2 * QTest testcase for the MC146818 real-time clock
4 * Copyright IBM, Corp. 2012
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
16 #include "libqtest-single.h"
17 #include "qemu/timer.h"
18 #include "hw/timer/mc146818rtc_regs.h"
20 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
22 static uint8_t base
= 0x70;
24 static int bcd2dec(int value
)
26 return (((value
>> 4) & 0x0F) * 10) + (value
& 0x0F);
29 static uint8_t cmos_read(uint8_t reg
)
35 static void cmos_write(uint8_t reg
, uint8_t val
)
41 static int tm_cmp(struct tm
*lhs
, struct tm
*rhs
)
46 memcpy(&d1
, lhs
, sizeof(d1
));
47 memcpy(&d2
, rhs
, sizeof(d2
));
62 static void print_tm(struct tm
*tm
)
64 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
65 tm
->tm_year
+ 1900, tm
->tm_mon
+ 1, tm
->tm_mday
,
66 tm
->tm_hour
, tm
->tm_min
, tm
->tm_sec
, tm
->tm_gmtoff
);
70 static void cmos_get_date_time(struct tm
*date
)
72 int base_year
= 2000, hour_offset
;
73 int sec
, min
, hour
, mday
, mon
, year
;
77 sec
= cmos_read(RTC_SECONDS
);
78 min
= cmos_read(RTC_MINUTES
);
79 hour
= cmos_read(RTC_HOURS
);
80 mday
= cmos_read(RTC_DAY_OF_MONTH
);
81 mon
= cmos_read(RTC_MONTH
);
82 year
= cmos_read(RTC_YEAR
);
84 if ((cmos_read(RTC_REG_B
) & REG_B_DM
) == 0) {
96 if ((cmos_read(0x0B) & REG_B_24H
) == 0) {
97 if (hour
>= hour_offset
) {
104 localtime_r(&ts
, &dummy
);
106 date
->tm_isdst
= dummy
.tm_isdst
;
109 date
->tm_hour
= hour
;
110 date
->tm_mday
= mday
;
111 date
->tm_mon
= mon
- 1;
112 date
->tm_year
= base_year
+ year
- 1900;
120 static void check_time(int wiggle
)
122 struct tm start
, date
[4], end
;
127 * This check assumes a few things. First, we cannot guarantee that we get
128 * a consistent reading from the wall clock because we may hit an edge of
129 * the clock while reading. To work around this, we read four clock readings
130 * such that at least two of them should match. We need to assume that one
131 * reading is corrupt so we need four readings to ensure that we have at
132 * least two consecutive identical readings
134 * It's also possible that we'll cross an edge reading the host clock so
135 * simply check to make sure that the clock reading is within the period of
136 * when we expect it to be.
140 gmtime_r(&ts
, &start
);
142 cmos_get_date_time(&date
[0]);
143 cmos_get_date_time(&date
[1]);
144 cmos_get_date_time(&date
[2]);
145 cmos_get_date_time(&date
[3]);
150 if (tm_cmp(&date
[0], &date
[1]) == 0) {
152 } else if (tm_cmp(&date
[1], &date
[2]) == 0) {
154 } else if (tm_cmp(&date
[2], &date
[3]) == 0) {
157 g_assert_not_reached();
160 if (!(tm_cmp(&start
, datep
) <= 0 && tm_cmp(datep
, &end
) <= 0)) {
163 start
.tm_isdst
= datep
->tm_isdst
;
165 t
= (long)mktime(datep
);
166 s
= (long)mktime(&start
);
168 g_test_message("RTC is %ld second(s) behind wall-clock", (s
- t
));
170 g_test_message("RTC is %ld second(s) ahead of wall-clock", (t
- s
));
173 g_assert_cmpint(ABS(t
- s
), <=, wiggle
);
177 static int wiggle
= 2;
179 static void set_year_20xx(void)
182 cmos_write(RTC_REG_B
, REG_B_24H
);
183 cmos_write(RTC_REG_A
, 0x76);
184 cmos_write(RTC_YEAR
, 0x11);
185 cmos_write(RTC_CENTURY
, 0x20);
186 cmos_write(RTC_MONTH
, 0x02);
187 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
188 cmos_write(RTC_HOURS
, 0x02);
189 cmos_write(RTC_MINUTES
, 0x04);
190 cmos_write(RTC_SECONDS
, 0x58);
191 cmos_write(RTC_REG_A
, 0x26);
193 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
194 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
195 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
196 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
197 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
198 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
