Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / hw / ppc / spapr.c
blobff87f155d55ec3d216ed8a2f62e2ea1148d9b0e3
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "qmp-commands.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
103 const char *type_ics,
104 int nr_irqs, Error **errp)
106 Error *local_err = NULL;
107 Object *obj;
109 obj = object_new(type_ics);
110 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
111 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
112 &error_abort);
113 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
114 if (local_err) {
115 goto error;
117 object_property_set_bool(obj, true, "realized", &local_err);
118 if (local_err) {
119 goto error;
122 return ICS_SIMPLE(obj);
124 error:
125 error_propagate(errp, local_err);
126 return NULL;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 static inline int xics_max_server_number(void)
165 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
168 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
170 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
171 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
173 if (kvm_enabled()) {
174 if (machine_kernel_irqchip_allowed(machine) &&
175 !xics_kvm_init(spapr, errp)) {
176 spapr->icp_type = TYPE_KVM_ICP;
177 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
179 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
180 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
181 return;
185 if (!spapr->ics) {
186 xics_spapr_init(spapr);
187 spapr->icp_type = TYPE_ICP;
188 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
189 if (!spapr->ics) {
190 return;
194 if (smc->pre_2_10_has_unused_icps) {
195 int i;
197 for (i = 0; i < xics_max_server_number(); i++) {
198 /* Dummy entries get deregistered when real ICPState objects
199 * are registered during CPU core hotplug.
201 pre_2_10_vmstate_register_dummy_icp(i);
206 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
207 int smt_threads)
209 int i, ret = 0;
210 uint32_t servers_prop[smt_threads];
211 uint32_t gservers_prop[smt_threads * 2];
212 int index = spapr_vcpu_id(cpu);
214 if (cpu->compat_pvr) {
215 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
216 if (ret < 0) {
217 return ret;
221 /* Build interrupt servers and gservers properties */
222 for (i = 0; i < smt_threads; i++) {
223 servers_prop[i] = cpu_to_be32(index + i);
224 /* Hack, direct the group queues back to cpu 0 */
225 gservers_prop[i*2] = cpu_to_be32(index + i);
226 gservers_prop[i*2 + 1] = 0;
228 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
229 servers_prop, sizeof(servers_prop));
230 if (ret < 0) {
231 return ret;
233 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
234 gservers_prop, sizeof(gservers_prop));
236 return ret;
239 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
241 int index = spapr_vcpu_id(cpu);
242 uint32_t associativity[] = {cpu_to_be32(0x5),
243 cpu_to_be32(0x0),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(cpu->node_id),
247 cpu_to_be32(index)};
249 /* Advertise NUMA via ibm,associativity */
250 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
251 sizeof(associativity));
254 /* Populate the "ibm,pa-features" property */
255 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
256 bool legacy_guest)
258 uint8_t pa_features_206[] = { 6, 0,
259 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
260 uint8_t pa_features_207[] = { 24, 0,
261 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
262 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
263 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
264 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
265 uint8_t pa_features_300[] = { 66, 0,
266 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
267 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
268 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
269 /* 6: DS207 */
270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
271 /* 16: Vector */
272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
273 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
274 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
275 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
276 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
277 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
278 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
279 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
280 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
281 /* 42: PM, 44: PC RA, 46: SC vec'd */
282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
283 /* 48: SIMD, 50: QP BFP, 52: String */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
285 /* 54: DecFP, 56: DecI, 58: SHA */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
287 /* 60: NM atomic, 62: RNG */
288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
290 uint8_t *pa_features;
291 size_t pa_size;
293 switch (POWERPC_MMU_VER(env->mmu_model)) {
294 case POWERPC_MMU_VER_2_06:
295 pa_features = pa_features_206;
296 pa_size = sizeof(pa_features_206);
297 break;
298 case POWERPC_MMU_VER_2_07:
299 pa_features = pa_features_207;
300 pa_size = sizeof(pa_features_207);
301 break;
302 case POWERPC_MMU_VER_3_00:
303 pa_features = pa_features_300;
304 pa_size = sizeof(pa_features_300);
305 break;
306 default:
307 return;
310 if (env->ci_large_pages) {
312 * Note: we keep CI large pages off by default because a 64K capable
313 * guest provisioned with large pages might otherwise try to map a qemu
314 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
315 * even if that qemu runs on a 4k host.
