_t base_buid = 0x800000020000000ULL;
4083 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4084 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4085 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4086 const uint32_t max_index = 255;
4087 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4089 uint64_t ram_top = MACHINE(spapr)->ram_size;
4090 hwaddr phb0_base, phb_base;
4091 int i;
4093 /* Do we have hotpluggable memory? */
4094 if (MACHINE(spapr)->maxram_size > ram_top) {
4095 /* Can't just use maxram_size, because there may be an
4096 * alignment gap between normal and hotpluggable memory
4097 * regions */
4098 ram_top = spapr->hotplug_memory.base +
4099 memory_region_size(&spapr->hotplug_memory.mr);
4102 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4104 if (index > max_index) {
4105 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4106 max_index);
4107 return;
4110 *buid = base_buid + index;
4111 for (i = 0; i < n_dma; ++i) {
4112 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4115 phb_base = phb0_base + index * phb_spacing;
4116 *pio = phb_base + pio_offset;
4117 *mmio32 = phb_base + mmio_offset;
4119 * We don't set the 64-bit MMIO window, relying on the PHB's
4120 * fallback behaviour of automatically splitting a large "32-bit"
4121 * window into contiguous 32-bit and 64-bit windows
4125 static void spapr_machine_2_7_instance_options(MachineState *machine)
4127 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4129 spapr_machine_2_8_instance_options(machine);
4130 spapr->use_hotplug_event_source = false;
4133 static void spapr_machine_2_7_class_options(MachineClass *mc)
4135 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4137 spapr_machine_2_8_class_options(mc);
4138 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4139 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4140 smc->phb_placement = phb_placement_2_7;
4143 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4146 * pseries-2.6
4148 #define SPAPR_COMPAT_2_6 \
4149 HW_COMPAT_2_6 \
4151 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4152 .property = "ddw",\
4153 .value = stringify(off),\
4156 static void spapr_machine_2_6_instance_options(MachineState *machine)
4158 spapr_machine_2_7_instance_options(machine);
4161 static void spapr_machine_2_6_class_options(MachineClass *mc)
4163 spapr_machine_2_7_class_options(mc);
4164 mc->has_hotpluggable_cpus = false;
4165 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4168 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4171 * pseries-2.5
4173 #define SPAPR_COMPAT_2_5 \
4174 HW_COMPAT_2_5 \
4176 .driver = "spapr-vlan", \
4177 .property = "use-rx-buffer-pools", \
4178 .value = "off", \
4181 static void spapr_machine_2_5_instance_options(MachineState *machine)
4183 spapr_machine_2_6_instance_options(machine);
4186 static void spapr_machine_2_5_class_options(MachineClass *mc)
4188 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4190 spapr_machine_2_6_class_options(mc);
4191 smc->use_ohci_by_default = true;
4192 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4195 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4198 * pseries-2.4
4200 #define SPAPR_COMPAT_2_4 \
4201 HW_COMPAT_2_4
4203 static void spapr_machine_2_4_instance_options(MachineState *machine)
4205 spapr_machine_2_5_instance_options(machine);
4208 static void spapr_machine_2_4_class_options(MachineClass *mc)
4210 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4212 spapr_machine_2_5_class_options(mc);
4213 smc->dr_lmb_enabled = false;
4214 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4217 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4220 * pseries-2.3
4222 #define SPAPR_COMPAT_2_3 \
4223 HW_COMPAT_2_3 \
4225 .driver = "spapr-pci-host-bridge",\
4226 .property = "dynamic-reconfiguration",\
4227 .value = "off",\
4230 static void spapr_machine_2_3_instance_options(MachineState *machine)
4232 spapr_machine_2_4_instance_options(machine);
4235 static void spapr_machine_2_3_class_options(MachineClass *mc)
4237 spapr_machine_2_4_class_options(mc);
4238 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4240 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4243 * pseries-2.2
4246 #define SPAPR_COMPAT_2_2 \
4247 HW_COMPAT_2_2 \
4249 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4250 .property = "mem_win_size",\
4251 .value = "0x20000000",\
4254 static void spapr_machine_2_2_instance_options(MachineState *machine)
4256 spapr_machine_2_3_instance_options(machine);
4257 machine->suppress_vmdesc = true;
4260 static void spapr_machine_2_2_class_options(MachineClass *mc)
4262 spapr_machine_2_3_class_options(mc);
4263 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4265 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4268 * pseries-2.1
4270 #define SPAPR_COMPAT_2_1 \
4271 HW_COMPAT_2_1
4273 static void spapr_machine_2_1_instance_options(MachineState *machine)
4275 spapr_machine_2_2_instance_options(machine);
4278 static void spapr_machine_2_1_class_options(MachineClass *mc)
4280 spapr_machine_2_2_class_options(mc);
4281 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4283 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4285 static void spapr_machine_register_types(void)
4287 type_register_static(&spapr_machine_info);
4290 type_init(spapr_machine_register_types)