MAINTAINERS: Add spice-display.h to the SPICE section
[qemu/ar7.git] / target-arm / helper.c
blob18c82967d321ba71a321253d98065e2b173461b6
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "internals.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/cpu_ldst.h"
12 #include "arm_ldst.h"
13 #include <zlib.h> /* For crc32 */
14 #include "exec/semihost.h"
15 #include "sysemu/kvm.h"
17 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19 #ifndef CONFIG_USER_ONLY
20 static bool get_phys_addr(CPUARMState *env, target_ulong address,
21 int access_type, ARMMMUIdx mmu_idx,
22 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
23 target_ulong *page_size, uint32_t *fsr,
24 ARMMMUFaultInfo *fi);
26 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
27 int access_type, ARMMMUIdx mmu_idx,
28 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
29 target_ulong *page_size_ptr, uint32_t *fsr,
30 ARMMMUFaultInfo *fi);
32 /* Definitions for the PMCCNTR and PMCR registers */
33 #define PMCRD 0x8
34 #define PMCRC 0x4
35 #define PMCRE 0x1
36 #endif
38 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
40 int nregs;
42 /* VFP data registers are always little-endian. */
43 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
44 if (reg < nregs) {
45 stfq_le_p(buf, env->vfp.regs[reg]);
46 return 8;
48 if (arm_feature(env, ARM_FEATURE_NEON)) {
49 /* Aliases for Q regs. */
50 nregs += 16;
51 if (reg < nregs) {
52 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
53 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
54 return 16;
57 switch (reg - nregs) {
58 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
59 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
60 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
62 return 0;
65 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
67 int nregs;
69 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70 if (reg < nregs) {
71 env->vfp.regs[reg] = ldfq_le_p(buf);
72 return 8;
74 if (arm_feature(env, ARM_FEATURE_NEON)) {
75 nregs += 16;
76 if (reg < nregs) {
77 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
78 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
79 return 16;
82 switch (reg - nregs) {
83 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
84 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
85 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
87 return 0;
90 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
92 switch (reg) {
93 case 0 ... 31:
94 /* 128 bit FP register */
95 stfq_le_p(buf, env->vfp.regs[reg * 2]);
96 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
97 return 16;
98 case 32:
99 /* FPSR */
100 stl_p(buf, vfp_get_fpsr(env));
101 return 4;
102 case 33:
103 /* FPCR */
104 stl_p(buf, vfp_get_fpcr(env));
105 return 4;
106 default:
107 return 0;
111 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
113 switch (reg) {
114 case 0 ... 31:
115 /* 128 bit FP register */
116 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
117 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
118 return 16;
119 case 32:
120 /* FPSR */
121 vfp_set_fpsr(env, ldl_p(buf));
122 return 4;
123 case 33:
124 /* FPCR */
125 vfp_set_fpcr(env, ldl_p(buf));
126 return 4;
127 default:
128 return 0;
132 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
134 assert(ri->fieldoffset);
135 if (cpreg_field_is_64bit(ri)) {
136 return CPREG_FIELD64(env, ri);
137 } else {
138 return CPREG_FIELD32(env, ri);
142 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
143 uint64_t value)
145 assert(ri->fieldoffset);
146 if (cpreg_field_is_64bit(ri)) {
147 CPREG_FIELD64(env, ri) = value;
148 } else {
149 CPREG_FIELD32(env, ri) = value;
153 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
155 return (char *)env + ri->fieldoffset;
158 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
160 /* Raw read of a coprocessor register (as needed for migration, etc). */
161 if (ri->type & ARM_CP_CONST) {
162 return ri->resetvalue;
163 } else if (ri->raw_readfn) {
164 return ri->raw_readfn(env, ri);
165 } else if (ri->readfn) {
166 return ri->readfn(env, ri);
167 } else {
168 return raw_read(env, ri);
172 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
173 uint64_t v)
175 /* Raw write of a coprocessor register (as needed for migration, etc).
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
178 * value written.
180 if (ri->type & ARM_CP_CONST) {
181 return;
182 } else if (ri->raw_writefn) {
183 ri->raw_writefn(env, ri, v);
184 } else if (ri->writefn) {
185 ri->writefn(env, ri, v);
186 } else {
187 raw_write(env, ri, v);
191 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
204 if ((ri->type & ARM_CP_CONST) ||
205 ri->fieldoffset ||
206 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
207 return false;
209 return true;
212 bool write_cpustate_to_list(ARMCPU *cpu)
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
215 int i;
216 bool ok = true;
218 for (i = 0; i < cpu->cpreg_array_len; i++) {
219 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
220 const ARMCPRegInfo *ri;
222 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
223 if (!ri) {
224 ok = false;
225 continue;
227 if (ri->type & ARM_CP_NO_RAW) {
228 continue;
230 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
232 return ok;
235 bool write_list_to_cpustate(ARMCPU *cpu)
237 int i;
238 bool ok = true;
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 uint64_t v = cpu->cpreg_values[i];
243 const ARMCPRegInfo *ri;
245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
246 if (!ri) {
247 ok = false;
248 continue;
250 if (ri->type & ARM_CP_NO_RAW) {
251 continue;
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
257 write_raw_cp_reg(&cpu->env, ri, v);
258 if (read_raw_cp_reg(&cpu->env, ri) != v) {
259 ok = false;
262 return ok;
265 static void add_cpreg_to_list(gpointer key, gpointer opaque)
267 ARMCPU *cpu = opaque;
268 uint64_t regidx;
269 const ARMCPRegInfo *ri;
271 regidx = *(uint32_t *)key;
272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
274 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
275 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
276 /* The value array need not be initialized at this point */
277 cpu->cpreg_array_len++;
281 static void count_cpreg(gpointer key, gpointer opaque)
283 ARMCPU *cpu = opaque;
284 uint64_t regidx;
285 const ARMCPRegInfo *ri;
287 regidx = *(uint32_t *)key;
288 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
290 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
291 cpu->cpreg_array_len++;
295 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
297 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
298 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
300 if (aidx > bidx) {
301 return 1;
303 if (aidx < bidx) {
304 return -1;
306 return 0;
309 void init_cpreg_list(ARMCPU *cpu)
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
314 GList *keys;
315 int arraylen;
317 keys = g_hash_table_get_keys(cpu->cp_regs);
318 keys = g_list_sort(keys, cpreg_key_compare);
320 cpu->cpreg_array_len = 0;
322 g_list_foreach(keys, count_cpreg, cpu);
324 arraylen = cpu->cpreg_array_len;
325 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
326 cpu->cpreg_values = g_new(uint64_t, arraylen);
327 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
330 cpu->cpreg_array_len = 0;
332 g_list_foreach(keys, add_cpreg_to_list, cpu);
334 assert(cpu->cpreg_array_len == arraylen);
336 g_list_free(keys);
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
347 const ARMCPRegInfo *ri,
348 bool isread)
350 bool secure = arm_is_secure_below_el3(env);
352 assert(!arm_el_is_aa64(env, 3));
353 if (secure) {
354 return CP_ACCESS_TRAP_UNCATEGORIZED;
356 return CP_ACCESS_OK;
359 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
360 const ARMCPRegInfo *ri,
361 bool isread)
363 if (!arm_el_is_aa64(env, 3)) {
364 return access_el3_aa32ns(env, ri, isread);
366 return CP_ACCESS_OK;
369 /* Some secure-only AArch32 registers trap to EL3 if used from
370 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
371 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
372 * We assume that the .access field is set to PL1_RW.
374 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
375 const ARMCPRegInfo *ri,
376 bool isread)
378 if (arm_current_el(env) == 3) {
379 return CP_ACCESS_OK;
381 if (arm_is_secure_below_el3(env)) {
382 return CP_ACCESS_TRAP_EL3;
384 /* This will be EL1 NS and EL2 NS, which just UNDEF */
385 return CP_ACCESS_TRAP_UNCATEGORIZED;
388 /* Check for traps to "powerdown debug" registers, which are controlled
389 * by MDCR.TDOSA
391 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
394 int el = arm_current_el(env);
396 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
397 && !arm_is_secure_below_el3(env)) {
398 return CP_ACCESS_TRAP_EL2;
400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
401 return CP_ACCESS_TRAP_EL3;
403 return CP_ACCESS_OK;
406 /* Check for traps to "debug ROM" registers, which are controlled
407 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
409 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
410 bool isread)
412 int el = arm_current_el(env);
414 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
415 && !arm_is_secure_below_el3(env)) {
416 return CP_ACCESS_TRAP_EL2;
418 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
419 return CP_ACCESS_TRAP_EL3;
421 return CP_ACCESS_OK;
424 /* Check for traps to general debug registers, which are controlled
425 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
427 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
428 bool isread)
430 int el = arm_current_el(env);
432 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
433 && !arm_is_secure_below_el3(env)) {
434 return CP_ACCESS_TRAP_EL2;
436 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
437 return CP_ACCESS_TRAP_EL3;
439 return CP_ACCESS_OK;
442 /* Check for traps to performance monitor registers, which are controlled
443 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
445 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
446 bool isread)
448 int el = arm_current_el(env);
450 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
451 && !arm_is_secure_below_el3(env)) {
452 return CP_ACCESS_TRAP_EL2;
454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
455 return CP_ACCESS_TRAP_EL3;
457 return CP_ACCESS_OK;
460 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
462 ARMCPU *cpu = arm_env_get_cpu(env);
464 raw_write(env, ri, value);
465 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
468 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
470 ARMCPU *cpu = arm_env_get_cpu(env);
472 if (raw_read(env, ri) != value) {
473 /* Unlike real hardware the qemu TLB uses virtual addresses,
474 * not modified virtual addresses, so this causes a TLB flush.
476 tlb_flush(CPU(cpu), 1);
477 raw_write(env, ri, value);
481 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
484 ARMCPU *cpu = arm_env_get_cpu(env);
486 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
487 && !extended_addresses_enabled(env)) {
488 /* For VMSA (when not using the LPAE long descriptor page table
489 * format) this register includes the ASID, so do a TLB flush.
490 * For PMSA it is purely a process ID and no action is needed.
492 tlb_flush(CPU(cpu), 1);
494 raw_write(env, ri, value);
497 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
498 uint64_t value)
500 /* Invalidate all (TLBIALL) */
501 ARMCPU *cpu = arm_env_get_cpu(env);
503 tlb_flush(CPU(cpu), 1);
506 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
509 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
510 ARMCPU *cpu = arm_env_get_cpu(env);
512 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
518 /* Invalidate by ASID (TLBIASID) */
519 ARMCPU *cpu = arm_env_get_cpu(env);
521 tlb_flush(CPU(cpu), value == 0);
524 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 uint64_t value)
527 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
528 ARMCPU *cpu = arm_env_get_cpu(env);
530 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 /* IS variants of TLB operations must affect all cores */
534 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
535 uint64_t value)
537 CPUState *other_cs;
539 CPU_FOREACH(other_cs) {
540 tlb_flush(other_cs, 1);
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 CPUState *other_cs;
549 CPU_FOREACH(other_cs) {
550 tlb_flush(other_cs, value == 0);
554 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 uint64_t value)
557 CPUState *other_cs;
559 CPU_FOREACH(other_cs) {
560 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
564 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 CPUState *other_cs;
569 CPU_FOREACH(other_cs) {
570 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
574 static const ARMCPRegInfo cp_reginfo[] = {
575 /* Define the secure and non-secure FCSE identifier CP registers
576 * separately because there is no secure bank in V8 (no _EL3). This allows
577 * the secure register to be properly reset and migrated. There is also no
578 * v8 EL1 version of the register so the non-secure instance stands alone.
580 { .name = "FCSEIDR(NS)",
581 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
582 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
583 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
584 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
585 { .name = "FCSEIDR(S)",
586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
587 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
588 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
589 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
590 /* Define the secure and non-secure context identifier CP registers
591 * separately because there is no secure bank in V8 (no _EL3). This allows
592 * the secure register to be properly reset and migrated. In the
593 * non-secure case, the 32-bit register will have reset and migration
594 * disabled during registration as it is handled by the 64-bit instance.
596 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
597 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
598 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
599 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
600 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
601 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
602 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
603 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
604 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
605 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
606 REGINFO_SENTINEL
609 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
610 /* NB: Some of these registers exist in v8 but with more precise
611 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
613 /* MMU Domain access control / MPU write buffer control */
614 { .name = "DACR",
615 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
616 .access = PL1_RW, .resetvalue = 0,
617 .writefn = dacr_write, .raw_writefn = raw_write,
618 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
619 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
620 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
621 * For v6 and v5, these mappings are overly broad.
623 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
624 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
625 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
626 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
627 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
628 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
629 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
630 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
631 /* Cache maintenance ops; some of this space may be overridden later. */
632 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
633 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
634 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
635 REGINFO_SENTINEL
638 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
639 /* Not all pre-v6 cores implemented this WFI, so this is slightly
640 * over-broad.
642 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
643 .access = PL1_W, .type = ARM_CP_WFI },
644 REGINFO_SENTINEL
647 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
648 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
649 * is UNPREDICTABLE; we choose to NOP as most implementations do).
651 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
652 .access = PL1_W, .type = ARM_CP_WFI },
653 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
654 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
655 * OMAPCP will override this space.
657 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
658 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
659 .resetvalue = 0 },
660 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
661 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
662 .resetvalue = 0 },
663 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
664 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
665 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
666 .resetvalue = 0 },
667 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
668 * implementing it as RAZ means the "debug architecture version" bits
669 * will read as a reserved value, which should cause Linux to not try
670 * to use the debug hardware.
672 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
673 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
674 /* MMU TLB control. Note that the wildcarding means we cover not just
675 * the unified TLB ops but also the dside/iside/inner-shareable variants.
677 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
678 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
679 .type = ARM_CP_NO_RAW },
680 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
681 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
682 .type = ARM_CP_NO_RAW },
683 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
684 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
685 .type = ARM_CP_NO_RAW },
686 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
687 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
688 .type = ARM_CP_NO_RAW },
689 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
690 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
691 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
692 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
693 REGINFO_SENTINEL
696 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
697 uint64_t value)
699 uint32_t mask = 0;
701 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
702 if (!arm_feature(env, ARM_FEATURE_V8)) {
703 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
704 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
705 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
707 if (arm_feature(env, ARM_FEATURE_VFP)) {
708 /* VFP coprocessor: cp10 & cp11 [23:20] */
709 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
711 if (!arm_feature(env, ARM_FEATURE_NEON)) {
712 /* ASEDIS [31] bit is RAO/WI */
713 value |= (1 << 31);
716 /* VFPv3 and upwards with NEON implement 32 double precision
717 * registers (D0-D31).
719 if (!arm_feature(env, ARM_FEATURE_NEON) ||
720 !arm_feature(env, ARM_FEATURE_VFP3)) {
721 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
722 value |= (1 << 30);
725 value &= mask;
727 env->cp15.cpacr_el1 = value;
730 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
731 bool isread)
733 if (arm_feature(env, ARM_FEATURE_V8)) {
734 /* Check if CPACR accesses are to be trapped to EL2 */
735 if (arm_current_el(env) == 1 &&
736 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
737 return CP_ACCESS_TRAP_EL2;
738 /* Check if CPACR accesses are to be trapped to EL3 */
739 } else if (arm_current_el(env) < 3 &&
740 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
741 return CP_ACCESS_TRAP_EL3;
745 return CP_ACCESS_OK;
748 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
749 bool isread)
751 /* Check if CPTR accesses are set to trap to EL3 */
752 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
753 return CP_ACCESS_TRAP_EL3;
756 return CP_ACCESS_OK;
759 static const ARMCPRegInfo v6_cp_reginfo[] = {
760 /* prefetch by MVA in v6, NOP in v7 */
761 { .name = "MVA_prefetch",
762 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
763 .access = PL1_W, .type = ARM_CP_NOP },
764 /* We need to break the TB after ISB to execute self-modifying code
765 * correctly and also to take any pending interrupts immediately.
766 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
768 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
769 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
770 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
771 .access = PL0_W, .type = ARM_CP_NOP },
772 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
773 .access = PL0_W, .type = ARM_CP_NOP },
774 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
775 .access = PL1_RW,
776 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
777 offsetof(CPUARMState, cp15.ifar_ns) },
778 .resetvalue = 0, },
779 /* Watchpoint Fault Address Register : should actually only be present
780 * for 1136, 1176, 11MPCore.
782 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
783 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
784 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
785 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
786 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
787 .resetvalue = 0, .writefn = cpacr_write },
788 REGINFO_SENTINEL
791 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
792 bool isread)
794 /* Performance monitor registers user accessibility is controlled
795 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
796 * trapping to EL2 or EL3 for other accesses.
798 int el = arm_current_el(env);
800 if (el == 0 && !env->cp15.c9_pmuserenr) {
801 return CP_ACCESS_TRAP;
803 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
804 && !arm_is_secure_below_el3(env)) {
805 return CP_ACCESS_TRAP_EL2;
807 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
808 return CP_ACCESS_TRAP_EL3;
811 return CP_ACCESS_OK;
814 #ifndef CONFIG_USER_ONLY
816 static inline bool arm_ccnt_enabled(CPUARMState *env)
818 /* This does not support checking PMCCFILTR_EL0 register */
820 if (!(env->cp15.c9_pmcr & PMCRE)) {
821 return false;
824 return true;
827 void pmccntr_sync(CPUARMState *env)
829 uint64_t temp_ticks;
831 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
832 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
834 if (env->cp15.c9_pmcr & PMCRD) {
835 /* Increment once every 64 processor clock cycles */
836 temp_ticks /= 64;
839 if (arm_ccnt_enabled(env)) {
840 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
844 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
845 uint64_t value)
847 pmccntr_sync(env);
849 if (value & PMCRC) {
850 /* The counter has been reset */
851 env->cp15.c15_ccnt = 0;
854 /* only the DP, X, D and E bits are writable */
855 env->cp15.c9_pmcr &= ~0x39;
856 env->cp15.c9_pmcr |= (value & 0x39);
858 pmccntr_sync(env);
861 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
863 uint64_t total_ticks;
865 if (!arm_ccnt_enabled(env)) {
866 /* Counter is disabled, do not change value */
867 return env->cp15.c15_ccnt;
870 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
871 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
873 if (env->cp15.c9_pmcr & PMCRD) {
874 /* Increment once every 64 processor clock cycles */
875 total_ticks /= 64;
877 return total_ticks - env->cp15.c15_ccnt;
880 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
881 uint64_t value)
883 uint64_t total_ticks;
885 if (!arm_ccnt_enabled(env)) {
886 /* Counter is disabled, set the absolute value */
887 env->cp15.c15_ccnt = value;
888 return;
891 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
892 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
894 if (env->cp15.c9_pmcr & PMCRD) {
895 /* Increment once every 64 processor clock cycles */
896 total_ticks /= 64;
898 env->cp15.c15_ccnt = total_ticks - value;
901 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
902 uint64_t value)
904 uint64_t cur_val = pmccntr_read(env, NULL);
906 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
909 #else /* CONFIG_USER_ONLY */
911 void pmccntr_sync(CPUARMState *env)
915 #endif
917 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
918 uint64_t value)
920 pmccntr_sync(env);
921 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
922 pmccntr_sync(env);
925 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
926 uint64_t value)
928 value &= (1 << 31);
929 env->cp15.c9_pmcnten |= value;
932 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
933 uint64_t value)
935 value &= (1 << 31);
936 env->cp15.c9_pmcnten &= ~value;
939 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
940 uint64_t value)
942 env->cp15.c9_pmovsr &= ~value;
945 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
946 uint64_t value)
948 env->cp15.c9_pmxevtyper = value & 0xff;
951 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
952 uint64_t value)
954 env->cp15.c9_pmuserenr = value & 1;
957 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
958 uint64_t value)
960 /* We have no event counters so only the C bit can be changed */
961 value &= (1 << 31);
962 env->cp15.c9_pminten |= value;
965 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
966 uint64_t value)
968 value &= (1 << 31);
969 env->cp15.c9_pminten &= ~value;
972 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
973 uint64_t value)
975 /* Note that even though the AArch64 view of this register has bits
976 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
977 * architectural requirements for bits which are RES0 only in some
978 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
979 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
981 raw_write(env, ri, value & ~0x1FULL);
984 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
986 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
987 * For bits that vary between AArch32/64, code needs to check the
988 * current execution mode before directly using the feature bit.
990 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
992 if (!arm_feature(env, ARM_FEATURE_EL2)) {
993 valid_mask &= ~SCR_HCE;
995 /* On ARMv7, SMD (or SCD as it is called in v7) is only
996 * supported if EL2 exists. The bit is UNK/SBZP when
997 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
998 * when EL2 is unavailable.
999 * On ARMv8, this bit is always available.
1001 if (arm_feature(env, ARM_FEATURE_V7) &&
1002 !arm_feature(env, ARM_FEATURE_V8)) {
1003 valid_mask &= ~SCR_SMD;
1007 /* Clear all-context RES0 bits. */
1008 value &= valid_mask;
1009 raw_write(env, ri, value);
1012 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1014 ARMCPU *cpu = arm_env_get_cpu(env);
1016 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1017 * bank
1019 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1020 ri->secure & ARM_CP_SECSTATE_S);
1022 return cpu->ccsidr[index];
1025 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1026 uint64_t value)
1028 raw_write(env, ri, value & 0xf);
1031 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033 CPUState *cs = ENV_GET_CPU(env);
1034 uint64_t ret = 0;
1036 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1037 ret |= CPSR_I;
1039 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1040 ret |= CPSR_F;
1042 /* External aborts are not possible in QEMU so A bit is always clear */
1043 return ret;
1046 static const ARMCPRegInfo v7_cp_reginfo[] = {
1047 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1048 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1049 .access = PL1_W, .type = ARM_CP_NOP },
1050 /* Performance monitors are implementation defined in v7,
1051 * but with an ARM recommended set of registers, which we
1052 * follow (although we don't actually implement any counters)
1054 * Performance registers fall into three categories:
1055 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1056 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1057 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1058 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1059 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1061 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1062 .access = PL0_RW, .type = ARM_CP_ALIAS,
1063 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1064 .writefn = pmcntenset_write,
1065 .accessfn = pmreg_access,
1066 .raw_writefn = raw_write },
1067 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1069 .access = PL0_RW, .accessfn = pmreg_access,
1070 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1071 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1072 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1073 .access = PL0_RW,
1074 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1075 .accessfn = pmreg_access,
1076 .writefn = pmcntenclr_write,
1077 .type = ARM_CP_ALIAS },
1078 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1080 .access = PL0_RW, .accessfn = pmreg_access,
1081 .type = ARM_CP_ALIAS,
1082 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1083 .writefn = pmcntenclr_write },
1084 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1085 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1086 .accessfn = pmreg_access,
1087 .writefn = pmovsr_write,
1088 .raw_writefn = raw_write },
1089 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1090 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1091 .access = PL0_RW, .accessfn = pmreg_access,
1092 .type = ARM_CP_ALIAS,
1093 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1094 .writefn = pmovsr_write,
1095 .raw_writefn = raw_write },
1096 /* Unimplemented so WI. */
1097 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1098 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1099 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1100 * We choose to RAZ/WI.
1102 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1103 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1104 .accessfn = pmreg_access },
1105 #ifndef CONFIG_USER_ONLY
1106 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1107 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1108 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1109 .accessfn = pmreg_access },
1110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1112 .access = PL0_RW, .accessfn = pmreg_access,
1113 .type = ARM_CP_IO,
1114 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1115 #endif
1116 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1117 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1118 .writefn = pmccfiltr_write,
1119 .access = PL0_RW, .accessfn = pmreg_access,
1120 .type = ARM_CP_IO,
1121 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1122 .resetvalue = 0, },
1123 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1124 .access = PL0_RW,
1125 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1126 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1127 .raw_writefn = raw_write },
1128 /* Unimplemented, RAZ/WI. */
1129 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1130 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1131 .accessfn = pmreg_access },
1132 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1133 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1135 .resetvalue = 0,
1136 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1137 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1139 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1141 .resetvalue = 0,
1142 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1143 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1144 .access = PL1_RW, .accessfn = access_tpm,
1145 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1146 .resetvalue = 0,
1147 .writefn = pmintenset_write, .raw_writefn = raw_write },
1148 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1149 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1150 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1151 .writefn = pmintenclr_write, },
1152 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1153 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1154 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1155 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1156 .writefn = pmintenclr_write },
1157 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1158 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1159 .access = PL1_RW, .writefn = vbar_write,
1160 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1161 offsetof(CPUARMState, cp15.vbar_ns) },
1162 .resetvalue = 0 },
1163 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1164 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1165 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1166 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1167 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1168 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1169 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1170 offsetof(CPUARMState, cp15.csselr_ns) } },
1171 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1172 * just RAZ for all cores:
1174 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1175 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1176 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1177 /* Auxiliary fault status registers: these also are IMPDEF, and we
1178 * choose to RAZ/WI for all cores.
1180 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1181 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1182 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1183 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1184 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1185 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1186 /* MAIR can just read-as-written because we don't implement caches
1187 * and so don't need to care about memory attributes.
1189 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1190 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1191 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1192 .resetvalue = 0 },
1193 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1194 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1195 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1196 .resetvalue = 0 },
1197 /* For non-long-descriptor page tables these are PRRR and NMRR;
1198 * regardless they still act as reads-as-written for QEMU.
1200 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1201 * allows them to assign the correct fieldoffset based on the endianness
1202 * handled in the field definitions.
1204 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1205 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1206 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1207 offsetof(CPUARMState, cp15.mair0_ns) },
1208 .resetfn = arm_cp_reset_ignore },
1209 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1210 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1211 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1212 offsetof(CPUARMState, cp15.mair1_ns) },
1213 .resetfn = arm_cp_reset_ignore },
1214 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1215 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1216 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1217 /* 32 bit ITLB invalidates */
1218 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1219 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1220 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1221 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1222 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1223 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1224 /* 32 bit DTLB invalidates */
1225 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1226 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1227 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1228 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1229 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1230 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1231 /* 32 bit TLB invalidates */
1232 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1234 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1235 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1236 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1237 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1238 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1239 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1240 REGINFO_SENTINEL
1243 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1244 /* 32 bit TLB invalidates, Inner Shareable */
1245 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1246 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1247 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1248 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1249 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1250 .type = ARM_CP_NO_RAW, .access = PL1_W,
1251 .writefn = tlbiasid_is_write },
1252 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1253 .type = ARM_CP_NO_RAW, .access = PL1_W,
1254 .writefn = tlbimvaa_is_write },
1255 REGINFO_SENTINEL
1258 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1259 uint64_t value)
1261 value &= 1;
1262 env->teecr = value;
1265 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1266 bool isread)
1268 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1269 return CP_ACCESS_TRAP;
1271 return CP_ACCESS_OK;
1274 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1275 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1276 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1277 .resetvalue = 0,
1278 .writefn = teecr_write },
1279 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1280 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1281 .accessfn = teehbr_access, .resetvalue = 0 },
1282 REGINFO_SENTINEL
1285 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1286 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1287 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1288 .access = PL0_RW,
1289 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1290 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1291 .access = PL0_RW,
1292 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1293 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1294 .resetfn = arm_cp_reset_ignore },
1295 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1296 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1297 .access = PL0_R|PL1_W,
1298 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1299 .resetvalue = 0},
1300 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1301 .access = PL0_R|PL1_W,
1302 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1303 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1304 .resetfn = arm_cp_reset_ignore },
1305 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1306 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1307 .access = PL1_RW,
1308 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1309 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1310 .access = PL1_RW,
1311 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1312 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1313 .resetvalue = 0 },
1314 REGINFO_SENTINEL
1317 #ifndef CONFIG_USER_ONLY
1319 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1320 bool isread)
1322 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1323 * Writable only at the highest implemented exception level.
1325 int el = arm_current_el(env);
1327 switch (el) {
1328 case 0:
1329 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1330 return CP_ACCESS_TRAP;
1332 break;
1333 case 1:
1334 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1335 arm_is_secure_below_el3(env)) {
1336 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1337 return CP_ACCESS_TRAP_UNCATEGORIZED;
1339 break;
1340 case 2:
1341 case 3:
1342 break;
1345 if (!isread && el < arm_highest_el(env)) {
1346 return CP_ACCESS_TRAP_UNCATEGORIZED;
1349 return CP_ACCESS_OK;
1352 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1353 bool isread)
1355 unsigned int cur_el = arm_current_el(env);
1356 bool secure = arm_is_secure(env);
1358 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1359 if (cur_el == 0 &&
1360 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1361 return CP_ACCESS_TRAP;
1364 if (arm_feature(env, ARM_FEATURE_EL2) &&
1365 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1366 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1367 return CP_ACCESS_TRAP_EL2;
1369 return CP_ACCESS_OK;
1372 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1373 bool isread)
1375 unsigned int cur_el = arm_current_el(env);
1376 bool secure = arm_is_secure(env);
1378 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1379 * EL0[PV]TEN is zero.
1381 if (cur_el == 0 &&
1382 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1383 return CP_ACCESS_TRAP;
1386 if (arm_feature(env, ARM_FEATURE_EL2) &&
1387 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1388 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1389 return CP_ACCESS_TRAP_EL2;
1391 return CP_ACCESS_OK;
1394 static CPAccessResult gt_pct_access(CPUARMState *env,
1395 const ARMCPRegInfo *ri,
1396 bool isread)
1398 return gt_counter_access(env, GTIMER_PHYS, isread);
1401 static CPAccessResult gt_vct_access(CPUARMState *env,
1402 const ARMCPRegInfo *ri,
1403 bool isread)
1405 return gt_counter_access(env, GTIMER_VIRT, isread);
1408 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1409 bool isread)
1411 return gt_timer_access(env, GTIMER_PHYS, isread);
1414 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1415 bool isread)
1417 return gt_timer_access(env, GTIMER_VIRT, isread);
1420 static CPAccessResult gt_stimer_access(CPUARMState *env,
1421 const ARMCPRegInfo *ri,
1422 bool isread)
1424 /* The AArch64 register view of the secure physical timer is
1425 * always accessible from EL3, and configurably accessible from
1426 * Secure EL1.