316 * We dd this bit back here if we are confident this is not an issue
318 pa_features[3] |= 0x20;
320 if (kvmppc_has_cap_htm() && pa_size > 24) {
321 pa_features[24] |= 0x80; /* Transactional memory support */
323 if (legacy_guest && pa_size > 40) {
324 /* Workaround for broken kernels that attempt (guest) radix
325 * mode when they can't handle it, if they see the radix bit set
326 * in pa-features. So hide it from them. */
327 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
330 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
333 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
335 int ret = 0, offset, cpus_offset;
336 CPUState *cs;
337 char cpu_model[32];
338 int smt = kvmppc_smt_threads();
339 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
341 CPU_FOREACH(cs) {
342 PowerPCCPU *cpu = POWERPC_CPU(cs);
343 CPUPPCState *env = &cpu->env;
344 DeviceClass *dc = DEVICE_GET_CLASS(cs);
345 int index = spapr_vcpu_id(cpu);
346 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
348 if ((index % smt) != 0) {
349 continue;
352 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
354 cpus_offset = fdt_path_offset(fdt, "/cpus");
355 if (cpus_offset < 0) {
356 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
357 "cpus");
358 if (cpus_offset < 0) {
359 return cpus_offset;
362 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
363 if (offset < 0) {
364 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
365 if (offset < 0) {
366 return offset;
370 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
371 pft_size_prop, sizeof(pft_size_prop));
372 if (ret < 0) {
373 return ret;
376 if (nb_numa_nodes > 1) {
377 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
378 if (ret < 0) {
379 return ret;
383 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
384 if (ret < 0) {
385 return ret;
388 spapr_populate_pa_features(env, fdt, offset,
389 spapr->cas_legacy_guest_workaround);
391 return ret;
394 static hwaddr spapr_node0_size(MachineState *machine)
396 if (nb_numa_nodes) {
397 int i;
398 for (i = 0; i < nb_numa_nodes; ++i) {
399 if (numa_info[i].node_mem) {
400 return MIN(pow2floor(numa_info[i].node_mem),
401 machine->ram_size);
405 return machine->ram_size;
408 static void add_str(GString *s, const gchar *s1)
410 g_string_append_len(s, s1, strlen(s1) + 1);
413 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
414 hwaddr size)
416 uint32_t associativity[] = {
417 cpu_to_be32(0x4), /* length */
418 cpu_to_be32(0x0), cpu_to_be32(0x0),
419 cpu_to_be32(0x0), cpu_to_be32(nodeid)
421 char mem_name[32];
422 uint64_t mem_reg_property[2];
423 int off;
425 mem_reg_property[0] = cpu_to_be64(start);
426 mem_reg_property[1] = cpu_to_be64(size);
428 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
429 off = fdt_add_subnode(fdt, 0, mem_name);
430 _FDT(off);
431 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
432 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
433 sizeof(mem_reg_property))));
434 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
435 sizeof(associativity))));
436 return off;
439 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
441 MachineState *machine = MACHINE(spapr);
442 hwaddr mem_start, node_size;
443 int i, nb_nodes = nb_numa_nodes;
444 NodeInfo *nodes = numa_info;
445 NodeInfo ramnode;
447 /* No NUMA nodes, assume there is just one node with whole RAM */
448 if (!nb_numa_nodes) {
449 nb_nodes = 1;
450 ramnode.node_mem = machine->ram_size;
451 nodes = &ramnode;
454 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
455 if (!nodes[i].node_mem) {
456 continue;
458 if (mem_start >= machine->ram_size) {
459 node_size = 0;
460 } else {
461 node_size = nodes[i].node_mem;
462 if (node_size > machine->ram_size - mem_start) {
463 node_size = machine->ram_size - mem_start;
466 if (!mem_start) {
467 /* ppc_spapr_init() checks for rma_size <= node0_size already */
468 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
469 mem_start += spapr->rma_size;
470 node_size -= spapr->rma_size;
472 for ( ; node_size; ) {
473 hwaddr sizetmp = pow2floor(node_size);
475 /* mem_start != 0 here */
476 if (ctzl(mem_start) < ctzl(sizetmp)) {
477 sizetmp = 1ULL << ctzl(mem_start);
480 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
481 node_size -= sizetmp;
482 mem_start += sizetmp;
486 return 0;
489 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
490 sPAPRMachineState *spapr)
