hw/arm/boot: assert that secure_boot and secure_board_setup are false for AArch64
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blobc51151fa8a99dc0b96647433f000c4724b8bbf7d
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
26 /* IRQ number counting:
28 * the num-irq property counts the number of external IRQ lines
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
60 static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
64 static int nvic_pending_prio(NVICState *s)
66 /* return the group priority of the current pending interrupt,
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
69 return s->vectpending_prio;
72 /* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
86 static bool nvic_rettobase(NVICState *s)
88 int irq, nhand = 0;
89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
95 nhand++;
96 if (nhand == 2) {
97 return 0;
102 return 1;
105 /* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
109 static bool nvic_isrpending(NVICState *s)
111 int irq;
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
119 if (s->vectpending == 0) {
120 return false;
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
128 return false;
131 static bool exc_is_banked(int exc)
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
144 /* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
150 return ~0U << (s->prigroup[secure] + 1);
153 static bool exc_targets_secure(NVICState *s, int exc)
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
182 return true;
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
192 if (rawprio < 0) {
193 return rawprio;
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
203 return rawprio;
206 /* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
209 static void nvic_recompute_state_secure(NVICState *s)
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
298 if (active_prio > 0) {
299 active_prio &= nvic_gprio_mask(s, false);
302 if (pend_prio > 0) {
303 pend_prio &= nvic_gprio_mask(s, false);
306 s->vectpending = pend_irq;
307 s->vectpending_prio = pend_prio;
308 s->exception_prio = active_prio;
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
315 /* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
319 static inline int nvic_exec_prio(NVICState *s)
321 CPUARMState *env = &s->cpu->env;
322 int running = NVIC_NOEXC_PRIO;
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
340 } else {
341 running = 0;
345 if (env->v7m.primask[M_REG_S]) {
346 running = 0;
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
357 } else {
358 running = 0;
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
381 NVICState *s = opaque;
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
397 return false;
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
402 NVICState *s = opaque;
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
407 int armv7m_nvic_raw_execution_priority(void *opaque)
409 NVICState *s = opaque;
411 return s->exception_prio;
414 /* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
423 if (secure) {
424 assert(exc_is_banked(irq));
425 s->sec_vectors[irq].prio = prio;
426 } else {
427 s->vectors[irq].prio = prio;
430 trace_nvic_set_prio(irq, secure, prio);
433 /* Return the current raw priority register value.
434 * secure indicates the bank to use for banked exceptions (we assert if
435 * we are passed secure=true for a non-banked exception).
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440 assert(irq < s->num_irq);
442 if (secure) {
443 assert(exc_is_banked(irq));
444 return s->sec_vectors[irq].prio;
445 } else {
446 return s->vectors[irq].prio;
450 /* Recompute state and assert irq line accordingly.
451 * Must be called after changes to:
452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
453 * prigroup
455 static void nvic_irq_update(NVICState *s)
457 int lvl;
458 int pend_prio;
460 nvic_recompute_state(s);
461 pend_prio = nvic_pending_prio(s);
463 /* Raise NVIC output if this IRQ would be taken, except that we
464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466 * to those CPU registers don't cause us to recalculate the NVIC
467 * pending info.
469 lvl = (pend_prio < s->exception_prio);
470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471 qemu_set_irq(s->excpout, lvl);
475 * armv7m_nvic_clear_pending: mark the specified exception as not pending
476 * @opaque: the NVIC
477 * @irq: the exception number to mark as not pending
478 * @secure: false for non-banked exceptions or for the nonsecure
479 * version of a banked exception, true for the secure version of a banked
480 * exception.
482 * Marks the specified exception as not pending. Note that we will assert()
483 * if @secure is true and @irq does not specify one of the fixed set
484 * of architecturally banked exceptions.
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
488 NVICState *s = (NVICState *)opaque;
489 VecInfo *vec;
491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
493 if (secure) {
494 assert(exc_is_banked(irq));
495 vec = &s->sec_vectors[irq];
496 } else {
497 vec = &s->vectors[irq];
499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500 if (vec->pending) {
501 vec->pending = 0;
502 nvic_irq_update(s);
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507 bool derived)
509 /* Pend an exception, including possibly escalating it to HardFault.
511 * This function handles both "normal" pending of interrupts and
512 * exceptions, and also derived exceptions (ones which occur as
513 * a result of trying to take some other exception).
515 * If derived == true, the caller guarantees that we are part way through
516 * trying to take an exception (but have not yet called
517 * armv7m_nvic_acknowledge_irq() to make it active), and so:
518 * - s->vectpending is the "original exception" we were trying to take
519 * - irq is the "derived exception"
520 * - nvic_exec_prio(s) gives the priority before exception entry
521 * Here we handle the prioritization logic which the pseudocode puts
522 * in the DerivedLateArrival() function.
525 NVICState *s = (NVICState *)opaque;
526 bool banked = exc_is_banked(irq);
527 VecInfo *vec;
529 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
530 assert(!secure || banked);
532 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
534 trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio);
536 if (derived) {
537 /* Derived exceptions are always synchronous. */
538 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
540 if (irq == ARMV7M_EXCP_DEBUG &&
541 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
542 /* DebugMonitorFault, but its priority is lower than the
543 * preempted exception priority: just ignore it.
545 return;
548 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
549 /* If this is a terminal exception (one which means we cannot
550 * take the original exception, like a failure to read its
551 * vector table entry), then we must take the derived exception.
552 * If the derived exception can't take priority over the
553 * original exception, then we go into Lockup.
555 * For QEMU, we rely on the fact that a derived exception is
556 * terminal if and only if it's reported to us as HardFault,
557 * which saves having to have an extra argument is_terminal
558 * that we'd only use in one place.
560 cpu_abort(&s->cpu->parent_obj,
561 "Lockup: can't take terminal derived exception "
562 "(original exception priority %d)\n",
563 s->vectpending_prio);
565 /* We now continue with the same code as for a normal pending
566 * exception, which will cause us to pend the derived exception.
567 * We'll then take either the original or the derived exception
568 * based on which is higher priority by the usual mechanism
569 * for selecting the highest priority pending interrupt.
573 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
574 /* If a synchronous exception is pending then it may be
575 * escalated to HardFault if:
576 * * it is equal or lower priority to current execution
577 * * it is disabled
578 * (ie we need to take it immediately but we can't do so).
579 * Asynchronous exceptions (and interrupts) simply remain pending.
581 * For QEMU, we don't have any imprecise (asynchronous) faults,
582 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
583 * synchronous.
584 * Debug exceptions are awkward because only Debug exceptions
585 * resulting from the BKPT instruction should be escalated,
586 * but we don't currently implement any Debug exceptions other
587 * than those that result from BKPT, so we treat all debug exceptions
588 * as needing escalation.