1428 switch (arm_current_el(env)) {
1429 case 1:
1430 if (!arm_is_secure(env)) {
1431 return CP_ACCESS_TRAP;
1433 if (!(env->cp15.scr_el3 & SCR_ST)) {
1434 return CP_ACCESS_TRAP_EL3;
1436 return CP_ACCESS_OK;
1437 case 0:
1438 case 2:
1439 return CP_ACCESS_TRAP;
1440 case 3:
1441 return CP_ACCESS_OK;
1442 default:
1443 g_assert_not_reached();
1447 static uint64_t gt_get_countervalue(CPUARMState *env)
1449 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1452 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1454 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1456 if (gt->ctl & 1) {
1457 /* Timer enabled: calculate and set current ISTATUS, irq, and
1458 * reset timer to when ISTATUS next has to change
1460 uint64_t offset = timeridx == GTIMER_VIRT ?
1461 cpu->env.cp15.cntvoff_el2 : 0;
1462 uint64_t count = gt_get_countervalue(&cpu->env);
1463 /* Note that this must be unsigned 64 bit arithmetic: */
1464 int istatus = count - offset >= gt->cval;
1465 uint64_t nexttick;
1467 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1468 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1469 (istatus && !(gt->ctl & 2)));
1470 if (istatus) {
1471 /* Next transition is when count rolls back over to zero */
1472 nexttick = UINT64_MAX;
1473 } else {
1474 /* Next transition is when we hit cval */
1475 nexttick = gt->cval + offset;
1477 /* Note that the desired next expiry time might be beyond the
1478 * signed-64-bit range of a QEMUTimer -- in this case we just
1479 * set the timer for as far in the future as possible. When the
1480 * timer expires we will reset the timer for any remaining period.
1482 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1483 nexttick = INT64_MAX / GTIMER_SCALE;
1485 timer_mod(cpu->gt_timer[timeridx], nexttick);
1486 } else {
1487 /* Timer disabled: ISTATUS and timer output always clear */
1488 gt->ctl &= ~4;
1489 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1490 timer_del(cpu->gt_timer[timeridx]);
1494 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1495 int timeridx)
1497 ARMCPU *cpu = arm_env_get_cpu(env);
1499 timer_del(cpu->gt_timer[timeridx]);
1502 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1504 return gt_get_countervalue(env);
1507 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1509 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1512 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 int timeridx,
1514 uint64_t value)
1516 env->cp15.c14_timer[timeridx].cval = value;
1517 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1520 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1521 int timeridx)
1523 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1525 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1526 (gt_get_countervalue(env) - offset));
1529 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530 int timeridx,
1531 uint64_t value)
1533 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1535 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1536 sextract64(value, 0, 32);
1537 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1540 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1541 int timeridx,
1542 uint64_t value)
1544 ARMCPU *cpu = arm_env_get_cpu(env);
1545 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1547 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1548 if ((oldval ^ value) & 1) {
1549 /* Enable toggled */
1550 gt_recalc_timer(cpu, timeridx);
1551 } else if ((oldval ^ value) & 2) {
1552 /* IMASK toggled: don't need to recalculate,
1553 * just set the interrupt line based on ISTATUS
1555 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1556 (oldval & 4) && !(value & 2));
1560 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1562 gt_timer_reset(env, ri, GTIMER_PHYS);
1565 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1568 gt_cval_write(env, ri, GTIMER_PHYS, value);
1571 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1573 return gt_tval_read(env, ri, GTIMER_PHYS);
1576 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1577 uint64_t value)
1579 gt_tval_write(env, ri, GTIMER_PHYS, value);
1582 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1583 uint64_t value)
1585 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1588 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1590 gt_timer_reset(env, ri, GTIMER_VIRT);
1593 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1596 gt_cval_write(env, ri, GTIMER_VIRT, value);
1599 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1601 return gt_tval_read(env, ri, GTIMER_VIRT);
1604 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1605 uint64_t value)
1607 gt_tval_write(env, ri, GTIMER_VIRT, value);
1610 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1611 uint64_t value)
1613 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1616 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1617 uint64_t value)
1619 ARMCPU *cpu = arm_env_get_cpu(env);
1621 raw_write(env, ri, value);
1622 gt_recalc_timer(cpu, GTIMER_VIRT);
1625 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1627 gt_timer_reset(env, ri, GTIMER_HYP);
1630 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1631 uint64_t value)
1633 gt_cval_write(env, ri, GTIMER_HYP, value);
1636 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1638 return gt_tval_read(env, ri, GTIMER_HYP);
1641 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642 uint64_t value)
1644 gt_tval_write(env, ri, GTIMER_HYP, value);
1647 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1648 uint64_t value)
1650 gt_ctl_write(env, ri, GTIMER_HYP, value);
1653 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1655 gt_timer_reset(env, ri, GTIMER_SEC);
1658 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1659 uint64_t value)
1661 gt_cval_write(env, ri, GTIMER_SEC, value);
1664 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1666 return gt_tval_read(env, ri, GTIMER_SEC);
1669 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1670 uint64_t value)
1672 gt_tval_write(env, ri, GTIMER_SEC, value);
1675 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1676 uint64_t value)
1678 gt_ctl_write(env, ri, GTIMER_SEC, value);
1681 void arm_gt_ptimer_cb(void *opaque)
1683 ARMCPU *cpu = opaque;
1685 gt_recalc_timer(cpu, GTIMER_PHYS);
1688 void arm_gt_vtimer_cb(void *opaque)
1690 ARMCPU *cpu = opaque;
1692 gt_recalc_timer(cpu, GTIMER_VIRT);
1695 void arm_gt_htimer_cb(void *opaque)
1697 ARMCPU *cpu = opaque;
1699 gt_recalc_timer(cpu, GTIMER_HYP);
1702 void arm_gt_stimer_cb(void *opaque)
1704 ARMCPU *cpu = opaque;
1706 gt_recalc_timer(cpu, GTIMER_SEC);
1709 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1710 /* Note that CNTFRQ is purely reads-as-written for the benefit
1711 * of software; writing it doesn't actually change the timer frequency.
1712 * Our reset value matches the fixed frequency we implement the timer at.
1714 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1715 .type = ARM_CP_ALIAS,
1716 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1717 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1719 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1720 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1721 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1722 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1723 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1725 /* overall control: mostly access permissions */
1726 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1727 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1728 .access = PL1_RW,
1729 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1730 .resetvalue = 0,
1732 /* per-timer control */
1733 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1734 .secure = ARM_CP_SECSTATE_NS,
1735 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1736 .accessfn = gt_ptimer_access,
1737 .fieldoffset = offsetoflow32(CPUARMState,
1738 cp15.c14_timer[GTIMER_PHYS].ctl),
1739 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1741 { .name = "CNTP_CTL(S)",
1742 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1743 .secure = ARM_CP_SECSTATE_S,
1744 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1745 .accessfn = gt_ptimer_access,
1746 .fieldoffset = offsetoflow32(CPUARMState,
1747 cp15.c14_timer[GTIMER_SEC].ctl),
1748 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1750 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1751 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1752 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1753 .accessfn = gt_ptimer_access,
1754 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1755 .resetvalue = 0,
1756 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1758 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1759 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1760 .accessfn = gt_vtimer_access,
1761 .fieldoffset = offsetoflow32(CPUARMState,
1762 cp15.c14_timer[GTIMER_VIRT].ctl),
1763 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1765 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1766 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1767 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1768 .accessfn = gt_vtimer_access,
1769 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1770 .resetvalue = 0,
1771 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1773 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1774 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1775 .secure = ARM_CP_SECSTATE_NS,
1776 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1777 .accessfn = gt_ptimer_access,
1778 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1780 { .name = "CNTP_TVAL(S)",
1781 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1782 .secure = ARM_CP_SECSTATE_S,
1783 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1784 .accessfn = gt_ptimer_access,
1785 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1787 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1788 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1789 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1790 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1791 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1793 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1794 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1795 .accessfn = gt_vtimer_access,
1796 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1798 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1799 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1800 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1801 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1802 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1804 /* The counter itself */
1805 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1806 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1807 .accessfn = gt_pct_access,
1808 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1810 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1811 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1812 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1813 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1815 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1816 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1817 .accessfn = gt_vct_access,
1818 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1820 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1821 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1822 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1823 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1825 /* Comparison value, indicating when the timer goes off */
1826 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1827 .secure = ARM_CP_SECSTATE_NS,
1828 .access = PL1_RW | PL0_R,
1829 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1830 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1831 .accessfn = gt_ptimer_access,
1832 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1834 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1835 .secure = ARM_CP_SECSTATE_S,
1836 .access = PL1_RW | PL0_R,
1837 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1838 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1839 .accessfn = gt_ptimer_access,
1840 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1842 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1843 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1844 .access = PL1_RW | PL0_R,
1845 .type = ARM_CP_IO,
1846 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1847 .resetvalue = 0, .accessfn = gt_ptimer_access,
1848 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1850 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1851 .access = PL1_RW | PL0_R,
1852 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1853 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1854 .accessfn = gt_vtimer_access,
1855 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1857 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1858 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1859 .access = PL1_RW | PL0_R,
1860 .type = ARM_CP_IO,
1861 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1862 .resetvalue = 0, .accessfn = gt_vtimer_access,
1863 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1865 /* Secure timer -- this is actually restricted to only EL3
1866 * and configurably Secure-EL1 via the accessfn.
1868 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1869 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1870 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1871 .accessfn = gt_stimer_access,
1872 .readfn = gt_sec_tval_read,
1873 .writefn = gt_sec_tval_write,
1874 .resetfn = gt_sec_timer_reset,
1876 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1877 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1878 .type = ARM_CP_IO, .access = PL1_RW,
1879 .accessfn = gt_stimer_access,
1880 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1881 .resetvalue = 0,
1882 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1884 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1885 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1886 .type = ARM_CP_IO, .access = PL1_RW,
1887 .accessfn = gt_stimer_access,
1888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1889 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1891 REGINFO_SENTINEL
1894 #else
1895 /* In user-mode none of the generic timer registers are accessible,
1896 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1897 * so instead just don't register any of them.
1899 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1900 REGINFO_SENTINEL
1903 #endif
1905 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1907 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1908 raw_write(env, ri, value);
1909 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1910 raw_write(env, ri, value & 0xfffff6ff);
1911 } else {
1912 raw_write(env, ri, value & 0xfffff1ff);
1916 #ifndef CONFIG_USER_ONLY
1917 /* get_phys_addr() isn't present for user-mode-only targets */
1919 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
1920 bool isread)
1922 if (ri->opc2 & 4) {
1923 /* The ATS12NSO* operations must trap to EL3 if executed in
1924 * Secure EL1 (which can only happen if EL3 is AArch64).
1925 * They are simply UNDEF if executed from NS EL1.
1926 * They function normally from EL2 or EL3.
1928 if (arm_current_el(env) == 1) {
1929 if (arm_is_secure_below_el3(env)) {
1930 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1932 return CP_ACCESS_TRAP_UNCATEGORIZED;
1935 return CP_ACCESS_OK;
1938 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1939 int access_type, ARMMMUIdx mmu_idx)
1941 hwaddr phys_addr;
1942 target_ulong page_size;
1943 int prot;
1944 uint32_t fsr;
1945 bool ret;
1946 uint64_t par64;
1947 MemTxAttrs attrs = {};
1948 ARMMMUFaultInfo fi = {};
1950 ret = get_phys_addr(env, value, access_type, mmu_idx,
1951 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
1952 if (extended_addresses_enabled(env)) {
1953 /* fsr is a DFSR/IFSR value for the long descriptor
1954 * translation table format, but with WnR always clear.
1955 * Convert it to a 64-bit PAR.
1957 par64 = (1 << 11); /* LPAE bit always set */
1958 if (!ret) {
1959 par64 |= phys_addr & ~0xfffULL;
1960 if (!attrs.secure) {
1961 par64 |= (1 << 9); /* NS */
1963 /* We don't set the ATTR or SH fields in the PAR. */
1964 } else {
1965 par64 |= 1; /* F */
1966 par64 |= (fsr & 0x3f) << 1; /* FS */
1967 /* Note that S2WLK and FSTAGE are always zero, because we don't
1968 * implement virtualization and therefore there can't be a stage 2
1969 * fault.
1972 } else {
1973 /* fsr is a DFSR/IFSR value for the short descriptor
1974 * translation table format (with WnR always clear).
1975 * Convert it to a 32-bit PAR.
1977 if (!ret) {
1978 /* We do not set any attribute bits in the PAR */
1979 if (page_size == (1 << 24)
1980 && arm_feature(env, ARM_FEATURE_V7)) {
1981 par64 = (phys_addr & 0xff000000) | (1 << 1);
1982 } else {
1983 par64 = phys_addr & 0xfffff000;
1985 if (!attrs.secure) {
1986 par64 |= (1 << 9); /* NS */
1988 } else {
1989 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1990 ((fsr & 0xf) << 1) | 1;
1993 return par64;
1996 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1998 int access_type = ri->opc2 & 1;
1999 uint64_t par64;
2000 ARMMMUIdx mmu_idx;
2001 int el = arm_current_el(env);
2002 bool secure = arm_is_secure_below_el3(env);
2004 switch (ri->opc2 & 6) {
2005 case 0:
2006 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2007 switch (el) {
2008 case 3:
2009 mmu_idx = ARMMMUIdx_S1E3;
2010 break;
2011 case 2:
2012 mmu_idx = ARMMMUIdx_S1NSE1;
2013 break;
2014 case 1:
2015 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2016 break;
2017 default:
2018 g_assert_not_reached();
2020 break;
2021 case 2:
2022 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2023 switch (el) {
2024 case 3:
2025 mmu_idx = ARMMMUIdx_S1SE0;
2026 break;
2027 case 2:
2028 mmu_idx = ARMMMUIdx_S1NSE0;
2029 break;
2030 case 1:
2031 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2032 break;
2033 default:
2034 g_assert_not_reached();
2036 break;
2037 case 4:
2038 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2039 mmu_idx = ARMMMUIdx_S12NSE1;
2040 break;
2041 case 6:
2042 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2043 mmu_idx = ARMMMUIdx_S12NSE0;
2044 break;
2045 default:
2046 g_assert_not_reached();
2049 par64 = do_ats_write(env, value, access_type, mmu_idx);
2051 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2054 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2055 uint64_t value)
2057 int access_type = ri->opc2 & 1;
2058 uint64_t par64;
2060 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2062 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2065 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2066 bool isread)
2068 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2069 return CP_ACCESS_TRAP;
2071 return CP_ACCESS_OK;
2074 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2075 uint64_t value)
2077 int access_type = ri->opc2 & 1;
2078 ARMMMUIdx mmu_idx;
2079 int secure = arm_is_secure_below_el3(env);
2081 switch (ri->opc2 & 6) {
2082 case 0:
2083 switch (ri->opc1) {
2084 case 0: /* AT S1E1R, AT S1E1W */
2085 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2086 break;
2087 case 4: /* AT S1E2R, AT S1E2W */
2088 mmu_idx = ARMMMUIdx_S1E2;
2089 break;
2090 case 6: /* AT S1E3R, AT S1E3W */
2091 mmu_idx = ARMMMUIdx_S1E3;
2092 break;
2093 default:
2094 g_assert_not_reached();
2096 break;
2097 case 2: /* AT S1E0R, AT S1E0W */
2098 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2099 break;
2100 case 4: /* AT S12E1R, AT S12E1W */
2101 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2102 break;
2103 case 6: /* AT S12E0R, AT S12E0W */
2104 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2105 break;
2106 default:
2107 g_assert_not_reached();
2110 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2112 #endif
2114 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2115 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2116 .access = PL1_RW, .resetvalue = 0,
2117 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2118 offsetoflow32(CPUARMState, cp15.par_ns) },
2119 .writefn = par_write },
2120 #ifndef CONFIG_USER_ONLY
2121 /* This underdecoding is safe because the reginfo is NO_RAW. */
2122 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2123 .access = PL1_W, .accessfn = ats_access,
2124 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2125 #endif
2126 REGINFO_SENTINEL
2129 /* Return basic MPU access permission bits. */
2130 static uint32_t simple_mpu_ap_bits(uint32_t val)
2132 uint32_t ret;
2133 uint32_t mask;
2134 int i;
2135 ret = 0;
2136 mask = 3;
2137 for (i = 0; i < 16; i += 2) {
2138 ret |= (val >> i) & mask;
2139 mask <<= 2;
2141 return ret;
2144 /* Pad basic MPU access permission bits to extended format. */
2145 static uint32_t extended_mpu_ap_bits(uint32_t val)
2147 uint32_t ret;
2148 uint32_t mask;
2149 int i;
2150 ret = 0;
2151 mask = 3;
2152 for (i = 0; i < 16; i += 2) {
2153 ret |= (val & mask) << i;
2154 mask <<= 2;
2156 return ret;
2159 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2160 uint64_t value)
2162 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2165 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2167 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2170 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2171 uint64_t value)
2173 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2176 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2178 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2181 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2183 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2185 if (!u32p) {
2186 return 0;
2189 u32p += env->cp15.c6_rgnr;
2190 return *u32p;
2193 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194 uint64_t value)
2196 ARMCPU *cpu = arm_env_get_cpu(env);
2197 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2199 if (!u32p) {
2200 return;
2203 u32p += env->cp15.c6_rgnr;
2204 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2205 *u32p = value;
2208 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2210 ARMCPU *cpu = arm_env_get_cpu(env);
2211 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2213 if (!u32p) {
2214 return;
2217 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2220 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2221 uint64_t value)
2223 ARMCPU *cpu = arm_env_get_cpu(env);
2224 uint32_t nrgs = cpu->pmsav7_dregion;
2226 if (value >= nrgs) {
2227 qemu_log_mask(LOG_GUEST_ERROR,
2228 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2229 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2230 return;
2233 raw_write(env, ri, value);
2236 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2237 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2238 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2239 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2240 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2241 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2242 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2243 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2244 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2245 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2246 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2247 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2248 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2249 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2250 .access = PL1_RW,
2251 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2252 .writefn = pmsav7_rgnr_write },
2253 REGINFO_SENTINEL
2256 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2257 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2258 .access = PL1_RW, .type = ARM_CP_ALIAS,
2259 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2260 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2261 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2262 .access = PL1_RW, .type = ARM_CP_ALIAS,
2263 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2264 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2265 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2266 .access = PL1_RW,
2267 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2268 .resetvalue = 0, },
2269 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2270 .access = PL1_RW,
2271 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2272 .resetvalue = 0, },
2273 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2274 .access = PL1_RW,
2275 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2276 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2277 .access = PL1_RW,
2278 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2279 /* Protection region base and size registers */
2280 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2281 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2282 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2283 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2284 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2285 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2286 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2287 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2288 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2289 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2290 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2291 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2292 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2293 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2294 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2295 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2298 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2301 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2304 REGINFO_SENTINEL
2307 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2308 uint64_t value)
2310 TCR *tcr = raw_ptr(env, ri);
2311 int maskshift = extract32(value, 0, 3);
2313 if (!arm_feature(env, ARM_FEATURE_V8)) {
2314 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2315 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2316 * using Long-desciptor translation table format */
2317 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2318 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2319 /* In an implementation that includes the Security Extensions
2320 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2321 * Short-descriptor translation table format.
2323 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2324 } else {
2325 value &= TTBCR_N;
2329 /* Update the masks corresponding to the TCR bank being written
2330 * Note that we always calculate mask and base_mask, but
2331 * they are only used for short-descriptor tables (ie if EAE is 0);
2332 * for long-descriptor tables the TCR fields are used differently
2333 * and the mask and base_mask values are meaningless.
2335 tcr->raw_tcr = value;
2336 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2337 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2340 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341 uint64_t value)
2343 ARMCPU *cpu = arm_env_get_cpu(env);
2345 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2346 /* With LPAE the TTBCR could result in a change of ASID
2347 * via the TTBCR.A1 bit, so do a TLB flush.
2349 tlb_flush(CPU(cpu), 1);
2351 vmsa_ttbcr_raw_write(env, ri, value);
2354 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2356 TCR *tcr = raw_ptr(env, ri);
2358 /* Reset both the TCR as well as the masks corresponding to the bank of
2359 * the TCR being reset.
2361 tcr->raw_tcr = 0;
2362 tcr->mask = 0;
2363 tcr->base_mask = 0xffffc000u;
2366 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2367 uint64_t value)
2369 ARMCPU *cpu = arm_env_get_cpu(env);
2370 TCR *tcr = raw_ptr(env, ri);
2372 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2373 tlb_flush(CPU(cpu), 1);
2374 tcr->raw_tcr = value;
2377 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2378 uint64_t value)
2380 /* 64 bit accesses to the TTBRs can change the ASID and so we
2381 * must flush the TLB.
2383 if (cpreg_field_is_64bit(ri)) {
2384 ARMCPU *cpu = arm_env_get_cpu(env);
2386 tlb_flush(CPU(cpu), 1);
2388 raw_write(env, ri, value);
2391 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2392 uint64_t value)
2394 ARMCPU *cpu = arm_env_get_cpu(env);
2395 CPUState *cs = CPU(cpu);
2397 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2398 if (raw_read(env, ri) != value) {
2399 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2400 ARMMMUIdx_S2NS, -1);
2401 raw_write(env, ri, value);
2405 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2406 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2407 .access = PL1_RW, .type = ARM_CP_ALIAS,
2408 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2409 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2410 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2411 .access = PL1_RW, .resetvalue = 0,
2412 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2413 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2414 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2415 .access = PL1_RW, .resetvalue = 0,
2416 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2417 offsetof(CPUARMState, cp15.dfar_ns) } },
2418 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2419 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2421 .resetvalue = 0, },
2422 REGINFO_SENTINEL
2425 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2426 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2427 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2428 .access = PL1_RW,
2429 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2430 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2431 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2432 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2433 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2434 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2435 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2436 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2437 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2438 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2439 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2440 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2441 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2442 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2443 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2444 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2445 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2446 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2447 .raw_writefn = vmsa_ttbcr_raw_write,
2448 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2449 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2450 REGINFO_SENTINEL
2453 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2454 uint64_t value)
2456 env->cp15.c15_ticonfig = value & 0xe7;
2457 /* The OS_TYPE bit in this register changes the reported CPUID! */
2458 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2459 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2462 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463 uint64_t value)
2465 env->cp15.c15_threadid = value & 0xffff;
2468 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2469 uint64_t value)
2471 /* Wait-for-interrupt (deprecated) */
2472 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2475 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2476 uint64_t value)
2478 /* On OMAP there are registers indicating the max/min index of dcache lines
2479 * containing a dirty line; cache flush operations have to reset these.
2481 env->cp15.c15_i_max = 0x000;
2482 env->cp15.c15_i_min = 0xff0;
2485 static const ARMCPRegInfo omap_cp_reginfo[] = {
2486 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2488 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2489 .resetvalue = 0, },
2490 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2491 .access = PL1_RW, .type = ARM_CP_NOP },
2492 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2493 .access = PL1_RW,
2494 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2495 .writefn = omap_ticonfig_write },
2496 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2497 .access = PL1_RW,
2498 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2499 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2500 .access = PL1_RW, .resetvalue = 0xff0,
2501 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2502 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2503 .access = PL1_RW,
2504 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2505 .writefn = omap_threadid_write },
2506 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2507 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2508 .type = ARM_CP_NO_RAW,
2509 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2510 /* TODO: Peripheral port remap register:
2511 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2512 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2513 * when MMU is off.
2515 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2516 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2517 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2518 .writefn = omap_cachemaint_write },
2519 { .name = "C9", .cp = 15, .crn = 9,
2520 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2521 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2522 REGINFO_SENTINEL
2525 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2526 uint64_t value)
2528 env->cp15.c15_cpar = value & 0x3fff;
2531 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2532 { .name = "XSCALE_CPAR",
2533 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2534 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2535 .writefn = xscale_cpar_write, },
2536 { .name = "XSCALE_AUXCR",
2537 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2538 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2539 .resetvalue = 0, },
2540 /* XScale specific cache-lockdown: since we have no cache we NOP these
2541 * and hope the guest does not really rely on cache behaviour.
2543 { .name = "XSCALE_LOCK_ICACHE_LINE",
2544 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2545 .access = PL1_W, .type = ARM_CP_NOP },
2546 { .name = "XSCALE_UNLOCK_ICACHE",
2547 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2548 .access = PL1_W, .type = ARM_CP_NOP },
2549 { .name = "XSCALE_DCACHE_LOCK",
2550 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2551 .access = PL1_RW, .type = ARM_CP_NOP },
2552 { .name = "XSCALE_UNLOCK_DCACHE",
2553 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2554 .access = PL1_W, .type = ARM_CP_NOP },
2555 REGINFO_SENTINEL
2558 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2559 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2560 * implementation of this implementation-defined space.
2561 * Ideally this should eventually disappear in favour of actually
2562 * implementing the correct behaviour for all cores.
2564 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2565 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2566 .access = PL1_RW,
2567 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2568 .resetvalue = 0 },
2569 REGINFO_SENTINEL
2572 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2573 /* Cache status: RAZ because we have no cache so it's always clean */
2574 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2575 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2576 .resetvalue = 0 },
2577 REGINFO_SENTINEL
2580 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2581 /* We never have a a block transfer operation in progress */
2582 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2583 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2584 .resetvalue = 0 },
2585 /* The cache ops themselves: these all NOP for QEMU */
2586 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2587 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2588 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2589 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2590 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2591 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2592 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2593 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2594 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2595 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2596 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2597 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2598 REGINFO_SENTINEL
2601 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2602 /* The cache test-and-clean instructions always return (1 << 30)
2603 * to indicate that there are no dirty cache lines.
2605 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2606 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2607 .resetvalue = (1 << 30) },
2608 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2609 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2610 .resetvalue = (1 << 30) },
2611 REGINFO_SENTINEL
2614 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2615 /* Ignore ReadBuffer accesses */
2616 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2617 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2618 .access = PL1_RW, .resetvalue = 0,
2619 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2620 REGINFO_SENTINEL
2623 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2625 ARMCPU *cpu = arm_env_get_cpu(env);
2626 unsigned int cur_el = arm_current_el(env);
2627 bool secure = arm_is_secure(env);
2629 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2630 return env->cp15.vpidr_el2;
2632 return raw_read(env, ri);
2635 static uint64_t mpidr_read_val(CPUARMState *env)
2637 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2638 uint64_t mpidr = cpu->mp_affinity;
2640 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2641 mpidr |= (1U << 31);
2642 /* Cores which are uniprocessor (non-coherent)
2643 * but still implement the MP extensions set
2644 * bit 30. (For instance, Cortex-R5).
2646 if (cpu->mp_is_up) {
2647 mpidr |= (1u << 30);
2650 return mpidr;
2653 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2655 unsigned int cur_el = arm_current_el(env);
2656 bool secure = arm_is_secure(env);
2658 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2659 return env->cp15.vmpidr_el2;
2661 return mpidr_read_val(env);
2664 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2665 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2666 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2667 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2668 REGINFO_SENTINEL
2671 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2672 /* NOP AMAIR0/1 */
2673 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2674 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2675 .access = PL1_RW, .type = ARM_CP_CONST,
2676 .resetvalue = 0 },
2677 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2678 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2679 .access = PL1_RW, .type = ARM_CP_CONST,
2680 .resetvalue = 0 },
2681 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2682 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2683 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2684 offsetof(CPUARMState, cp15.par_ns)} },
2685 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2686 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2687 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2688 offsetof(CPUARMState, cp15.ttbr0_ns) },
2689 .writefn = vmsa_ttbr_write, },
2690 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2691 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2692 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2693 offsetof(CPUARMState, cp15.ttbr1_ns) },
2694 .writefn = vmsa_ttbr_write, },
2695 REGINFO_SENTINEL
2698 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2700 return vfp_get_fpcr(env);
2703 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704 uint64_t value)
2706 vfp_set_fpcr(env, value);
2709 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2711 return vfp_get_fpsr(env);
2714 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715 uint64_t value)
2717 vfp_set_fpsr(env, value);
2720 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2721 bool isread)
2723 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2724 return CP_ACCESS_TRAP;
2726 return CP_ACCESS_OK;
2729 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2730 uint64_t value)
2732 env->daif = value & PSTATE_DAIF;
2735 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2736 const ARMCPRegInfo *ri,
2737 bool isread)
2739 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2740 * SCTLR_EL1.UCI is set.
2742 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2743 return CP_ACCESS_TRAP;
2745 return CP_ACCESS_OK;
2748 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2749 * Page D4-1736 (DDI0487A.b)
2752 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2753 uint64_t value)
2755 ARMCPU *cpu = arm_env_get_cpu(env);
2756 CPUState *cs = CPU(cpu);
2758 if (arm_is_secure_below_el3(env)) {
2759 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2760 } else {
2761 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2765 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2766 uint64_t value)
2768 bool sec = arm_is_secure_below_el3(env);
2769 CPUState *other_cs;
2771 CPU_FOREACH(other_cs) {
2772 if (sec) {
2773 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2774 } else {
2775 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2776 ARMMMUIdx_S12NSE0, -1);
2781 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782 uint64_t value)
2784 /* Note that the 'ALL' scope must invalidate both stage 1 and
2785 * stage 2 translations, whereas most other scopes only invalidate
2786 * stage 1 translations.