492 PowerPCCPU *cpu = POWERPC_CPU(cs);
493 CPUPPCState *env = &cpu->env;
494 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
495 int index = spapr_vcpu_id(cpu);
496 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
497 0xffffffff, 0xffffffff};
498 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
499 : SPAPR_TIMEBASE_FREQ;
500 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
501 uint32_t page_sizes_prop[64];
502 size_t page_sizes_prop_size;
503 uint32_t vcpus_per_socket = smp_threads * smp_cores;
504 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
505 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
506 sPAPRDRConnector *drc;
507 int drc_index;
508 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
509 int i;
511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
512 if (drc) {
513 drc_index = spapr_drc_index(drc);
514 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
517 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
518 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
520 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
521 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
522 env->dcache_line_size)));
523 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
524 env->dcache_line_size)));
525 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
526 env->icache_line_size)));
527 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
528 env->icache_line_size)));
530 if (pcc->l1_dcache_size) {
531 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
532 pcc->l1_dcache_size)));
533 } else {
534 warn_report("Unknown L1 dcache size for cpu");
536 if (pcc->l1_icache_size) {
537 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
538 pcc->l1_icache_size)));
539 } else {
540 warn_report("Unknown L1 icache size for cpu");
543 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
544 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
545 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
546 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
547 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
548 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
550 if (env->spr_cb[SPR_PURR].oea_read) {
551 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
554 if (env->mmu_model & POWERPC_MMU_1TSEG) {
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
556 segs, sizeof(segs))));
559 /* Advertise VMX/VSX (vector extensions) if available
560 * 0 / no property == no vector extensions
561 * 1 == VMX / Altivec available
562 * 2 == VSX available */
563 if (env->insns_flags & PPC_ALTIVEC) {
564 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
566 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
569 /* Advertise DFP (Decimal Floating Point) if available
570 * 0 / no property == no DFP
571 * 1 == DFP available */
572 if (env->insns_flags2 & PPC2_DFP) {
573 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
576 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
577 sizeof(page_sizes_prop));
578 if (page_sizes_prop_size) {
579 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
580 page_sizes_prop, page_sizes_prop_size)));
583 spapr_populate_pa_features(env, fdt, offset, false);
585 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
586 cs->cpu_index / vcpus_per_socket)));
588 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
589 pft_size_prop, sizeof(pft_size_prop))));
591 if (nb_numa_nodes > 1) {
592 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
595 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
597 if (pcc->radix_page_info) {
598 for (i = 0; i < pcc->radix_page_info->count; i++) {
599 radix_AP_encodings[i] =
600 cpu_to_be32(pcc->radix_page_info->entries[i]);
602 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
603 radix_AP_encodings,
604 pcc->radix_page_info->count *
605 sizeof(radix_AP_encodings[0]))));
609 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
611 CPUState *cs;
612 int cpus_offset;
613 char *nodename;
614 int smt = kvmppc_smt_threads();
616 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
617 _FDT(cpus_offset);
618 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
619 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
622 * We walk the CPUs in reverse order to ensure that CPU DT nodes
623 * created by fdt_add_subnode() end up in the right order in FDT
624 * for the guest kernel the enumerate the CPUs correctly.
