4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
28 uint32_t syndrome
, uint32_t target_el
)
30 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
32 assert(!excp_is_internal(excp
));
33 cs
->exception_index
= excp
;
34 env
->exception
.syndrome
= syndrome
;
35 env
->exception
.target_el
= target_el
;
39 static int exception_target_el(CPUARMState
*env
)
41 int target_el
= MAX(1, arm_current_el(env
));
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
46 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
53 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
54 uint32_t rn
, uint32_t maxindex
)
61 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
63 for (shift
= 0; shift
< 32; shift
+= 8) {
64 index
= (ireg
>> shift
) & 0xff;
65 if (index
< maxindex
) {
66 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
69 val
|= def
& (0xff << shift
);
75 #if !defined(CONFIG_USER_ONLY)
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
81 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
86 ARMMMUFaultInfo fi
= {};
88 ret
= arm_tlb_fill(cs
, addr
, is_write
, mmu_idx
, &fsr
, &fi
);
90 ARMCPU
*cpu
= ARM_CPU(cs
);
91 CPUARMState
*env
= &cpu
->env
;
93 unsigned int target_el
;
97 /* now we have a real cpu fault */
98 cpu_restore_state(cs
, retaddr
);
101 target_el
= exception_target_el(env
);
104 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
106 same_el
= arm_current_el(env
) == target_el
;
107 /* AArch64 syndrome does not have an LPAE bit */
108 syn
= fsr
& ~(1 << 9);
110 /* For insn and data aborts we assume there is no instruction syndrome
111 * information; this is always true for exceptions reported to EL1.
114 syn
= syn_insn_abort(same_el
, 0, fi
.s1ptw
, syn
);
115 exc
= EXCP_PREFETCH_ABORT
;
117 syn
= syn_data_abort(same_el
, 0, 0, fi
.s1ptw
, is_write
== 1, syn
);
118 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
121 exc
= EXCP_DATA_ABORT
;
124 env
->exception
.vaddress
= addr
;
125 env
->exception
.fsr
= fsr
;
126 raise_exception(env
, exc
, syn
, target_el
);
130 /* Raise a data fault alignment exception for the specified virtual address */
131 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
, int is_write
,
132 int is_user
, uintptr_t retaddr
)
134 ARMCPU
*cpu
= ARM_CPU(cs
);
135 CPUARMState
*env
= &cpu
->env
;
140 /* now we have a real cpu fault */
141 cpu_restore_state(cs
, retaddr
);
144 target_el
= exception_target_el(env
);
145 same_el
= (arm_current_el(env
) == target_el
);
147 env
->exception
.vaddress
= vaddr
;
149 /* the DFSR for an alignment fault depends on whether we're using
150 * the LPAE long descriptor format, or the short descriptor format
152 if (arm_regime_using_lpae_format(env
, cpu_mmu_index(env
, false))) {
153 env
->exception
.fsr
= 0x21;
155 env
->exception
.fsr
= 0x1;
158 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
159 env
->exception
.fsr
|= (1 << 11);
162 raise_exception(env
, EXCP_DATA_ABORT
,
163 syn_data_abort(same_el
, 0, 0, 0, is_write
== 1, 0x21),
167 #endif /* !defined(CONFIG_USER_ONLY) */
169 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
171 uint32_t res
= a
+ b
;
172 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
177 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
179 uint32_t res
= a
+ b
;
180 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
182 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
187 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
189 uint32_t res
= a
- b
;
190 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
192 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
197 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
200 if (val
>= 0x40000000) {
203 } else if (val
<= (int32_t)0xc0000000) {
212 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
214 uint32_t res
= a
+ b
;
222 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
224 uint32_t res
= a
- b
;
232 /* Signed saturation. */
233 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
239 mask
= (1u << shift
) - 1;
243 } else if (top
< -1) {
250 /* Unsigned saturation. */
251 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
255 max
= (1u << shift
) - 1;
259 } else if (val
> max
) {
266 /* Signed saturate. */
267 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
269 return do_ssat(env
, x
, shift
);
272 /* Dual halfword signed saturate. */
273 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
277 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
278 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
282 /* Unsigned saturate. */
283 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
285 return do_usat(env
, x
, shift
);
288 /* Dual halfword unsigned saturate. */
289 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
293 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
294 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
298 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
299 * The function returns the target EL (1-3) if the instruction is to be trapped;
300 * otherwise it returns 0 indicating it is not trapped.