2788 ARMCPU *cpu = arm_env_get_cpu(env);
2789 CPUState *cs = CPU(cpu);
2791 if (arm_is_secure_below_el3(env)) {
2792 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2793 } else {
2794 if (arm_feature(env, ARM_FEATURE_EL2)) {
2795 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2796 ARMMMUIdx_S2NS, -1);
2797 } else {
2798 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2803 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2804 uint64_t value)
2806 ARMCPU *cpu = arm_env_get_cpu(env);
2807 CPUState *cs = CPU(cpu);
2809 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2812 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2813 uint64_t value)
2815 ARMCPU *cpu = arm_env_get_cpu(env);
2816 CPUState *cs = CPU(cpu);
2818 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2821 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822 uint64_t value)
2824 /* Note that the 'ALL' scope must invalidate both stage 1 and
2825 * stage 2 translations, whereas most other scopes only invalidate
2826 * stage 1 translations.
2828 bool sec = arm_is_secure_below_el3(env);
2829 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2830 CPUState *other_cs;
2832 CPU_FOREACH(other_cs) {
2833 if (sec) {
2834 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2835 } else if (has_el2) {
2836 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2837 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2838 } else {
2839 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2840 ARMMMUIdx_S12NSE0, -1);
2845 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2846 uint64_t value)
2848 CPUState *other_cs;
2850 CPU_FOREACH(other_cs) {
2851 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2855 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 CPUState *other_cs;
2860 CPU_FOREACH(other_cs) {
2861 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2865 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2866 uint64_t value)
2868 /* Invalidate by VA, EL1&0 (AArch64 version).
2869 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2870 * since we don't support flush-for-specific-ASID-only or
2871 * flush-last-level-only.
2873 ARMCPU *cpu = arm_env_get_cpu(env);
2874 CPUState *cs = CPU(cpu);
2875 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2877 if (arm_is_secure_below_el3(env)) {
2878 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2879 ARMMMUIdx_S1SE0, -1);
2880 } else {
2881 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2882 ARMMMUIdx_S12NSE0, -1);
2886 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887 uint64_t value)
2889 /* Invalidate by VA, EL2
2890 * Currently handles both VAE2 and VALE2, since we don't support
2891 * flush-last-level-only.
2893 ARMCPU *cpu = arm_env_get_cpu(env);
2894 CPUState *cs = CPU(cpu);
2895 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2897 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2900 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
2903 /* Invalidate by VA, EL3
2904 * Currently handles both VAE3 and VALE3, since we don't support
2905 * flush-last-level-only.
2907 ARMCPU *cpu = arm_env_get_cpu(env);
2908 CPUState *cs = CPU(cpu);
2909 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2911 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2914 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2917 bool sec = arm_is_secure_below_el3(env);
2918 CPUState *other_cs;
2919 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2921 CPU_FOREACH(other_cs) {
2922 if (sec) {
2923 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2924 ARMMMUIdx_S1SE0, -1);
2925 } else {
2926 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2927 ARMMMUIdx_S12NSE0, -1);
2932 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2933 uint64_t value)
2935 CPUState *other_cs;
2936 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2938 CPU_FOREACH(other_cs) {
2939 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2943 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 CPUState *other_cs;
2947 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2949 CPU_FOREACH(other_cs) {
2950 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2954 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955 uint64_t value)
2957 /* Invalidate by IPA. This has to invalidate any structures that
2958 * contain only stage 2 translation information, but does not need
2959 * to apply to structures that contain combined stage 1 and stage 2
2960 * translation information.
2961 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2963 ARMCPU *cpu = arm_env_get_cpu(env);
2964 CPUState *cs = CPU(cpu);
2965 uint64_t pageaddr;
2967 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2968 return;
2971 pageaddr = sextract64(value << 12, 0, 48);
2973 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2976 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2979 CPUState *other_cs;
2980 uint64_t pageaddr;
2982 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2983 return;
2986 pageaddr = sextract64(value << 12, 0, 48);
2988 CPU_FOREACH(other_cs) {
2989 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2993 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
2994 bool isread)
2996 /* We don't implement EL2, so the only control on DC ZVA is the
2997 * bit in the SCTLR which can prohibit access for EL0.
2999 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3000 return CP_ACCESS_TRAP;
3002 return CP_ACCESS_OK;
3005 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3007 ARMCPU *cpu = arm_env_get_cpu(env);
3008 int dzp_bit = 1 << 4;
3010 /* DZP indicates whether DC ZVA access is allowed */
3011 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3012 dzp_bit = 0;
3014 return cpu->dcz_blocksize | dzp_bit;
3017 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3018 bool isread)
3020 if (!(env->pstate & PSTATE_SP)) {
3021 /* Access to SP_EL0 is undefined if it's being used as
3022 * the stack pointer.
3024 return CP_ACCESS_TRAP_UNCATEGORIZED;
3026 return CP_ACCESS_OK;
3029 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3031 return env->pstate & PSTATE_SP;
3034 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3036 update_spsel(env, val);
3039 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3040 uint64_t value)
3042 ARMCPU *cpu = arm_env_get_cpu(env);
3044 if (raw_read(env, ri) == value) {
3045 /* Skip the TLB flush if nothing actually changed; Linux likes
3046 * to do a lot of pointless SCTLR writes.
3048 return;
3051 raw_write(env, ri, value);
3052 /* ??? Lots of these bits are not implemented. */
3053 /* This may enable/disable the MMU, so do a TLB flush. */
3054 tlb_flush(CPU(cpu), 1);
3057 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3058 bool isread)
3060 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3061 return CP_ACCESS_TRAP_FP_EL2;
3063 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3064 return CP_ACCESS_TRAP_FP_EL3;
3066 return CP_ACCESS_OK;
3069 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 uint64_t value)
3072 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3075 static const ARMCPRegInfo v8_cp_reginfo[] = {
3076 /* Minimal set of EL0-visible registers. This will need to be expanded
3077 * significantly for system emulation of AArch64 CPUs.
3079 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3080 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3081 .access = PL0_RW, .type = ARM_CP_NZCV },
3082 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3083 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3084 .type = ARM_CP_NO_RAW,
3085 .access = PL0_RW, .accessfn = aa64_daif_access,
3086 .fieldoffset = offsetof(CPUARMState, daif),
3087 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3088 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3089 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3090 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3091 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3092 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3093 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3094 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3095 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3096 .access = PL0_R, .type = ARM_CP_NO_RAW,
3097 .readfn = aa64_dczid_read },
3098 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3099 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3100 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3101 #ifndef CONFIG_USER_ONLY
3102 /* Avoid overhead of an access check that always passes in user-mode */
3103 .accessfn = aa64_zva_access,
3104 #endif
3106 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3108 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3109 /* Cache ops: all NOPs since we don't emulate caches */
3110 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3111 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3112 .access = PL1_W, .type = ARM_CP_NOP },
3113 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3114 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3115 .access = PL1_W, .type = ARM_CP_NOP },
3116 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3117 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3118 .access = PL0_W, .type = ARM_CP_NOP,
3119 .accessfn = aa64_cacheop_access },
3120 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3121 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3122 .access = PL1_W, .type = ARM_CP_NOP },
3123 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3125 .access = PL1_W, .type = ARM_CP_NOP },
3126 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3128 .access = PL0_W, .type = ARM_CP_NOP,
3129 .accessfn = aa64_cacheop_access },
3130 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3131 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3132 .access = PL1_W, .type = ARM_CP_NOP },
3133 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3134 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3135 .access = PL0_W, .type = ARM_CP_NOP,
3136 .accessfn = aa64_cacheop_access },
3137 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3138 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3139 .access = PL0_W, .type = ARM_CP_NOP,
3140 .accessfn = aa64_cacheop_access },
3141 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3143 .access = PL1_W, .type = ARM_CP_NOP },
3144 /* TLBI operations */
3145 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3146 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3147 .access = PL1_W, .type = ARM_CP_NO_RAW,
3148 .writefn = tlbi_aa64_vmalle1is_write },
3149 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3150 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3151 .access = PL1_W, .type = ARM_CP_NO_RAW,
3152 .writefn = tlbi_aa64_vae1is_write },
3153 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3154 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3155 .access = PL1_W, .type = ARM_CP_NO_RAW,
3156 .writefn = tlbi_aa64_vmalle1is_write },
3157 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3159 .access = PL1_W, .type = ARM_CP_NO_RAW,
3160 .writefn = tlbi_aa64_vae1is_write },
3161 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3162 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3163 .access = PL1_W, .type = ARM_CP_NO_RAW,
3164 .writefn = tlbi_aa64_vae1is_write },
3165 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3166 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3167 .access = PL1_W, .type = ARM_CP_NO_RAW,
3168 .writefn = tlbi_aa64_vae1is_write },
3169 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3170 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3171 .access = PL1_W, .type = ARM_CP_NO_RAW,
3172 .writefn = tlbi_aa64_vmalle1_write },
3173 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3174 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3175 .access = PL1_W, .type = ARM_CP_NO_RAW,
3176 .writefn = tlbi_aa64_vae1_write },
3177 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3179 .access = PL1_W, .type = ARM_CP_NO_RAW,
3180 .writefn = tlbi_aa64_vmalle1_write },
3181 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3182 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3183 .access = PL1_W, .type = ARM_CP_NO_RAW,
3184 .writefn = tlbi_aa64_vae1_write },
3185 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3187 .access = PL1_W, .type = ARM_CP_NO_RAW,
3188 .writefn = tlbi_aa64_vae1_write },
3189 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3190 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3191 .access = PL1_W, .type = ARM_CP_NO_RAW,
3192 .writefn = tlbi_aa64_vae1_write },
3193 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3194 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3195 .access = PL2_W, .type = ARM_CP_NO_RAW,
3196 .writefn = tlbi_aa64_ipas2e1is_write },
3197 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3199 .access = PL2_W, .type = ARM_CP_NO_RAW,
3200 .writefn = tlbi_aa64_ipas2e1is_write },
3201 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3202 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3203 .access = PL2_W, .type = ARM_CP_NO_RAW,
3204 .writefn = tlbi_aa64_alle1is_write },
3205 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3206 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3207 .access = PL2_W, .type = ARM_CP_NO_RAW,
3208 .writefn = tlbi_aa64_alle1is_write },
3209 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3211 .access = PL2_W, .type = ARM_CP_NO_RAW,
3212 .writefn = tlbi_aa64_ipas2e1_write },
3213 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3215 .access = PL2_W, .type = ARM_CP_NO_RAW,
3216 .writefn = tlbi_aa64_ipas2e1_write },
3217 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3218 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3219 .access = PL2_W, .type = ARM_CP_NO_RAW,
3220 .writefn = tlbi_aa64_alle1_write },
3221 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3222 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3223 .access = PL2_W, .type = ARM_CP_NO_RAW,
3224 .writefn = tlbi_aa64_alle1is_write },
3225 #ifndef CONFIG_USER_ONLY
3226 /* 64 bit address translation operations */
3227 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3228 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3229 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3230 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3232 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3233 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3235 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3236 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3238 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3239 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3240 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3241 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3242 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3243 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3244 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3245 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3246 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3247 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3248 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3250 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3251 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3252 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3254 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3255 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3256 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3257 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3258 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3259 .type = ARM_CP_ALIAS,
3260 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3261 .access = PL1_RW, .resetvalue = 0,
3262 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3263 .writefn = par_write },
3264 #endif
3265 /* TLB invalidate last level of translation table walk */
3266 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3267 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3268 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3269 .type = ARM_CP_NO_RAW, .access = PL1_W,
3270 .writefn = tlbimvaa_is_write },
3271 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3272 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3273 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3274 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3275 /* 32 bit cache operations */
3276 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3277 .type = ARM_CP_NOP, .access = PL1_W },
3278 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3279 .type = ARM_CP_NOP, .access = PL1_W },
3280 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3281 .type = ARM_CP_NOP, .access = PL1_W },
3282 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3283 .type = ARM_CP_NOP, .access = PL1_W },
3284 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3285 .type = ARM_CP_NOP, .access = PL1_W },
3286 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3287 .type = ARM_CP_NOP, .access = PL1_W },
3288 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3289 .type = ARM_CP_NOP, .access = PL1_W },
3290 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3291 .type = ARM_CP_NOP, .access = PL1_W },
3292 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3293 .type = ARM_CP_NOP, .access = PL1_W },
3294 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3295 .type = ARM_CP_NOP, .access = PL1_W },
3296 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3297 .type = ARM_CP_NOP, .access = PL1_W },
3298 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3299 .type = ARM_CP_NOP, .access = PL1_W },
3300 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3301 .type = ARM_CP_NOP, .access = PL1_W },
3302 /* MMU Domain access control / MPU write buffer control */
3303 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3304 .access = PL1_RW, .resetvalue = 0,
3305 .writefn = dacr_write, .raw_writefn = raw_write,
3306 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3307 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3308 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3309 .type = ARM_CP_ALIAS,
3310 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3311 .access = PL1_RW,
3312 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3313 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3314 .type = ARM_CP_ALIAS,
3315 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3316 .access = PL1_RW,
3317 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3318 /* We rely on the access checks not allowing the guest to write to the
3319 * state field when SPSel indicates that it's being used as the stack
3320 * pointer.
3322 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3323 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3324 .access = PL1_RW, .accessfn = sp_el0_access,
3325 .type = ARM_CP_ALIAS,
3326 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3327 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3329 .access = PL2_RW, .type = ARM_CP_ALIAS,
3330 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3331 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3333 .type = ARM_CP_NO_RAW,
3334 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3335 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3337 .type = ARM_CP_ALIAS,
3338 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3339 .access = PL2_RW, .accessfn = fpexc32_access },
3340 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3342 .access = PL2_RW, .resetvalue = 0,
3343 .writefn = dacr_write, .raw_writefn = raw_write,
3344 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3345 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3347 .access = PL2_RW, .resetvalue = 0,
3348 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3349 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3350 .type = ARM_CP_ALIAS,
3351 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3352 .access = PL2_RW,
3353 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3354 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3355 .type = ARM_CP_ALIAS,
3356 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3357 .access = PL2_RW,
3358 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3359 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3360 .type = ARM_CP_ALIAS,
3361 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3362 .access = PL2_RW,
3363 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3364 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3365 .type = ARM_CP_ALIAS,
3366 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3367 .access = PL2_RW,
3368 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3369 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3370 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3371 .resetvalue = 0,
3372 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3373 { .name = "SDCR", .type = ARM_CP_ALIAS,
3374 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3375 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3376 .writefn = sdcr_write,
3377 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3378 REGINFO_SENTINEL
3381 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3382 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3383 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3385 .access = PL2_RW,
3386 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3387 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3388 .type = ARM_CP_NO_RAW,
3389 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3390 .access = PL2_RW,
3391 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3392 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3393 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3394 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3395 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3396 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3397 .access = PL2_RW, .type = ARM_CP_CONST,
3398 .resetvalue = 0 },
3399 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3400 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3401 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3402 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3403 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3404 .access = PL2_RW, .type = ARM_CP_CONST,
3405 .resetvalue = 0 },
3406 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3407 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3408 .access = PL2_RW, .type = ARM_CP_CONST,
3409 .resetvalue = 0 },
3410 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3411 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3412 .access = PL2_RW, .type = ARM_CP_CONST,
3413 .resetvalue = 0 },
3414 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3415 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3416 .access = PL2_RW, .type = ARM_CP_CONST,
3417 .resetvalue = 0 },
3418 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3419 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3421 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3422 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3423 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3424 .type = ARM_CP_CONST, .resetvalue = 0 },
3425 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3426 .cp = 15, .opc1 = 6, .crm = 2,
3427 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3428 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3429 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3430 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3431 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3432 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3433 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3434 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3435 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3436 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3437 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3438 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3440 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3441 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3442 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3443 .resetvalue = 0 },
3444 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3445 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3446 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3447 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3449 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3450 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3451 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3452 .resetvalue = 0 },
3453 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3455 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3456 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3457 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3458 .resetvalue = 0 },
3459 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3460 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3461 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3462 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3463 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3465 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3466 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3467 .access = PL2_RW, .accessfn = access_tda,
3468 .type = ARM_CP_CONST, .resetvalue = 0 },
3469 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3470 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3471 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3472 .type = ARM_CP_CONST, .resetvalue = 0 },
3473 REGINFO_SENTINEL
3476 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3478 ARMCPU *cpu = arm_env_get_cpu(env);
3479 uint64_t valid_mask = HCR_MASK;
3481 if (arm_feature(env, ARM_FEATURE_EL3)) {
3482 valid_mask &= ~HCR_HCD;
3483 } else {
3484 valid_mask &= ~HCR_TSC;
3487 /* Clear RES0 bits. */
3488 value &= valid_mask;
3490 /* These bits change the MMU setup:
3491 * HCR_VM enables stage 2 translation
3492 * HCR_PTW forbids certain page-table setups
3493 * HCR_DC Disables stage1 and enables stage2 translation
3495 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3496 tlb_flush(CPU(cpu), 1);
3498 raw_write(env, ri, value);
3501 static const ARMCPRegInfo el2_cp_reginfo[] = {
3502 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3503 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3504 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3505 .writefn = hcr_write },
3506 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3507 .type = ARM_CP_ALIAS,
3508 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3509 .access = PL2_RW,
3510 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3511 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3512 .type = ARM_CP_ALIAS,
3513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3514 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3515 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3516 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3517 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3518 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3519 .type = ARM_CP_ALIAS,
3520 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3521 .access = PL2_RW,
3522 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3523 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3524 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3525 .access = PL2_RW, .writefn = vbar_write,
3526 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3527 .resetvalue = 0 },
3528 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3529 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3530 .access = PL3_RW, .type = ARM_CP_ALIAS,
3531 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3532 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3533 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3534 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3535 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3536 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3537 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3538 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3539 .resetvalue = 0 },
3540 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3541 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3542 .access = PL2_RW, .type = ARM_CP_ALIAS,
3543 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3544 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3545 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3546 .access = PL2_RW, .type = ARM_CP_CONST,
3547 .resetvalue = 0 },
3548 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3549 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3550 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3551 .access = PL2_RW, .type = ARM_CP_CONST,
3552 .resetvalue = 0 },
3553 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3554 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3555 .access = PL2_RW, .type = ARM_CP_CONST,
3556 .resetvalue = 0 },
3557 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3558 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3559 .access = PL2_RW, .type = ARM_CP_CONST,
3560 .resetvalue = 0 },
3561 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3563 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3564 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3565 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3566 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3567 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3568 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3569 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3570 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3571 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3572 .access = PL2_RW, .type = ARM_CP_ALIAS,
3573 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3574 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3575 .cp = 15, .opc1 = 6, .crm = 2,
3576 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3577 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3578 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3579 .writefn = vttbr_write },
3580 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3581 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3582 .access = PL2_RW, .writefn = vttbr_write,
3583 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3584 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3585 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3586 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3587 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3588 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3589 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3590 .access = PL2_RW, .resetvalue = 0,
3591 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3592 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3593 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3594 .access = PL2_RW, .resetvalue = 0,
3595 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3596 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3597 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3598 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3599 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3600 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3601 .type = ARM_CP_NO_RAW, .access = PL2_W,
3602 .writefn = tlbi_aa64_alle2_write },
3603 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3604 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3605 .type = ARM_CP_NO_RAW, .access = PL2_W,
3606 .writefn = tlbi_aa64_vae2_write },
3607 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3608 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3609 .access = PL2_W, .type = ARM_CP_NO_RAW,
3610 .writefn = tlbi_aa64_vae2_write },
3611 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3612 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3613 .access = PL2_W, .type = ARM_CP_NO_RAW,
3614 .writefn = tlbi_aa64_alle2is_write },
3615 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3616 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3617 .type = ARM_CP_NO_RAW, .access = PL2_W,
3618 .writefn = tlbi_aa64_vae2is_write },
3619 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3620 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3621 .access = PL2_W, .type = ARM_CP_NO_RAW,
3622 .writefn = tlbi_aa64_vae2is_write },
3623 #ifndef CONFIG_USER_ONLY
3624 /* Unlike the other EL2-related AT operations, these must
3625 * UNDEF from EL3 if EL2 is not implemented, which is why we
3626 * define them here rather than with the rest of the AT ops.
3628 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3629 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3630 .access = PL2_W, .accessfn = at_s1e2_access,
3631 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3632 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3633 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3634 .access = PL2_W, .accessfn = at_s1e2_access,
3635 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3636 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3637 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3638 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3639 * to behave as if SCR.NS was 1.
3641 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3642 .access = PL2_W,
3643 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3644 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3645 .access = PL2_W,
3646 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3647 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3648 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3649 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3650 * reset values as IMPDEF. We choose to reset to 3 to comply with
3651 * both ARMv7 and ARMv8.
3653 .access = PL2_RW, .resetvalue = 3,
3654 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3655 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3656 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3657 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3658 .writefn = gt_cntvoff_write,
3659 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3660 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3661 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3662 .writefn = gt_cntvoff_write,
3663 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3664 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3665 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3666 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3667 .type = ARM_CP_IO, .access = PL2_RW,
3668 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3669 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3670 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3671 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3672 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3673 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3675 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3676 .resetfn = gt_hyp_timer_reset,
3677 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3678 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3679 .type = ARM_CP_IO,
3680 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3681 .access = PL2_RW,
3682 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3683 .resetvalue = 0,
3684 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3685 #endif
3686 /* The only field of MDCR_EL2 that has a defined architectural reset value
3687 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3688 * don't impelment any PMU event counters, so using zero as a reset
3689 * value for MDCR_EL2 is okay
3691 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3692 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3693 .access = PL2_RW, .resetvalue = 0,
3694 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3695 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3696 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3697 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3698 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3699 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3700 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3701 .access = PL2_RW,
3702 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3703 REGINFO_SENTINEL
3706 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3707 bool isread)
3709 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3710 * At Secure EL1 it traps to EL3.
3712 if (arm_current_el(env) == 3) {
3713 return CP_ACCESS_OK;
3715 if (arm_is_secure_below_el3(env)) {
3716 return CP_ACCESS_TRAP_EL3;
3718 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3719 if (isread) {
3720 return CP_ACCESS_OK;
3722 return CP_ACCESS_TRAP_UNCATEGORIZED;
3725 static const ARMCPRegInfo el3_cp_reginfo[] = {
3726 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3727 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3728 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3729 .resetvalue = 0, .writefn = scr_write },
3730 { .name = "SCR", .type = ARM_CP_ALIAS,
3731 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3732 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3733 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3734 .writefn = scr_write },
3735 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3736 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3737 .access = PL3_RW, .resetvalue = 0,
3738 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3739 { .name = "SDER",
3740 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3741 .access = PL3_RW, .resetvalue = 0,
3742 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3743 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3744 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3745 .writefn = vbar_write, .resetvalue = 0,
3746 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3747 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3748 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3749 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3750 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3751 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
3752 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3753 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3754 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3755 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3756 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3757 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3758 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3759 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3760 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3761 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3762 .type = ARM_CP_ALIAS,
3763 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3764 .access = PL3_RW,
3765 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3766 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3767 .type = ARM_CP_ALIAS,
3768 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3769 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3770 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3771 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3772 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3773 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3774 .type = ARM_CP_ALIAS,
3775 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3776 .access = PL3_RW,
3777 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3778 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3779 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3780 .access = PL3_RW, .writefn = vbar_write,
3781 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3782 .resetvalue = 0 },
3783 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3784 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3785 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3786 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3787 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3788 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3789 .access = PL3_RW, .resetvalue = 0,
3790 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3791 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3792 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3793 .access = PL3_RW, .type = ARM_CP_CONST,
3794 .resetvalue = 0 },
3795 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3796 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3797 .access = PL3_RW, .type = ARM_CP_CONST,
3798 .resetvalue = 0 },
3799 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3800 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3801 .access = PL3_RW, .type = ARM_CP_CONST,
3802 .resetvalue = 0 },
3803 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3804 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3805 .access = PL3_W, .type = ARM_CP_NO_RAW,
3806 .writefn = tlbi_aa64_alle3is_write },
3807 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3808 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3809 .access = PL3_W, .type = ARM_CP_NO_RAW,
3810 .writefn = tlbi_aa64_vae3is_write },
3811 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3812 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3813 .access = PL3_W, .type = ARM_CP_NO_RAW,
3814 .writefn = tlbi_aa64_vae3is_write },
3815 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3816 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3817 .access = PL3_W, .type = ARM_CP_NO_RAW,
3818 .writefn = tlbi_aa64_alle3_write },
3819 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3820 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3821 .access = PL3_W, .type = ARM_CP_NO_RAW,
3822 .writefn = tlbi_aa64_vae3_write },
3823 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3824 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3825 .access = PL3_W, .type = ARM_CP_NO_RAW,
3826 .writefn = tlbi_aa64_vae3_write },
3827 REGINFO_SENTINEL
3830 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3831 bool isread)
3833 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3834 * but the AArch32 CTR has its own reginfo struct)
3836 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3837 return CP_ACCESS_TRAP;
3839 return CP_ACCESS_OK;
3842 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3843 uint64_t value)
3845 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3846 * read via a bit in OSLSR_EL1.
3848 int oslock;
3850 if (ri->state == ARM_CP_STATE_AA32) {
3851 oslock = (value == 0xC5ACCE55);
3852 } else {
3853 oslock = value & 1;
3856 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
3859 static const ARMCPRegInfo debug_cp_reginfo[] = {
3860 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3861 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3862 * unlike DBGDRAR it is never accessible from EL0.
3863 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3864 * accessor.
3866 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3867 .access = PL0_R, .accessfn = access_tdra,
3868 .type = ARM_CP_CONST, .resetvalue = 0 },
3869 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3870 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3871 .access = PL1_R, .accessfn = access_tdra,
3872 .type = ARM_CP_CONST, .resetvalue = 0 },
3873 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3874 .access = PL0_R, .accessfn = access_tdra,
3875 .type = ARM_CP_CONST, .resetvalue = 0 },
3876 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3877 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3878 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3879 .access = PL1_RW, .accessfn = access_tda,
3880 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3881 .resetvalue = 0 },
3882 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3883 * We don't implement the configurable EL0 access.
3885 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3886 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3887 .type = ARM_CP_ALIAS,
3888 .access = PL1_R, .accessfn = access_tda,
3889 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3890 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3891 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3892 .access = PL1_W, .type = ARM_CP_NO_RAW,
3893 .accessfn = access_tdosa,
3894 .writefn = oslar_write },
3895 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
3896 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
3897 .access = PL1_R, .resetvalue = 10,
3898 .accessfn = access_tdosa,
3899 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
3900 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3901 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3902 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3903 .access = PL1_RW, .accessfn = access_tdosa,
3904 .type = ARM_CP_NOP },
3905 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3906 * implement vector catch debug events yet.
3908 { .name = "DBGVCR",
3909 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3910 .access = PL1_RW, .accessfn = access_tda,
3911 .type = ARM_CP_NOP },
3912 REGINFO_SENTINEL
3915 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3916 /* 64 bit access versions of the (dummy) debug registers */
3917 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3918 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3919 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3920 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3921 REGINFO_SENTINEL
3924 void hw_watchpoint_update(ARMCPU *cpu, int n)
3926 CPUARMState *env = &cpu->env;
3927 vaddr len = 0;
3928 vaddr wvr = env->cp15.dbgwvr[n];
3929 uint64_t wcr = env->cp15.dbgwcr[n];
3930 int mask;
3931 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3933 if (env->cpu_watchpoint[n]) {
3934 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3935 env->cpu_watchpoint[n] = NULL;
3938 if (!extract64(wcr, 0, 1)) {
3939 /* E bit clear : watchpoint disabled */
3940 return;
3943 switch (extract64(wcr, 3, 2)) {
3944 case 0:
3945 /* LSC 00 is reserved and must behave as if the wp is disabled */
3946 return;
3947 case 1:
3948 flags |= BP_MEM_READ;
3949 break;
3950 case 2:
3951 flags |= BP_MEM_WRITE;
3952 break;
3953 case 3:
3954 flags |= BP_MEM_ACCESS;
3955 break;
3958 /* Attempts to use both MASK and BAS fields simultaneously are
3959 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3960 * thus generating a watchpoint for every byte in the masked region.
3962 mask = extract64(wcr, 24, 4);
3963 if (mask == 1 || mask == 2) {
3964 /* Reserved values of MASK; we must act as if the mask value was
3965 * some non-reserved value, or as if the watchpoint were disabled.
3966 * We choose the latter.
3968 return;
3969 } else if (mask) {
3970 /* Watchpoint covers an aligned area up to 2GB in size */
3971 len = 1ULL << mask;
3972 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3973 * whether the watchpoint fires when the unmasked bits match; we opt
3974 * to generate the exceptions.
3976 wvr &= ~(len - 1);
3977 } else {
3978 /* Watchpoint covers bytes defined by the byte address select bits */
3979 int bas = extract64(wcr, 5, 8);
3980 int basstart;
3982 if (bas == 0) {
3983 /* This must act as if the watchpoint is disabled */
3984 return;
3987 if (extract64(wvr, 2, 1)) {
3988 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3989 * ignored, and BAS[3:0] define which bytes to watch.
3991 bas &= 0xf;
3993 /* The BAS bits are supposed to be programmed to indicate a contiguous
3994 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3995 * we fire for each byte in the word/doubleword addressed by the WVR.