626 CPU_FOREACH_REVERSE(cs) {
627 PowerPCCPU *cpu = POWERPC_CPU(cs);
628 int index = spapr_vcpu_id(cpu);
629 DeviceClass *dc = DEVICE_GET_CLASS(cs);
630 int offset;
632 if ((index % smt) != 0) {
633 continue;
636 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
637 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
638 g_free(nodename);
639 _FDT(offset);
640 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
646 * Adds ibm,dynamic-reconfiguration-memory node.
647 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
648 * of this device tree node.
650 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
652 MachineState *machine = MACHINE(spapr);
653 int ret, i, offset;
654 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
655 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
656 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
657 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
658 memory_region_size(&spapr->hotplug_memory.mr)) /
659 lmb_size;
660 uint32_t *int_buf, *cur_index, buf_len;
661 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
664 * Don't create the node if there is no hotpluggable memory
666 if (machine->ram_size == machine->maxram_size) {
667 return 0;
671 * Allocate enough buffer size to fit in ibm,dynamic-memory
672 * or ibm,associativity-lookup-arrays
674 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
675 * sizeof(uint32_t);
676 cur_index = int_buf = g_malloc0(buf_len);
678 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
680 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
681 sizeof(prop_lmb_size));
682 if (ret < 0) {
683 goto out;
686 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
687 if (ret < 0) {
688 goto out;
691 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
692 if (ret < 0) {
693 goto out;
696 /* ibm,dynamic-memory */
697 int_buf[0] = cpu_to_be32(nr_lmbs);
698 cur_index++;
699 for (i = 0; i < nr_lmbs; i++) {
700 uint64_t addr = i * lmb_size;
701 uint32_t *dynamic_memory = cur_index;
703 if (i >= hotplug_lmb_start) {
704 sPAPRDRConnector *drc;
706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
707 g_assert(drc);
709 dynamic_memory[0] = cpu_to_be32(addr >> 32);
710 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
711 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
712 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
713 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
714 if (memory_region_present(get_system_memory(), addr)) {
715 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
716 } else {
717 dynamic_memory[5] = cpu_to_be32(0);
719 } else {
721 * LMB information for RMA, boot time RAM and gap b/n RAM and
722 * hotplug memory region -- all these are marked as reserved
723 * and as having no valid DRC.
725 dynamic_memory[0] = cpu_to_be32(addr >> 32);
726 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
727 dynamic_memory[2] = cpu_to_be32(0);
728 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
729 dynamic_memory[4] = cpu_to_be32(-1);
730 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
731 SPAPR_LMB_FLAGS_DRC_INVALID);
734 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
736 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
737 if (ret < 0) {
738 goto out;
741 /* ibm,associativity-lookup-arrays */
742 cur_index = int_buf;
743 int_buf[0] = cpu_to_be32(nr_nodes);
744 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
745 cur_index += 2;
746 for (i = 0; i < nr_nodes; i++) {
747 uint32_t associativity[] = {
748 cpu_to_be32(0x0),
749 cpu_to_be32(0x0),
750 cpu_to_be32(0x0),
751 cpu_to_be32(i)
753 memcpy(cur_index, associativity, sizeof(associativity));
754 cur_index += 4;
756 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
757 (cur_index - int_buf) * sizeof(uint32_t));
758 out:
759 g_free(int_buf);
760 return ret;
763 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
764 sPAPROptionVector *ov5_updates)
766 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
767 int ret = 0, offset;
769 /* Generate ibm,dynamic-reconfiguration-memory node if required */
770 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
771 g_assert(smc->dr_lmb_enabled);