590 * This all means we can identify whether to escalate based only on
591 * the exception number and don't (yet) need the caller to explicitly
592 * tell us whether this exception is synchronous or not.
594 int running = nvic_exec_prio(s);
595 bool escalate = false;
597 if (exc_group_prio(s, vec->prio, secure) >= running) {
598 trace_nvic_escalate_prio(irq, vec->prio, running);
599 escalate = true;
600 } else if (!vec->enabled) {
601 trace_nvic_escalate_disabled(irq);
602 escalate = true;
605 if (escalate) {
607 /* We need to escalate this exception to a synchronous HardFault.
608 * If BFHFNMINS is set then we escalate to the banked HF for
609 * the target security state of the original exception; otherwise
610 * we take a Secure HardFault.
612 irq = ARMV7M_EXCP_HARD;
613 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
614 (secure ||
615 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
616 vec = &s->sec_vectors[irq];
617 } else {
618 vec = &s->vectors[irq];
620 if (running <= vec->prio) {
621 /* We want to escalate to HardFault but we can't take the
622 * synchronous HardFault at this point either. This is a
623 * Lockup condition due to a guest bug. We don't model
624 * Lockup, so report via cpu_abort() instead.
626 cpu_abort(&s->cpu->parent_obj,
627 "Lockup: can't escalate %d to HardFault "
628 "(current priority %d)\n", irq, running);
631 /* HF may be banked but there is only one shared HFSR */
632 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
636 if (!vec->pending) {
637 vec->pending = 1;
638 nvic_irq_update(s);
642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
644 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
649 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
652 /* Make pending IRQ active. */
653 void armv7m_nvic_acknowledge_irq(void *opaque)
655 NVICState *s = (NVICState *)opaque;
656 CPUARMState *env = &s->cpu->env;
657 const int pending = s->vectpending;
658 const int running = nvic_exec_prio(s);
659 VecInfo *vec;
661 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
663 if (s->vectpending_is_s_banked) {
664 vec = &s->sec_vectors[pending];
665 } else {
666 vec = &s->vectors[pending];
669 assert(vec->enabled);
670 assert(vec->pending);
672 assert(s->vectpending_prio < running);
674 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
676 vec->active = 1;
677 vec->pending = 0;
679 write_v7m_exception(env, s->vectpending);
681 nvic_irq_update(s);
684 void armv7m_nvic_get_pending_irq_info(void *opaque,
685 int *pirq, bool *ptargets_secure)
687 NVICState *s = (NVICState *)opaque;
688 const int pending = s->vectpending;
689 bool targets_secure;
691 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
693 if (s->vectpending_is_s_banked) {
694 targets_secure = true;
695 } else {
696 targets_secure = !exc_is_banked(pending) &&
697 exc_targets_secure(s, pending);
700 trace_nvic_get_pending_irq_info(pending, targets_secure);
702 *ptargets_secure = targets_secure;
703 *pirq = pending;
706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
708 NVICState *s = (NVICState *)opaque;
709 VecInfo *vec;
710 int ret;
712 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
714 if (secure && exc_is_banked(irq)) {
715 vec = &s->sec_vectors[irq];
716 } else {
717 vec = &s->vectors[irq];
720 trace_nvic_complete_irq(irq, secure);
722 if (!vec->active) {
723 /* Tell the caller this was an illegal exception return */
724 return -1;
727 ret = nvic_rettobase(s);
729 vec->active = 0;
730 if (vec->level) {
731 /* Re-pend the exception if it's still held high; only
732 * happens for extenal IRQs
734 assert(irq >= NVIC_FIRST_IRQ);
735 vec->pending = 1;
738 nvic_irq_update(s);
740 return ret;
743 /* callback when external interrupt line is changed */
744 static void set_irq_level(void *opaque, int n, int level)
746 NVICState *s = opaque;
747 VecInfo *vec;
749 n += NVIC_FIRST_IRQ;
751 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
753 trace_nvic_set_irq_level(n, level);
755 /* The pending status of an external interrupt is
756 * latched on rising edge and exception handler return.
758 * Pulsing the IRQ will always run the handler
759 * once, and the handler will re-run until the
760 * level is low when the handler completes.
762 vec = &s->vectors[n];
763 if (level != vec->level) {
764 vec->level = level;
765 if (level) {
766 armv7m_nvic_set_pending(s, n, false);
771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
773 ARMCPU *cpu = s->cpu;
774 uint32_t val;
776 switch (offset) {
777 case 4: /* Interrupt Control Type. */
778 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
779 case 0xc: /* CPPWR */
780 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
781 goto bad_offset;
783 /* We make the IMPDEF choice that nothing can ever go into a
784 * non-retentive power state, which allows us to RAZ/WI this.
786 return 0;
787 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
789 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
790 int i;
792 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
793 goto bad_offset;
795 if (!attrs.secure) {
796 return 0;
798 val = 0;
799 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
800 if (s->itns[startvec + i]) {
801 val |= (1 << i);
804 return val;
806 case 0xd00: /* CPUID Base. */
807 return cpu->midr;
808 case 0xd04: /* Interrupt Control State (ICSR) */
809 /* VECTACTIVE */
810 val = cpu->env.v7m.exception;
811 /* VECTPENDING */
812 val |= (s->vectpending & 0xff) << 12;
813 /* ISRPENDING - set if any external IRQ is pending */
814 if (nvic_isrpending(s)) {
815 val |= (1 << 22);
817 /* RETTOBASE - set if only one handler is active */
818 if (nvic_rettobase(s)) {
819 val |= (1 << 11);
821 if (attrs.secure) {
822 /* PENDSTSET */
823 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
824 val |= (1 << 26);
826 /* PENDSVSET */
827 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
828 val |= (1 << 28);
830 } else {
831 /* PENDSTSET */
832 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
833 val |= (1 << 26);
835 /* PENDSVSET */
836 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
837 val |= (1 << 28);
840 /* NMIPENDSET */
841 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
842 && s->vectors[ARMV7M_EXCP_NMI].pending) {
843 val |= (1 << 31);
845 /* ISRPREEMPT: RES0 when halting debug not implemented */
846 /* STTNS: RES0 for the Main Extension */
847 return val;
848 case 0xd08: /* Vector Table Offset. */
849 return cpu->env.v7m.vecbase[attrs.secure];
850 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
851 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
852 if (attrs.secure) {
853 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
854 val |= cpu->env.v7m.aircr;
855 } else {
856 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
857 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
858 * security isn't supported then BFHFNMINS is RAO (and
859 * the bit in env.v7m.aircr is always set).