3996 * We choose to ignore any non-zero bits after the first range of 1s.
3998 basstart = ctz32(bas);
3999 len = cto32(bas >> basstart);
4000 wvr += basstart;
4003 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4004 &env->cpu_watchpoint[n]);
4007 void hw_watchpoint_update_all(ARMCPU *cpu)
4009 int i;
4010 CPUARMState *env = &cpu->env;
4012 /* Completely clear out existing QEMU watchpoints and our array, to
4013 * avoid possible stale entries following migration load.
4015 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4016 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4018 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4019 hw_watchpoint_update(cpu, i);
4023 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4024 uint64_t value)
4026 ARMCPU *cpu = arm_env_get_cpu(env);
4027 int i = ri->crm;
4029 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4030 * register reads and behaves as if values written are sign extended.
4031 * Bits [1:0] are RES0.
4033 value = sextract64(value, 0, 49) & ~3ULL;
4035 raw_write(env, ri, value);
4036 hw_watchpoint_update(cpu, i);
4039 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4040 uint64_t value)
4042 ARMCPU *cpu = arm_env_get_cpu(env);
4043 int i = ri->crm;
4045 raw_write(env, ri, value);
4046 hw_watchpoint_update(cpu, i);
4049 void hw_breakpoint_update(ARMCPU *cpu, int n)
4051 CPUARMState *env = &cpu->env;
4052 uint64_t bvr = env->cp15.dbgbvr[n];
4053 uint64_t bcr = env->cp15.dbgbcr[n];
4054 vaddr addr;
4055 int bt;
4056 int flags = BP_CPU;
4058 if (env->cpu_breakpoint[n]) {
4059 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4060 env->cpu_breakpoint[n] = NULL;
4063 if (!extract64(bcr, 0, 1)) {
4064 /* E bit clear : watchpoint disabled */
4065 return;
4068 bt = extract64(bcr, 20, 4);
4070 switch (bt) {
4071 case 4: /* unlinked address mismatch (reserved if AArch64) */
4072 case 5: /* linked address mismatch (reserved if AArch64) */
4073 qemu_log_mask(LOG_UNIMP,
4074 "arm: address mismatch breakpoint types not implemented");
4075 return;
4076 case 0: /* unlinked address match */
4077 case 1: /* linked address match */
4079 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4080 * we behave as if the register was sign extended. Bits [1:0] are
4081 * RES0. The BAS field is used to allow setting breakpoints on 16
4082 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4083 * a bp will fire if the addresses covered by the bp and the addresses
4084 * covered by the insn overlap but the insn doesn't start at the
4085 * start of the bp address range. We choose to require the insn and
4086 * the bp to have the same address. The constraints on writing to
4087 * BAS enforced in dbgbcr_write mean we have only four cases:
4088 * 0b0000 => no breakpoint
4089 * 0b0011 => breakpoint on addr
4090 * 0b1100 => breakpoint on addr + 2
4091 * 0b1111 => breakpoint on addr
4092 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4094 int bas = extract64(bcr, 5, 4);
4095 addr = sextract64(bvr, 0, 49) & ~3ULL;
4096 if (bas == 0) {
4097 return;
4099 if (bas == 0xc) {
4100 addr += 2;
4102 break;
4104 case 2: /* unlinked context ID match */
4105 case 8: /* unlinked VMID match (reserved if no EL2) */
4106 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4107 qemu_log_mask(LOG_UNIMP,
4108 "arm: unlinked context breakpoint types not implemented");
4109 return;
4110 case 9: /* linked VMID match (reserved if no EL2) */
4111 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4112 case 3: /* linked context ID match */
4113 default:
4114 /* We must generate no events for Linked context matches (unless
4115 * they are linked to by some other bp/wp, which is handled in
4116 * updates for the linking bp/wp). We choose to also generate no events
4117 * for reserved values.
4119 return;
4122 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4125 void hw_breakpoint_update_all(ARMCPU *cpu)
4127 int i;
4128 CPUARMState *env = &cpu->env;
4130 /* Completely clear out existing QEMU breakpoints and our array, to
4131 * avoid possible stale entries following migration load.
4133 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4134 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4136 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4137 hw_breakpoint_update(cpu, i);
4141 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4142 uint64_t value)
4144 ARMCPU *cpu = arm_env_get_cpu(env);
4145 int i = ri->crm;
4147 raw_write(env, ri, value);
4148 hw_breakpoint_update(cpu, i);
4151 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4152 uint64_t value)
4154 ARMCPU *cpu = arm_env_get_cpu(env);
4155 int i = ri->crm;
4157 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4158 * copy of BAS[0].
4160 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4161 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4163 raw_write(env, ri, value);
4164 hw_breakpoint_update(cpu, i);
4167 static void define_debug_regs(ARMCPU *cpu)
4169 /* Define v7 and v8 architectural debug registers.
4170 * These are just dummy implementations for now.
4172 int i;
4173 int wrps, brps, ctx_cmps;
4174 ARMCPRegInfo dbgdidr = {
4175 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4176 .access = PL0_R, .accessfn = access_tda,
4177 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4180 /* Note that all these register fields hold "number of Xs minus 1". */
4181 brps = extract32(cpu->dbgdidr, 24, 4);
4182 wrps = extract32(cpu->dbgdidr, 28, 4);
4183 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4185 assert(ctx_cmps <= brps);
4187 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4188 * of the debug registers such as number of breakpoints;
4189 * check that if they both exist then they agree.
4191 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4192 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4193 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4194 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4197 define_one_arm_cp_reg(cpu, &dbgdidr);
4198 define_arm_cp_regs(cpu, debug_cp_reginfo);
4200 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4201 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4204 for (i = 0; i < brps + 1; i++) {
4205 ARMCPRegInfo dbgregs[] = {
4206 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4207 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4208 .access = PL1_RW, .accessfn = access_tda,
4209 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4210 .writefn = dbgbvr_write, .raw_writefn = raw_write
4212 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4213 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4214 .access = PL1_RW, .accessfn = access_tda,
4215 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4216 .writefn = dbgbcr_write, .raw_writefn = raw_write
4218 REGINFO_SENTINEL
4220 define_arm_cp_regs(cpu, dbgregs);
4223 for (i = 0; i < wrps + 1; i++) {
4224 ARMCPRegInfo dbgregs[] = {
4225 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4226 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4227 .access = PL1_RW, .accessfn = access_tda,
4228 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4229 .writefn = dbgwvr_write, .raw_writefn = raw_write
4231 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4232 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4233 .access = PL1_RW, .accessfn = access_tda,
4234 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4235 .writefn = dbgwcr_write, .raw_writefn = raw_write
4237 REGINFO_SENTINEL
4239 define_arm_cp_regs(cpu, dbgregs);
4243 void register_cp_regs_for_features(ARMCPU *cpu)
4245 /* Register all the coprocessor registers based on feature bits */
4246 CPUARMState *env = &cpu->env;
4247 if (arm_feature(env, ARM_FEATURE_M)) {
4248 /* M profile has no coprocessor registers */
4249 return;
4252 define_arm_cp_regs(cpu, cp_reginfo);
4253 if (!arm_feature(env, ARM_FEATURE_V8)) {
4254 /* Must go early as it is full of wildcards that may be
4255 * overridden by later definitions.
4257 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4260 if (arm_feature(env, ARM_FEATURE_V6)) {
4261 /* The ID registers all have impdef reset values */
4262 ARMCPRegInfo v6_idregs[] = {
4263 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4265 .access = PL1_R, .type = ARM_CP_CONST,
4266 .resetvalue = cpu->id_pfr0 },
4267 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4269 .access = PL1_R, .type = ARM_CP_CONST,
4270 .resetvalue = cpu->id_pfr1 },
4271 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4273 .access = PL1_R, .type = ARM_CP_CONST,
4274 .resetvalue = cpu->id_dfr0 },
4275 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4277 .access = PL1_R, .type = ARM_CP_CONST,
4278 .resetvalue = cpu->id_afr0 },
4279 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4281 .access = PL1_R, .type = ARM_CP_CONST,
4282 .resetvalue = cpu->id_mmfr0 },
4283 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4285 .access = PL1_R, .type = ARM_CP_CONST,
4286 .resetvalue = cpu->id_mmfr1 },
4287 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4289 .access = PL1_R, .type = ARM_CP_CONST,
4290 .resetvalue = cpu->id_mmfr2 },
4291 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4293 .access = PL1_R, .type = ARM_CP_CONST,
4294 .resetvalue = cpu->id_mmfr3 },
4295 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4297 .access = PL1_R, .type = ARM_CP_CONST,
4298 .resetvalue = cpu->id_isar0 },
4299 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4301 .access = PL1_R, .type = ARM_CP_CONST,
4302 .resetvalue = cpu->id_isar1 },
4303 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4305 .access = PL1_R, .type = ARM_CP_CONST,
4306 .resetvalue = cpu->id_isar2 },
4307 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4309 .access = PL1_R, .type = ARM_CP_CONST,
4310 .resetvalue = cpu->id_isar3 },
4311 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4313 .access = PL1_R, .type = ARM_CP_CONST,
4314 .resetvalue = cpu->id_isar4 },
4315 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4317 .access = PL1_R, .type = ARM_CP_CONST,
4318 .resetvalue = cpu->id_isar5 },
4319 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4321 .access = PL1_R, .type = ARM_CP_CONST,
4322 .resetvalue = cpu->id_mmfr4 },
4323 /* 7 is as yet unallocated and must RAZ */
4324 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4326 .access = PL1_R, .type = ARM_CP_CONST,
4327 .resetvalue = 0 },
4328 REGINFO_SENTINEL
4330 define_arm_cp_regs(cpu, v6_idregs);
4331 define_arm_cp_regs(cpu, v6_cp_reginfo);
4332 } else {
4333 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4335 if (arm_feature(env, ARM_FEATURE_V6K)) {
4336 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4338 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4339 !arm_feature(env, ARM_FEATURE_MPU)) {
4340 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4342 if (arm_feature(env, ARM_FEATURE_V7)) {
4343 /* v7 performance monitor control register: same implementor
4344 * field as main ID register, and we implement only the cycle
4345 * count register.
4347 #ifndef CONFIG_USER_ONLY
4348 ARMCPRegInfo pmcr = {
4349 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4350 .access = PL0_RW,
4351 .type = ARM_CP_IO | ARM_CP_ALIAS,
4352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4353 .accessfn = pmreg_access, .writefn = pmcr_write,
4354 .raw_writefn = raw_write,
4356 ARMCPRegInfo pmcr64 = {
4357 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4358 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4359 .access = PL0_RW, .accessfn = pmreg_access,
4360 .type = ARM_CP_IO,
4361 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4362 .resetvalue = cpu->midr & 0xff000000,
4363 .writefn = pmcr_write, .raw_writefn = raw_write,
4365 define_one_arm_cp_reg(cpu, &pmcr);
4366 define_one_arm_cp_reg(cpu, &pmcr64);
4367 #endif
4368 ARMCPRegInfo clidr = {
4369 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4370 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4371 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4373 define_one_arm_cp_reg(cpu, &clidr);
4374 define_arm_cp_regs(cpu, v7_cp_reginfo);
4375 define_debug_regs(cpu);
4376 } else {
4377 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4379 if (arm_feature(env, ARM_FEATURE_V8)) {
4380 /* AArch64 ID registers, which all have impdef reset values.
4381 * Note that within the ID register ranges the unused slots
4382 * must all RAZ, not UNDEF; future architecture versions may
4383 * define new registers here.
4385 ARMCPRegInfo v8_idregs[] = {
4386 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4388 .access = PL1_R, .type = ARM_CP_CONST,
4389 .resetvalue = cpu->id_aa64pfr0 },
4390 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4391 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4392 .access = PL1_R, .type = ARM_CP_CONST,
4393 .resetvalue = cpu->id_aa64pfr1},
4394 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4396 .access = PL1_R, .type = ARM_CP_CONST,
4397 .resetvalue = 0 },
4398 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4400 .access = PL1_R, .type = ARM_CP_CONST,
4401 .resetvalue = 0 },
4402 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4404 .access = PL1_R, .type = ARM_CP_CONST,
4405 .resetvalue = 0 },
4406 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4408 .access = PL1_R, .type = ARM_CP_CONST,
4409 .resetvalue = 0 },
4410 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4412 .access = PL1_R, .type = ARM_CP_CONST,
4413 .resetvalue = 0 },
4414 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4416 .access = PL1_R, .type = ARM_CP_CONST,
4417 .resetvalue = 0 },
4418 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4420 .access = PL1_R, .type = ARM_CP_CONST,
4421 /* We mask out the PMUVer field, because we don't currently
4422 * implement the PMU. Not advertising it prevents the guest
4423 * from trying to use it and getting UNDEFs on registers we
4424 * don't implement.
4426 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4427 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4429 .access = PL1_R, .type = ARM_CP_CONST,
4430 .resetvalue = cpu->id_aa64dfr1 },
4431 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4432 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4433 .access = PL1_R, .type = ARM_CP_CONST,
4434 .resetvalue = 0 },
4435 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4437 .access = PL1_R, .type = ARM_CP_CONST,
4438 .resetvalue = 0 },
4439 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4441 .access = PL1_R, .type = ARM_CP_CONST,
4442 .resetvalue = cpu->id_aa64afr0 },
4443 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4445 .access = PL1_R, .type = ARM_CP_CONST,
4446 .resetvalue = cpu->id_aa64afr1 },
4447 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4449 .access = PL1_R, .type = ARM_CP_CONST,
4450 .resetvalue = 0 },
4451 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4453 .access = PL1_R, .type = ARM_CP_CONST,
4454 .resetvalue = 0 },
4455 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4457 .access = PL1_R, .type = ARM_CP_CONST,
4458 .resetvalue = cpu->id_aa64isar0 },
4459 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4461 .access = PL1_R, .type = ARM_CP_CONST,
4462 .resetvalue = cpu->id_aa64isar1 },
4463 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4465 .access = PL1_R, .type = ARM_CP_CONST,
4466 .resetvalue = 0 },
4467 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4469 .access = PL1_R, .type = ARM_CP_CONST,
4470 .resetvalue = 0 },
4471 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4473 .access = PL1_R, .type = ARM_CP_CONST,
4474 .resetvalue = 0 },
4475 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4477 .access = PL1_R, .type = ARM_CP_CONST,
4478 .resetvalue = 0 },
4479 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4481 .access = PL1_R, .type = ARM_CP_CONST,
4482 .resetvalue = 0 },
4483 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4485 .access = PL1_R, .type = ARM_CP_CONST,
4486 .resetvalue = 0 },
4487 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4489 .access = PL1_R, .type = ARM_CP_CONST,
4490 .resetvalue = cpu->id_aa64mmfr0 },
4491 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4493 .access = PL1_R, .type = ARM_CP_CONST,
4494 .resetvalue = cpu->id_aa64mmfr1 },
4495 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4497 .access = PL1_R, .type = ARM_CP_CONST,
4498 .resetvalue = 0 },
4499 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4501 .access = PL1_R, .type = ARM_CP_CONST,
4502 .resetvalue = 0 },
4503 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4505 .access = PL1_R, .type = ARM_CP_CONST,
4506 .resetvalue = 0 },
4507 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4509 .access = PL1_R, .type = ARM_CP_CONST,
4510 .resetvalue = 0 },
4511 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4513 .access = PL1_R, .type = ARM_CP_CONST,
4514 .resetvalue = 0 },
4515 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4517 .access = PL1_R, .type = ARM_CP_CONST,
4518 .resetvalue = 0 },
4519 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4521 .access = PL1_R, .type = ARM_CP_CONST,
4522 .resetvalue = cpu->mvfr0 },
4523 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4525 .access = PL1_R, .type = ARM_CP_CONST,
4526 .resetvalue = cpu->mvfr1 },
4527 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4529 .access = PL1_R, .type = ARM_CP_CONST,
4530 .resetvalue = cpu->mvfr2 },
4531 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4533 .access = PL1_R, .type = ARM_CP_CONST,
4534 .resetvalue = 0 },
4535 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4537 .access = PL1_R, .type = ARM_CP_CONST,
4538 .resetvalue = 0 },
4539 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4541 .access = PL1_R, .type = ARM_CP_CONST,
4542 .resetvalue = 0 },
4543 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4545 .access = PL1_R, .type = ARM_CP_CONST,
4546 .resetvalue = 0 },
4547 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4549 .access = PL1_R, .type = ARM_CP_CONST,
4550 .resetvalue = 0 },
4551 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4552 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4553 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4554 .resetvalue = cpu->pmceid0 },
4555 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4556 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4557 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4558 .resetvalue = cpu->pmceid0 },
4559 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4560 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4561 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4562 .resetvalue = cpu->pmceid1 },
4563 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4564 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4565 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4566 .resetvalue = cpu->pmceid1 },
4567 REGINFO_SENTINEL
4569 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4570 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4571 !arm_feature(env, ARM_FEATURE_EL2)) {
4572 ARMCPRegInfo rvbar = {
4573 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4574 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4575 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4577 define_one_arm_cp_reg(cpu, &rvbar);
4579 define_arm_cp_regs(cpu, v8_idregs);
4580 define_arm_cp_regs(cpu, v8_cp_reginfo);
4582 if (arm_feature(env, ARM_FEATURE_EL2)) {
4583 uint64_t vmpidr_def = mpidr_read_val(env);
4584 ARMCPRegInfo vpidr_regs[] = {
4585 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4586 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4587 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4588 .resetvalue = cpu->midr,
4589 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4590 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4591 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4592 .access = PL2_RW, .resetvalue = cpu->midr,
4593 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4594 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4595 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4596 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4597 .resetvalue = vmpidr_def,
4598 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4599 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4600 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4601 .access = PL2_RW,
4602 .resetvalue = vmpidr_def,
4603 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4604 REGINFO_SENTINEL
4606 define_arm_cp_regs(cpu, vpidr_regs);
4607 define_arm_cp_regs(cpu, el2_cp_reginfo);
4608 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4609 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4610 ARMCPRegInfo rvbar = {
4611 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4612 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4613 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4615 define_one_arm_cp_reg(cpu, &rvbar);
4617 } else {
4618 /* If EL2 is missing but higher ELs are enabled, we need to
4619 * register the no_el2 reginfos.
4621 if (arm_feature(env, ARM_FEATURE_EL3)) {
4622 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4623 * of MIDR_EL1 and MPIDR_EL1.
4625 ARMCPRegInfo vpidr_regs[] = {
4626 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4627 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4628 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4629 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4630 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4631 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4632 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4633 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4634 .type = ARM_CP_NO_RAW,
4635 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4636 REGINFO_SENTINEL
4638 define_arm_cp_regs(cpu, vpidr_regs);
4639 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4642 if (arm_feature(env, ARM_FEATURE_EL3)) {
4643 define_arm_cp_regs(cpu, el3_cp_reginfo);
4644 ARMCPRegInfo rvbar = {
4645 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4646 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4647 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4649 define_one_arm_cp_reg(cpu, &rvbar);
4651 /* The behaviour of NSACR is sufficiently various that we don't
4652 * try to describe it in a single reginfo:
4653 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4654 * reads as constant 0xc00 from NS EL1 and NS EL2
4655 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4656 * if v7 without EL3, register doesn't exist
4657 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4659 if (arm_feature(env, ARM_FEATURE_EL3)) {
4660 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4661 ARMCPRegInfo nsacr = {
4662 .name = "NSACR", .type = ARM_CP_CONST,
4663 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4664 .access = PL1_RW, .accessfn = nsacr_access,
4665 .resetvalue = 0xc00
4667 define_one_arm_cp_reg(cpu, &nsacr);
4668 } else {
4669 ARMCPRegInfo nsacr = {
4670 .name = "NSACR",
4671 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4672 .access = PL3_RW | PL1_R,
4673 .resetvalue = 0,
4674 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4676 define_one_arm_cp_reg(cpu, &nsacr);
4678 } else {
4679 if (arm_feature(env, ARM_FEATURE_V8)) {
4680 ARMCPRegInfo nsacr = {
4681 .name = "NSACR", .type = ARM_CP_CONST,
4682 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4683 .access = PL1_R,
4684 .resetvalue = 0xc00
4686 define_one_arm_cp_reg(cpu, &nsacr);
4690 if (arm_feature(env, ARM_FEATURE_MPU)) {
4691 if (arm_feature(env, ARM_FEATURE_V6)) {
4692 /* PMSAv6 not implemented */
4693 assert(arm_feature(env, ARM_FEATURE_V7));
4694 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4695 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4696 } else {
4697 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4699 } else {
4700 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4701 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4703 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4704 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4706 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4707 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4709 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4710 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4712 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4713 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4715 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4716 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4718 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4719 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4721 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4722 define_arm_cp_regs(cpu, omap_cp_reginfo);
4724 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4725 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4727 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4728 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4730 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4731 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4733 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4734 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4736 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4737 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4738 * be read-only (ie write causes UNDEF exception).
4741 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4742 /* Pre-v8 MIDR space.
4743 * Note that the MIDR isn't a simple constant register because
4744 * of the TI925 behaviour where writes to another register can
4745 * cause the MIDR value to change.
4747 * Unimplemented registers in the c15 0 0 0 space default to
4748 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4749 * and friends override accordingly.
4751 { .name = "MIDR",
4752 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4753 .access = PL1_R, .resetvalue = cpu->midr,
4754 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4755 .readfn = midr_read,
4756 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4757 .type = ARM_CP_OVERRIDE },
4758 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4759 { .name = "DUMMY",
4760 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4761 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4762 { .name = "DUMMY",
4763 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4764 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4765 { .name = "DUMMY",
4766 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4767 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4768 { .name = "DUMMY",
4769 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4770 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4771 { .name = "DUMMY",
4772 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4773 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4774 REGINFO_SENTINEL
4776 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4777 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4779 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4780 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4781 .readfn = midr_read },
4782 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4783 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4784 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4785 .access = PL1_R, .resetvalue = cpu->midr },
4786 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4787 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4788 .access = PL1_R, .resetvalue = cpu->midr },
4789 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4791 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4792 REGINFO_SENTINEL
4794 ARMCPRegInfo id_cp_reginfo[] = {
4795 /* These are common to v8 and pre-v8 */
4796 { .name = "CTR",
4797 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4798 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4799 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4801 .access = PL0_R, .accessfn = ctr_el0_access,
4802 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4803 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4804 { .name = "TCMTR",
4805 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4806 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4807 REGINFO_SENTINEL
4809 /* TLBTR is specific to VMSA */
4810 ARMCPRegInfo id_tlbtr_reginfo = {
4811 .name = "TLBTR",
4812 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4813 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4815 /* MPUIR is specific to PMSA V6+ */
4816 ARMCPRegInfo id_mpuir_reginfo = {
4817 .name = "MPUIR",
4818 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4819 .access = PL1_R, .type = ARM_CP_CONST,
4820 .resetvalue = cpu->pmsav7_dregion << 8
4822 ARMCPRegInfo crn0_wi_reginfo = {
4823 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4824 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4825 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4827 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4828 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4829 ARMCPRegInfo *r;
4830 /* Register the blanket "writes ignored" value first to cover the
4831 * whole space. Then update the specific ID registers to allow write
4832 * access, so that they ignore writes rather than causing them to
4833 * UNDEF.
4835 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4836 for (r = id_pre_v8_midr_cp_reginfo;
4837 r->type != ARM_CP_SENTINEL; r++) {
4838 r->access = PL1_RW;
4840 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4841 r->access = PL1_RW;
4843 id_tlbtr_reginfo.access = PL1_RW;
4844 id_tlbtr_reginfo.access = PL1_RW;
4846 if (arm_feature(env, ARM_FEATURE_V8)) {
4847 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4848 } else {
4849 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4851 define_arm_cp_regs(cpu, id_cp_reginfo);
4852 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4853 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4854 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4855 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4859 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4860 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4863 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4864 ARMCPRegInfo auxcr_reginfo[] = {
4865 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4866 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4867 .access = PL1_RW, .type = ARM_CP_CONST,
4868 .resetvalue = cpu->reset_auxcr },
4869 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4870 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4871 .access = PL2_RW, .type = ARM_CP_CONST,
4872 .resetvalue = 0 },
4873 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4874 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4875 .access = PL3_RW, .type = ARM_CP_CONST,
4876 .resetvalue = 0 },
4877 REGINFO_SENTINEL
4879 define_arm_cp_regs(cpu, auxcr_reginfo);
4882 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4883 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4884 /* 32 bit view is [31:18] 0...0 [43:32]. */
4885 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4886 | extract64(cpu->reset_cbar, 32, 12);
4887 ARMCPRegInfo cbar_reginfo[] = {
4888 { .name = "CBAR",
4889 .type = ARM_CP_CONST,
4890 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4891 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4892 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4893 .type = ARM_CP_CONST,
4894 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4895 .access = PL1_R, .resetvalue = cbar32 },
4896 REGINFO_SENTINEL
4898 /* We don't implement a r/w 64 bit CBAR currently */
4899 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4900 define_arm_cp_regs(cpu, cbar_reginfo);
4901 } else {
4902 ARMCPRegInfo cbar = {
4903 .name = "CBAR",
4904 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4905 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4906 .fieldoffset = offsetof(CPUARMState,
4907 cp15.c15_config_base_address)
4909 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4910 cbar.access = PL1_R;
4911 cbar.fieldoffset = 0;
4912 cbar.type = ARM_CP_CONST;
4914 define_one_arm_cp_reg(cpu, &cbar);
4918 /* Generic registers whose values depend on the implementation */
4920 ARMCPRegInfo sctlr = {
4921 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4922 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4923 .access = PL1_RW,
4924 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4925 offsetof(CPUARMState, cp15.sctlr_ns) },
4926 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4927 .raw_writefn = raw_write,
4929 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4930 /* Normally we would always end the TB on an SCTLR write, but Linux
4931 * arch/arm/mach-pxa/sleep.S expects two instructions following
4932 * an MMU enable to execute from cache. Imitate this behaviour.
4934 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4936 define_one_arm_cp_reg(cpu, &sctlr);
4940 ARMCPU *cpu_arm_init(const char *cpu_model)
4942 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4945 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4947 CPUState *cs = CPU(cpu);
4948 CPUARMState *env = &cpu->env;
4950 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4951 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4952 aarch64_fpu_gdb_set_reg,
4953 34, "aarch64-fpu.xml", 0);
4954 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4955 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4956 51, "arm-neon.xml", 0);
4957 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4958 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4959 35, "arm-vfp3.xml", 0);
4960 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4961 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4962 19, "arm-vfp.xml", 0);
4966 /* Sort alphabetically by type name, except for "any". */
4967 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4969 ObjectClass *class_a = (ObjectClass *)a;
4970 ObjectClass *class_b = (ObjectClass *)b;
4971 const char *name_a, *name_b;
4973 name_a = object_class_get_name(class_a);
4974 name_b = object_class_get_name(class_b);
4975 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4976 return 1;
4977 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4978 return -1;
4979 } else {
4980 return strcmp(name_a, name_b);
4984 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4986 ObjectClass *oc = data;
4987 CPUListState *s = user_data;
4988 const char *typename;
4989 char *name;
4991 typename = object_class_get_name(oc);
4992 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4993 (*s->cpu_fprintf)(s->file, " %s\n",
4994 name);
4995 g_free(name);
4998 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5000 CPUListState s = {
5001 .file = f,
5002 .cpu_fprintf = cpu_fprintf,
5004 GSList *list;
5006 list = object_class_get_list(TYPE_ARM_CPU, false);
5007 list = g_slist_sort(list, arm_cpu_list_compare);
5008 (*cpu_fprintf)(f, "Available CPUs:\n");
5009 g_slist_foreach(list, arm_cpu_list_entry, &s);
5010 g_slist_free(list);
5011 #ifdef CONFIG_KVM
5012 /* The 'host' CPU type is dynamically registered only if KVM is
5013 * enabled, so we have to special-case it here:
5015 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5016 #endif
5019 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5021 ObjectClass *oc = data;
5022 CpuDefinitionInfoList **cpu_list = user_data;
5023 CpuDefinitionInfoList *entry;
5024 CpuDefinitionInfo *info;
5025 const char *typename;
5027 typename = object_class_get_name(oc);
5028 info = g_malloc0(sizeof(*info));
5029 info->name = g_strndup(typename,
5030 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5032 entry = g_malloc0(sizeof(*entry));
5033 entry->value = info;
5034 entry->next = *cpu_list;
5035 *cpu_list = entry;
5038 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5040 CpuDefinitionInfoList *cpu_list = NULL;
5041 GSList *list;
5043 list = object_class_get_list(TYPE_ARM_CPU, false);
5044 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5045 g_slist_free(list);
5047 return cpu_list;
5050 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5051 void *opaque, int state, int secstate,
5052 int crm, int opc1, int opc2)
5054 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5055 * add a single reginfo struct to the hash table.
5057 uint32_t *key = g_new(uint32_t, 1);
5058 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5059 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5060 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5062 /* Reset the secure state to the specific incoming state. This is
5063 * necessary as the register may have been defined with both states.
5065 r2->secure = secstate;
5067 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5068 /* Register is banked (using both entries in array).
5069 * Overwriting fieldoffset as the array is only used to define
5070 * banked registers but later only fieldoffset is used.
5072 r2->fieldoffset = r->bank_fieldoffsets[ns];
5075 if (state == ARM_CP_STATE_AA32) {
5076 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5077 /* If the register is banked then we don't need to migrate or
5078 * reset the 32-bit instance in certain cases:
5080 * 1) If the register has both 32-bit and 64-bit instances then we
5081 * can count on the 64-bit instance taking care of the
5082 * non-secure bank.