772 ret = spapr_populate_drconf_memory(spapr, fdt);
773 if (ret) {
774 goto out;
778 offset = fdt_path_offset(fdt, "/chosen");
779 if (offset < 0) {
780 offset = fdt_add_subnode(fdt, 0, "chosen");
781 if (offset < 0) {
782 return offset;
785 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
786 "ibm,architecture-vec-5");
788 out:
789 return ret;
792 static bool spapr_hotplugged_dev_before_cas(void)
794 Object *drc_container, *obj;
795 ObjectProperty *prop;
796 ObjectPropertyIterator iter;
798 drc_container = container_get(object_get_root(), "/dr-connector");
799 object_property_iter_init(&iter, drc_container);
800 while ((prop = object_property_iter_next(&iter))) {
801 if (!strstart(prop->type, "link<", NULL)) {
802 continue;
804 obj = object_property_get_link(drc_container, prop->name, NULL);
805 if (spapr_drc_needed(obj)) {
806 return true;
809 return false;
812 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
813 target_ulong addr, target_ulong size,
814 sPAPROptionVector *ov5_updates)
816 void *fdt, *fdt_skel;
817 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
819 if (spapr_hotplugged_dev_before_cas()) {
820 return 1;
823 size -= sizeof(hdr);
825 /* Create skeleton */
826 fdt_skel = g_malloc0(size);
827 _FDT((fdt_create(fdt_skel, size)));
828 _FDT((fdt_begin_node(fdt_skel, "")));
829 _FDT((fdt_end_node(fdt_skel)));
830 _FDT((fdt_finish(fdt_skel)));
831 fdt = g_malloc0(size);
832 _FDT((fdt_open_into(fdt_skel, fdt, size)));
833 g_free(fdt_skel);
835 /* Fixup cpu nodes */
836 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
838 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
839 return -1;
842 /* Pack resulting tree */
843 _FDT((fdt_pack(fdt)));
845 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
846 trace_spapr_cas_failed(size);
847 return -1;
850 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
851 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
852 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
853 g_free(fdt);
855 return 0;
858 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
860 int rtas;
861 GString *hypertas = g_string_sized_new(256);
862 GString *qemu_hypertas = g_string_sized_new(256);
863 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
864 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
865 memory_region_size(&spapr->hotplug_memory.mr);
866 uint32_t lrdr_capacity[] = {
867 cpu_to_be32(max_hotplug_addr >> 32),
868 cpu_to_be32(max_hotplug_addr & 0xffffffff),
869 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
870 cpu_to_be32(max_cpus / smp_threads),
873 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
875 /* hypertas */
876 add_str(hypertas, "hcall-pft");
877 add_str(hypertas, "hcall-term");
878 add_str(hypertas, "hcall-dabr");
879 add_str(hypertas, "hcall-interrupt");
880 add_str(hypertas, "hcall-tce");
881 add_str(hypertas, "hcall-vio");
882 add_str(hypertas, "hcall-splpar");
883 add_str(hypertas, "hcall-bulk");
884 add_str(hypertas, "hcall-set-mode");
885 add_str(hypertas, "hcall-sprg0");
886 add_str(hypertas, "hcall-copy");
887 add_str(hypertas, "hcall-debug");
888 add_str(qemu_hypertas, "hcall-memop1");
890 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
891 add_str(hypertas, "hcall-multi-tce");
894 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
895 add_str(hypertas, "hcall-hpt-resize");
898 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
899 hypertas->str, hypertas->len));
900 g_string_free(hypertas, TRUE);
901 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
902 qemu_hypertas->str, qemu_hypertas->len));
903 g_string_free(qemu_hypertas, TRUE);
905 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
906 refpoints, sizeof(refpoints)));
908 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
909 RTAS_ERROR_LOG_MAX));
910 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
911 RTAS_EVENT_SCAN_RATE));
913 if (msi_nonbroken) {
914 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
918 * According to PAPR, rtas ibm,os-term does not guarantee a return
919 * back to the guest cpu.
921 * While an additional ibm,extended-os-term property indicates
922 * that rtas call return will always occur. Set this property.