302 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
304 int cur_el
= arm_current_el(env
);
307 /* If we are currently in EL0 then we need to check if SCTLR is set up for
308 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
310 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
313 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
314 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
315 /* Secure EL0 and Secure PL1 is at EL3 */
321 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
326 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
327 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
328 * bits will be zero indicating no trap.
330 if (cur_el
< 2 && !arm_is_secure(env
)) {
331 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
332 if (env
->cp15
.hcr_el2
& mask
) {
337 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
339 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
340 if (env
->cp15
.scr_el3
& mask
) {
348 void HELPER(wfi
)(CPUARMState
*env
)
350 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
351 int target_el
= check_wfx_trap(env
, false);
353 if (cpu_has_work(cs
)) {
354 /* Don't bother to go into our "low power state" if
355 * we would just wake up immediately.
362 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
365 cs
->exception_index
= EXCP_HLT
;
370 void HELPER(wfe
)(CPUARMState
*env
)
372 /* This is a hint instruction that is semantically different
373 * from YIELD even though we currently implement it identically.
374 * Don't actually halt the CPU, just yield back to top
375 * level loop. This is not going into a "low power state"
376 * (ie halting until some event occurs), so we never take
377 * a configurable trap to a different exception level.
382 void HELPER(yield
)(CPUARMState
*env
)
384 ARMCPU
*cpu
= arm_env_get_cpu(env
);
385 CPUState
*cs
= CPU(cpu
);
387 /* This is a non-trappable hint instruction that generally indicates
388 * that the guest is currently busy-looping. Yield control back to the
389 * top level loop so that a more deserving VCPU has a chance to run.
391 cs
->exception_index
= EXCP_YIELD
;
395 /* Raise an internal-to-QEMU exception. This is limited to only
396 * those EXCP values which are special cases for QEMU to interrupt
397 * execution and not to be used for exceptions which are passed to
398 * the guest (those must all have syndrome information and thus should
399 * use exception_with_syndrome).
401 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
403 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
405 assert(excp_is_internal(excp
));
406 cs
->exception_index
= excp
;
410 /* Raise an exception with the specified syndrome register value */
411 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
412 uint32_t syndrome
, uint32_t target_el
)
414 raise_exception(env
, excp
, syndrome
, target_el
);
417 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
419 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
422 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
424 cpsr_write(env
, val
, mask
);
427 /* Access to user mode registers from privileged modes. */
428 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
433 val
= env
->banked_r13
[BANK_USRSYS
];
434 } else if (regno
== 14) {
435 val
= env
->banked_r14
[BANK_USRSYS
];
436 } else if (regno
>= 8
437 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
438 val
= env
->usr_regs
[regno
- 8];
440 val
= env
->regs
[regno
];
445 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
448 env
->banked_r13
[BANK_USRSYS
] = val
;
449 } else if (regno
== 14) {
450 env
->banked_r14
[BANK_USRSYS
] = val
;
451 } else if (regno
>= 8
452 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
453 env
->usr_regs
[regno
- 8] = val
;
455 env
->regs
[regno
] = val
;
459 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
)
461 const ARMCPRegInfo
*ri
= rip
;
464 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
465 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
466 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
473 switch (ri
->accessfn(env
, ri
)) {
477 target_el
= exception_target_el(env
);
479 case CP_ACCESS_TRAP_EL2
:
480 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
481 * a bug in the access function.