199 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
201 if (sizeof(time_t) == 4) {
205 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
206 cmos_write(RTC_REG_A
, 0x76);
207 cmos_write(RTC_YEAR
, 0x80);
208 cmos_write(RTC_REG_A
, 0x26);
210 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
211 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
212 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
213 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
214 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
215 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
216 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
218 cmos_write(RTC_REG_A
, 0x76);
219 cmos_write(RTC_YEAR
, 0x11);
220 cmos_write(RTC_REG_A
, 0x26);
222 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
223 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
224 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
225 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
226 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
227 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x11);
228 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x20);
231 static void set_year_1980(void)
234 cmos_write(RTC_REG_B
, REG_B_24H
);
235 cmos_write(RTC_REG_A
, 0x76);
236 cmos_write(RTC_YEAR
, 0x80);
237 cmos_write(RTC_CENTURY
, 0x19);
238 cmos_write(RTC_MONTH
, 0x02);
239 cmos_write(RTC_DAY_OF_MONTH
, 0x02);
240 cmos_write(RTC_HOURS
, 0x02);
241 cmos_write(RTC_MINUTES
, 0x04);
242 cmos_write(RTC_SECONDS
, 0x58);
243 cmos_write(RTC_REG_A
, 0x26);
245 g_assert_cmpint(cmos_read(RTC_HOURS
), ==, 0x02);
246 g_assert_cmpint(cmos_read(RTC_MINUTES
), ==, 0x04);
247 g_assert_cmpint(cmos_read(RTC_SECONDS
), >=, 0x58);
248 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH
), ==, 0x02);
249 g_assert_cmpint(cmos_read(RTC_MONTH
), ==, 0x02);
250 g_assert_cmpint(cmos_read(RTC_YEAR
), ==, 0x80);
251 g_assert_cmpint(cmos_read(RTC_CENTURY
), ==, 0x19);
254 static void bcd_check_time(void)
257 cmos_write(RTC_REG_B
, REG_B_24H
);
261 static void dec_check_time(void)
264 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
268 static void alarm_time(void)
278 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_DM
);
280 g_assert(!get_irq(RTC_ISA_IRQ
));
281 cmos_read(RTC_REG_C
);
283 now
.tm_sec
= (now
.tm_sec
+ 2) % 60;
284 cmos_write(RTC_SECONDS_ALARM
, now
.tm_sec
);
285 cmos_write(RTC_MINUTES_ALARM
, RTC_ALARM_DONT_CARE
);
286 cmos_write(RTC_HOURS_ALARM
, RTC_ALARM_DONT_CARE
);
287 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) | REG_B_AIE
);
289 for (i
= 0; i
< 2 + wiggle
; i
++) {
290 if (get_irq(RTC_ISA_IRQ
)) {
294 clock_step(1000000000);
297 g_assert(get_irq(RTC_ISA_IRQ
));
298 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
299 g_assert(cmos_read(RTC_REG_C
) == 0);
302 static void set_time_regs(int h
, int m
, int s
)
304 cmos_write(RTC_HOURS
, h
);
305 cmos_write(RTC_MINUTES
, m
);
306 cmos_write(RTC_SECONDS
, s
);
309 static void set_time(int mode
, int h
, int m
, int s
)
311 cmos_write(RTC_REG_B
, mode
);
312 cmos_write(RTC_REG_A
, 0x76);
313 set_time_regs(h
, m
, s
);
314 cmos_write(RTC_REG_A
, 0x26);
317 static void set_datetime_bcd(int h
, int min
, int s
, int d
, int m
, int y
)
319 cmos_write(RTC_HOURS
, h
);
320 cmos_write(RTC_MINUTES
, min
);
321 cmos_write(RTC_SECONDS
, s
);
322 cmos_write(RTC_YEAR
, y
& 0xFF);
323 cmos_write(RTC_CENTURY
, y
>> 8);
324 cmos_write(RTC_MONTH
, m
);
325 cmos_write(RTC_DAY_OF_MONTH
, d
);
328 static void set_datetime_dec(int h
, int min
, int s
, int d
, int m
, int y
)
330 cmos_write(RTC_HOURS
, h
);
331 cmos_write(RTC_MINUTES
, min
);
332 cmos_write(RTC_SECONDS
, s