924 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
926 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
927 lrdr_capacity, sizeof(lrdr_capacity)));
929 spapr_dt_rtas_tokens(fdt, rtas);
932 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
933 * that the guest may request and thus the valid values for bytes 24..26 of
934 * option vector 5: */
935 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
937 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
939 char val[2 * 4] = {
940 23, 0x00, /* Xive mode, filled in below. */
941 24, 0x00, /* Hash/Radix, filled in below. */
942 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
943 26, 0x40, /* Radix options: GTSE == yes. */
946 if (kvm_enabled()) {
947 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
948 val[3] = 0x80; /* OV5_MMU_BOTH */
949 } else if (kvmppc_has_cap_mmu_radix()) {
950 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
951 } else {
952 val[3] = 0x00; /* Hash */
954 } else {
955 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
956 /* V3 MMU supports both hash and radix (with dynamic switching) */
957 val[3] = 0xC0;
958 } else {
959 /* Otherwise we can only do hash */
960 val[3] = 0x00;
963 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
964 val, sizeof(val)));
967 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
969 MachineState *machine = MACHINE(spapr);
970 int chosen;
971 const char *boot_device = machine->boot_order;
972 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
973 size_t cb = 0;
974 char *bootlist = get_boot_devices_list(&cb, true);
976 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
978 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
979 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
980 spapr->initrd_base));
981 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
982 spapr->initrd_base + spapr->initrd_size));
984 if (spapr->kernel_size) {
985 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
986 cpu_to_be64(spapr->kernel_size) };
988 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
989 &kprop, sizeof(kprop)));
990 if (spapr->kernel_le) {
991 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
994 if (boot_menu) {
995 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
997 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
998 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
999 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1001 if (cb && bootlist) {
1002 int i;
1004 for (i = 0; i < cb; i++) {
1005 if (bootlist[i] == '\n') {
1006 bootlist[i] = ' ';
1009 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1012 if (boot_device && strlen(boot_device)) {
1013 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1016 if (!spapr->has_graphics && stdout_path) {
1017 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1020 spapr_dt_ov5_platform_support(fdt, chosen);
1022 g_free(stdout_path);
1023 g_free(bootlist);
1026 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1028 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1029 * KVM to work under pHyp with some guest co-operation */
1030 int hypervisor;
1031 uint8_t hypercall[16];
1033 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1034 /* indicate KVM hypercall interface */
1035 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1036 if (kvmppc_has_cap_fixup_hcalls()) {
1038 * Older KVM versions with older guest kernels were broken
1039 * with the magic page, don't allow the guest to map it.
1041 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1042 sizeof(hypercall))) {
1043 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1044 hypercall, sizeof(hypercall)));
1049 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1050 hwaddr rtas_addr,
1051 hwaddr rtas_size)
1053 MachineState *machine = MACHINE(spapr);
1054 MachineClass *mc = MACHINE_GET_CLASS(machine);
1055 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1056 int ret;
1057 void *fdt;
1058 sPAPRPHBState *phb;
1059 char *buf;
1061 fdt = g_malloc0(FDT_MAX_SIZE);
1062 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1064 /* Root node */
1065 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1066 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1067 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1070 * Add info to guest to indentify which host is it being run on
1071 * and what is the uuid of the guest
1073 if (kvmppc_get_host_model(&buf)) {
1074 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1075 g_free(buf);
1077 if (kvmppc_get_host_serial(&buf)) {
1078 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1079 g_free(buf);
1082 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1084 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1085 if (qemu_uuid_set) {
1086 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1088 g_free(buf);
1090 if (qemu_get_vm_name()) {
1091 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1092 qemu_get_vm_name()));
1095 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1096 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1098 /* /interrupt controller */