861 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
864 return val;
865 case 0xd10: /* System Control. */
866 return cpu->env.v7m.scr[attrs.secure];
867 case 0xd14: /* Configuration Control. */
868 /* The BFHFNMIGN bit is the only non-banked bit; we
869 * keep it in the non-secure copy of the register.
871 val = cpu->env.v7m.ccr[attrs.secure];
872 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
873 return val;
874 case 0xd24: /* System Handler Control and State (SHCSR) */
875 val = 0;
876 if (attrs.secure) {
877 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
878 val |= (1 << 0);
880 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
881 val |= (1 << 2);
883 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
884 val |= (1 << 3);
886 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
887 val |= (1 << 7);
889 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
890 val |= (1 << 10);
892 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
893 val |= (1 << 11);
895 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
896 val |= (1 << 12);
898 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
899 val |= (1 << 13);
901 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
902 val |= (1 << 15);
904 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
905 val |= (1 << 16);
907 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
908 val |= (1 << 18);
910 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
911 val |= (1 << 21);
913 /* SecureFault is not banked but is always RAZ/WI to NS */
914 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
915 val |= (1 << 4);
917 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
918 val |= (1 << 19);
920 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
921 val |= (1 << 20);
923 } else {
924 if (s->vectors[ARMV7M_EXCP_MEM].active) {
925 val |= (1 << 0);
927 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
928 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
929 if (s->vectors[ARMV7M_EXCP_HARD].active) {
930 val |= (1 << 2);
932 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
933 val |= (1 << 21);
936 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
937 val |= (1 << 3);
939 if (s->vectors[ARMV7M_EXCP_SVC].active) {
940 val |= (1 << 7);
942 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
943 val |= (1 << 10);
945 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
946 val |= (1 << 11);
948 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
949 val |= (1 << 12);
951 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
952 val |= (1 << 13);
954 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
955 val |= (1 << 15);
957 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
958 val |= (1 << 16);
960 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
961 val |= (1 << 18);
964 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
965 if (s->vectors[ARMV7M_EXCP_BUS].active) {
966 val |= (1 << 1);
968 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
969 val |= (1 << 14);
971 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
972 val |= (1 << 17);
974 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
975 s->vectors[ARMV7M_EXCP_NMI].active) {
976 /* NMIACT is not present in v7M */
977 val |= (1 << 5);
981 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
982 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
983 val |= (1 << 8);
985 return val;
986 case 0xd2c: /* Hard Fault Status. */
987 return cpu->env.v7m.hfsr;
988 case 0xd30: /* Debug Fault Status. */
989 return cpu->env.v7m.dfsr;
990 case 0xd34: /* MMFAR MemManage Fault Address */
991 return cpu->env.v7m.mmfar[attrs.secure];
992 case 0xd38: /* Bus Fault Address. */
993 return cpu->env.v7m.bfar;
994 case 0xd3c: /* Aux Fault Status. */
995 /* TODO: Implement fault status registers. */
996 qemu_log_mask(LOG_UNIMP,
997 "Aux Fault status registers unimplemented\n");
998 return 0;
999 case 0xd40: /* PFR0. */
1000 return cpu->id_pfr0;
1001 case 0xd44: /* PFR1. */
1002 return cpu->id_pfr1;
1003 case 0xd48: /* DFR0. */
1004 return cpu->id_dfr0;
1005 case 0xd4c: /* AFR0. */
1006 return cpu->id_afr0;
1007 case 0xd50: /* MMFR0. */
1008 return cpu->id_mmfr0;
1009 case 0xd54: /* MMFR1. */
1010 return cpu->id_mmfr1;
1011 case 0xd58: /* MMFR2. */
1012 return cpu->id_mmfr2;
1013 case 0xd5c: /* MMFR3. */
1014 return cpu->id_mmfr3;
1015 case 0xd60: /* ISAR0. */
1016 return cpu->id_isar0;
1017 case 0xd64: /* ISAR1. */
1018 return cpu->id_isar1;
1019 case 0xd68: /* ISAR2. */
1020 return cpu->id_isar2;
1021 case 0xd6c: /* ISAR3. */
1022 return cpu->id_isar3;
1023 case 0xd70: /* ISAR4. */
1024 return cpu->id_isar4;
1025 case 0xd74: /* ISAR5. */
1026 return cpu->id_isar5;
1027 case 0xd78: /* CLIDR */
1028 return cpu->clidr;
1029 case 0xd7c: /* CTR */
1030 return cpu->ctr;
1031 case 0xd80: /* CSSIDR */
1033 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1034 return cpu->ccsidr[idx];
1036 case 0xd84: /* CSSELR */
1037 return cpu->env.v7m.csselr[attrs.secure];
1038 /* TODO: Implement debug registers. */
1039 case 0xd90: /* MPU_TYPE */
1040 /* Unified MPU; if the MPU is not present this value is zero */
1041 return cpu->pmsav7_dregion << 8;
1042 break;
1043 case 0xd94: /* MPU_CTRL */
1044 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1045 case 0xd98: /* MPU_RNR */
1046 return cpu->env.pmsav7.rnr[attrs.secure];
1047 case 0xd9c: /* MPU_RBAR */
1048 case 0xda4: /* MPU_RBAR_A1 */
1049 case 0xdac: /* MPU_RBAR_A2 */
1050 case 0xdb4: /* MPU_RBAR_A3 */
1052 int region = cpu->env.pmsav7.rnr[attrs.secure];
1054 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1055 /* PMSAv8M handling of the aliases is different from v7M:
1056 * aliases A1, A2, A3 override the low two bits of the region
1057 * number in MPU_RNR, and there is no 'region' field in the
1058 * RBAR register.
1060 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1061 if (aliasno) {
1062 region = deposit32(region, 0, 2, aliasno);
1064 if (region >= cpu->pmsav7_dregion) {
1065 return 0;
1067 return cpu->env.pmsav8.rbar[attrs.secure][region];
1070 if (region >= cpu->pmsav7_dregion) {
1071 return 0;
1073 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1075 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1076 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1077 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1078 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1080 int region = cpu->env.pmsav7.rnr[attrs.secure];
1082 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1083 /* PMSAv8M handling of the aliases is different from v7M:
1084 * aliases A1, A2, A3 override the low two bits of the region
1085 * number in MPU_RNR.