483 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
486 case CP_ACCESS_TRAP_EL3
:
489 case CP_ACCESS_TRAP_UNCATEGORIZED
:
490 target_el
= exception_target_el(env
);
491 syndrome
= syn_uncategorized();
493 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
495 syndrome
= syn_uncategorized();
497 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
499 syndrome
= syn_uncategorized();
502 g_assert_not_reached();
505 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
508 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
510 const ARMCPRegInfo
*ri
= rip
;
512 ri
->writefn(env
, ri
, value
);
515 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
517 const ARMCPRegInfo
*ri
= rip
;
519 return ri
->readfn(env
, ri
);
522 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
524 const ARMCPRegInfo
*ri
= rip
;
526 ri
->writefn(env
, ri
, value
);
529 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
531 const ARMCPRegInfo
*ri
= rip
;
533 return ri
->readfn(env
, ri
);
536 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
538 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
539 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
540 * to catch that case at translate time.
542 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
543 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
544 extract32(op
, 3, 3), 4,
546 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
550 case 0x05: /* SPSel */
551 update_spsel(env
, imm
);
553 case 0x1e: /* DAIFSet */
554 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
556 case 0x1f: /* DAIFClear */
557 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
560 g_assert_not_reached();
564 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
566 env
->pstate
&= ~PSTATE_SS
;
569 void HELPER(pre_hvc
)(CPUARMState
*env
)
571 ARMCPU
*cpu
= arm_env_get_cpu(env
);
572 int cur_el
= arm_current_el(env
);
573 /* FIXME: Use actual secure state. */
577 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
578 /* If PSCI is enabled and this looks like a valid PSCI call then
579 * that overrides the architecturally mandated HVC behaviour.
584 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
585 /* If EL2 doesn't exist, HVC always UNDEFs */
587 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
588 /* EL3.HCE has priority over EL2.HCD. */
589 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
591 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
594 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
595 * For ARMv8/AArch64, HVC is allowed in EL3.
596 * Note that we've already trapped HVC from EL0 at translation
599 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
604 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
605 exception_target_el(env
));
609 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
611 ARMCPU
*cpu
= arm_env_get_cpu(env
);
612 int cur_el
= arm_current_el(env
);
613 bool secure
= arm_is_secure(env
);
614 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
615 /* On ARMv8 AArch32, SMD only applies to NS state.
616 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
617 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
618 * the EL2 condition here.
620 bool undef
= is_a64(env
) ? smd
: (!secure
&& smd
);
622 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
623 /* If PSCI is enabled and this looks like a valid PSCI call then
624 * that overrides the architecturally mandated SMC behaviour.
629 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
630 /* If we have no EL3 then SMC always UNDEFs */
632 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
633 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
634 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
638 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
639 exception_target_el(env
));
643 void HELPER(exception_return
)(CPUARMState
*env
)
645 int cur_el
= arm_current_el(env
);
646 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
647 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
650 aarch64_save_sp(env
, cur_el
);
652 env
->exclusive_addr
= -1;
654 /* We must squash the PSTATE.SS bit to zero unless both of the
656 * 1. debug exceptions are currently disabled
657 * 2. singlestep will be active in the EL we return to
658 * We check 1 here and 2 after we've done the pstate/cpsr write() to
659 * transition to the EL we're going to.
661 if (arm_generate_debug_exceptions(env
)) {
665 if (spsr
& PSTATE_nRW
) {
666 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
669 env
->uncached_cpsr
= 0x10;
670 cpsr_write(env
, spsr
, ~0);
671 if (!arm_singlestep_active(env
)) {
672 env
->uncached_cpsr
&= ~PSTATE_SS
;
674 aarch64_sync_64_to_32(env
);
676 env
->regs
[15] = env
->elr_el
[1] & ~0x1;
678 new_el
= extract32(spsr
, 2, 2);
680 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
681 /* Disallow return to an EL which is unimplemented or higher
682 * than the current one.