5083 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5084 * taking care of the secure bank. This requires that separate
5085 * 32 and 64-bit definitions are provided.
5087 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5088 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5089 r2->type |= ARM_CP_ALIAS;
5091 } else if ((secstate != r->secure) && !ns) {
5092 /* The register is not banked so we only want to allow migration of
5093 * the non-secure instance.
5095 r2->type |= ARM_CP_ALIAS;
5098 if (r->state == ARM_CP_STATE_BOTH) {
5099 /* We assume it is a cp15 register if the .cp field is left unset.
5101 if (r2->cp == 0) {
5102 r2->cp = 15;
5105 #ifdef HOST_WORDS_BIGENDIAN
5106 if (r2->fieldoffset) {
5107 r2->fieldoffset += sizeof(uint32_t);
5109 #endif
5112 if (state == ARM_CP_STATE_AA64) {
5113 /* To allow abbreviation of ARMCPRegInfo
5114 * definitions, we treat cp == 0 as equivalent to
5115 * the value for "standard guest-visible sysreg".
5116 * STATE_BOTH definitions are also always "standard
5117 * sysreg" in their AArch64 view (the .cp value may
5118 * be non-zero for the benefit of the AArch32 view).
5120 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5121 r2->cp = CP_REG_ARM64_SYSREG_CP;
5123 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5124 r2->opc0, opc1, opc2);
5125 } else {
5126 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5128 if (opaque) {
5129 r2->opaque = opaque;
5131 /* reginfo passed to helpers is correct for the actual access,
5132 * and is never ARM_CP_STATE_BOTH:
5134 r2->state = state;
5135 /* Make sure reginfo passed to helpers for wildcarded regs
5136 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5138 r2->crm = crm;
5139 r2->opc1 = opc1;
5140 r2->opc2 = opc2;
5141 /* By convention, for wildcarded registers only the first
5142 * entry is used for migration; the others are marked as
5143 * ALIAS so we don't try to transfer the register
5144 * multiple times. Special registers (ie NOP/WFI) are
5145 * never migratable and not even raw-accessible.
5147 if ((r->type & ARM_CP_SPECIAL)) {
5148 r2->type |= ARM_CP_NO_RAW;
5150 if (((r->crm == CP_ANY) && crm != 0) ||
5151 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5152 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5153 r2->type |= ARM_CP_ALIAS;
5156 /* Check that raw accesses are either forbidden or handled. Note that
5157 * we can't assert this earlier because the setup of fieldoffset for
5158 * banked registers has to be done first.
5160 if (!(r2->type & ARM_CP_NO_RAW)) {
5161 assert(!raw_accessors_invalid(r2));
5164 /* Overriding of an existing definition must be explicitly
5165 * requested.
5167 if (!(r->type & ARM_CP_OVERRIDE)) {
5168 ARMCPRegInfo *oldreg;
5169 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5170 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5171 fprintf(stderr, "Register redefined: cp=%d %d bit "
5172 "crn=%d crm=%d opc1=%d opc2=%d, "
5173 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5174 r2->crn, r2->crm, r2->opc1, r2->opc2,
5175 oldreg->name, r2->name);
5176 g_assert_not_reached();
5179 g_hash_table_insert(cpu->cp_regs, key, r2);
5183 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5184 const ARMCPRegInfo *r, void *opaque)
5186 /* Define implementations of coprocessor registers.
5187 * We store these in a hashtable because typically
5188 * there are less than 150 registers in a space which
5189 * is 16*16*16*8*8 = 262144 in size.
5190 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5191 * If a register is defined twice then the second definition is
5192 * used, so this can be used to define some generic registers and
5193 * then override them with implementation specific variations.
5194 * At least one of the original and the second definition should
5195 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5196 * against accidental use.
5198 * The state field defines whether the register is to be
5199 * visible in the AArch32 or AArch64 execution state. If the
5200 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5201 * reginfo structure for the AArch32 view, which sees the lower
5202 * 32 bits of the 64 bit register.
5204 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5205 * be wildcarded. AArch64 registers are always considered to be 64
5206 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5207 * the register, if any.
5209 int crm, opc1, opc2, state;
5210 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5211 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5212 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5213 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5214 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5215 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5216 /* 64 bit registers have only CRm and Opc1 fields */
5217 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5218 /* op0 only exists in the AArch64 encodings */
5219 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5220 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5221 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5222 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5223 * encodes a minimum access level for the register. We roll this
5224 * runtime check into our general permission check code, so check
5225 * here that the reginfo's specified permissions are strict enough
5226 * to encompass the generic architectural permission check.
5228 if (r->state != ARM_CP_STATE_AA32) {
5229 int mask = 0;
5230 switch (r->opc1) {
5231 case 0: case 1: case 2:
5232 /* min_EL EL1 */
5233 mask = PL1_RW;
5234 break;
5235 case 3:
5236 /* min_EL EL0 */
5237 mask = PL0_RW;
5238 break;
5239 case 4:
5240 /* min_EL EL2 */
5241 mask = PL2_RW;
5242 break;
5243 case 5:
5244 /* unallocated encoding, so not possible */
5245 assert(false);
5246 break;
5247 case 6:
5248 /* min_EL EL3 */
5249 mask = PL3_RW;
5250 break;
5251 case 7:
5252 /* min_EL EL1, secure mode only (we don't check the latter) */
5253 mask = PL1_RW;
5254 break;
5255 default:
5256 /* broken reginfo with out-of-range opc1 */
5257 assert(false);
5258 break;
5260 /* assert our permissions are not too lax (stricter is fine) */
5261 assert((r->access & ~mask) == 0);
5264 /* Check that the register definition has enough info to handle
5265 * reads and writes if they are permitted.
5267 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5268 if (r->access & PL3_R) {
5269 assert((r->fieldoffset ||
5270 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5271 r->readfn);
5273 if (r->access & PL3_W) {
5274 assert((r->fieldoffset ||
5275 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5276 r->writefn);
5279 /* Bad type field probably means missing sentinel at end of reg list */
5280 assert(cptype_valid(r->type));
5281 for (crm = crmmin; crm <= crmmax; crm++) {
5282 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5283 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5284 for (state = ARM_CP_STATE_AA32;
5285 state <= ARM_CP_STATE_AA64; state++) {
5286 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5287 continue;
5289 if (state == ARM_CP_STATE_AA32) {
5290 /* Under AArch32 CP registers can be common
5291 * (same for secure and non-secure world) or banked.
5293 switch (r->secure) {
5294 case ARM_CP_SECSTATE_S:
5295 case ARM_CP_SECSTATE_NS:
5296 add_cpreg_to_hashtable(cpu, r, opaque, state,
5297 r->secure, crm, opc1, opc2);
5298 break;
5299 default:
5300 add_cpreg_to_hashtable(cpu, r, opaque, state,
5301 ARM_CP_SECSTATE_S,
5302 crm, opc1, opc2);
5303 add_cpreg_to_hashtable(cpu, r, opaque, state,
5304 ARM_CP_SECSTATE_NS,
5305 crm, opc1, opc2);
5306 break;
5308 } else {
5309 /* AArch64 registers get mapped to non-secure instance
5310 * of AArch32 */
5311 add_cpreg_to_hashtable(cpu, r, opaque, state,
5312 ARM_CP_SECSTATE_NS,
5313 crm, opc1, opc2);
5321 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5322 const ARMCPRegInfo *regs, void *opaque)
5324 /* Define a whole list of registers */
5325 const ARMCPRegInfo *r;
5326 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5327 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5331 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5333 return g_hash_table_lookup(cpregs, &encoded_cp);
5336 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5337 uint64_t value)
5339 /* Helper coprocessor write function for write-ignore registers */
5342 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5344 /* Helper coprocessor write function for read-as-zero registers */
5345 return 0;
5348 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5350 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5353 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5355 /* Return true if it is not valid for us to switch to
5356 * this CPU mode (ie all the UNPREDICTABLE cases in
5357 * the ARM ARM CPSRWriteByInstr pseudocode).
5360 /* Changes to or from Hyp via MSR and CPS are illegal. */
5361 if (write_type == CPSRWriteByInstr &&
5362 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5363 mode == ARM_CPU_MODE_HYP)) {
5364 return 1;
5367 switch (mode) {
5368 case ARM_CPU_MODE_USR:
5369 return 0;
5370 case ARM_CPU_MODE_SYS:
5371 case ARM_CPU_MODE_SVC:
5372 case ARM_CPU_MODE_ABT:
5373 case ARM_CPU_MODE_UND:
5374 case ARM_CPU_MODE_IRQ:
5375 case ARM_CPU_MODE_FIQ:
5376 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5377 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5379 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5380 * and CPS are treated as illegal mode changes.
5382 if (write_type == CPSRWriteByInstr &&
5383 (env->cp15.hcr_el2 & HCR_TGE) &&
5384 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5385 !arm_is_secure_below_el3(env)) {
5386 return 1;
5388 return 0;
5389 case ARM_CPU_MODE_HYP:
5390 return !arm_feature(env, ARM_FEATURE_EL2)
5391 || arm_current_el(env) < 2 || arm_is_secure(env);
5392 case ARM_CPU_MODE_MON:
5393 return arm_current_el(env) < 3;
5394 default:
5395 return 1;
5399 uint32_t cpsr_read(CPUARMState *env)
5401 int ZF;
5402 ZF = (env->ZF == 0);
5403 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5404 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5405 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5406 | ((env->condexec_bits & 0xfc) << 8)
5407 | (env->GE << 16) | (env->daif & CPSR_AIF);
5410 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5411 CPSRWriteType write_type)
5413 uint32_t changed_daif;
5415 if (mask & CPSR_NZCV) {
5416 env->ZF = (~val) & CPSR_Z;
5417 env->NF = val;
5418 env->CF = (val >> 29) & 1;
5419 env->VF = (val << 3) & 0x80000000;
5421 if (mask & CPSR_Q)
5422 env->QF = ((val & CPSR_Q) != 0);
5423 if (mask & CPSR_T)
5424 env->thumb = ((val & CPSR_T) != 0);
5425 if (mask & CPSR_IT_0_1) {
5426 env->condexec_bits &= ~3;
5427 env->condexec_bits |= (val >> 25) & 3;
5429 if (mask & CPSR_IT_2_7) {
5430 env->condexec_bits &= 3;
5431 env->condexec_bits |= (val >> 8) & 0xfc;
5433 if (mask & CPSR_GE) {
5434 env->GE = (val >> 16) & 0xf;
5437 /* In a V7 implementation that includes the security extensions but does
5438 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5439 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5440 * bits respectively.
5442 * In a V8 implementation, it is permitted for privileged software to
5443 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5445 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5446 arm_feature(env, ARM_FEATURE_EL3) &&
5447 !arm_feature(env, ARM_FEATURE_EL2) &&
5448 !arm_is_secure(env)) {
5450 changed_daif = (env->daif ^ val) & mask;
5452 if (changed_daif & CPSR_A) {
5453 /* Check to see if we are allowed to change the masking of async
5454 * abort exceptions from a non-secure state.
5456 if (!(env->cp15.scr_el3 & SCR_AW)) {
5457 qemu_log_mask(LOG_GUEST_ERROR,
5458 "Ignoring attempt to switch CPSR_A flag from "
5459 "non-secure world with SCR.AW bit clear\n");
5460 mask &= ~CPSR_A;
5464 if (changed_daif & CPSR_F) {
5465 /* Check to see if we are allowed to change the masking of FIQ
5466 * exceptions from a non-secure state.
5468 if (!(env->cp15.scr_el3 & SCR_FW)) {
5469 qemu_log_mask(LOG_GUEST_ERROR,
5470 "Ignoring attempt to switch CPSR_F flag from "
5471 "non-secure world with SCR.FW bit clear\n");
5472 mask &= ~CPSR_F;
5475 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5476 * If this bit is set software is not allowed to mask
5477 * FIQs, but is allowed to set CPSR_F to 0.
5479 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5480 (val & CPSR_F)) {
5481 qemu_log_mask(LOG_GUEST_ERROR,
5482 "Ignoring attempt to enable CPSR_F flag "
5483 "(non-maskable FIQ [NMFI] support enabled)\n");
5484 mask &= ~CPSR_F;
5489 env->daif &= ~(CPSR_AIF & mask);
5490 env->daif |= val & CPSR_AIF & mask;
5492 if (write_type != CPSRWriteRaw &&
5493 (env->uncached_cpsr & CPSR_M) != CPSR_USER &&
5494 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5495 if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5496 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5497 * v7, and has defined behaviour in v8:
5498 * + leave CPSR.M untouched
5499 * + allow changes to the other CPSR fields
5500 * + set PSTATE.IL
5501 * For user changes via the GDB stub, we don't set PSTATE.IL,
5502 * as this would be unnecessarily harsh for a user error.
5504 mask &= ~CPSR_M;
5505 if (write_type != CPSRWriteByGDBStub &&
5506 arm_feature(env, ARM_FEATURE_V8)) {
5507 mask |= CPSR_IL;
5508 val |= CPSR_IL;
5510 } else {
5511 switch_mode(env, val & CPSR_M);
5514 mask &= ~CACHED_CPSR_BITS;
5515 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5518 /* Sign/zero extend */
5519 uint32_t HELPER(sxtb16)(uint32_t x)
5521 uint32_t res;
5522 res = (uint16_t)(int8_t)x;
5523 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5524 return res;
5527 uint32_t HELPER(uxtb16)(uint32_t x)
5529 uint32_t res;
5530 res = (uint16_t)(uint8_t)x;
5531 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5532 return res;
5535 uint32_t HELPER(clz)(uint32_t x)
5537 return clz32(x);
5540 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5542 if (den == 0)
5543 return 0;
5544 if (num == INT_MIN && den == -1)
5545 return INT_MIN;
5546 return num / den;
5549 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5551 if (den == 0)
5552 return 0;
5553 return num / den;
5556 uint32_t HELPER(rbit)(uint32_t x)
5558 return revbit32(x);
5561 #if defined(CONFIG_USER_ONLY)
5563 /* These should probably raise undefined insn exceptions. */
5564 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5566 ARMCPU *cpu = arm_env_get_cpu(env);
5568 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5571 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5573 ARMCPU *cpu = arm_env_get_cpu(env);
5575 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5576 return 0;
5579 void switch_mode(CPUARMState *env, int mode)
5581 ARMCPU *cpu = arm_env_get_cpu(env);
5583 if (mode != ARM_CPU_MODE_USR) {
5584 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5588 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5589 uint32_t cur_el, bool secure)
5591 return 1;
5594 void aarch64_sync_64_to_32(CPUARMState *env)
5596 g_assert_not_reached();
5599 #else
5601 void switch_mode(CPUARMState *env, int mode)
5603 int old_mode;
5604 int i;
5606 old_mode = env->uncached_cpsr & CPSR_M;
5607 if (mode == old_mode)
5608 return;
5610 if (old_mode == ARM_CPU_MODE_FIQ) {
5611 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5612 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5613 } else if (mode == ARM_CPU_MODE_FIQ) {
5614 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5615 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5618 i = bank_number(old_mode);
5619 env->banked_r13[i] = env->regs[13];
5620 env->banked_r14[i] = env->regs[14];
5621 env->banked_spsr[i] = env->spsr;
5623 i = bank_number(mode);
5624 env->regs[13] = env->banked_r13[i];
5625 env->regs[14] = env->banked_r14[i];
5626 env->spsr = env->banked_spsr[i];
5629 /* Physical Interrupt Target EL Lookup Table
5631 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5633 * The below multi-dimensional table is used for looking up the target
5634 * exception level given numerous condition criteria. Specifically, the
5635 * target EL is based on SCR and HCR routing controls as well as the
5636 * currently executing EL and secure state.
5638 * Dimensions:
5639 * target_el_table[2][2][2][2][2][4]
5640 * | | | | | +--- Current EL
5641 * | | | | +------ Non-secure(0)/Secure(1)
5642 * | | | +--------- HCR mask override
5643 * | | +------------ SCR exec state control
5644 * | +--------------- SCR mask override
5645 * +------------------ 32-bit(0)/64-bit(1) EL3
5647 * The table values are as such:
5648 * 0-3 = EL0-EL3
5649 * -1 = Cannot occur
5651 * The ARM ARM target EL table includes entries indicating that an "exception
5652 * is not taken". The two cases where this is applicable are:
5653 * 1) An exception is taken from EL3 but the SCR does not have the exception
5654 * routed to EL3.
5655 * 2) An exception is taken from EL2 but the HCR does not have the exception
5656 * routed to EL2.
5657 * In these two cases, the below table contain a target of EL1. This value is
5658 * returned as it is expected that the consumer of the table data will check
5659 * for "target EL >= current EL" to ensure the exception is not taken.
5661 * SCR HCR
5662 * 64 EA AMO From
5663 * BIT IRQ IMO Non-secure Secure
5664 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5666 static const int8_t target_el_table[2][2][2][2][2][4] = {
5667 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5668 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5669 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5670 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5671 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5672 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5673 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5674 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5675 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5676 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5677 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5678 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5679 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5680 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5681 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5682 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5686 * Determine the target EL for physical exceptions
5688 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5689 uint32_t cur_el, bool secure)
5691 CPUARMState *env = cs->env_ptr;
5692 int rw;
5693 int scr;
5694 int hcr;
5695 int target_el;
5696 /* Is the highest EL AArch64? */
5697 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5699 if (arm_feature(env, ARM_FEATURE_EL3)) {
5700 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5701 } else {
5702 /* Either EL2 is the highest EL (and so the EL2 register width
5703 * is given by is64); or there is no EL2 or EL3, in which case
5704 * the value of 'rw' does not affect the table lookup anyway.
5706 rw = is64;
5709 switch (excp_idx) {
5710 case EXCP_IRQ:
5711 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5712 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5713 break;
5714 case EXCP_FIQ:
5715 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5716 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5717 break;
5718 default:
5719 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5720 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5721 break;
5724 /* If HCR.TGE is set then HCR is treated as being 1 */
5725 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5727 /* Perform a table-lookup for the target EL given the current state */
5728 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5730 assert(target_el > 0);
5732 return target_el;
5735 static void v7m_push(CPUARMState *env, uint32_t val)
5737 CPUState *cs = CPU(arm_env_get_cpu(env));
5739 env->regs[13] -= 4;
5740 stl_phys(cs->as, env->regs[13], val);
5743 static uint32_t v7m_pop(CPUARMState *env)
5745 CPUState *cs = CPU(arm_env_get_cpu(env));
5746 uint32_t val;
5748 val = ldl_phys(cs->as, env->regs[13]);
5749 env->regs[13] += 4;
5750 return val;
5753 /* Switch to V7M main or process stack pointer. */
5754 static void switch_v7m_sp(CPUARMState *env, int process)
5756 uint32_t tmp;
5757 if (env->v7m.current_sp != process) {
5758 tmp = env->v7m.other_sp;
5759 env->v7m.other_sp = env->regs[13];
5760 env->regs[13] = tmp;
5761 env->v7m.current_sp = process;
5765 static void do_v7m_exception_exit(CPUARMState *env)
5767 uint32_t type;
5768 uint32_t xpsr;
5770 type = env->regs[15];
5771 if (env->v7m.exception != 0)
5772 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5774 /* Switch to the target stack. */
5775 switch_v7m_sp(env, (type & 4) != 0);
5776 /* Pop registers. */
5777 env->regs[0] = v7m_pop(env);
5778 env->regs[1] = v7m_pop(env);
5779 env->regs[2] = v7m_pop(env);
5780 env->regs[3] = v7m_pop(env);
5781 env->regs[12] = v7m_pop(env);
5782 env->regs[14] = v7m_pop(env);
5783 env->regs[15] = v7m_pop(env);
5784 if (env->regs[15] & 1) {
5785 qemu_log_mask(LOG_GUEST_ERROR,
5786 "M profile return from interrupt with misaligned "
5787 "PC is UNPREDICTABLE\n");
5788 /* Actual hardware seems to ignore the lsbit, and there are several
5789 * RTOSes out there which incorrectly assume the r15 in the stack
5790 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5792 env->regs[15] &= ~1U;
5794 xpsr = v7m_pop(env);
5795 xpsr_write(env, xpsr, 0xfffffdff);
5796 /* Undo stack alignment. */
5797 if (xpsr & 0x200)
5798 env->regs[13] |= 4;
5799 /* ??? The exception return type specifies Thread/Handler mode. However
5800 this is also implied by the xPSR value. Not sure what to do
5801 if there is a mismatch. */
5802 /* ??? Likewise for mismatches between the CONTROL register and the stack
5803 pointer. */
5806 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5808 ARMCPU *cpu = ARM_CPU(cs);
5809 CPUARMState *env = &cpu->env;
5810 uint32_t xpsr = xpsr_read(env);
5811 uint32_t lr;
5812 uint32_t addr;
5814 arm_log_exception(cs->exception_index);
5816 lr = 0xfffffff1;
5817 if (env->v7m.current_sp)
5818 lr |= 4;
5819 if (env->v7m.exception == 0)
5820 lr |= 8;
5822 /* For exceptions we just mark as pending on the NVIC, and let that
5823 handle it. */
5824 /* TODO: Need to escalate if the current priority is higher than the
5825 one we're raising. */
5826 switch (cs->exception_index) {
5827 case EXCP_UDEF:
5828 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5829 return;
5830 case EXCP_SWI:
5831 /* The PC already points to the next instruction. */
5832 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5833 return;
5834 case EXCP_PREFETCH_ABORT:
5835 case EXCP_DATA_ABORT:
5836 /* TODO: if we implemented the MPU registers, this is where we
5837 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5839 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5840 return;
5841 case EXCP_BKPT:
5842 if (semihosting_enabled()) {
5843 int nr;
5844 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5845 if (nr == 0xab) {
5846 env->regs[15] += 2;
5847 qemu_log_mask(CPU_LOG_INT,
5848 "...handling as semihosting call 0x%x\n",
5849 env->regs[0]);
5850 env->regs[0] = do_arm_semihosting(env);
5851 return;
5854 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5855 return;
5856 case EXCP_IRQ:
5857 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5858 break;
5859 case EXCP_EXCEPTION_EXIT:
5860 do_v7m_exception_exit(env);
5861 return;
5862 default:
5863 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5864 return; /* Never happens. Keep compiler happy. */
5867 /* Align stack pointer. */
5868 /* ??? Should only do this if Configuration Control Register
5869 STACKALIGN bit is set. */
5870 if (env->regs[13] & 4) {
5871 env->regs[13] -= 4;
5872 xpsr |= 0x200;
5874 /* Switch to the handler mode. */
5875 v7m_push(env, xpsr);
5876 v7m_push(env, env->regs[15]);
5877 v7m_push(env, env->regs[14]);
5878 v7m_push(env, env->regs[12]);
5879 v7m_push(env, env->regs[3]);
5880 v7m_push(env, env->regs[2]);
5881 v7m_push(env, env->regs[1]);
5882 v7m_push(env, env->regs[0]);
5883 switch_v7m_sp(env, 0);
5884 /* Clear IT bits */
5885 env->condexec_bits = 0;
5886 env->regs[14] = lr;
5887 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5888 env->regs[15] = addr & 0xfffffffe;
5889 env->thumb = addr & 1;
5892 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5893 * register set. This is necessary when switching between AArch32 and AArch64
5894 * execution state.
5896 void aarch64_sync_32_to_64(CPUARMState *env)
5898 int i;
5899 uint32_t mode = env->uncached_cpsr & CPSR_M;
5901 /* We can blanket copy R[0:7] to X[0:7] */
5902 for (i = 0; i < 8; i++) {
5903 env->xregs[i] = env->regs[i];
5906 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5907 * Otherwise, they come from the banked user regs.
5909 if (mode == ARM_CPU_MODE_FIQ) {
5910 for (i = 8; i < 13; i++) {
5911 env->xregs[i] = env->usr_regs[i - 8];
5913 } else {
5914 for (i = 8; i < 13; i++) {
5915 env->xregs[i] = env->regs[i];
5919 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5920 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5921 * from the mode banked register.
5923 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5924 env->xregs[13] = env->regs[13];
5925 env->xregs[14] = env->regs[14];
5926 } else {
5927 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5928 /* HYP is an exception in that it is copied from r14 */
5929 if (mode == ARM_CPU_MODE_HYP) {
5930 env->xregs[14] = env->regs[14];
5931 } else {
5932 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5936 if (mode == ARM_CPU_MODE_HYP) {
5937 env->xregs[15] = env->regs[13];
5938 } else {
5939 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5942 if (mode == ARM_CPU_MODE_IRQ) {
5943 env->xregs[16] = env->regs[14];
5944 env->xregs[17] = env->regs[13];
5945 } else {
5946 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5947 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5950 if (mode == ARM_CPU_MODE_SVC) {
5951 env->xregs[18] = env->regs[14];
5952 env->xregs[19] = env->regs[13];
5953 } else {
5954 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5955 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5958 if (mode == ARM_CPU_MODE_ABT) {
5959 env->xregs[20] = env->regs[14];
5960 env->xregs[21] = env->regs[13];
5961 } else {
5962 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5963 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5966 if (mode == ARM_CPU_MODE_UND) {
5967 env->xregs[22] = env->regs[14];
5968 env->xregs[23] = env->regs[13];
5969 } else {
5970 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5971 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5974 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5975 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5976 * FIQ bank for r8-r14.
5978 if (mode == ARM_CPU_MODE_FIQ) {
5979 for (i = 24; i < 31; i++) {
5980 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5982 } else {
5983 for (i = 24; i < 29; i++) {
5984 env->xregs[i] = env->fiq_regs[i - 24];
5986 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5987 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5990 env->pc = env->regs[15];
5993 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5994 * register set. This is necessary when switching between AArch32 and AArch64
5995 * execution state.
5997 void aarch64_sync_64_to_32(CPUARMState *env)
5999 int i;
6000 uint32_t mode = env->uncached_cpsr & CPSR_M;
6002 /* We can blanket copy X[0:7] to R[0:7] */
6003 for (i = 0; i < 8; i++) {
6004 env->regs[i] = env->xregs[i];
6007 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6008 * Otherwise, we copy x8-x12 into the banked user regs.
6010 if (mode == ARM_CPU_MODE_FIQ) {
6011 for (i = 8; i < 13; i++) {
6012 env->usr_regs[i - 8] = env->xregs[i];
6014 } else {
6015 for (i = 8; i < 13; i++) {
6016 env->regs[i] = env->xregs[i];
6020 /* Registers r13 & r14 depend on the current mode.
6021 * If we are in a given mode, we copy the corresponding x registers to r13
6022 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6023 * for the mode.
6025 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6026 env->regs[13] = env->xregs[13];
6027 env->regs[14] = env->xregs[14];
6028 } else {
6029 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6031 /* HYP is an exception in that it does not have its own banked r14 but
6032 * shares the USR r14
6034 if (mode == ARM_CPU_MODE_HYP) {
6035 env->regs[14] = env->xregs[14];
6036 } else {
6037 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6041 if (mode == ARM_CPU_MODE_HYP) {
6042 env->regs[13] = env->xregs[15];
6043 } else {
6044 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6047 if (mode == ARM_CPU_MODE_IRQ) {
6048 env->regs[14] = env->xregs[16];
6049 env->regs[13] = env->xregs[17];
6050 } else {
6051 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6052 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6055 if (mode == ARM_CPU_MODE_SVC) {
6056 env->regs[14] = env->xregs[18];
6057 env->regs[13] = env->xregs[19];
6058 } else {
6059 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6060 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6063 if (mode == ARM_CPU_MODE_ABT) {
6064 env->regs[14] = env->xregs[20];
6065 env->regs[13] = env->xregs[21];
6066 } else {
6067 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6068 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6071 if (mode == ARM_CPU_MODE_UND) {
6072 env->regs[14] = env->xregs[22];
6073 env->regs[13] = env->xregs[23];
6074 } else {
6075 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6076 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6079 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6080 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6081 * FIQ bank for r8-r14.