1087 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1088 if (aliasno) {
1089 region = deposit32(region, 0, 2, aliasno);
1091 if (region >= cpu->pmsav7_dregion) {
1092 return 0;
1094 return cpu->env.pmsav8.rlar[attrs.secure][region];
1097 if (region >= cpu->pmsav7_dregion) {
1098 return 0;
1100 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1101 (cpu->env.pmsav7.drsr[region] & 0xffff);
1103 case 0xdc0: /* MPU_MAIR0 */
1104 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1105 goto bad_offset;
1107 return cpu->env.pmsav8.mair0[attrs.secure];
1108 case 0xdc4: /* MPU_MAIR1 */
1109 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1110 goto bad_offset;
1112 return cpu->env.pmsav8.mair1[attrs.secure];
1113 case 0xdd0: /* SAU_CTRL */
1114 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1115 goto bad_offset;
1117 if (!attrs.secure) {
1118 return 0;
1120 return cpu->env.sau.ctrl;
1121 case 0xdd4: /* SAU_TYPE */
1122 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1123 goto bad_offset;
1125 if (!attrs.secure) {
1126 return 0;
1128 return cpu->sau_sregion;
1129 case 0xdd8: /* SAU_RNR */
1130 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1131 goto bad_offset;
1133 if (!attrs.secure) {
1134 return 0;
1136 return cpu->env.sau.rnr;
1137 case 0xddc: /* SAU_RBAR */
1139 int region = cpu->env.sau.rnr;
1141 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1142 goto bad_offset;
1144 if (!attrs.secure) {
1145 return 0;
1147 if (region >= cpu->sau_sregion) {
1148 return 0;
1150 return cpu->env.sau.rbar[region];
1152 case 0xde0: /* SAU_RLAR */
1154 int region = cpu->env.sau.rnr;
1156 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1157 goto bad_offset;
1159 if (!attrs.secure) {
1160 return 0;
1162 if (region >= cpu->sau_sregion) {
1163 return 0;
1165 return cpu->env.sau.rlar[region];
1167 case 0xde4: /* SFSR */
1168 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1169 goto bad_offset;
1171 if (!attrs.secure) {
1172 return 0;
1174 return cpu->env.v7m.sfsr;
1175 case 0xde8: /* SFAR */
1176 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1177 goto bad_offset;
1179 if (!attrs.secure) {
1180 return 0;
1182 return cpu->env.v7m.sfar;
1183 default:
1184 bad_offset:
1185 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1186 return 0;
1190 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1191 MemTxAttrs attrs)
1193 ARMCPU *cpu = s->cpu;
1195 switch (offset) {
1196 case 0xc: /* CPPWR */
1197 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1198 goto bad_offset;
1200 /* Make the IMPDEF choice to RAZ/WI this. */
1201 break;
1202 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1204 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1205 int i;
1207 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1208 goto bad_offset;
1210 if (!attrs.secure) {
1211 break;
1213 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1214 s->itns[startvec + i] = (value >> i) & 1;
1216 nvic_irq_update(s);
1217 break;
1219 case 0xd04: /* Interrupt Control State (ICSR) */
1220 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1221 if (value & (1 << 31)) {
1222 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1223 } else if (value & (1 << 30) &&
1224 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1225 /* PENDNMICLR didn't exist in v7M */
1226 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1229 if (value & (1 << 28)) {
1230 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1231 } else if (value & (1 << 27)) {
1232 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1234 if (value & (1 << 26)) {
1235 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1236 } else if (value & (1 << 25)) {
1237 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1239 break;
1240 case 0xd08: /* Vector Table Offset. */
1241 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1242 break;
1243 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1244 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1245 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1246 if (attrs.secure ||
1247 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1248 qemu_irq_pulse(s->sysresetreq);
1251 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1252 qemu_log_mask(LOG_GUEST_ERROR,
1253 "Setting VECTCLRACTIVE when not in DEBUG mode "
1254 "is UNPREDICTABLE\n");
1256 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1257 /* NB: this bit is RES0 in v8M */
1258 qemu_log_mask(LOG_GUEST_ERROR,
1259 "Setting VECTRESET when not in DEBUG mode "
1260 "is UNPREDICTABLE\n");
1262 s->prigroup[attrs.secure] = extract32(value,
1263 R_V7M_AIRCR_PRIGROUP_SHIFT,
1264 R_V7M_AIRCR_PRIGROUP_LENGTH);
1265 if (attrs.secure) {
1266 /* These bits are only writable by secure */
1267 cpu->env.v7m.aircr = value &
1268 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1269 R_V7M_AIRCR_BFHFNMINS_MASK |
1270 R_V7M_AIRCR_PRIS_MASK);
1271 /* BFHFNMINS changes the priority of Secure HardFault, and
1272 * allows a pending Non-secure HardFault to preempt (which
1273 * we implement by marking it enabled).
1275 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1276 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1277 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1278 } else {
1279 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1280 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1283 nvic_irq_update(s);
1285 break;
1286 case 0xd10: /* System Control. */
1287 /* We don't implement deep-sleep so these bits are RAZ/WI.
1288 * The other bits in the register are banked.
1289 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1290 * is architecturally permitted.
1292 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1293 cpu->env.v7m.scr[attrs.secure] = value;
1294 break;
1295 case 0xd14: /* Configuration Control. */
1296 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1297 value &= (R_V7M_CCR_STKALIGN_MASK |
1298 R_V7M_CCR_BFHFNMIGN_MASK |
1299 R_V7M_CCR_DIV_0_TRP_MASK |
1300 R_V7M_CCR_UNALIGN_TRP_MASK |
1301 R_V7M_CCR_USERSETMPEND_MASK |
1302 R_V7M_CCR_NONBASETHRDENA_MASK);
1304 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1305 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1306 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1307 | R_V7M_CCR_STKALIGN_MASK;
1309 if (attrs.secure) {
1310 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1311 cpu->env.v7m.ccr[M_REG_NS] =
1312 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1313 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1314 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1317 cpu->env.v7m.ccr[attrs.secure] = value;
1318 break;
1319 case 0xd24: /* System Handler Control and State (SHCSR) */
1320 if (attrs.secure) {
1321 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1322 /* Secure HardFault active bit cannot be written */
1323 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1324 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1325 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1326 (value & (1 << 10)) != 0;
1327 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1328 (value & (1 << 11)) != 0;
1329 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1330 (value & (1 << 12)) != 0;
1331 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1332 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1333 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1334 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1335 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1336 (value & (1 << 18)) != 0;
1337 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1338 /* SecureFault not banked, but RAZ/WI to NS */
1339 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1340 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1341 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1342 } else {
1343 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1344 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1345 /* HARDFAULTPENDED is not present in v7M */
1346 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1348 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1349 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1350 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1351 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1352 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1353 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1354 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1355 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1356 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1358 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1359 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1360 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1361 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1363 /* NMIACT can only be written if the write is of a zero, with
1364 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1366 if (!attrs.secure && cpu->env.v7m.secure &&
1367 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1368 (value & (1 << 5)) == 0) {
1369 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1371 /* HARDFAULTACT can only be written if the write is of a zero
1372 * to the non-secure HardFault state by the CPU in secure state.