686 if (extract32(spsr
, 1, 1)) {
687 /* Return with reserved M[1] bit set */
690 if (new_el
== 0 && (spsr
& PSTATE_SP
)) {
691 /* Return to EL0 with M[0] bit set */
695 pstate_write(env
, spsr
);
696 if (!arm_singlestep_active(env
)) {
697 env
->pstate
&= ~PSTATE_SS
;
699 aarch64_restore_sp(env
, new_el
);
700 env
->pc
= env
->elr_el
[cur_el
];
706 /* Illegal return events of various kinds have architecturally
707 * mandated behaviour:
708 * restore NZCV and DAIF from SPSR_ELx
710 * restore PC from ELR_ELx
711 * no change to exception level, execution state or stack pointer
713 env
->pstate
|= PSTATE_IL
;
714 env
->pc
= env
->elr_el
[cur_el
];
715 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
716 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
717 pstate_write(env
, spsr
);
718 if (!arm_singlestep_active(env
)) {
719 env
->pstate
&= ~PSTATE_SS
;
723 /* Return true if the linked breakpoint entry lbn passes its checks */
724 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
726 CPUARMState
*env
= &cpu
->env
;
727 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
728 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
729 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
733 /* Links to unimplemented or non-context aware breakpoints are
734 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
735 * as if linked to an UNKNOWN context-aware breakpoint (in which
736 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
737 * We choose the former.
739 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
743 bcr
= env
->cp15
.dbgbcr
[lbn
];
745 if (extract64(bcr
, 0, 1) == 0) {
746 /* Linked breakpoint disabled : generate no events */
750 bt
= extract64(bcr
, 20, 4);
752 /* We match the whole register even if this is AArch32 using the
753 * short descriptor format (in which case it holds both PROCID and ASID),
754 * since we don't implement the optional v7 context ID masking.
756 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
759 case 3: /* linked context ID match */
760 if (arm_current_el(env
) > 1) {
761 /* Context matches never fire in EL2 or (AArch64) EL3 */
764 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
765 case 5: /* linked address mismatch (reserved in AArch64) */
766 case 9: /* linked VMID match (reserved if no EL2) */
767 case 11: /* linked context ID and VMID match (reserved if no EL2) */
769 /* Links to Unlinked context breakpoints must generate no
770 * events; we choose to do the same for reserved values too.
778 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
780 CPUARMState
*env
= &cpu
->env
;
782 int pac
, hmc
, ssc
, wt
, lbn
;
783 /* Note that for watchpoints the check is against the CPU security
784 * state, not the S/NS attribute on the offending data access.
786 bool is_secure
= arm_is_secure(env
);
787 int access_el
= arm_current_el(env
);
790 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
792 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
795 cr
= env
->cp15
.dbgwcr
[n
];
796 if (wp
->hitattrs
.user
) {
797 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
798 * match watchpoints as if they were accesses done at EL0, even if
799 * the CPU is at EL1 or higher.
804 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
806 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
809 cr
= env
->cp15
.dbgbcr
[n
];
811 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
812 * enabled and that the address and access type match; for breakpoints
813 * we know the address matched; check the remaining fields, including
814 * linked breakpoints. We rely on WCR and BCR having the same layout
815 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
816 * Note that some combinations of {PAC, HMC, SSC} are reserved and
817 * must act either like some valid combination or as if the watchpoint
818 * were disabled. We choose the former, and use this together with
819 * the fact that EL3 must always be Secure and EL2 must always be
820 * Non-Secure to simplify the code slightly compared to the full
821 * table in the ARM ARM.