6083 if (mode == ARM_CPU_MODE_FIQ) {
6084 for (i = 24; i < 31; i++) {
6085 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6087 } else {
6088 for (i = 24; i < 29; i++) {
6089 env->fiq_regs[i - 24] = env->xregs[i];
6091 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6092 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6095 env->regs[15] = env->pc;
6098 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6100 ARMCPU *cpu = ARM_CPU(cs);
6101 CPUARMState *env = &cpu->env;
6102 uint32_t addr;
6103 uint32_t mask;
6104 int new_mode;
6105 uint32_t offset;
6106 uint32_t moe;
6108 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6109 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6110 case EC_BREAKPOINT:
6111 case EC_BREAKPOINT_SAME_EL:
6112 moe = 1;
6113 break;
6114 case EC_WATCHPOINT:
6115 case EC_WATCHPOINT_SAME_EL:
6116 moe = 10;
6117 break;
6118 case EC_AA32_BKPT:
6119 moe = 3;
6120 break;
6121 case EC_VECTORCATCH:
6122 moe = 5;
6123 break;
6124 default:
6125 moe = 0;
6126 break;
6129 if (moe) {
6130 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6133 /* TODO: Vectored interrupt controller. */
6134 switch (cs->exception_index) {
6135 case EXCP_UDEF:
6136 new_mode = ARM_CPU_MODE_UND;
6137 addr = 0x04;
6138 mask = CPSR_I;
6139 if (env->thumb)
6140 offset = 2;
6141 else
6142 offset = 4;
6143 break;
6144 case EXCP_SWI:
6145 new_mode = ARM_CPU_MODE_SVC;
6146 addr = 0x08;
6147 mask = CPSR_I;
6148 /* The PC already points to the next instruction. */
6149 offset = 0;
6150 break;
6151 case EXCP_BKPT:
6152 env->exception.fsr = 2;
6153 /* Fall through to prefetch abort. */
6154 case EXCP_PREFETCH_ABORT:
6155 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6156 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6157 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6158 env->exception.fsr, (uint32_t)env->exception.vaddress);
6159 new_mode = ARM_CPU_MODE_ABT;
6160 addr = 0x0c;
6161 mask = CPSR_A | CPSR_I;
6162 offset = 4;
6163 break;
6164 case EXCP_DATA_ABORT:
6165 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6166 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6167 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6168 env->exception.fsr,
6169 (uint32_t)env->exception.vaddress);
6170 new_mode = ARM_CPU_MODE_ABT;
6171 addr = 0x10;
6172 mask = CPSR_A | CPSR_I;
6173 offset = 8;
6174 break;
6175 case EXCP_IRQ:
6176 new_mode = ARM_CPU_MODE_IRQ;
6177 addr = 0x18;
6178 /* Disable IRQ and imprecise data aborts. */
6179 mask = CPSR_A | CPSR_I;
6180 offset = 4;
6181 if (env->cp15.scr_el3 & SCR_IRQ) {
6182 /* IRQ routed to monitor mode */
6183 new_mode = ARM_CPU_MODE_MON;
6184 mask |= CPSR_F;
6186 break;
6187 case EXCP_FIQ:
6188 new_mode = ARM_CPU_MODE_FIQ;
6189 addr = 0x1c;
6190 /* Disable FIQ, IRQ and imprecise data aborts. */
6191 mask = CPSR_A | CPSR_I | CPSR_F;
6192 if (env->cp15.scr_el3 & SCR_FIQ) {
6193 /* FIQ routed to monitor mode */
6194 new_mode = ARM_CPU_MODE_MON;
6196 offset = 4;
6197 break;
6198 case EXCP_SMC:
6199 new_mode = ARM_CPU_MODE_MON;
6200 addr = 0x08;
6201 mask = CPSR_A | CPSR_I | CPSR_F;
6202 offset = 0;
6203 break;
6204 default:
6205 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6206 return; /* Never happens. Keep compiler happy. */
6209 if (new_mode == ARM_CPU_MODE_MON) {
6210 addr += env->cp15.mvbar;
6211 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6212 /* High vectors. When enabled, base address cannot be remapped. */
6213 addr += 0xffff0000;
6214 } else {
6215 /* ARM v7 architectures provide a vector base address register to remap
6216 * the interrupt vector table.
6217 * This register is only followed in non-monitor mode, and is banked.
6218 * Note: only bits 31:5 are valid.
6220 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6223 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6224 env->cp15.scr_el3 &= ~SCR_NS;
6227 switch_mode (env, new_mode);
6228 /* For exceptions taken to AArch32 we must clear the SS bit in both
6229 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6231 env->uncached_cpsr &= ~PSTATE_SS;
6232 env->spsr = cpsr_read(env);
6233 /* Clear IT bits. */
6234 env->condexec_bits = 0;
6235 /* Switch to the new mode, and to the correct instruction set. */
6236 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6237 env->daif |= mask;
6238 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6239 * and we should just guard the thumb mode on V4 */
6240 if (arm_feature(env, ARM_FEATURE_V4T)) {
6241 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6243 env->regs[14] = env->regs[15] + offset;
6244 env->regs[15] = addr;
6247 /* Handle exception entry to a target EL which is using AArch64 */
6248 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6250 ARMCPU *cpu = ARM_CPU(cs);
6251 CPUARMState *env = &cpu->env;
6252 unsigned int new_el = env->exception.target_el;
6253 target_ulong addr = env->cp15.vbar_el[new_el];
6254 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6256 if (arm_current_el(env) < new_el) {
6257 /* Entry vector offset depends on whether the implemented EL
6258 * immediately lower than the target level is using AArch32 or AArch64
6260 bool is_aa64;
6262 switch (new_el) {
6263 case 3:
6264 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6265 break;
6266 case 2:
6267 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6268 break;
6269 case 1:
6270 is_aa64 = is_a64(env);
6271 break;
6272 default:
6273 g_assert_not_reached();
6276 if (is_aa64) {
6277 addr += 0x400;
6278 } else {
6279 addr += 0x600;
6281 } else if (pstate_read(env) & PSTATE_SP) {
6282 addr += 0x200;
6285 switch (cs->exception_index) {
6286 case EXCP_PREFETCH_ABORT:
6287 case EXCP_DATA_ABORT:
6288 env->cp15.far_el[new_el] = env->exception.vaddress;
6289 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6290 env->cp15.far_el[new_el]);
6291 /* fall through */
6292 case EXCP_BKPT:
6293 case EXCP_UDEF:
6294 case EXCP_SWI:
6295 case EXCP_HVC:
6296 case EXCP_HYP_TRAP:
6297 case EXCP_SMC:
6298 env->cp15.esr_el[new_el] = env->exception.syndrome;
6299 break;
6300 case EXCP_IRQ:
6301 case EXCP_VIRQ:
6302 addr += 0x80;
6303 break;
6304 case EXCP_FIQ:
6305 case EXCP_VFIQ:
6306 addr += 0x100;
6307 break;
6308 case EXCP_SEMIHOST:
6309 qemu_log_mask(CPU_LOG_INT,
6310 "...handling as semihosting call 0x%" PRIx64 "\n",
6311 env->xregs[0]);
6312 env->xregs[0] = do_arm_semihosting(env);
6313 return;
6314 default:
6315 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6318 if (is_a64(env)) {
6319 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6320 aarch64_save_sp(env, arm_current_el(env));
6321 env->elr_el[new_el] = env->pc;
6322 } else {
6323 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6324 if (!env->thumb) {
6325 env->cp15.esr_el[new_el] |= 1 << 25;
6327 env->elr_el[new_el] = env->regs[15];
6329 aarch64_sync_32_to_64(env);
6331 env->condexec_bits = 0;
6333 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6334 env->elr_el[new_el]);
6336 pstate_write(env, PSTATE_DAIF | new_mode);
6337 env->aarch64 = 1;
6338 aarch64_restore_sp(env, new_el);
6340 env->pc = addr;
6342 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6343 new_el, env->pc, pstate_read(env));
6346 static inline bool check_for_semihosting(CPUState *cs)
6348 /* Check whether this exception is a semihosting call; if so
6349 * then handle it and return true; otherwise return false.
6351 ARMCPU *cpu = ARM_CPU(cs);
6352 CPUARMState *env = &cpu->env;
6354 if (is_a64(env)) {
6355 if (cs->exception_index == EXCP_SEMIHOST) {
6356 /* This is always the 64-bit semihosting exception.
6357 * The "is this usermode" and "is semihosting enabled"
6358 * checks have been done at translate time.
6360 qemu_log_mask(CPU_LOG_INT,
6361 "...handling as semihosting call 0x%" PRIx64 "\n",
6362 env->xregs[0]);
6363 env->xregs[0] = do_arm_semihosting(env);
6364 return true;
6366 return false;
6367 } else {
6368 uint32_t imm;
6370 /* Only intercept calls from privileged modes, to provide some
6371 * semblance of security.
6373 if (!semihosting_enabled() ||
6374 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6375 return false;
6378 switch (cs->exception_index) {
6379 case EXCP_SWI:
6380 /* Check for semihosting interrupt. */
6381 if (env->thumb) {
6382 imm = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
6383 & 0xff;
6384 if (imm == 0xab) {
6385 break;
6387 } else {
6388 imm = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
6389 & 0xffffff;
6390 if (imm == 0x123456) {
6391 break;
6394 return false;
6395 case EXCP_BKPT:
6396 /* See if this is a semihosting syscall. */
6397 if (env->thumb) {
6398 imm = arm_lduw_code(env, env->regs[15], env->bswap_code)
6399 & 0xff;
6400 if (imm == 0xab) {
6401 env->regs[15] += 2;
6402 break;
6405 return false;
6406 default:
6407 return false;
6410 qemu_log_mask(CPU_LOG_INT,
6411 "...handling as semihosting call 0x%x\n",
6412 env->regs[0]);
6413 env->regs[0] = do_arm_semihosting(env);
6414 return true;
6418 /* Handle a CPU exception for A and R profile CPUs.
6419 * Do any appropriate logging, handle PSCI calls, and then hand off
6420 * to the AArch64-entry or AArch32-entry function depending on the
6421 * target exception level's register width.
6423 void arm_cpu_do_interrupt(CPUState *cs)
6425 ARMCPU *cpu = ARM_CPU(cs);
6426 CPUARMState *env = &cpu->env;
6427 unsigned int new_el = env->exception.target_el;
6429 assert(!IS_M(env));
6431 arm_log_exception(cs->exception_index);
6432 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6433 new_el);
6434 if (qemu_loglevel_mask(CPU_LOG_INT)
6435 && !excp_is_internal(cs->exception_index)) {
6436 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6437 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6438 env->exception.syndrome);
6441 if (arm_is_psci_call(cpu, cs->exception_index)) {
6442 arm_handle_psci_call(cpu);
6443 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6444 return;
6447 /* Semihosting semantics depend on the register width of the
6448 * code that caused the exception, not the target exception level,
6449 * so must be handled here.
6451 if (check_for_semihosting(cs)) {
6452 return;
6455 assert(!excp_is_internal(cs->exception_index));
6456 if (arm_el_is_aa64(env, new_el)) {
6457 arm_cpu_do_interrupt_aarch64(cs);
6458 } else {
6459 arm_cpu_do_interrupt_aarch32(cs);
6462 if (!kvm_enabled()) {
6463 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6467 /* Return the exception level which controls this address translation regime */
6468 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6470 switch (mmu_idx) {
6471 case ARMMMUIdx_S2NS:
6472 case ARMMMUIdx_S1E2:
6473 return 2;
6474 case ARMMMUIdx_S1E3:
6475 return 3;
6476 case ARMMMUIdx_S1SE0:
6477 return arm_el_is_aa64(env, 3) ? 1 : 3;
6478 case ARMMMUIdx_S1SE1:
6479 case ARMMMUIdx_S1NSE0:
6480 case ARMMMUIdx_S1NSE1:
6481 return 1;
6482 default:
6483 g_assert_not_reached();
6487 /* Return true if this address translation regime is secure */
6488 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6490 switch (mmu_idx) {
6491 case ARMMMUIdx_S12NSE0:
6492 case ARMMMUIdx_S12NSE1:
6493 case ARMMMUIdx_S1NSE0:
6494 case ARMMMUIdx_S1NSE1:
6495 case ARMMMUIdx_S1E2:
6496 case ARMMMUIdx_S2NS:
6497 return false;
6498 case ARMMMUIdx_S1E3:
6499 case ARMMMUIdx_S1SE0:
6500 case ARMMMUIdx_S1SE1:
6501 return true;
6502 default:
6503 g_assert_not_reached();
6507 /* Return the SCTLR value which controls this address translation regime */
6508 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6510 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6513 /* Return true if the specified stage of address translation is disabled */
6514 static inline bool regime_translation_disabled(CPUARMState *env,
6515 ARMMMUIdx mmu_idx)
6517 if (mmu_idx == ARMMMUIdx_S2NS) {
6518 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6520 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6523 /* Return the TCR controlling this translation regime */
6524 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6526 if (mmu_idx == ARMMMUIdx_S2NS) {
6527 return &env->cp15.vtcr_el2;
6529 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6532 /* Return the TTBR associated with this translation regime */
6533 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6534 int ttbrn)
6536 if (mmu_idx == ARMMMUIdx_S2NS) {
6537 return env->cp15.vttbr_el2;
6539 if (ttbrn == 0) {
6540 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6541 } else {
6542 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6546 /* Return true if the translation regime is using LPAE format page tables */
6547 static inline bool regime_using_lpae_format(CPUARMState *env,
6548 ARMMMUIdx mmu_idx)
6550 int el = regime_el(env, mmu_idx);
6551 if (el == 2 || arm_el_is_aa64(env, el)) {
6552 return true;
6554 if (arm_feature(env, ARM_FEATURE_LPAE)
6555 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6556 return true;
6558 return false;
6561 /* Returns true if the stage 1 translation regime is using LPAE format page
6562 * tables. Used when raising alignment exceptions, whose FSR changes depending
6563 * on whether the long or short descriptor format is in use. */
6564 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6566 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6567 mmu_idx += ARMMMUIdx_S1NSE0;
6570 return regime_using_lpae_format(env, mmu_idx);
6573 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6575 switch (mmu_idx) {
6576 case ARMMMUIdx_S1SE0:
6577 case ARMMMUIdx_S1NSE0:
6578 return true;
6579 default:
6580 return false;
6581 case ARMMMUIdx_S12NSE0:
6582 case ARMMMUIdx_S12NSE1:
6583 g_assert_not_reached();
6587 /* Translate section/page access permissions to page
6588 * R/W protection flags
6590 * @env: CPUARMState
6591 * @mmu_idx: MMU index indicating required translation regime
6592 * @ap: The 3-bit access permissions (AP[2:0])
6593 * @domain_prot: The 2-bit domain access permissions
6595 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6596 int ap, int domain_prot)
6598 bool is_user = regime_is_user(env, mmu_idx);
6600 if (domain_prot == 3) {
6601 return PAGE_READ | PAGE_WRITE;
6604 switch (ap) {
6605 case 0:
6606 if (arm_feature(env, ARM_FEATURE_V7)) {
6607 return 0;
6609 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6610 case SCTLR_S:
6611 return is_user ? 0 : PAGE_READ;
6612 case SCTLR_R:
6613 return PAGE_READ;
6614 default:
6615 return 0;
6617 case 1:
6618 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6619 case 2:
6620 if (is_user) {
6621 return PAGE_READ;
6622 } else {
6623 return PAGE_READ | PAGE_WRITE;
6625 case 3:
6626 return PAGE_READ | PAGE_WRITE;
6627 case 4: /* Reserved. */
6628 return 0;
6629 case 5:
6630 return is_user ? 0 : PAGE_READ;
6631 case 6:
6632 return PAGE_READ;
6633 case 7:
6634 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6635 return 0;
6637 return PAGE_READ;
6638 default:
6639 g_assert_not_reached();
6643 /* Translate section/page access permissions to page
6644 * R/W protection flags.
6646 * @ap: The 2-bit simple AP (AP[2:1])
6647 * @is_user: TRUE if accessing from PL0
6649 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6651 switch (ap) {
6652 case 0:
6653 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6654 case 1:
6655 return PAGE_READ | PAGE_WRITE;
6656 case 2:
6657 return is_user ? 0 : PAGE_READ;
6658 case 3:
6659 return PAGE_READ;
6660 default:
6661 g_assert_not_reached();
6665 static inline int
6666 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6668 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6671 /* Translate S2 section/page access permissions to protection flags
6673 * @env: CPUARMState
6674 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6675 * @xn: XN (execute-never) bit
6677 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6679 int prot = 0;
6681 if (s2ap & 1) {
6682 prot |= PAGE_READ;
6684 if (s2ap & 2) {
6685 prot |= PAGE_WRITE;
6687 if (!xn) {
6688 prot |= PAGE_EXEC;
6690 return prot;
6693 /* Translate section/page access permissions to protection flags
6695 * @env: CPUARMState
6696 * @mmu_idx: MMU index indicating required translation regime
6697 * @is_aa64: TRUE if AArch64
6698 * @ap: The 2-bit simple AP (AP[2:1])
6699 * @ns: NS (non-secure) bit
6700 * @xn: XN (execute-never) bit
6701 * @pxn: PXN (privileged execute-never) bit
6703 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6704 int ap, int ns, int xn, int pxn)
6706 bool is_user = regime_is_user(env, mmu_idx);
6707 int prot_rw, user_rw;
6708 bool have_wxn;
6709 int wxn = 0;
6711 assert(mmu_idx != ARMMMUIdx_S2NS);
6713 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6714 if (is_user) {
6715 prot_rw = user_rw;
6716 } else {
6717 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6720 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6721 return prot_rw;
6724 /* TODO have_wxn should be replaced with
6725 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6726 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6727 * compatible processors have EL2, which is required for [U]WXN.
6729 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6731 if (have_wxn) {
6732 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6735 if (is_aa64) {
6736 switch (regime_el(env, mmu_idx)) {
6737 case 1:
6738 if (!is_user) {
6739 xn = pxn || (user_rw & PAGE_WRITE);
6741 break;
6742 case 2:
6743 case 3:
6744 break;
6746 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6747 switch (regime_el(env, mmu_idx)) {
6748 case 1:
6749 case 3:
6750 if (is_user) {
6751 xn = xn || !(user_rw & PAGE_READ);
6752 } else {
6753 int uwxn = 0;
6754 if (have_wxn) {
6755 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6757 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6758 (uwxn && (user_rw & PAGE_WRITE));
6760 break;
6761 case 2:
6762 break;
6764 } else {
6765 xn = wxn = 0;
6768 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6769 return prot_rw;
6771 return prot_rw | PAGE_EXEC;
6774 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6775 uint32_t *table, uint32_t address)
6777 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6778 TCR *tcr = regime_tcr(env, mmu_idx);
6780 if (address & tcr->mask) {
6781 if (tcr->raw_tcr & TTBCR_PD1) {
6782 /* Translation table walk disabled for TTBR1 */
6783 return false;
6785 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6786 } else {
6787 if (tcr->raw_tcr & TTBCR_PD0) {
6788 /* Translation table walk disabled for TTBR0 */
6789 return false;
6791 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6793 *table |= (address >> 18) & 0x3ffc;
6794 return true;
6797 /* Translate a S1 pagetable walk through S2 if needed. */
6798 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6799 hwaddr addr, MemTxAttrs txattrs,
6800 uint32_t *fsr,
6801 ARMMMUFaultInfo *fi)
6803 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6804 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6805 target_ulong s2size;
6806 hwaddr s2pa;
6807 int s2prot;
6808 int ret;
6810 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
6811 &txattrs, &s2prot, &s2size, fsr, fi);
6812 if (ret) {
6813 fi->s2addr = addr;
6814 fi->stage2 = true;
6815 fi->s1ptw = true;
6816 return ~0;
6818 addr = s2pa;
6820 return addr;
6823 /* All loads done in the course of a page table walk go through here.
6824 * TODO: rather than ignoring errors from physical memory reads (which
6825 * are external aborts in ARM terminology) we should propagate this
6826 * error out so that we can turn it into a Data Abort if this walk
6827 * was being done for a CPU load/store or an address translation instruction
6828 * (but not if it was for a debug access).
6830 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6831 ARMMMUIdx mmu_idx, uint32_t *fsr,
6832 ARMMMUFaultInfo *fi)
6834 ARMCPU *cpu = ARM_CPU(cs);
6835 CPUARMState *env = &cpu->env;
6836 MemTxAttrs attrs = {};
6837 AddressSpace *as;
6839 attrs.secure = is_secure;
6840 as = arm_addressspace(cs, attrs);
6841 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6842 if (fi->s1ptw) {
6843 return 0;
6845 return address_space_ldl(as, addr, attrs, NULL);
6848 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6849 ARMMMUIdx mmu_idx, uint32_t *fsr,
6850 ARMMMUFaultInfo *fi)
6852 ARMCPU *cpu = ARM_CPU(cs);
6853 CPUARMState *env = &cpu->env;
6854 MemTxAttrs attrs = {};
6855 AddressSpace *as;
6857 attrs.secure = is_secure;
6858 as = arm_addressspace(cs, attrs);
6859 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6860 if (fi->s1ptw) {
6861 return 0;
6863 return address_space_ldq(as, addr, attrs, NULL);
6866 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6867 int access_type, ARMMMUIdx mmu_idx,
6868 hwaddr *phys_ptr, int *prot,
6869 target_ulong *page_size, uint32_t *fsr,
6870 ARMMMUFaultInfo *fi)
6872 CPUState *cs = CPU(arm_env_get_cpu(env));
6873 int code;
6874 uint32_t table;
6875 uint32_t desc;
6876 int type;
6877 int ap;
6878 int domain = 0;
6879 int domain_prot;
6880 hwaddr phys_addr;
6881 uint32_t dacr;
6883 /* Pagetable walk. */
6884 /* Lookup l1 descriptor. */
6885 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6886 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6887 code = 5;
6888 goto do_fault;
6890 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6891 mmu_idx, fsr, fi);
6892 type = (desc & 3);
6893 domain = (desc >> 5) & 0x0f;
6894 if (regime_el(env, mmu_idx) == 1) {
6895 dacr = env->cp15.dacr_ns;
6896 } else {
6897 dacr = env->cp15.dacr_s;
6899 domain_prot = (dacr >> (domain * 2)) & 3;
6900 if (type == 0) {
6901 /* Section translation fault. */
6902 code = 5;
6903 goto do_fault;
6905 if (domain_prot == 0 || domain_prot == 2) {
6906 if (type == 2)
6907 code = 9; /* Section domain fault. */
6908 else
6909 code = 11; /* Page domain fault. */
6910 goto do_fault;
6912 if (type == 2) {
6913 /* 1Mb section. */
6914 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6915 ap = (desc >> 10) & 3;
6916 code = 13;
6917 *page_size = 1024 * 1024;
6918 } else {
6919 /* Lookup l2 entry. */
6920 if (type == 1) {
6921 /* Coarse pagetable. */
6922 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6923 } else {
6924 /* Fine pagetable. */
6925 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6927 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6928 mmu_idx, fsr, fi);
6929 switch (desc & 3) {
6930 case 0: /* Page translation fault. */
6931 code = 7;
6932 goto do_fault;
6933 case 1: /* 64k page. */
6934 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6935 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
6936 *page_size = 0x10000;
6937 break;
6938 case 2: /* 4k page. */
6939 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6940 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
6941 *page_size = 0x1000;
6942 break;
6943 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6944 if (type == 1) {
6945 /* ARMv6/XScale extended small page format */
6946 if (arm_feature(env, ARM_FEATURE_XSCALE)
6947 || arm_feature(env, ARM_FEATURE_V6)) {
6948 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6949 *page_size = 0x1000;
6950 } else {
6951 /* UNPREDICTABLE in ARMv5; we choose to take a
6952 * page translation fault.
6954 code = 7;
6955 goto do_fault;
6957 } else {
6958 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6959 *page_size = 0x400;
6961 ap = (desc >> 4) & 3;
6962 break;
6963 default:
6964 /* Never happens, but compiler isn't smart enough to tell. */
6965 abort();
6967 code = 15;
6969 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6970 *prot |= *prot ? PAGE_EXEC : 0;
6971 if (!(*prot & (1 << access_type))) {
6972 /* Access permission fault. */
6973 goto do_fault;
6975 *phys_ptr = phys_addr;
6976 return false;
6977 do_fault:
6978 *fsr = code | (domain << 4);
6979 return true;
6982 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6983 int access_type, ARMMMUIdx mmu_idx,
6984 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6985 target_ulong *page_size, uint32_t *fsr,
6986 ARMMMUFaultInfo *fi)
6988 CPUState *cs = CPU(arm_env_get_cpu(env));
6989 int code;
6990 uint32_t table;
6991 uint32_t desc;
6992 uint32_t xn;
6993 uint32_t pxn = 0;
6994 int type;
6995 int ap;
6996 int domain = 0;
6997 int domain_prot;
6998 hwaddr phys_addr;
6999 uint32_t dacr;
7000 bool ns;
7002 /* Pagetable walk. */
7003 /* Lookup l1 descriptor. */
7004 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7005 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7006 code = 5;
7007 goto do_fault;
7009 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7010 mmu_idx, fsr, fi);
7011 type = (desc & 3);
7012 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7013 /* Section translation fault, or attempt to use the encoding
7014 * which is Reserved on implementations without PXN.
7016 code = 5;
7017 goto do_fault;
7019 if ((type == 1) || !(desc & (1 << 18))) {
7020 /* Page or Section. */
7021 domain = (desc >> 5) & 0x0f;
7023 if (regime_el(env, mmu_idx) == 1) {
7024 dacr = env->cp15.dacr_ns;
7025 } else {
7026 dacr = env->cp15.dacr_s;
7028 domain_prot = (dacr >> (domain * 2)) & 3;
7029 if (domain_prot == 0 || domain_prot == 2) {
7030 if (type != 1) {
7031 code = 9; /* Section domain fault. */
7032 } else {
7033 code = 11; /* Page domain fault. */
7035 goto do_fault;
7037 if (type != 1) {
7038 if (desc & (1 << 18)) {
7039 /* Supersection. */
7040 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7041 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7042 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7043 *page_size = 0x1000000;
7044 } else {
7045 /* Section. */
7046 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7047 *page_size = 0x100000;
7049 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7050 xn = desc & (1 << 4);
7051 pxn = desc & 1;
7052 code = 13;
7053 ns = extract32(desc, 19, 1);
7054 } else {
7055 if (arm_feature(env, ARM_FEATURE_PXN)) {
7056 pxn = (desc >> 2) & 1;
7058 ns = extract32(desc, 3, 1);
7059 /* Lookup l2 entry. */
7060 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7061 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7062 mmu_idx, fsr, fi);
7063 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7064 switch (desc & 3) {
7065 case 0: /* Page translation fault. */
7066 code = 7;
7067 goto do_fault;
7068 case 1: /* 64k page. */
7069 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7070 xn = desc & (1 << 15);
7071 *page_size = 0x10000;
7072 break;
7073 case 2: case 3: /* 4k page. */
7074 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7075 xn = desc & 1;
7076 *page_size = 0x1000;
7077 break;
7078 default:
7079 /* Never happens, but compiler isn't smart enough to tell. */
7080 abort();
7082 code = 15;
7084 if (domain_prot == 3) {
7085 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7086 } else {
7087 if (pxn && !regime_is_user(env, mmu_idx)) {
7088 xn = 1;
7090 if (xn && access_type == 2)
7091 goto do_fault;
7093 if (arm_feature(env, ARM_FEATURE_V6K) &&
7094 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7095 /* The simplified model uses AP[0] as an access control bit. */
7096 if ((ap & 1) == 0) {
7097 /* Access flag fault. */
7098 code = (code == 15) ? 6 : 3;
7099 goto do_fault;
7101 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7102 } else {
7103 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7105 if (*prot && !xn) {
7106 *prot |= PAGE_EXEC;
7108 if (!(*prot & (1 << access_type))) {
7109 /* Access permission fault. */
7110 goto do_fault;
7113 if (ns) {
7114 /* The NS bit will (as required by the architecture) have no effect if
7115 * the CPU doesn't support TZ or this is a non-secure translation
7116 * regime, because the attribute will already be non-secure.
7118 attrs->secure = false;
7120 *phys_ptr = phys_addr;
7121 return false;
7122 do_fault:
7123 *fsr = code | (domain << 4);
7124 return true;
7127 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7128 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7130 typedef enum {
7131 translation_fault = 1,
7132 access_fault = 2,
7133 permission_fault = 3,
7134 } MMUFaultType;
7137 * check_s2_mmu_setup
7138 * @cpu: ARMCPU
7139 * @is_aa64: True if the translation regime is in AArch64 state
7140 * @startlevel: Suggested starting level
7141 * @inputsize: Bitsize of IPAs
7142 * @stride: Page-table stride (See the ARM ARM)
7144 * Returns true if the suggested S2 translation parameters are OK and
7145 * false otherwise.
7147 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7148 int inputsize, int stride)
7150 const int grainsize = stride + 3;
7151 int startsizecheck;
7153 /* Negative levels are never allowed. */
7154 if (level < 0) {
7155 return false;
7158 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7159 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7160 return false;
7163 if (is_aa64) {
7164 CPUARMState *env = &cpu->env;
7165 unsigned int pamax = arm_pamax(cpu);
7167 switch (stride) {
7168 case 13: /* 64KB Pages. */
7169 if (level == 0 || (level == 1 && pamax <= 42)) {
7170 return false;
7172 break;
7173 case 11: /* 16KB Pages. */
7174 if (level == 0 || (level == 1 && pamax <= 40)) {
7175 return false;
7177 break;
7178 case 9: /* 4KB Pages. */
7179 if (level == 0 && pamax <= 42) {
7180 return false;
7182 break;
7183 default:
7184 g_assert_not_reached();
7187 /* Inputsize checks. */
7188 if (inputsize > pamax &&
7189 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7190 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7191 return false;
7193 } else {
7194 /* AArch32 only supports 4KB pages. Assert on that. */
7195 assert(stride == 9);
7197 if (level == 0) {
7198 return false;
7201 return true;
7204 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7205 int access_type, ARMMMUIdx mmu_idx,
7206 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7207 target_ulong *page_size_ptr, uint32_t *fsr,
7208 ARMMMUFaultInfo *fi)
7210 ARMCPU *cpu = arm_env_get_cpu(env);
7211 CPUState *cs = CPU(cpu);
7212 /* Read an LPAE long-descriptor translation table. */
7213 MMUFaultType fault_type = translation_fault;
7214 uint32_t level = 1;
7215 uint32_t epd = 0;
7216 int32_t t0sz, t1sz;
7217 uint32_t tg;
7218 uint64_t ttbr;
7219 int ttbr_select;
7220 hwaddr descaddr, descmask;
7221 uint32_t tableattrs;
7222 target_ulong page_size;
7223 uint32_t attrs;
7224 int32_t stride = 9;
7225 int32_t va_size = 32;
7226 int inputsize;
7227 int32_t tbi = 0;
7228 TCR *tcr = regime_tcr(env, mmu_idx);
7229 int ap, ns, xn, pxn;
7230 uint32_t el = regime_el(env, mmu_idx);
7231 bool ttbr1_valid = true;
7232 uint64_t descaddrmask;
7234 /* TODO:
7235 * This code does not handle the different format TCR for VTCR_EL2.