1373 * The only case where we can be targeting the non-secure HF state
1374 * when in secure state is if this is a write via the NS alias
1375 * and BFHFNMINS is 1.
1377 if (!attrs.secure && cpu->env.v7m.secure &&
1378 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1379 (value & (1 << 2)) == 0) {
1380 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1383 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1384 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1385 nvic_irq_update(s);
1386 break;
1387 case 0xd2c: /* Hard Fault Status. */
1388 cpu->env.v7m.hfsr &= ~value; /* W1C */
1389 break;
1390 case 0xd30: /* Debug Fault Status. */
1391 cpu->env.v7m.dfsr &= ~value; /* W1C */
1392 break;
1393 case 0xd34: /* Mem Manage Address. */
1394 cpu->env.v7m.mmfar[attrs.secure] = value;
1395 return;
1396 case 0xd38: /* Bus Fault Address. */
1397 cpu->env.v7m.bfar = value;
1398 return;
1399 case 0xd3c: /* Aux Fault Status. */
1400 qemu_log_mask(LOG_UNIMP,
1401 "NVIC: Aux fault status registers unimplemented\n");
1402 break;
1403 case 0xd84: /* CSSELR */
1404 if (!arm_v7m_csselr_razwi(cpu)) {
1405 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1407 break;
1408 case 0xd90: /* MPU_TYPE */
1409 return; /* RO */
1410 case 0xd94: /* MPU_CTRL */
1411 if ((value &
1412 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1413 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1414 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1415 "UNPREDICTABLE\n");
1417 cpu->env.v7m.mpu_ctrl[attrs.secure]
1418 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1419 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1420 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1421 tlb_flush(CPU(cpu));
1422 break;
1423 case 0xd98: /* MPU_RNR */
1424 if (value >= cpu->pmsav7_dregion) {
1425 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1426 PRIu32 "/%" PRIu32 "\n",
1427 value, cpu->pmsav7_dregion);
1428 } else {
1429 cpu->env.pmsav7.rnr[attrs.secure] = value;
1431 break;
1432 case 0xd9c: /* MPU_RBAR */
1433 case 0xda4: /* MPU_RBAR_A1 */
1434 case 0xdac: /* MPU_RBAR_A2 */
1435 case 0xdb4: /* MPU_RBAR_A3 */
1437 int region;
1439 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1440 /* PMSAv8M handling of the aliases is different from v7M:
1441 * aliases A1, A2, A3 override the low two bits of the region
1442 * number in MPU_RNR, and there is no 'region' field in the
1443 * RBAR register.
1445 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1447 region = cpu->env.pmsav7.rnr[attrs.secure];
1448 if (aliasno) {
1449 region = deposit32(region, 0, 2, aliasno);
1451 if (region >= cpu->pmsav7_dregion) {
1452 return;
1454 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1455 tlb_flush(CPU(cpu));
1456 return;
1459 if (value & (1 << 4)) {
1460 /* VALID bit means use the region number specified in this
1461 * value and also update MPU_RNR.REGION with that value.
1463 region = extract32(value, 0, 4);
1464 if (region >= cpu->pmsav7_dregion) {
1465 qemu_log_mask(LOG_GUEST_ERROR,
1466 "MPU region out of range %u/%" PRIu32 "\n",
1467 region, cpu->pmsav7_dregion);
1468 return;
1470 cpu->env.pmsav7.rnr[attrs.secure] = region;
1471 } else {
1472 region = cpu->env.pmsav7.rnr[attrs.secure];
1475 if (region >= cpu->pmsav7_dregion) {
1476 return;
1479 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1480 tlb_flush(CPU(cpu));
1481 break;
1483 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1484 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1485 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1486 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1488 int region = cpu->env.pmsav7.rnr[attrs.secure];
1490 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1491 /* PMSAv8M handling of the aliases is different from v7M:
1492 * aliases A1, A2, A3 override the low two bits of the region
1493 * number in MPU_RNR.
1495 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1497 region = cpu->env.pmsav7.rnr[attrs.secure];
1498 if (aliasno) {
1499 region = deposit32(region, 0, 2, aliasno);
1501 if (region >= cpu->pmsav7_dregion) {
1502 return;
1504 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1505 tlb_flush(CPU(cpu));
1506 return;
1509 if (region >= cpu->pmsav7_dregion) {
1510 return;
1513 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1514 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1515 tlb_flush(CPU(cpu));
1516 break;
1518 case 0xdc0: /* MPU_MAIR0 */
1519 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1520 goto bad_offset;
1522 if (cpu->pmsav7_dregion) {
1523 /* Register is RES0 if no MPU regions are implemented */
1524 cpu->env.pmsav8.mair0[attrs.secure] = value;
1526 /* We don't need to do anything else because memory attributes
1527 * only affect cacheability, and we don't implement caching.
1529 break;
1530 case 0xdc4: /* MPU_MAIR1 */
1531 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1532 goto bad_offset;
1534 if (cpu->pmsav7_dregion) {
1535 /* Register is RES0 if no MPU regions are implemented */
1536 cpu->env.pmsav8.mair1[attrs.secure] = value;
1538 /* We don't need to do anything else because memory attributes
1539 * only affect cacheability, and we don't implement caching.