823 pac
= extract64(cr
, 1, 2);
824 hmc
= extract64(cr
, 13, 1);
825 ssc
= extract64(cr
, 14, 2);
851 if (extract32(pac
, 0, 1) == 0) {
856 if (extract32(pac
, 1, 1) == 0) {
861 g_assert_not_reached();
864 wt
= extract64(cr
, 20, 1);
865 lbn
= extract64(cr
, 16, 4);
867 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
874 static bool check_watchpoints(ARMCPU
*cpu
)
876 CPUARMState
*env
= &cpu
->env
;
879 /* If watchpoints are disabled globally or we can't take debug
880 * exceptions here then watchpoint firings are ignored.
882 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
883 || !arm_generate_debug_exceptions(env
)) {
887 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
888 if (bp_wp_matches(cpu
, n
, true)) {
895 static bool check_breakpoints(ARMCPU
*cpu
)
897 CPUARMState
*env
= &cpu
->env
;
900 /* If breakpoints are disabled globally or we can't take debug
901 * exceptions here then breakpoint firings are ignored.
903 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
904 || !arm_generate_debug_exceptions(env
)) {
908 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
909 if (bp_wp_matches(cpu
, n
, false)) {
916 void HELPER(check_breakpoints
)(CPUARMState
*env
)
918 ARMCPU
*cpu
= arm_env_get_cpu(env
);
920 if (check_breakpoints(cpu
)) {
921 HELPER(exception_internal(env
, EXCP_DEBUG
));
925 void arm_debug_excp_handler(CPUState
*cs
)
927 /* Called by core code when a watchpoint or breakpoint fires;
928 * need to check which one and raise the appropriate exception.
930 ARMCPU
*cpu
= ARM_CPU(cs
);
931 CPUARMState
*env
= &cpu
->env
;
932 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
935 if (wp_hit
->flags
& BP_CPU
) {
936 cs
->watchpoint_hit
= NULL
;
937 if (check_watchpoints(cpu
)) {
938 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
939 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
941 if (extended_addresses_enabled(env
)) {
942 env
->exception
.fsr
= (1 << 9) | 0x22;
944 env
->exception
.fsr
= 0x2;
946 env
->exception
.vaddress
= wp_hit
->hitaddr
;
947 raise_exception(env
, EXCP_DATA_ABORT
,
948 syn_watchpoint(same_el
, 0, wnr
),
949 arm_debug_target_el(env
));
951 cpu_resume_from_signal(cs
, NULL
);
955 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
956 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
958 /* (1) GDB breakpoints should be handled first.
959 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
960 * since singlestep is also done by generating a debug internal
963 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
964 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
968 if (extended_addresses_enabled(env
)) {
969 env
->exception
.fsr
= (1 << 9) | 0x22;
971 env
->exception
.fsr
= 0x2;
973 /* FAR is UNKNOWN, so doesn't need setting */
974 raise_exception(env
, EXCP_PREFETCH_ABORT
,
975 syn_breakpoint(same_el
),
976 arm_debug_target_el(env
));
980 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
981 The only way to do that in TCG is a conditional branch, which clobbers
982 all our temporaries. For now implement these as helper functions. */
984 /* Similarly for variable shift instructions. */
986 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
988 int shift
= i
& 0xff;
995 } else if (shift
!= 0) {
996 env
->CF
= (x
>> (32 - shift
)) & 1;
1002 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1004 int shift
= i
& 0xff;
1007 env
->CF
= (x
>> 31) & 1;
1011 } else if (shift
!= 0) {
1012 env
->CF
= (x
>> (shift
- 1)) & 1;
1018 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1020 int shift
= i
& 0xff;
1022 env
->CF
= (x
>> 31) & 1;
1023 return (int32_t)x
>> 31;
1024 } else if (shift
!= 0) {
1025 env
->CF
= (x
>> (shift
- 1)) & 1;
1026 return (int32_t)x
>> shift
;
1031 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1035 shift
= shift1
& 0x1f;
1038 env
->CF
= (x
>> 31) & 1;
1041 env
->CF
= (x
>> (shift
- 1)) & 1;
1042 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));