);
333 cmos_write(RTC_YEAR
, y
% 100);
334 cmos_write(RTC_CENTURY
, y
/ 100);
335 cmos_write(RTC_MONTH
, m
);
336 cmos_write(RTC_DAY_OF_MONTH
, d
);
339 static void set_datetime(int mode
, int h
, int min
, int s
, int d
, int m
, int y
)
341 cmos_write(RTC_REG_B
, mode
);
343 cmos_write(RTC_REG_A
, 0x76);
344 if (mode
& REG_B_DM
) {
345 set_datetime_dec(h
, min
, s
, d
, m
, y
);
347 set_datetime_bcd(h
, min
, s
, d
, m
, y
);
349 cmos_write(RTC_REG_A
, 0x26);
352 #define assert_time(h, m, s) \
354 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
355 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
356 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
359 #define assert_datetime_bcd(h, min, s, d, m, y) \
361 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
362 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
363 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
364 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
365 g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
366 g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
367 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
370 static void basic_12h_bcd(void)
372 /* set BCD 12 hour mode */
373 set_time(0, 0x81, 0x59, 0x00);
374 clock_step(1000000000LL);
375 assert_time(0x81, 0x59, 0x01);
376 clock_step(59000000000LL);
377 assert_time(0x82, 0x00, 0x00);
379 /* test BCD wraparound */
380 set_time(0, 0x09, 0x59, 0x59);
381 clock_step(60000000000LL);
382 assert_time(0x10, 0x00, 0x59);
385 set_time(0, 0x12, 0x59, 0x59);
386 clock_step(1000000000LL);
387 assert_time(0x01, 0x00, 0x00);
390 set_time(0, 0x92, 0x59, 0x59);
391 clock_step(1000000000LL);
392 assert_time(0x81, 0x00, 0x00);
395 set_time(0, 0x11, 0x59, 0x59);
396 clock_step(1000000000LL);
397 assert_time(0x92, 0x00, 0x00);
398 /* TODO: test day wraparound */
401 set_time(0, 0x91, 0x59, 0x59);
402 clock_step(1000000000LL);
403 assert_time(0x12, 0x00, 0x00);
404 /* TODO: test day wraparound */
407 static void basic_12h_dec(void)
409 /* set decimal 12 hour mode */
410 set_time(REG_B_DM
, 0x81, 59, 0);
411 clock_step(1000000000LL);
412 assert_time(0x81, 59, 1);
413 clock_step(59000000000LL);
414 assert_time(0x82, 0, 0);
417 set_time(REG_B_DM
, 0x8c, 59, 59);
418 clock_step(1000000000LL);
419 assert_time(0x81, 0, 0);
422 set_time(REG_B_DM
, 0x0c, 59, 59);
423 clock_step(1000000000LL);
424 assert_time(0x01, 0, 0);
427 set_time(REG_B_DM
, 0x0b, 59, 59);
428 clock_step(1000000000LL);
429 assert_time(0x8c, 0, 0);
432 set_time(REG_B_DM
, 0x8b, 59, 59);
433 clock_step(1000000000LL);
434 assert_time(0x0c, 0, 0);
435 /* TODO: test day wraparound */
438 static void basic_24h_bcd(void)
440 /* set BCD 24 hour mode */
441 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
442 clock_step(1000000000LL);
443 assert_time(0x09, 0x59, 0x01);
444 clock_step(59000000000LL);
445 assert_time(0x10, 0x00, 0x00);
447 /* test BCD wraparound */
448 set_time(REG_B_24H
, 0x09, 0x59, 0x00);
449 clock_step(60000000000LL);
450 assert_time(0x10, 0x00, 0x00);
452 /* TODO: test day wraparound */
453 set_time(REG_B_24H
, 0x23, 0x59, 0x00);
454 clock_step(60000000000LL);
455 assert_time(0x00, 0x00, 0x00);
458 static void basic_24h_dec(void)
460 /* set decimal 24 hour mode */
461 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
462 clock_step(1000000000LL);
463 assert_time(9, 59, 1);
464 clock_step(59000000000LL);
465 assert_time(10, 0, 0);
467 /* test BCD wraparound */
468 set_time(REG_B_24H
| REG_B_DM
, 9, 59, 0);
469 clock_step(60000000000LL);
470 assert_time(10, 0, 0);
472 /* TODO: test day wraparound */
473 set_time(REG_B_24H
| REG_B_DM
, 23, 59, 0);
474 clock_step(60000000000LL);
475 assert_time(0, 0, 0);