7236 * This code also does not support shareability levels.
7237 * Attribute and permission bit handling should also be checked when adding
7238 * support for those page table walks.
7240 if (arm_el_is_aa64(env, el)) {
7241 va_size = 64;
7242 if (el > 1) {
7243 if (mmu_idx != ARMMMUIdx_S2NS) {
7244 tbi = extract64(tcr->raw_tcr, 20, 1);
7246 } else {
7247 if (extract64(address, 55, 1)) {
7248 tbi = extract64(tcr->raw_tcr, 38, 1);
7249 } else {
7250 tbi = extract64(tcr->raw_tcr, 37, 1);
7253 tbi *= 8;
7255 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7256 * invalid.
7258 if (el > 1) {
7259 ttbr1_valid = false;
7261 } else {
7262 /* There is no TTBR1 for EL2 */
7263 if (el == 2) {
7264 ttbr1_valid = false;
7268 /* Determine whether this address is in the region controlled by
7269 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7270 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7271 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7273 if (va_size == 64) {
7274 /* AArch64 translation. */
7275 t0sz = extract32(tcr->raw_tcr, 0, 6);
7276 t0sz = MIN(t0sz, 39);
7277 t0sz = MAX(t0sz, 16);
7278 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7279 /* AArch32 stage 1 translation. */
7280 t0sz = extract32(tcr->raw_tcr, 0, 3);
7281 } else {
7282 /* AArch32 stage 2 translation. */
7283 bool sext = extract32(tcr->raw_tcr, 4, 1);
7284 bool sign = extract32(tcr->raw_tcr, 3, 1);
7285 t0sz = sextract32(tcr->raw_tcr, 0, 4);
7287 /* If the sign-extend bit is not the same as t0sz[3], the result
7288 * is unpredictable. Flag this as a guest error. */
7289 if (sign != sext) {
7290 qemu_log_mask(LOG_GUEST_ERROR,
7291 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7294 t1sz = extract32(tcr->raw_tcr, 16, 6);
7295 if (va_size == 64) {
7296 t1sz = MIN(t1sz, 39);
7297 t1sz = MAX(t1sz, 16);
7299 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
7300 /* there is a ttbr0 region and we are in it (high bits all zero) */
7301 ttbr_select = 0;
7302 } else if (ttbr1_valid && t1sz &&
7303 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
7304 /* there is a ttbr1 region and we are in it (high bits all one) */
7305 ttbr_select = 1;
7306 } else if (!t0sz) {
7307 /* ttbr0 region is "everything not in the ttbr1 region" */
7308 ttbr_select = 0;
7309 } else if (!t1sz && ttbr1_valid) {
7310 /* ttbr1 region is "everything not in the ttbr0 region" */
7311 ttbr_select = 1;
7312 } else {
7313 /* in the gap between the two regions, this is a Translation fault */
7314 fault_type = translation_fault;
7315 goto do_fault;
7318 /* Note that QEMU ignores shareability and cacheability attributes,
7319 * so we don't need to do anything with the SH, ORGN, IRGN fields
7320 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7321 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7322 * implement any ASID-like capability so we can ignore it (instead
7323 * we will always flush the TLB any time the ASID is changed).
7325 if (ttbr_select == 0) {
7326 ttbr = regime_ttbr(env, mmu_idx, 0);
7327 if (el < 2) {
7328 epd = extract32(tcr->raw_tcr, 7, 1);
7330 inputsize = va_size - t0sz;
7332 tg = extract32(tcr->raw_tcr, 14, 2);
7333 if (tg == 1) { /* 64KB pages */
7334 stride = 13;
7336 if (tg == 2) { /* 16KB pages */
7337 stride = 11;
7339 } else {
7340 /* We should only be here if TTBR1 is valid */
7341 assert(ttbr1_valid);
7343 ttbr = regime_ttbr(env, mmu_idx, 1);
7344 epd = extract32(tcr->raw_tcr, 23, 1);
7345 inputsize = va_size - t1sz;
7347 tg = extract32(tcr->raw_tcr, 30, 2);
7348 if (tg == 3) { /* 64KB pages */
7349 stride = 13;
7351 if (tg == 1) { /* 16KB pages */
7352 stride = 11;
7356 /* Here we should have set up all the parameters for the translation:
7357 * va_size, inputsize, ttbr, epd, stride, tbi
7360 if (epd) {
7361 /* Translation table walk disabled => Translation fault on TLB miss
7362 * Note: This is always 0 on 64-bit EL2 and EL3.
7364 goto do_fault;
7367 if (mmu_idx != ARMMMUIdx_S2NS) {
7368 /* The starting level depends on the virtual address size (which can
7369 * be up to 48 bits) and the translation granule size. It indicates
7370 * the number of strides (stride bits at a time) needed to
7371 * consume the bits of the input address. In the pseudocode this is:
7372 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7373 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7374 * our 'stride + 3' and 'stride' is our 'stride'.
7375 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7376 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7377 * = 4 - (inputsize - 4) / stride;
7379 level = 4 - (inputsize - 4) / stride;
7380 } else {
7381 /* For stage 2 translations the starting level is specified by the
7382 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7384 int startlevel = extract32(tcr->raw_tcr, 6, 2);
7385 bool ok;
7387 if (va_size == 32 || stride == 9) {
7388 /* AArch32 or 4KB pages */
7389 level = 2 - startlevel;
7390 } else {
7391 /* 16KB or 64KB pages */
7392 level = 3 - startlevel;
7395 /* Check that the starting level is valid. */
7396 ok = check_s2_mmu_setup(cpu, va_size == 64, level, inputsize, stride);
7397 if (!ok) {
7398 /* AArch64 reports these as level 0 faults.
7399 * AArch32 reports these as level 1 faults.
7401 level = va_size == 64 ? 0 : 1;
7402 fault_type = translation_fault;
7403 goto do_fault;
7407 /* Clear the vaddr bits which aren't part of the within-region address,
7408 * so that we don't have to special case things when calculating the
7409 * first descriptor address.
7411 if (va_size != inputsize) {
7412 address &= (1ULL << inputsize) - 1;
7415 descmask = (1ULL << (stride + 3)) - 1;
7417 /* Now we can extract the actual base address from the TTBR */
7418 descaddr = extract64(ttbr, 0, 48);
7419 descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);
7421 /* The address field in the descriptor goes up to bit 39 for ARMv7
7422 * but up to bit 47 for ARMv8.
7424 if (arm_feature(env, ARM_FEATURE_V8)) {
7425 descaddrmask = 0xfffffffff000ULL;
7426 } else {
7427 descaddrmask = 0xfffffff000ULL;
7430 /* Secure accesses start with the page table in secure memory and
7431 * can be downgraded to non-secure at any step. Non-secure accesses
7432 * remain non-secure. We implement this by just ORing in the NSTable/NS
7433 * bits at each step.
7435 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7436 for (;;) {
7437 uint64_t descriptor;
7438 bool nstable;
7440 descaddr |= (address >> (stride * (4 - level))) & descmask;
7441 descaddr &= ~7ULL;
7442 nstable = extract32(tableattrs, 4, 1);
7443 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7444 if (fi->s1ptw) {
7445 goto do_fault;
7448 if (!(descriptor & 1) ||
7449 (!(descriptor & 2) && (level == 3))) {
7450 /* Invalid, or the Reserved level 3 encoding */
7451 goto do_fault;
7453 descaddr = descriptor & descaddrmask;
7455 if ((descriptor & 2) && (level < 3)) {
7456 /* Table entry. The top five bits are attributes which may
7457 * propagate down through lower levels of the table (and
7458 * which are all arranged so that 0 means "no effect", so
7459 * we can gather them up by ORing in the bits at each level).
7461 tableattrs |= extract64(descriptor, 59, 5);
7462 level++;
7463 continue;
7465 /* Block entry at level 1 or 2, or page entry at level 3.
7466 * These are basically the same thing, although the number
7467 * of bits we pull in from the vaddr varies.
7469 page_size = (1ULL << ((stride * (4 - level)) + 3));
7470 descaddr |= (address & (page_size - 1));
7471 /* Extract attributes from the descriptor */
7472 attrs = extract64(descriptor, 2, 10)
7473 | (extract64(descriptor, 52, 12) << 10);
7475 if (mmu_idx == ARMMMUIdx_S2NS) {
7476 /* Stage 2 table descriptors do not include any attribute fields */
7477 break;
7479 /* Merge in attributes from table descriptors */
7480 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7481 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7482 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7483 * means "force PL1 access only", which means forcing AP[1] to 0.
7485 if (extract32(tableattrs, 2, 1)) {
7486 attrs &= ~(1 << 4);
7488 attrs |= nstable << 3; /* NS */
7489 break;
7491 /* Here descaddr is the final physical address, and attributes
7492 * are all in attrs.
7494 fault_type = access_fault;
7495 if ((attrs & (1 << 8)) == 0) {
7496 /* Access flag */
7497 goto do_fault;
7500 ap = extract32(attrs, 4, 2);
7501 xn = extract32(attrs, 12, 1);
7503 if (mmu_idx == ARMMMUIdx_S2NS) {
7504 ns = true;
7505 *prot = get_S2prot(env, ap, xn);
7506 } else {
7507 ns = extract32(attrs, 3, 1);
7508 pxn = extract32(attrs, 11, 1);
7509 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
7512 fault_type = permission_fault;
7513 if (!(*prot & (1 << access_type))) {
7514 goto do_fault;
7517 if (ns) {
7518 /* The NS bit will (as required by the architecture) have no effect if
7519 * the CPU doesn't support TZ or this is a non-secure translation
7520 * regime, because the attribute will already be non-secure.
7522 txattrs->secure = false;
7524 *phys_ptr = descaddr;
7525 *page_size_ptr = page_size;
7526 return false;
7528 do_fault:
7529 /* Long-descriptor format IFSR/DFSR value */
7530 *fsr = (1 << 9) | (fault_type << 2) | level;
7531 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7532 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7533 return true;
7536 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7537 ARMMMUIdx mmu_idx,
7538 int32_t address, int *prot)
7540 *prot = PAGE_READ | PAGE_WRITE;
7541 switch (address) {
7542 case 0xF0000000 ... 0xFFFFFFFF:
7543 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7544 *prot |= PAGE_EXEC;
7546 break;
7547 case 0x00000000 ... 0x7FFFFFFF:
7548 *prot |= PAGE_EXEC;
7549 break;
7554 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7555 int access_type, ARMMMUIdx mmu_idx,
7556 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7558 ARMCPU *cpu = arm_env_get_cpu(env);
7559 int n;
7560 bool is_user = regime_is_user(env, mmu_idx);
7562 *phys_ptr = address;
7563 *prot = 0;
7565 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7566 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7567 } else { /* MPU enabled */
7568 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7569 /* region search */
7570 uint32_t base = env->pmsav7.drbar[n];
7571 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7572 uint32_t rmask;
7573 bool srdis = false;
7575 if (!(env->pmsav7.drsr[n] & 0x1)) {
7576 continue;
7579 if (!rsize) {
7580 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7581 continue;
7583 rsize++;
7584 rmask = (1ull << rsize) - 1;
7586 if (base & rmask) {
7587 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7588 "to DRSR region size, mask = %" PRIx32,
7589 base, rmask);
7590 continue;
7593 if (address < base || address > base + rmask) {
7594 continue;
7597 /* Region matched */
7599 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7600 int i, snd;
7601 uint32_t srdis_mask;
7603 rsize -= 3; /* sub region size (power of 2) */
7604 snd = ((address - base) >> rsize) & 0x7;
7605 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7607 srdis_mask = srdis ? 0x3 : 0x0;
7608 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7609 /* This will check in groups of 2, 4 and then 8, whether
7610 * the subregion bits are consistent. rsize is incremented
7611 * back up to give the region size, considering consistent
7612 * adjacent subregions as one region. Stop testing if rsize
7613 * is already big enough for an entire QEMU page.
7615 int snd_rounded = snd & ~(i - 1);
7616 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7617 snd_rounded + 8, i);
7618 if (srdis_mask ^ srdis_multi) {
7619 break;
7621 srdis_mask = (srdis_mask << i) | srdis_mask;
7622 rsize++;
7625 if (rsize < TARGET_PAGE_BITS) {
7626 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7627 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7628 rsize, TARGET_PAGE_BITS);
7629 continue;
7631 if (srdis) {
7632 continue;
7634 break;
7637 if (n == -1) { /* no hits */
7638 if (cpu->pmsav7_dregion &&
7639 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7640 /* background fault */
7641 *fsr = 0;
7642 return true;
7644 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7645 } else { /* a MPU hit! */
7646 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7648 if (is_user) { /* User mode AP bit decoding */
7649 switch (ap) {
7650 case 0:
7651 case 1:
7652 case 5:
7653 break; /* no access */
7654 case 3:
7655 *prot |= PAGE_WRITE;
7656 /* fall through */
7657 case 2:
7658 case 6:
7659 *prot |= PAGE_READ | PAGE_EXEC;
7660 break;
7661 default:
7662 qemu_log_mask(LOG_GUEST_ERROR,
7663 "Bad value for AP bits in DRACR %"
7664 PRIx32 "\n", ap);
7666 } else { /* Priv. mode AP bits decoding */
7667 switch (ap) {
7668 case 0:
7669 break; /* no access */
7670 case 1:
7671 case 2:
7672 case 3:
7673 *prot |= PAGE_WRITE;
7674 /* fall through */
7675 case 5:
7676 case 6:
7677 *prot |= PAGE_READ | PAGE_EXEC;
7678 break;
7679 default:
7680 qemu_log_mask(LOG_GUEST_ERROR,
7681 "Bad value for AP bits in DRACR %"
7682 PRIx32 "\n", ap);
7686 /* execute never */
7687 if (env->pmsav7.dracr[n] & (1 << 12)) {
7688 *prot &= ~PAGE_EXEC;
7693 *fsr = 0x00d; /* Permission fault */
7694 return !(*prot & (1 << access_type));
7697 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7698 int access_type, ARMMMUIdx mmu_idx,
7699 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7701 int n;
7702 uint32_t mask;
7703 uint32_t base;
7704 bool is_user = regime_is_user(env, mmu_idx);
7706 *phys_ptr = address;
7707 for (n = 7; n >= 0; n--) {
7708 base = env->cp15.c6_region[n];
7709 if ((base & 1) == 0) {
7710 continue;
7712 mask = 1 << ((base >> 1) & 0x1f);
7713 /* Keep this shift separate from the above to avoid an
7714 (undefined) << 32. */
7715 mask = (mask << 1) - 1;
7716 if (((base ^ address) & ~mask) == 0) {
7717 break;
7720 if (n < 0) {
7721 *fsr = 2;
7722 return true;
7725 if (access_type == 2) {
7726 mask = env->cp15.pmsav5_insn_ap;
7727 } else {
7728 mask = env->cp15.pmsav5_data_ap;
7730 mask = (mask >> (n * 4)) & 0xf;
7731 switch (mask) {
7732 case 0:
7733 *fsr = 1;
7734 return true;
7735 case 1:
7736 if (is_user) {
7737 *fsr = 1;
7738 return true;
7740 *prot = PAGE_READ | PAGE_WRITE;
7741 break;
7742 case 2:
7743 *prot = PAGE_READ;
7744 if (!is_user) {
7745 *prot |= PAGE_WRITE;
7747 break;
7748 case 3:
7749 *prot = PAGE_READ | PAGE_WRITE;
7750 break;
7751 case 5:
7752 if (is_user) {
7753 *fsr = 1;
7754 return true;
7756 *prot = PAGE_READ;
7757 break;
7758 case 6:
7759 *prot = PAGE_READ;
7760 break;
7761 default:
7762 /* Bad permission. */
7763 *fsr = 1;
7764 return true;
7766 *prot |= PAGE_EXEC;
7767 return false;
7770 /* get_phys_addr - get the physical address for this virtual address
7772 * Find the physical address corresponding to the given virtual address,
7773 * by doing a translation table walk on MMU based systems or using the
7774 * MPU state on MPU based systems.
7776 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7777 * prot and page_size may not be filled in, and the populated fsr value provides
7778 * information on why the translation aborted, in the format of a
7779 * DFSR/IFSR fault register, with the following caveats:
7780 * * we honour the short vs long DFSR format differences.
7781 * * the WnR bit is never set (the caller must do this).
7782 * * for PSMAv5 based systems we don't bother to return a full FSR format
7783 * value.
7785 * @env: CPUARMState
7786 * @address: virtual address to get physical address for
7787 * @access_type: 0 for read, 1 for write, 2 for execute
7788 * @mmu_idx: MMU index indicating required translation regime
7789 * @phys_ptr: set to the physical address corresponding to the virtual address
7790 * @attrs: set to the memory transaction attributes to use
7791 * @prot: set to the permissions for the page containing phys_ptr
7792 * @page_size: set to the size of the page containing phys_ptr
7793 * @fsr: set to the DFSR/IFSR value on failure
7795 static bool get_phys_addr(CPUARMState *env, target_ulong address,
7796 int access_type, ARMMMUIdx mmu_idx,
7797 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7798 target_ulong *page_size, uint32_t *fsr,
7799 ARMMMUFaultInfo *fi)
7801 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7802 /* Call ourselves recursively to do the stage 1 and then stage 2
7803 * translations.
7805 if (arm_feature(env, ARM_FEATURE_EL2)) {
7806 hwaddr ipa;
7807 int s2_prot;
7808 int ret;
7810 ret = get_phys_addr(env, address, access_type,
7811 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
7812 prot, page_size, fsr, fi);
7814 /* If S1 fails or S2 is disabled, return early. */
7815 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7816 *phys_ptr = ipa;
7817 return ret;
7820 /* S1 is done. Now do S2 translation. */
7821 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
7822 phys_ptr, attrs, &s2_prot,
7823 page_size, fsr, fi);
7824 fi->s2addr = ipa;
7825 /* Combine the S1 and S2 perms. */
7826 *prot &= s2_prot;
7827 return ret;
7828 } else {
7830 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7832 mmu_idx += ARMMMUIdx_S1NSE0;
7836 /* The page table entries may downgrade secure to non-secure, but
7837 * cannot upgrade an non-secure translation regime's attributes
7838 * to secure.
7840 attrs->secure = regime_is_secure(env, mmu_idx);
7841 attrs->user = regime_is_user(env, mmu_idx);
7843 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7844 * In v7 and earlier it affects all stage 1 translations.
7846 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
7847 && !arm_feature(env, ARM_FEATURE_V8)) {
7848 if (regime_el(env, mmu_idx) == 3) {
7849 address += env->cp15.fcseidr_s;
7850 } else {
7851 address += env->cp15.fcseidr_ns;
7855 /* pmsav7 has special handling for when MPU is disabled so call it before
7856 * the common MMU/MPU disabled check below.
7858 if (arm_feature(env, ARM_FEATURE_MPU) &&
7859 arm_feature(env, ARM_FEATURE_V7)) {
7860 *page_size = TARGET_PAGE_SIZE;
7861 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
7862 phys_ptr, prot, fsr);
7865 if (regime_translation_disabled(env, mmu_idx)) {
7866 /* MMU/MPU disabled. */
7867 *phys_ptr = address;
7868 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7869 *page_size = TARGET_PAGE_SIZE;
7870 return 0;
7873 if (arm_feature(env, ARM_FEATURE_MPU)) {
7874 /* Pre-v7 MPU */
7875 *page_size = TARGET_PAGE_SIZE;
7876 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
7877 phys_ptr, prot, fsr);
7880 if (regime_using_lpae_format(env, mmu_idx)) {
7881 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
7882 attrs, prot, page_size, fsr, fi);
7883 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
7884 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
7885 attrs, prot, page_size, fsr, fi);
7886 } else {
7887 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
7888 prot, page_size, fsr, fi);
7892 /* Walk the page table and (if the mapping exists) add the page
7893 * to the TLB. Return false on success, or true on failure. Populate
7894 * fsr with ARM DFSR/IFSR fault register format value on failure.
7896 bool arm_tlb_fill(CPUState *cs, vaddr address,
7897 int access_type, int mmu_idx, uint32_t *fsr,
7898 ARMMMUFaultInfo *fi)
7900 ARMCPU *cpu = ARM_CPU(cs);
7901 CPUARMState *env = &cpu->env;
7902 hwaddr phys_addr;
7903 target_ulong page_size;
7904 int prot;
7905 int ret;
7906 MemTxAttrs attrs = {};
7908 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
7909 &attrs, &prot, &page_size, fsr, fi);
7910 if (!ret) {
7911 /* Map a single [sub]page. */
7912 phys_addr &= TARGET_PAGE_MASK;
7913 address &= TARGET_PAGE_MASK;
7914 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7915 prot, mmu_idx, page_size);
7916 return 0;
7919 return ret;
7922 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
7923 MemTxAttrs *attrs)
7925 ARMCPU *cpu = ARM_CPU(cs);
7926 CPUARMState *env = &cpu->env;
7927 hwaddr phys_addr;
7928 target_ulong page_size;
7929 int prot;
7930 bool ret;
7931 uint32_t fsr;
7932 ARMMMUFaultInfo fi = {};
7934 *attrs = (MemTxAttrs) {};
7936 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
7937 attrs, &prot, &page_size, &fsr, &fi);
7939 if (ret) {
7940 return -1;
7942 return phys_addr;
7945 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7947 ARMCPU *cpu = arm_env_get_cpu(env);
7949 switch (reg) {
7950 case 0: /* APSR */
7951 return xpsr_read(env) & 0xf8000000;
7952 case 1: /* IAPSR */
7953 return xpsr_read(env) & 0xf80001ff;
7954 case 2: /* EAPSR */
7955 return xpsr_read(env) & 0xff00fc00;
7956 case 3: /* xPSR */
7957 return xpsr_read(env) & 0xff00fdff;
7958 case 5: /* IPSR */
7959 return xpsr_read(env) & 0x000001ff;
7960 case 6: /* EPSR */
7961 return xpsr_read(env) & 0x0700fc00;
7962 case 7: /* IEPSR */
7963 return xpsr_read(env) & 0x0700edff;
7964 case 8: /* MSP */
7965 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7966 case 9: /* PSP */
7967 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7968 case 16: /* PRIMASK */
7969 return (env->daif & PSTATE_I) != 0;
7970 case 17: /* BASEPRI */
7971 case 18: /* BASEPRI_MAX */
7972 return env->v7m.basepri;
7973 case 19: /* FAULTMASK */
7974 return (env->daif & PSTATE_F) != 0;
7975 case 20: /* CONTROL */
7976 return env->v7m.control;
7977 default:
7978 /* ??? For debugging only. */
7979 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
7980 return 0;
7984 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7986 ARMCPU *cpu = arm_env_get_cpu(env);
7988 switch (reg) {
7989 case 0: /* APSR */
7990 xpsr_write(env, val, 0xf8000000);
7991 break;
7992 case 1: /* IAPSR */
7993 xpsr_write(env, val, 0xf8000000);
7994 break;
7995 case 2: /* EAPSR */
7996 xpsr_write(env, val, 0xfe00fc00);
7997 break;
7998 case 3: /* xPSR */
7999 xpsr_write(env, val, 0xfe00fc00);
8000 break;
8001 case 5: /* IPSR */
8002 /* IPSR bits are readonly. */
8003 break;
8004 case 6: /* EPSR */
8005 xpsr_write(env, val, 0x0600fc00);
8006 break;
8007 case 7: /* IEPSR */
8008 xpsr_write(env, val, 0x0600fc00);
8009 break;
8010 case 8: /* MSP */
8011 if (env->v7m.current_sp)
8012 env->v7m.other_sp = val;
8013 else
8014 env->regs[13] = val;
8015 break;
8016 case 9: /* PSP */
8017 if (env->v7m.current_sp)
8018 env->regs[13] = val;
8019 else
8020 env->v7m.other_sp = val;
8021 break;
8022 case 16: /* PRIMASK */
8023 if (val & 1) {
8024 env->daif |= PSTATE_I;
8025 } else {
8026 env->daif &= ~PSTATE_I;
8028 break;
8029 case 17: /* BASEPRI */
8030 env->v7m.basepri = val & 0xff;
8031 break;
8032 case 18: /* BASEPRI_MAX */
8033 val &= 0xff;
8034 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8035 env->v7m.basepri = val;
8036 break;
8037 case 19: /* FAULTMASK */
8038 if (val & 1) {
8039 env->daif |= PSTATE_F;
8040 } else {
8041 env->daif &= ~PSTATE_F;
8043 break;
8044 case 20: /* CONTROL */
8045 env->v7m.control = val & 3;
8046 switch_v7m_sp(env, (val & 2) != 0);
8047 break;
8048 default:
8049 /* ??? For debugging only. */
8050 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
8051 return;
8055 #endif
8057 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8059 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8060 * Note that we do not implement the (architecturally mandated)
8061 * alignment fault for attempts to use this on Device memory
8062 * (which matches the usual QEMU behaviour of not implementing either
8063 * alignment faults or any memory attribute handling).
8066 ARMCPU *cpu = arm_env_get_cpu(env);
8067 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8068 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8070 #ifndef CONFIG_USER_ONLY
8072 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8073 * the block size so we might have to do more than one TLB lookup.
8074 * We know that in fact for any v8 CPU the page size is at least 4K
8075 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8076 * 1K as an artefact of legacy v5 subpage support being present in the
8077 * same QEMU executable.
8079 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8080 void *hostaddr[maxidx];
8081 int try, i;
8082 unsigned mmu_idx = cpu_mmu_index(env, false);
8083 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8085 for (try = 0; try < 2; try++) {
8087 for (i = 0; i < maxidx; i++) {
8088 hostaddr[i] = tlb_vaddr_to_host(env,
8089 vaddr + TARGET_PAGE_SIZE * i,
8090 1, mmu_idx);
8091 if (!hostaddr[i]) {
8092 break;
8095 if (i == maxidx) {
8096 /* If it's all in the TLB it's fair game for just writing to;
8097 * we know we don't need to update dirty status, etc.
8099 for (i = 0; i < maxidx - 1; i++) {
8100 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8102 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8103 return;
8105 /* OK, try a store and see if we can populate the tlb. This
8106 * might cause an exception if the memory isn't writable,
8107 * in which case we will longjmp out of here. We must for
8108 * this purpose use the actual register value passed to us
8109 * so that we get the fault address right.
8111 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
8112 /* Now we can populate the other TLB entries, if any */
8113 for (i = 0; i < maxidx; i++) {
8114 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8115 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8116 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
8121 /* Slow path (probably attempt to do this to an I/O device or
8122 * similar, or clearing of a block of code we have translations
8123 * cached for). Just do a series of byte writes as the architecture
8124 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8125 * memset(), unmap() sequence here because:
8126 * + we'd need to account for the blocksize being larger than a page
8127 * + the direct-RAM access case is almost always going to be dealt
8128 * with in the fastpath code above, so there's no speed benefit
8129 * + we would have to deal with the map returning NULL because the
8130 * bounce buffer was in use
8132 for (i = 0; i < blocklen; i++) {
8133 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
8136 #else
8137 memset(g2h(vaddr), 0, blocklen);
8138 #endif
8141 /* Note that signed overflow is undefined in C. The following routines are
8142 careful to use unsigned types where modulo arithmetic is required.