1541 break;
1542 case 0xdd0: /* SAU_CTRL */
1543 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1544 goto bad_offset;
1546 if (!attrs.secure) {
1547 return;
1549 cpu->env.sau.ctrl = value & 3;
1550 break;
1551 case 0xdd4: /* SAU_TYPE */
1552 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1553 goto bad_offset;
1555 break;
1556 case 0xdd8: /* SAU_RNR */
1557 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1558 goto bad_offset;
1560 if (!attrs.secure) {
1561 return;
1563 if (value >= cpu->sau_sregion) {
1564 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1565 PRIu32 "/%" PRIu32 "\n",
1566 value, cpu->sau_sregion);
1567 } else {
1568 cpu->env.sau.rnr = value;
1570 break;
1571 case 0xddc: /* SAU_RBAR */
1573 int region = cpu->env.sau.rnr;
1575 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1576 goto bad_offset;
1578 if (!attrs.secure) {
1579 return;
1581 if (region >= cpu->sau_sregion) {
1582 return;
1584 cpu->env.sau.rbar[region] = value & ~0x1f;
1585 tlb_flush(CPU(cpu));
1586 break;
1588 case 0xde0: /* SAU_RLAR */
1590 int region = cpu->env.sau.rnr;
1592 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1593 goto bad_offset;
1595 if (!attrs.secure) {
1596 return;
1598 if (region >= cpu->sau_sregion) {
1599 return;
1601 cpu->env.sau.rlar[region] = value & ~0x1c;
1602 tlb_flush(CPU(cpu));
1603 break;
1605 case 0xde4: /* SFSR */
1606 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1607 goto bad_offset;
1609 if (!attrs.secure) {
1610 return;
1612 cpu->env.v7m.sfsr &= ~value; /* W1C */
1613 break;
1614 case 0xde8: /* SFAR */
1615 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1616 goto bad_offset;
1618 if (!attrs.secure) {
1619 return;
1621 cpu->env.v7m.sfsr = value;
1622 break;
1623 case 0xf00: /* Software Triggered Interrupt Register */
1625 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1626 if (excnum < s->num_irq) {
1627 armv7m_nvic_set_pending(s, excnum, false);
1629 break;
1631 case 0xf50: /* ICIALLU */
1632 case 0xf58: /* ICIMVAU */
1633 case 0xf5c: /* DCIMVAC */
1634 case 0xf60: /* DCISW */
1635 case 0xf64: /* DCCMVAU */
1636 case 0xf68: /* DCCMVAC */
1637 case 0xf6c: /* DCCSW */
1638 case 0xf70: /* DCCIMVAC */
1639 case 0xf74: /* DCCISW */
1640 case 0xf78: /* BPIALL */
1641 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1642 break;
1643 default:
1644 bad_offset:
1645 qemu_log_mask(LOG_GUEST_ERROR,
1646 "NVIC: Bad write offset 0x%x\n", offset);
1650 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1652 /* Return true if unprivileged access to this register is permitted. */
1653 switch (offset) {
1654 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1655 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1656 * controls access even though the CPU is in Secure state (I_QDKX).
1658 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1659 default:
1660 /* All other user accesses cause a BusFault unconditionally */
1661 return false;
1665 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1667 /* Behaviour for the SHPR register field for this exception:
1668 * return M_REG_NS to use the nonsecure vector (including for
1669 * non-banked exceptions), M_REG_S for the secure version of
1670 * a banked exception, and -1 if this field should RAZ/WI.
1672 switch (exc) {
1673 case ARMV7M_EXCP_MEM:
1674 case ARMV7M_EXCP_USAGE:
1675 case ARMV7M_EXCP_SVC:
1676 case ARMV7M_EXCP_PENDSV:
1677 case ARMV7M_EXCP_SYSTICK:
1678 /* Banked exceptions */
1679 return attrs.secure;
1680 case ARMV7M_EXCP_BUS:
1681 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1682 if (!attrs.secure &&
1683 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1684 return -1;
1686 return M_REG_NS;
1687 case ARMV7M_EXCP_SECURE:
1688 /* Not banked, RAZ/WI from nonsecure */
1689 if (!attrs.secure) {
1690 return -1;
1692 return M_REG_NS;
1693 case ARMV7M_EXCP_DEBUG:
1694 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1695 return M_REG_NS;
1696 case 8 ... 10:
1697 case 13:
1698 /* RES0 */
1699 return -1;
1700 default:
1701 /* Not reachable due to decode of SHPR register addresses */
1702 g_assert_not_reached();
1706 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1707 uint64_t *data, unsigned size,
1708 MemTxAttrs attrs)
1710 NVICState *s = (NVICState *)opaque;
1711 uint32_t offset = addr;
1712 unsigned i, startvec, end;
1713 uint32_t val;
1715 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1716 /* Generate BusFault for unprivileged accesses */
1717 return MEMTX_ERROR;
1720 switch (offset) {
1721 /* reads of set and clear both return the status */
1722 case 0x100 ... 0x13f: /* NVIC Set enable */
1723 offset += 0x80;
1724 /* fall through */
1725 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1726 val = 0;
1727 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1729 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1730 if (s->vectors[startvec + i].enabled &&
1731 (attrs.secure || s->itns[startvec + i])) {
1732 val |= (1 << i);
1735 break;
1736 case 0x200 ... 0x23f: /* NVIC Set pend */
1737 offset += 0x80;
1738 /* fall through */
1739 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1740 val = 0;
1741 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1742 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1743 if (s->vectors[startvec + i].pending &&
1744 (attrs.secure || s->itns[startvec + i])) {
1745 val |= (1 << i);
1748 break;
1749 case 0x300 ... 0x33f: /* NVIC Active */
1750 val = 0;
1751 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1753 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1754 if (s->vectors[startvec + i].active &&
1755 (attrs.secure || s->itns[startvec + i])) {
1756 val |= (1 << i);
1759 break;
1760 case 0x400 ... 0x5ef: /* NVIC Priority */
1761 val = 0;
1762 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1764 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1765 if (attrs.secure || s->itns[startvec + i]) {
1766 val |= s->vectors[startvec + i].prio << (8 * i);
1769 break;
1770 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1771 val = 0;
1772 for (i = 0; i < size; i++) {
1773 unsigned hdlidx = (offset - 0xd14) + i;
1774 int sbank = shpr_bank(s, hdlidx, attrs);
1776 if (sbank < 0) {
1777 continue;
1779 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1781 break;
1782 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1783 /* The BFSR bits [15:8] are shared between security states
1784 * and we store them in the NS copy
1786 val = s->cpu->env.v7m.cfsr[attrs.secure];
1787 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1788 val = extract32(val, (offset - 0xd28) * 8, size * 8);
1789 break;
1790 case 0xfe0 ... 0xfff: /* ID. */
1791 if (offset & 3) {
1792 val = 0;
1793 } else {
1794 val = nvic_id[(offset - 0xfe0) >> 2];
1796 break;
1797 default:
1798 if (size == 4) {
1799 val = nvic_readl(s, offset, attrs);
1800 } else {
1801 qemu_log_mask(LOG_GUEST_ERROR,
1802 "NVIC: Bad read of size %d at offset 0x%x\n",
1803 size, offset);
1804 val = 0;
1808 trace_nvic_sysreg_read(addr, val, size);
1809 *data = val;
1810 return MEMTX_OK;
1813 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1814 uint64_t value, unsigned size,
1815 MemTxAttrs attrs)
1817 NVICState *s = (NVICState *)opaque;
1818 uint32_t offset = addr;
1819 unsigned i, startvec, end;
1820 unsigned setval = 0;
1822 trace_nvic_sysreg_write(addr, value, size);
1824 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1825 /* Generate BusFault for unprivileged accesses */
1826 return MEMTX_ERROR;
1829 switch (offset) {
1830 case 0x100 ... 0x13f: /* NVIC Set enable */
1831 offset += 0x80;
1832 setval = 1;
1833 /* fall through */
1834 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1835 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1837 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1838 if (value & (1 << i) &&
1839 (attrs.secure || s->itns[startvec + i])) {
1840 s->vectors[startvec + i].enabled = setval;
1843 nvic_irq_update(s);
1844 return MEMTX_OK;
1845 case 0x200 ... 0x23f: /* NVIC Set pend */
1846 /* the special logic in armv7m_nvic_set_pending()
1847 * is not needed since IRQs are never escalated
1849 offset += 0x80;
1850 setval = 1;
1851 /* fall through */
1852 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1853 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1855 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1856 if (value & (1 << i) &&
1857 (attrs.secure || s->itns[startvec + i])) {
1858 s->vectors[startvec + i].pending = setval;
1861 nvic_irq_update(s);
1862 return MEMTX_OK;
1863 case 0x300 ... 0x33f: /* NVIC Active */
1864 return MEMTX_OK; /* R/O */
1865 case 0x400 ... 0x5ef: /* NVIC Priority */
1866 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1868 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1869 if (attrs.secure || s->itns[startvec + i]) {
1870 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1873 nvic_irq_update(s);
1874 return MEMTX_OK;
1875 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1876 for (i = 0; i < size; i++) {
1877 unsigned hdlidx = (offset - 0xd14) + i;
1878 int newprio = extract32(value, i * 8, 8);
1879 int sbank = shpr_bank(s, hdlidx, attrs);
1881 if (sbank < 0) {
1882 continue;
1884 set_prio(s, hdlidx, sbank, newprio);
1886 nvic_irq_update(s);
1887 return MEMTX_OK;
1888 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1889 /* All bits are W1C, so construct 32 bit value with 0s in
1890 * the parts not written by the access size
1892 value <<= ((offset - 0xd28) * 8);
1894 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1895 if (attrs.secure) {
1896 /* The BFSR bits [15:8] are shared between security states
1897 * and we store them in the NS copy.