478 static void am_pm_alarm(void)
480 cmos_write(RTC_MINUTES_ALARM
, 0xC0);
481 cmos_write(RTC_SECONDS_ALARM
, 0xC0);
483 /* set BCD 12 hour mode */
484 cmos_write(RTC_REG_B
, 0);
486 /* Set time and alarm hour. */
487 cmos_write(RTC_REG_A
, 0x76);
488 cmos_write(RTC_HOURS_ALARM
, 0x82);
489 cmos_write(RTC_HOURS
, 0x81);
490 cmos_write(RTC_MINUTES
, 0x59);
491 cmos_write(RTC_SECONDS
, 0x00);
492 cmos_read(RTC_REG_C
);
493 cmos_write(RTC_REG_A
, 0x26);
495 /* Check that alarm triggers when AM/PM is set. */
496 clock_step(60000000000LL);
497 g_assert(cmos_read(RTC_HOURS
) == 0x82);
498 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
501 * Each of the following two tests takes over 60 seconds due to the time
502 * needed to report the PIT interrupts. Unfortunately, our PIT device
503 * model keeps counting even when GATE=0, so we cannot simply disable
506 if (g_test_quick()) {
510 /* set DEC 12 hour mode */
511 cmos_write(RTC_REG_B
, REG_B_DM
);
513 /* Set time and alarm hour. */
514 cmos_write(RTC_REG_A
, 0x76);
515 cmos_write(RTC_HOURS_ALARM
, 0x82);
516 cmos_write(RTC_HOURS
, 3);
517 cmos_write(RTC_MINUTES
, 0);
518 cmos_write(RTC_SECONDS
, 0);
519 cmos_read(RTC_REG_C
);
520 cmos_write(RTC_REG_A
, 0x26);
522 /* Check that alarm triggers. */
523 clock_step(3600 * 11 * 1000000000LL);
524 g_assert(cmos_read(RTC_HOURS
) == 0x82);
525 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) != 0);
527 /* Same as above, with inverted HOURS and HOURS_ALARM. */
528 cmos_write(RTC_REG_A
, 0x76);
529 cmos_write(RTC_HOURS_ALARM
, 2);
530 cmos_write(RTC_HOURS
, 3);
531 cmos_write(RTC_MINUTES
, 0);
532 cmos_write(RTC_SECONDS
, 0);
533 cmos_read(RTC_REG_C
);
534 cmos_write(RTC_REG_A
, 0x26);
536 /* Check that alarm does not trigger if hours differ only by AM/PM. */
537 clock_step(3600 * 11 * 1000000000LL);
538 g_assert(cmos_read(RTC_HOURS
) == 0x82);
539 g_assert((cmos_read(RTC_REG_C
) & REG_C_AF
) == 0);
542 /* success if no crash or abort */
543 static void fuzz_registers(void)
547 for (i
= 0; i
< 1000; i
++) {
550 reg
= (uint8_t)g_test_rand_int_range(0, 16);
551 val
= (uint8_t)g_test_rand_int_range(0, 256);
553 cmos_write(reg
, val
);
558 static void register_b_set_flag(void)
560 if (cmos_read(RTC_REG_A
) & REG_A_UIP
) {
561 clock_step(UIP_HOLD_LENGTH
+ NANOSECONDS_PER_SECOND
/ 5);
563 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
565 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
566 cmos_write(RTC_REG_B
, REG_B_24H
| REG_B_SET
);
568 set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
570 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
572 /* Since SET flag is still enabled, time does not advance. */
573 clock_step(1000000000LL);
574 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
576 /* Disable SET flag in Register B */
577 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) & ~REG_B_SET
);
579 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
581 /* Since SET flag is disabled, the clock now advances. */
582 clock_step(1000000000LL);
583 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
586 static void divider_reset(void)
588 /* Enable binary-coded decimal (BCD) mode in Register B*/
589 cmos_write(RTC_REG_B
, REG_B_24H
);
591 /* Enter divider reset */
592 cmos_write(RTC_REG_A
, 0x76);
593 set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
595 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
597 /* Since divider reset flag is still enabled, these are equality checks. */
598 clock_step(1000000000LL);
599 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
601 /* The first update ends 500 ms after divider reset */
602 cmos_write(RTC_REG_A
, 0x26);
603 clock_step(500000000LL - UIP_HOLD_LENGTH
- 1);