8143 Failure to do so _will_ break on newer gcc. */
8145 /* Signed saturating arithmetic. */
8147 /* Perform 16-bit signed saturating addition. */
8148 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8150 uint16_t res;
8152 res = a + b;
8153 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8154 if (a & 0x8000)
8155 res = 0x8000;
8156 else
8157 res = 0x7fff;
8159 return res;
8162 /* Perform 8-bit signed saturating addition. */
8163 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8165 uint8_t res;
8167 res = a + b;
8168 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8169 if (a & 0x80)
8170 res = 0x80;
8171 else
8172 res = 0x7f;
8174 return res;
8177 /* Perform 16-bit signed saturating subtraction. */
8178 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8180 uint16_t res;
8182 res = a - b;
8183 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8184 if (a & 0x8000)
8185 res = 0x8000;
8186 else
8187 res = 0x7fff;
8189 return res;
8192 /* Perform 8-bit signed saturating subtraction. */
8193 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8195 uint8_t res;
8197 res = a - b;
8198 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8199 if (a & 0x80)
8200 res = 0x80;
8201 else
8202 res = 0x7f;
8204 return res;
8207 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8208 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8209 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8210 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8211 #define PFX q
8213 #include "op_addsub.h"
8215 /* Unsigned saturating arithmetic. */
8216 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8218 uint16_t res;
8219 res = a + b;
8220 if (res < a)
8221 res = 0xffff;
8222 return res;
8225 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8227 if (a > b)
8228 return a - b;
8229 else
8230 return 0;
8233 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8235 uint8_t res;
8236 res = a + b;
8237 if (res < a)
8238 res = 0xff;
8239 return res;
8242 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8244 if (a > b)
8245 return a - b;
8246 else
8247 return 0;
8250 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8251 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8252 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8253 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8254 #define PFX uq
8256 #include "op_addsub.h"
8258 /* Signed modulo arithmetic. */
8259 #define SARITH16(a, b, n, op) do { \
8260 int32_t sum; \
8261 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8262 RESULT(sum, n, 16); \
8263 if (sum >= 0) \
8264 ge |= 3 << (n * 2); \
8265 } while(0)
8267 #define SARITH8(a, b, n, op) do { \
8268 int32_t sum; \
8269 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8270 RESULT(sum, n, 8); \
8271 if (sum >= 0) \
8272 ge |= 1 << n; \
8273 } while(0)
8276 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8277 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8278 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8279 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8280 #define PFX s
8281 #define ARITH_GE
8283 #include "op_addsub.h"
8285 /* Unsigned modulo arithmetic. */
8286 #define ADD16(a, b, n) do { \
8287 uint32_t sum; \
8288 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8289 RESULT(sum, n, 16); \
8290 if ((sum >> 16) == 1) \
8291 ge |= 3 << (n * 2); \
8292 } while(0)
8294 #define ADD8(a, b, n) do { \
8295 uint32_t sum; \
8296 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8297 RESULT(sum, n, 8); \
8298 if ((sum >> 8) == 1) \
8299 ge |= 1 << n; \
8300 } while(0)
8302 #define SUB16(a, b, n) do { \
8303 uint32_t sum; \
8304 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8305 RESULT(sum, n, 16); \
8306 if ((sum >> 16) == 0) \
8307 ge |= 3 << (n * 2); \
8308 } while(0)
8310 #define SUB8(a, b, n) do { \
8311 uint32_t sum; \
8312 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8313 RESULT(sum, n, 8); \
8314 if ((sum >> 8) == 0) \
8315 ge |= 1 << n; \
8316 } while(0)
8318 #define PFX u
8319 #define ARITH_GE
8321 #include "op_addsub.h"
8323 /* Halved signed arithmetic. */
8324 #define ADD16(a, b, n) \
8325 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8326 #define SUB16(a, b, n) \
8327 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8328 #define ADD8(a, b, n) \
8329 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8330 #define SUB8(a, b, n) \
8331 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8332 #define PFX sh
8334 #include "op_addsub.h"
8336 /* Halved unsigned arithmetic. */
8337 #define ADD16(a, b, n) \
8338 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8339 #define SUB16(a, b, n) \
8340 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8341 #define ADD8(a, b, n) \
8342 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8343 #define SUB8(a, b, n) \
8344 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8345 #define PFX uh
8347 #include "op_addsub.h"
8349 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8351 if (a > b)
8352 return a - b;
8353 else
8354 return b - a;
8357 /* Unsigned sum of absolute byte differences. */
8358 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8360 uint32_t sum;
8361 sum = do_usad(a, b);
8362 sum += do_usad(a >> 8, b >> 8);
8363 sum += do_usad(a >> 16, b >>16);
8364 sum += do_usad(a >> 24, b >> 24);
8365 return sum;
8368 /* For ARMv6 SEL instruction. */
8369 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8371 uint32_t mask;
8373 mask = 0;
8374 if (flags & 1)
8375 mask |= 0xff;
8376 if (flags & 2)
8377 mask |= 0xff00;
8378 if (flags & 4)
8379 mask |= 0xff0000;
8380 if (flags & 8)
8381 mask |= 0xff000000;
8382 return (a & mask) | (b & ~mask);
8385 /* VFP support. We follow the convention used for VFP instructions:
8386 Single precision routines have a "s" suffix, double precision a
8387 "d" suffix. */
8389 /* Convert host exception flags to vfp form. */
8390 static inline int vfp_exceptbits_from_host(int host_bits)
8392 int target_bits = 0;
8394 if (host_bits & float_flag_invalid)
8395 target_bits |= 1;
8396 if (host_bits & float_flag_divbyzero)
8397 target_bits |= 2;
8398 if (host_bits & float_flag_overflow)
8399 target_bits |= 4;
8400 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8401 target_bits |= 8;
8402 if (host_bits & float_flag_inexact)
8403 target_bits |= 0x10;
8404 if (host_bits & float_flag_input_denormal)
8405 target_bits |= 0x80;
8406 return target_bits;
8409 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8411 int i;
8412 uint32_t fpscr;
8414 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8415 | (env->vfp.vec_len << 16)
8416 | (env->vfp.vec_stride << 20);
8417 i = get_float_exception_flags(&env->vfp.fp_status);
8418 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8419 fpscr |= vfp_exceptbits_from_host(i);
8420 return fpscr;
8423 uint32_t vfp_get_fpscr(CPUARMState *env)
8425 return HELPER(vfp_get_fpscr)(env);
8428 /* Convert vfp exception flags to target form. */
8429 static inline int vfp_exceptbits_to_host(int target_bits)
8431 int host_bits = 0;
8433 if (target_bits & 1)
8434 host_bits |= float_flag_invalid;
8435 if (target_bits & 2)
8436 host_bits |= float_flag_divbyzero;
8437 if (target_bits & 4)
8438 host_bits |= float_flag_overflow;
8439 if (target_bits & 8)
8440 host_bits |= float_flag_underflow;
8441 if (target_bits & 0x10)
8442 host_bits |= float_flag_inexact;
8443 if (target_bits & 0x80)
8444 host_bits |= float_flag_input_denormal;
8445 return host_bits;
8448 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8450 int i;
8451 uint32_t changed;
8453 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8454 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8455 env->vfp.vec_len = (val >> 16) & 7;
8456 env->vfp.vec_stride = (val >> 20) & 3;
8458 changed ^= val;
8459 if (changed & (3 << 22)) {
8460 i = (val >> 22) & 3;
8461 switch (i) {
8462 case FPROUNDING_TIEEVEN:
8463 i = float_round_nearest_even;
8464 break;
8465 case FPROUNDING_POSINF:
8466 i = float_round_up;
8467 break;
8468 case FPROUNDING_NEGINF:
8469 i = float_round_down;
8470 break;
8471 case FPROUNDING_ZERO:
8472 i = float_round_to_zero;
8473 break;
8475 set_float_rounding_mode(i, &env->vfp.fp_status);
8477 if (changed & (1 << 24)) {
8478 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8479 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8481 if (changed & (1 << 25))
8482 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8484 i = vfp_exceptbits_to_host(val);
8485 set_float_exception_flags(i, &env->vfp.fp_status);
8486 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8489 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8491 HELPER(vfp_set_fpscr)(env, val);
8494 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8496 #define VFP_BINOP(name) \
8497 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8499 float_status *fpst = fpstp; \
8500 return float32_ ## name(a, b, fpst); \
8502 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8504 float_status *fpst = fpstp; \
8505 return float64_ ## name(a, b, fpst); \
8507 VFP_BINOP(add)
8508 VFP_BINOP(sub)
8509 VFP_BINOP(mul)
8510 VFP_BINOP(div)
8511 VFP_BINOP(min)
8512 VFP_BINOP(max)
8513 VFP_BINOP(minnum)
8514 VFP_BINOP(maxnum)
8515 #undef VFP_BINOP
8517 float32 VFP_HELPER(neg, s)(float32 a)
8519 return float32_chs(a);
8522 float64 VFP_HELPER(neg, d)(float64 a)
8524 return float64_chs(a);
8527 float32 VFP_HELPER(abs, s)(float32 a)
8529 return float32_abs(a);
8532 float64 VFP_HELPER(abs, d)(float64 a)
8534 return float64_abs(a);
8537 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8539 return float32_sqrt(a, &env->vfp.fp_status);
8542 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8544 return float64_sqrt(a, &env->vfp.fp_status);
8547 /* XXX: check quiet/signaling case */
8548 #define DO_VFP_cmp(p, type) \
8549 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8551 uint32_t flags; \
8552 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8553 case 0: flags = 0x6; break; \
8554 case -1: flags = 0x8; break; \
8555 case 1: flags = 0x2; break; \
8556 default: case 2: flags = 0x3; break; \
8558 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8559 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8561 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8563 uint32_t flags; \
8564 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8565 case 0: flags = 0x6; break; \
8566 case -1: flags = 0x8; break; \
8567 case 1: flags = 0x2; break; \
8568 default: case 2: flags = 0x3; break; \
8570 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8571 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8573 DO_VFP_cmp(s, float32)
8574 DO_VFP_cmp(d, float64)
8575 #undef DO_VFP_cmp
8577 /* Integer to float and float to integer conversions */
8579 #define CONV_ITOF(name, fsz, sign) \
8580 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8582 float_status *fpst = fpstp; \
8583 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8586 #define CONV_FTOI(name, fsz, sign, round) \
8587 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8589 float_status *fpst = fpstp; \
8590 if (float##fsz##_is_any_nan(x)) { \
8591 float_raise(float_flag_invalid, fpst); \
8592 return 0; \
8594 return float##fsz##_to_##sign##int32##round(x, fpst); \
8597 #define FLOAT_CONVS(name, p, fsz, sign) \
8598 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8599 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8600 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8602 FLOAT_CONVS(si, s, 32, )
8603 FLOAT_CONVS(si, d, 64, )
8604 FLOAT_CONVS(ui, s, 32, u)
8605 FLOAT_CONVS(ui, d, 64, u)
8607 #undef CONV_ITOF
8608 #undef CONV_FTOI
8609 #undef FLOAT_CONVS
8611 /* floating point conversion */
8612 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8614 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8615 /* ARM requires that S<->D conversion of any kind of NaN generates
8616 * a quiet NaN by forcing the most significant frac bit to 1.
8618 return float64_maybe_silence_nan(r);
8621 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8623 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8624 /* ARM requires that S<->D conversion of any kind of NaN generates
8625 * a quiet NaN by forcing the most significant frac bit to 1.
8627 return float32_maybe_silence_nan(r);
8630 /* VFP3 fixed point conversion. */
8631 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8632 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8633 void *fpstp) \
8635 float_status *fpst = fpstp; \
8636 float##fsz tmp; \
8637 tmp = itype##_to_##float##fsz(x, fpst); \
8638 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8641 /* Notice that we want only input-denormal exception flags from the
8642 * scalbn operation: the other possible flags (overflow+inexact if
8643 * we overflow to infinity, output-denormal) aren't correct for the
8644 * complete scale-and-convert operation.
8646 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8647 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8648 uint32_t shift, \
8649 void *fpstp) \
8651 float_status *fpst = fpstp; \
8652 int old_exc_flags = get_float_exception_flags(fpst); \
8653 float##fsz tmp; \
8654 if (float##fsz##_is_any_nan(x)) { \
8655 float_raise(float_flag_invalid, fpst); \
8656 return 0; \
8658 tmp = float##fsz##_scalbn(x, shift, fpst); \
8659 old_exc_flags |= get_float_exception_flags(fpst) \
8660 & float_flag_input_denormal; \
8661 set_float_exception_flags(old_exc_flags, fpst); \
8662 return float##fsz##_to_##itype##round(tmp, fpst); \
8665 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8666 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8667 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8668 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8670 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8671 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8672 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8674 VFP_CONV_FIX(sh, d, 64, 64, int16)
8675 VFP_CONV_FIX(sl, d, 64, 64, int32)
8676 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8677 VFP_CONV_FIX(uh, d, 64, 64, uint16)
8678 VFP_CONV_FIX(ul, d, 64, 64, uint32)
8679 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8680 VFP_CONV_FIX(sh, s, 32, 32, int16)
8681 VFP_CONV_FIX(sl, s, 32, 32, int32)
8682 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8683 VFP_CONV_FIX(uh, s, 32, 32, uint16)
8684 VFP_CONV_FIX(ul, s, 32, 32, uint32)
8685 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8686 #undef VFP_CONV_FIX
8687 #undef VFP_CONV_FIX_FLOAT
8688 #undef VFP_CONV_FLOAT_FIX_ROUND
8690 /* Set the current fp rounding mode and return the old one.
8691 * The argument is a softfloat float_round_ value.
8693 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8695 float_status *fp_status = &env->vfp.fp_status;
8697 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8698 set_float_rounding_mode(rmode, fp_status);
8700 return prev_rmode;
8703 /* Set the current fp rounding mode in the standard fp status and return
8704 * the old one. This is for NEON instructions that need to change the
8705 * rounding mode but wish to use the standard FPSCR values for everything
8706 * else. Always set the rounding mode back to the correct value after
8707 * modifying it.
8708 * The argument is a softfloat float_round_ value.
8710 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8712 float_status *fp_status = &env->vfp.standard_fp_status;
8714 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8715 set_float_rounding_mode(rmode, fp_status);
8717 return prev_rmode;
8720 /* Half precision conversions. */
8721 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
8723 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8724 float32 r = float16_to_float32(make_float16(a), ieee, s);
8725 if (ieee) {
8726 return float32_maybe_silence_nan(r);
8728 return r;
8731 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
8733 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8734 float16 r = float32_to_float16(a, ieee, s);
8735 if (ieee) {
8736 r = float16_maybe_silence_nan(r);
8738 return float16_val(r);
8741 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8743 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8746 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8748 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8751 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8753 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8756 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8758 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8761 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8763 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8764 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8765 if (ieee) {
8766 return float64_maybe_silence_nan(r);
8768 return r;
8771 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8773 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8774 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8775 if (ieee) {
8776 r = float16_maybe_silence_nan(r);
8778 return float16_val(r);
8781 #define float32_two make_float32(0x40000000)
8782 #define float32_three make_float32(0x40400000)
8783 #define float32_one_point_five make_float32(0x3fc00000)
8785 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
8787 float_status *s = &env->vfp.standard_fp_status;
8788 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8789 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8790 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8791 float_raise(float_flag_input_denormal, s);
8793 return float32_two;
8795 return float32_sub(float32_two, float32_mul(a, b, s), s);
8798 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
8800 float_status *s = &env->vfp.standard_fp_status;
8801 float32 product;
8802 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8803 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8804 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8805 float_raise(float_flag_input_denormal, s);
8807 return float32_one_point_five;
8809 product = float32_mul(a, b, s);
8810 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
8813 /* NEON helpers. */
8815 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8816 * int->float conversions at run-time. */
8817 #define float64_256 make_float64(0x4070000000000000LL)
8818 #define float64_512 make_float64(0x4080000000000000LL)
8819 #define float32_maxnorm make_float32(0x7f7fffff)
8820 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8822 /* Reciprocal functions
8824 * The algorithm that must be used to calculate the estimate
8825 * is specified by the ARM ARM, see FPRecipEstimate()
8828 static float64 recip_estimate(float64 a, float_status *real_fp_status)
8830 /* These calculations mustn't set any fp exception flags,
8831 * so we use a local copy of the fp_status.
8833 float_status dummy_status = *real_fp_status;
8834 float_status *s = &dummy_status;
8835 /* q = (int)(a * 512.0) */
8836 float64 q = float64_mul(float64_512, a, s);
8837 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8839 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8840 q = int64_to_float64(q_int, s);
8841 q = float64_add(q, float64_half, s);
8842 q = float64_div(q, float64_512, s);
8843 q = float64_div(float64_one, q, s);
8845 /* s = (int)(256.0 * r + 0.5) */
8846 q = float64_mul(q, float64_256, s);
8847 q = float64_add(q, float64_half, s);
8848 q_int = float64_to_int64_round_to_zero(q, s);
8850 /* return (double)s / 256.0 */
8851 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8854 /* Common wrapper to call recip_estimate */
8855 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
8857 uint64_t val64 = float64_val(num);
8858 uint64_t frac = extract64(val64, 0, 52);
8859 int64_t exp = extract64(val64, 52, 11);
8860 uint64_t sbit;
8861 float64 scaled, estimate;
8863 /* Generate the scaled number for the estimate function */
8864 if (exp == 0) {
8865 if (extract64(frac, 51, 1) == 0) {
8866 exp = -1;
8867 frac = extract64(frac, 0, 50) << 2;
8868 } else {
8869 frac = extract64(frac, 0, 51) << 1;
8873 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8874 scaled = make_float64((0x3feULL << 52)
8875 | extract64(frac, 44, 8) << 44);
8877 estimate = recip_estimate(scaled, fpst);
8879 /* Build new result */
8880 val64 = float64_val(estimate);
8881 sbit = 0x8000000000000000ULL & val64;
8882 exp = off - exp;
8883 frac = extract64(val64, 0, 52);
8885 if (exp == 0) {
8886 frac = 1ULL << 51 | extract64(frac, 1, 51);
8887 } else if (exp == -1) {
8888 frac = 1ULL << 50 | extract64(frac, 2, 50);
8889 exp = 0;
8892 return make_float64(sbit | (exp << 52) | frac);
8895 static bool round_to_inf(float_status *fpst, bool sign_bit)
8897 switch (fpst->float_rounding_mode) {
8898 case float_round_nearest_even: /* Round to Nearest */
8899 return true;
8900 case float_round_up: /* Round to +Inf */
8901 return !sign_bit;
8902 case float_round_down: /* Round to -Inf */
8903 return sign_bit;
8904 case float_round_to_zero: /* Round to Zero */
8905 return false;
8908 g_assert_not_reached();
8911 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8913 float_status *fpst = fpstp;
8914 float32 f32 = float32_squash_input_denormal(input, fpst);
8915 uint32_t f32_val = float32_val(f32);
8916 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8917 int32_t f32_exp = extract32(f32_val, 23, 8);
8918 uint32_t f32_frac = extract32(f32_val, 0, 23);
8919 float64 f64, r64;
8920 uint64_t r64_val;
8921 int64_t r64_exp;
8922 uint64_t r64_frac;
8924 if (float32_is_any_nan(f32)) {
8925 float32 nan = f32;
8926 if (float32_is_signaling_nan(f32)) {
8927 float_raise(float_flag_invalid, fpst);
8928 nan = float32_maybe_silence_nan(f32);
8930 if (fpst->default_nan_mode) {
8931 nan = float32_default_nan;
8933 return nan;
8934 } else if (float32_is_infinity(f32)) {
8935 return float32_set_sign(float32_zero, float32_is_neg(f32));
8936 } else if (float32_is_zero(f32)) {
8937 float_raise(float_flag_divbyzero, fpst);
8938 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8939 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8940 /* Abs(value) < 2.0^-128 */
8941 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8942 if (round_to_inf(fpst, f32_sbit)) {
8943 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8944 } else {
8945 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8947 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8948 float_raise(float_flag_underflow, fpst);
8949 return float32_set_sign(float32_zero, float32_is_neg(f32));
8953 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8954 r64 = call_recip_estimate(f64, 253, fpst);
8955 r64_val = float64_val(r64);
8956 r64_exp = extract64(r64_val, 52, 11);
8957 r64_frac = extract64(r64_val, 0, 52);
8959 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8960 return make_float32(f32_sbit |
8961 (r64_exp & 0xff) << 23 |
8962 extract64(r64_frac, 29, 24));
8965 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8967 float_status *fpst = fpstp;
8968 float64 f64 = float64_squash_input_denormal(input, fpst);
8969 uint64_t f64_val = float64_val(f64);
8970 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
8971 int64_t f64_exp = extract64(f64_val, 52, 11);
8972 float64 r64;
8973 uint64_t r64_val;
8974 int64_t r64_exp;
8975 uint64_t r64_frac;
8977 /* Deal with any special cases */
8978 if (float64_is_any_nan(f64)) {
8979 float64 nan = f64;
8980 if (float64_is_signaling_nan(f64)) {
8981 float_raise(float_flag_invalid, fpst);
8982 nan = float64_maybe_silence_nan(f64);
8984 if (fpst->default_nan_mode) {
8985 nan = float64_default_nan;
8987 return nan;
8988 } else if (float64_is_infinity(f64)) {
8989 return float64_set_sign(float64_zero, float64_is_neg(f64));
8990 } else if (float64_is_zero(f64)) {
8991 float_raise(float_flag_divbyzero, fpst);
8992 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8993 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
8994 /* Abs(value) < 2.0^-1024 */
8995 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8996 if (round_to_inf(fpst, f64_sbit)) {
8997 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8998 } else {
8999 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9001 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9002 float_raise(float_flag_underflow, fpst);
9003 return float64_set_sign(float64_zero, float64_is_neg(f64));
9006 r64 = call_recip_estimate(f64, 2045, fpst);
9007 r64_val = float64_val(r64);
9008 r64_exp = extract64(r64_val, 52, 11);
9009 r64_frac = extract64(r64_val, 0, 52);
9011 /* result = sign : result_exp<10:0> : fraction<51:0> */
9012 return make_float64(f64_sbit |
9013 ((r64_exp & 0x7ff) << 52) |
9014 r64_frac);
9017 /* The algorithm that must be used to calculate the estimate
9018 * is specified by the ARM ARM.
9020 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9022 /* These calculations mustn't set any fp exception flags,
9023 * so we use a local copy of the fp_status.
9025 float_status dummy_status = *real_fp_status;
9026 float_status *s = &dummy_status;
9027 float64 q;
9028 int64_t q_int;
9030 if (float64_lt(a, float64_half, s)) {
9031 /* range 0.25 <= a < 0.5 */
9033 /* a in units of 1/512 rounded down */
9034 /* q0 = (int)(a * 512.0); */
9035 q = float64_mul(float64_512, a, s);
9036 q_int = float64_to_int64_round_to_zero(q, s);
9038 /* reciprocal root r */
9039 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9040 q = int64_to_float64(q_int, s);
9041 q = float64_add(q, float64_half, s);
9042 q = float64_div(q, float64_512, s);
9043 q = float64_sqrt(q, s);
9044 q = float64_div(float64_one, q, s);
9045 } else {
9046 /* range 0.5 <= a < 1.0 */
9048 /* a in units of 1/256 rounded down */
9049 /* q1 = (int)(a * 256.0); */
9050 q = float64_mul(float64_256, a, s);
9051 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9053 /* reciprocal root r */
9054 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9055 q = int64_to_float64(q_int, s);
9056 q = float64_add(q, float64_half, s);
9057 q = float64_div(q, float64_256, s);
9058 q = float64_sqrt(q, s);
9059 q = float64_div(float64_one, q, s);
9061 /* r in units of 1/256 rounded to nearest */
9062 /* s = (int)(256.0 * r + 0.5); */
9064 q = float64_mul(q, float64_256,s );
9065 q = float64_add(q, float64_half, s);
9066 q_int = float64_to_int64_round_to_zero(q, s);
9068 /* return (double)s / 256.0;*/
9069 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9072 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9074 float_status *s = fpstp;
9075 float32 f32 = float32_squash_input_denormal(input, s);
9076 uint32_t val = float32_val(f32);
9077 uint32_t f32_sbit = 0x80000000 & val;
9078 int32_t f32_exp = extract32(val, 23, 8);
9079 uint32_t f32_frac = extract32(val, 0, 23);
9080 uint64_t f64_frac;
9081 uint64_t val64;
9082 int result_exp;
9083 float64 f64;
9085 if (float32_is_any_nan(f32)) {
9086 float32 nan = f32;
9087 if (float32_is_signaling_nan(f32)) {
9088 float_raise(float_flag_invalid, s);
9089 nan = float32_maybe_silence_nan(f32);
9091 if (s->default_nan_mode) {
9092 nan = float32_default_nan;
9094 return nan;
9095 } else if (float32_is_zero(f32)) {
9096 float_raise(float_flag_divbyzero, s);
9097 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9098 } else if (float32_is_neg(f32)) {
9099 float_raise(float_flag_invalid, s);
9100 return float32_default_nan;
9101 } else if (float32_is_infinity(f32)) {
9102 return float32_zero;
9105 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9106 * preserving the parity of the exponent. */
9108 f64_frac = ((uint64_t) f32_frac) << 29;
9109 if (f32_exp == 0) {
9110 while (extract64(f64_frac, 51, 1) == 0) {
9111 f64_frac = f64_frac << 1;
9112 f32_exp = f32_exp-1;
9114 f64_frac = extract64(f64_frac, 0, 51) << 1;
9117 if (extract64(f32_exp, 0, 1) == 0) {
9118 f64 = make_float64(((uint64_t) f32_sbit) << 32
9119 | (0x3feULL << 52)
9120 | f64_frac);
9121 } else {
9122 f64 = make_float64(((uint64_t) f32_sbit) << 32
9123 | (0x3fdULL << 52)
9124 | f64_frac);
9127 result_exp = (380 - f32_exp) / 2;
9129 f64 = recip_sqrt_estimate(f64, s);
9131 val64 = float64_val(f64);
9133 val = ((result_exp & 0xff) << 23)
9134 | ((val64 >> 29) & 0x7fffff);
9135 return make_float32(val);
9138 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9140 float_status *s = fpstp;
9141 float64 f64 = float64_squash_input_denormal(input, s);
9142 uint64_t val = float64_val(f64);
9143 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9144 int64_t f64_exp = extract64(val, 52, 11);
9145 uint64_t f64_frac = extract64(val, 0, 52);
9146 int64_t result_exp;
9147 uint64_t result_frac;
9149 if (float64_is_any_nan(f64)) {
9150 float64 nan = f64;
9151 if (float64_is_signaling_nan(f64)) {
9152 float_raise(float_flag_invalid, s);
9153 nan = float64_maybe_silence_nan(f64);
9155 if (s->default_nan_mode) {
9156 nan = float64_default_nan;
9158 return nan;
9159 } else if (float64_is_zero(f64)) {
9160 float_raise(float_flag_divbyzero, s);
9161 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9162 } else if (float64_is_neg(f64)) {
9163 float_raise(float_flag_invalid, s);
9164 return float64_default_nan;
9165 } else if (float64_is_infinity(f64)) {
9166 return float64_zero;
9169 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9170 * preserving the parity of the exponent. */
9172 if (f64_exp == 0) {
9173 while (extract64(f64_frac, 51, 1) == 0) {
9174 f64_frac = f64_frac << 1;
9175 f64_exp = f64_exp - 1;
9177 f64_frac = extract64(f64_frac, 0, 51) << 1;
9180 if (extract64(f64_exp, 0, 1) == 0) {
9181 f64 = make_float64(f64_sbit
9182 | (0x3feULL << 52)
9183 | f64_frac);
9184 } else {
9185 f64 = make_float64(f64_sbit
9186 | (0x3fdULL << 52)
9187 | f64_frac);
9190 result_exp = (3068 - f64_exp) / 2;
9192 f64 = recip_sqrt_estimate(f64, s);
9194 result_frac = extract64(float64_val(f64), 0, 52);
9196 return make_float64(f64_sbit |
9197 ((result_exp & 0x7ff) << 52) |
9198 result_frac);
9201 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9203 float_status *s = fpstp;
9204 float64 f64;
9206 if ((a & 0x80000000) == 0) {
9207 return 0xffffffff;
9210 f64 = make_float64((0x3feULL << 52)
9211 | ((int64_t)(a & 0x7fffffff) << 21));
9213 f64 = recip_estimate(f64, s);
9215 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9218 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9220 float_status *fpst = fpstp;
9221 float64 f64;
9223 if ((a & 0xc0000000) == 0) {
9224 return 0xffffffff;
9227 if (a & 0x80000000) {
9228 f64 = make_float64((0x3feULL << 52)
9229 | ((uint64_t)(a & 0x7fffffff) << 21));
9230 } else { /* bits 31-30 == '01' */
9231 f64 = make_float64((0x3fdULL << 52)
9232 | ((uint64_t)(a & 0x3fffffff) << 22));
9235 f64 = recip_sqrt_estimate(f64, fpst);
9237 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9240 /* VFPv4 fused multiply-accumulate */
9241 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9243 float_status *fpst = fpstp;
9244 return float32_muladd(a, b, c, 0, fpst);
9247 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9249 float_status *fpst = fpstp;
9250 return float64_muladd(a, b, c, 0, fpst);
9253 /* ARMv8 round to integral */
9254 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9256 return float32_round_to_int(x, fp_status);
9259 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9261 return float64_round_to_int(x, fp_status);
9264 float32 HELPER(rints)(float32 x, void *fp_status)
9266 int old_flags = get_float_exception_flags(fp_status), new_flags;
9267 float32 ret;
9269 ret = float32_round_to_int(x, fp_status);
9271 /* Suppress any inexact exceptions the conversion produced */
9272 if (!(old_flags & float_flag_inexact)) {
9273 new_flags = get_float_exception_flags(fp_status);
9274 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9277 return ret;
9280 float64 HELPER(rintd)(float64 x, void *fp_status)
9282 int old_flags = get_float_exception_flags(fp_status), new_flags;
9283 float64 ret;
9285 ret = float64_round_to_int(x, fp_status);
9287 new_flags = get_float_exception_flags(fp_status);
9289 /* Suppress any inexact exceptions the conversion produced */
9290 if (!(old_flags & float_flag_inexact)) {
9291 new_flags = get_float_exception_flags(fp_status);
9292 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9295 return ret;
9298 /* Convert ARM rounding mode to softfloat */
9299 int arm_rmode_to_sf(int rmode)
9301 switch (rmode) {
9302 case FPROUNDING_TIEAWAY:
9303 rmode = float_round_ties_away;
9304 break;
9305 case FPROUNDING_ODD:
9306 /* FIXME: add support for TIEAWAY and ODD */
9307 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9308 rmode);
9309 case FPROUNDING_TIEEVEN:
9310 default:
9311 rmode = float_round_nearest_even;
9312 break;
9313 case FPROUNDING_POSINF:
9314 rmode = float_round_up;
9315 break;
9316 case FPROUNDING_NEGINF:
9317 rmode = float_round_down;
9318 break;
9319 case FPROUNDING_ZERO:
9320 rmode = float_round_to_zero;
9321 break;
9323 return rmode;
9326 /* CRC helpers.
9327 * The upper bytes of val (above the number specified by 'bytes') must have
9328 * been zeroed out by the caller.
9330 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9332 uint8_t buf[4];
9334 stl_le_p(buf, val);
9336 /* zlib crc32 converts the accumulator and output to one's complement. */
9337 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9340 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9342 uint8_t buf[4];
9344 stl_le_p(buf, val);
9346 /* Linux crc32c converts the output to one's complement. */
9347 return crc32c(acc, buf, bytes) ^ 0xffffffff;