1899 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1901 return MEMTX_OK;
1903 if (size == 4) {
1904 nvic_writel(s, offset, value, attrs);
1905 return MEMTX_OK;
1907 qemu_log_mask(LOG_GUEST_ERROR,
1908 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1909 /* This is UNPREDICTABLE; treat as RAZ/WI */
1910 return MEMTX_OK;
1913 static const MemoryRegionOps nvic_sysreg_ops = {
1914 .read_with_attrs = nvic_sysreg_read,
1915 .write_with_attrs = nvic_sysreg_write,
1916 .endianness = DEVICE_NATIVE_ENDIAN,
1919 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1920 uint64_t value, unsigned size,
1921 MemTxAttrs attrs)
1923 MemoryRegion *mr = opaque;
1925 if (attrs.secure) {
1926 /* S accesses to the alias act like NS accesses to the real region */
1927 attrs.secure = 0;
1928 return memory_region_dispatch_write(mr, addr, value, size, attrs);
1929 } else {
1930 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1931 if (attrs.user) {
1932 return MEMTX_ERROR;
1934 return MEMTX_OK;
1938 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1939 uint64_t *data, unsigned size,
1940 MemTxAttrs attrs)
1942 MemoryRegion *mr = opaque;
1944 if (attrs.secure) {
1945 /* S accesses to the alias act like NS accesses to the real region */
1946 attrs.secure = 0;
1947 return memory_region_dispatch_read(mr, addr, data, size, attrs);
1948 } else {
1949 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1950 if (attrs.user) {
1951 return MEMTX_ERROR;
1953 *data = 0;
1954 return MEMTX_OK;
1958 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1959 .read_with_attrs = nvic_sysreg_ns_read,
1960 .write_with_attrs = nvic_sysreg_ns_write,
1961 .endianness = DEVICE_NATIVE_ENDIAN,
1964 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1965 uint64_t value, unsigned size,
1966 MemTxAttrs attrs)
1968 NVICState *s = opaque;
1969 MemoryRegion *mr;
1971 /* Direct the access to the correct systick */
1972 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1973 return memory_region_dispatch_write(mr, addr, value, size, attrs);
1976 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1977 uint64_t *data, unsigned size,
1978 MemTxAttrs attrs)
1980 NVICState *s = opaque;
1981 MemoryRegion *mr;
1983 /* Direct the access to the correct systick */
1984 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1985 return memory_region_dispatch_read(mr, addr, data, size, attrs);
1988 static const MemoryRegionOps nvic_systick_ops = {
1989 .read_with_attrs = nvic_systick_read,
1990 .write_with_attrs = nvic_systick_write,
1991 .endianness = DEVICE_NATIVE_ENDIAN,
1994 static int nvic_post_load(void *opaque, int version_id)
1996 NVICState *s = opaque;
1997 unsigned i;
1998 int resetprio;
2000 /* Check for out of range priority settings */
2001 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2003 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2004 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2005 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2006 return 1;
2008 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2009 if (s->vectors[i].prio & ~0xff) {
2010 return 1;
2014 nvic_recompute_state(s);
2016 return 0;
2019 static const VMStateDescription vmstate_VecInfo = {
2020 .name = "armv7m_nvic_info",
2021 .version_id = 1,
2022 .minimum_version_id = 1,
2023 .fields = (VMStateField[]) {
2024 VMSTATE_INT16(prio, VecInfo),
2025 VMSTATE_UINT8(enabled, VecInfo),
2026 VMSTATE_UINT8(pending, VecInfo),
2027 VMSTATE_UINT8(active, VecInfo),
2028 VMSTATE_UINT8(level, VecInfo),
2029 VMSTATE_END_OF_LIST()
2033 static bool nvic_security_needed(void *opaque)
2035 NVICState *s = opaque;
2037 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2040 static int nvic_security_post_load(void *opaque, int version_id)
2042 NVICState *s = opaque;
2043 int i;
2045 /* Check for out of range priority settings */
2046 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2047 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2048 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2049 * if the CPU state has been migrated yet; a mismatch won't
2050 * cause the emulation to blow up, though.