604 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
605 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
608 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, !=, 0);
609 clock_step(UIP_HOLD_LENGTH
);
610 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
612 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
615 static void uip_stuck(void)
617 set_datetime(REG_B_24H
, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
619 /* The first update ends 500 ms after divider reset */
620 (void)cmos_read(RTC_REG_C
);
621 clock_step(500000000LL);
622 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
623 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
626 cmos_write(RTC_HOURS_ALARM
, 0x02);
627 cmos_write(RTC_MINUTES_ALARM
, 0xC0);
628 cmos_write(RTC_SECONDS_ALARM
, 0xC0);
630 /* Because the alarm will fire soon, reading register A will latch UIP. */
631 clock_step(1000000000LL - UIP_HOLD_LENGTH
/ 2);
632 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, !=, 0);
634 /* Move the alarm far away. This must not cause UIP to remain stuck! */
635 cmos_write(RTC_HOURS_ALARM
, 0x03);
636 clock_step(UIP_HOLD_LENGTH
);
637 g_assert_cmpint(cmos_read(RTC_REG_A
) & REG_A_UIP
, ==, 0);
640 #define RTC_PERIOD_CODE1 13 /* 8 Hz */
641 #define RTC_PERIOD_CODE2 15 /* 2 Hz */
643 #define RTC_PERIOD_TEST_NR 50
645 static uint64_t wait_periodic_interrupt(uint64_t real_time
)
647 while (!get_irq(RTC_ISA_IRQ
)) {
648 real_time
= clock_step_next();
651 g_assert((cmos_read(RTC_REG_C
) & REG_C_PF
) != 0);
655 static void periodic_timer(void)
658 uint64_t period_clocks
, period_time
, start_time
, real_time
;
660 /* disable all interrupts. */
661 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) &
662 ~(REG_B_PIE
| REG_B_AIE
| REG_B_UIE
));
663 cmos_write(RTC_REG_A
, RTC_PERIOD_CODE1
);
664 /* enable periodic interrupt after properly configure the period. */
665 cmos_write(RTC_REG_B
, cmos_read(RTC_REG_B
) | REG_B_PIE
);
667 start_time
= real_time
= clock_step_next();
669 for (i
= 0; i
< RTC_PERIOD_TEST_NR
; i
++) {
670 cmos_write(RTC_REG_A
, RTC_PERIOD_CODE1
);
671 real_time
= wait_periodic_interrupt(real_time
);
672 cmos_write(RTC_REG_A
, RTC_PERIOD_CODE2
);
673 real_time
= wait_periodic_interrupt(real_time
);
676 period_clocks
= periodic_period_to_clock(RTC_PERIOD_CODE1
) +
677 periodic_period_to_clock(RTC_PERIOD_CODE2
);
678 period_clocks
*= RTC_PERIOD_TEST_NR
;
679 period_time
= periodic_clock_to_ns(period_clocks
);
681 real_time
-= start_time
;
682 g_assert_cmpint(ABS((int64_t)(real_time
- period_time
)), <=,
683 NANOSECONDS_PER_SECOND
* 0.5);
686 int main(int argc
, char **argv
)
688 QTestState
*s
= NULL
;
691 g_test_init(&argc
, &argv
, NULL
);
693 s
= qtest_start("-rtc clock=vm");
694 qtest_irq_intercept_in(s
, "ioapic");
696 qtest_add_func("/rtc/check-time/bcd", bcd_check_time
);
697 qtest_add_func("/rtc/check-time/dec", dec_check_time
);
698 qtest_add_func("/rtc/alarm/interrupt", alarm_time
);
699 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm
);
700 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec
);
701 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd
);
702 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec
);
703 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd
);
704 qtest_add_func("/rtc/set-year/20xx", set_year_20xx
);
705 qtest_add_func("/rtc/set-year/1980", set_year_1980
);
706 qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag
);
707 qtest_add_func("/rtc/update/divider-reset", divider_reset
);
708 qtest_add_func("/rtc/update/uip-stuck", uip_stuck
);
709 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers
);
710 qtest_add_func("/rtc/periodic/interrupt", periodic_timer
);