2052 return 1;
2054 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2055 if (s->sec_vectors[i].prio & ~0xff) {
2056 return 1;
2059 return 0;
2062 static const VMStateDescription vmstate_nvic_security = {
2063 .name = "nvic/m-security",
2064 .version_id = 1,
2065 .minimum_version_id = 1,
2066 .needed = nvic_security_needed,
2067 .post_load = &nvic_security_post_load,
2068 .fields = (VMStateField[]) {
2069 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2070 vmstate_VecInfo, VecInfo),
2071 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2072 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2073 VMSTATE_END_OF_LIST()
2077 static const VMStateDescription vmstate_nvic = {
2078 .name = "armv7m_nvic",
2079 .version_id = 4,
2080 .minimum_version_id = 4,
2081 .post_load = &nvic_post_load,
2082 .fields = (VMStateField[]) {
2083 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2084 vmstate_VecInfo, VecInfo),
2085 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2086 VMSTATE_END_OF_LIST()
2088 .subsections = (const VMStateDescription*[]) {
2089 &vmstate_nvic_security,
2090 NULL
2094 static Property props_nvic[] = {
2095 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2096 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2097 DEFINE_PROP_END_OF_LIST()
2100 static void armv7m_nvic_reset(DeviceState *dev)
2102 int resetprio;
2103 NVICState *s = NVIC(dev);
2105 memset(s->vectors, 0, sizeof(s->vectors));
2106 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2107 s->prigroup[M_REG_NS] = 0;
2108 s->prigroup[M_REG_S] = 0;
2110 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2111 /* MEM, BUS, and USAGE are enabled through
2112 * the System Handler Control register
2114 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2115 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2116 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2117 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2119 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2120 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2121 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2122 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2124 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2125 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2126 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2127 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2128 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2130 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2131 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2132 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2133 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2134 } else {
2135 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2138 /* Strictly speaking the reset handler should be enabled.
2139 * However, we don't simulate soft resets through the NVIC,
2140 * and the reset vector should never be pended.
2141 * So we leave it disabled to catch logic errors.
2144 s->exception_prio = NVIC_NOEXC_PRIO;
2145 s->vectpending = 0;
2146 s->vectpending_is_s_banked = false;
2147 s->vectpending_prio = NVIC_NOEXC_PRIO;
2149 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2150 memset(s->itns, 0, sizeof(s->itns));
2151 } else {
2152 /* This state is constant and not guest accessible in a non-security
2153 * NVIC; we set the bits to true to avoid having to do a feature
2154 * bit check in the NVIC enable/pend/etc register accessors.
2156 int i;
2158 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2159 s->itns[i] = true;
2164 static void nvic_systick_trigger(void *opaque, int n, int level)
2166 NVICState *s = opaque;
2168 if (level) {
2169 /* SysTick just asked us to pend its exception.
2170 * (This is different from an external interrupt line's
2171 * behaviour.)
2172 * n == 0 : NonSecure systick
2173 * n == 1 : Secure systick
2175 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2179 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2181 NVICState *s = NVIC(dev);
2182 Error *err = NULL;
2183 int regionlen;
2185 s->cpu = ARM_CPU(qemu_get_cpu(0));
2186 assert(s->cpu);
2188 if (s->num_irq > NVIC_MAX_IRQ) {
2189 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2190 return;
2193 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2195 /* include space for internal exception vectors */
2196 s->num_irq += NVIC_FIRST_IRQ;
2198 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2199 "realized", &err);
2200 if (err != NULL) {
2201 error_propagate(errp, err);
2202 return;
2204 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2205 qdev_get_gpio_in_named(dev, "systick-trigger",
2206 M_REG_NS));
2208 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2209 /* We couldn't init the secure systick device in instance_init
2210 * as we didn't know then if the CPU had the security extensions;
2211 * so we have to do it here.
2213 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2214 TYPE_SYSTICK);
2215 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2217 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2218 "realized", &err);
2219 if (err != NULL) {
2220 error_propagate(errp, err);
2221 return;
2223 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2224 qdev_get_gpio_in_named(dev, "systick-trigger",
2225 M_REG_S));
2228 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2229 * and looks like this:
2230 * 0x004 - ICTR
2231 * 0x010 - 0xff - systick
2232 * 0x100..0x7ec - NVIC
2233 * 0x7f0..0xcff - Reserved
2234 * 0xd00..0xd3c - SCS registers
2235 * 0xd40..0xeff - Reserved or Not implemented
2236 * 0xf00 - STIR
2238 * Some registers within this space are banked between security states.
2239 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2240 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2241 * to the main SCS range, and non-secure accesses (including when
2242 * the security extension is not implemented) are RAZ/WI.
2243 * Note that both the main SCS range and the alias range are defined
2244 * to be exempt from memory attribution (R_BLJT) and so the memory
2245 * transaction attribute always matches the current CPU security
2246 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2247 * wrappers we change attrs.secure to indicate the NS access; so
2248 * generally code determining which banked register to use should
2249 * use attrs.secure; code determining actual behaviour of the system
2250 * should use env->v7m.secure.
2252 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2253 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2254 /* The system register region goes at the bottom of the priority
2255 * stack as it covers the whole page.
2257 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2258 "nvic_sysregs", 0x1000);
2259 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2261 memory_region_init_io(&s->systickmem, OBJECT(s),
2262 &nvic_systick_ops, s,
2263 "nvic_systick", 0xe0);
2265 memory_region_add_subregion_overlap(&s->container, 0x10,
2266 &s->systickmem, 1);
2268 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2269 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2270 &nvic_sysreg_ns_ops, &s->sysregmem,
2271 "nvic_sysregs_ns", 0x1000);
2272 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2273 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2274 &nvic_sysreg_ns_ops, &s->systickmem,
2275 "nvic_systick_ns", 0xe0);
2276 memory_region_add_subregion_overlap(&s->container, 0x20010,
2277 &s->systick_ns_mem, 1);
2280 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2283 static void armv7m_nvic_instance_init(Object *obj)
2285 /* We have a different default value for the num-irq property
2286 * than our superclass. This function runs after qdev init
2287 * has set the defaults from the Property array and before
2288 * any user-specified property setting, so just modify the
2289 * value in the GICState struct.
2291 DeviceState *dev = DEVICE(obj);
2292 NVICState *nvic = NVIC(obj);
2293 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2295 object_initialize(&nvic->systick[M_REG_NS],
2296 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2297 qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2298 /* We can't initialize the secure systick here, as we don't know
2299 * yet if we need it.
2302 sysbus_init_irq(sbd, &nvic->excpout);
2303 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2304 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2305 M_REG_NUM_BANKS);
2308 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2310 DeviceClass *dc = DEVICE_CLASS(klass);
2312 dc->vmsd = &vmstate_nvic;
2313 dc->props = props_nvic;
2314 dc->reset = armv7m_nvic_reset;
2315 dc->realize = armv7m_nvic_realize;
2318 static const TypeInfo armv7m_nvic_info = {
2319 .name = TYPE_NVIC,
2320 .parent = TYPE_SYS_BUS_DEVICE,
2321 .instance_init = armv7m_nvic_instance_init,
2322 .instance_size = sizeof(NVICState),
2323 .class_init = armv7m_nvic_class_init,
2324 .class_size = sizeof(SysBusDeviceClass),
2327 static void armv7m_nvic_register_types(void)
2329 type_register_static(&armv7m_nvic_info);
2332 type_init(armv7m_nvic_register_types)