1099 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1101 ret = spapr_populate_memory(spapr, fdt);
1102 if (ret < 0) {
1103 error_report("couldn't setup memory nodes in fdt");
1104 exit(1);
1107 /* /vdevice */
1108 spapr_dt_vdevice(spapr->vio_bus, fdt);
1110 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1111 ret = spapr_rng_populate_dt(fdt);
1112 if (ret < 0) {
1113 error_report("could not set up rng device in the fdt");
1114 exit(1);
1118 QLIST_FOREACH(phb, &spapr->phbs, list) {
1119 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1120 if (ret < 0) {
1121 error_report("couldn't setup PCI devices in fdt");
1122 exit(1);
1126 /* cpus */
1127 spapr_populate_cpus_dt_node(fdt, spapr);
1129 if (smc->dr_lmb_enabled) {
1130 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1133 if (mc->has_hotpluggable_cpus) {
1134 int offset = fdt_path_offset(fdt, "/cpus");
1135 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1136 SPAPR_DR_CONNECTOR_TYPE_CPU);
1137 if (ret < 0) {
1138 error_report("Couldn't set up CPU DR device tree properties");
1139 exit(1);
1143 /* /event-sources */
1144 spapr_dt_events(spapr, fdt);
1146 /* /rtas */
1147 spapr_dt_rtas(spapr, fdt);
1149 /* /chosen */
1150 spapr_dt_chosen(spapr, fdt);
1152 /* /hypervisor */
1153 if (kvm_enabled()) {
1154 spapr_dt_hypervisor(spapr, fdt);
1157 /* Build memory reserve map */
1158 if (spapr->kernel_size) {
1159 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1161 if (spapr->initrd_size) {
1162 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1165 /* ibm,client-architecture-support updates */
1166 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1167 if (ret < 0) {
1168 error_report("couldn't setup CAS properties fdt");
1169 exit(1);
1172 return fdt;
1175 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1177 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1180 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1181 PowerPCCPU *cpu)
1183 CPUPPCState *env = &cpu->env;
1185 /* The TCG path should also be holding the BQL at this point */
1186 g_assert(qemu_mutex_iothread_locked());
1188 if (msr_pr) {
1189 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1190 env->gpr[3] = H_PRIVILEGE;
1191 } else {
1192 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1196 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1198 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1200 return spapr->patb_entry;
1203 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1204 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1205 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1206 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1207 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1210 * Get the fd to access the kernel htab, re-opening it if necessary
1212 static int get_htab_fd(sPAPRMachineState *spapr)
1214 Error *local_err = NULL;
1216 if (spapr->htab_fd >= 0) {
1217 return spapr->htab_fd;
1220 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1221 if (spapr->htab_fd < 0) {
1222 error_report_err(local_err);
1225 return spapr->htab_fd;
1228 void close_htab_fd(sPAPRMachineState *spapr)
1230 if (spapr->htab_fd >= 0) {
1231 close(spapr->htab_fd);
1233 spapr->htab_fd = -1;
1236 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1238 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1240 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1243 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1245 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1247 assert(kvm_enabled());
1249 if (!spapr->htab) {
1250 return 0;
1253 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1256 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1257 hwaddr ptex, int n)
1259 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1260 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1262 if (!spapr->htab) {
1264 * HTAB is controlled by KVM. Fetch into temporary buffer
1266 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1267 kvmppc_read_hptes(hptes, ptex, n);
1268 return hptes;
1272 * HTAB is controlled by QEMU. Just point to the internally
1273 * accessible PTEG.
1275 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1278 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1279 const ppc_hash_pte64_t *hptes,
1280 hwaddr ptex, int n)
1282 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1284 if (!spapr->htab) {
1285 g_free((void *)hptes);
1288 /* Nothing to do for qemu managed HPT */
1291 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1292 uint64_t pte0, uint64_t pte1)
1294 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1295 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1297 if (!spapr->htab) {
1298 kvmppc_write_hpte(ptex, pte0, pte1);
1299 } else {
1300 stq_p(spapr->htab + offset, pte0);
1301 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1305 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1307 int shift;
1309 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1310 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1311 * that's much more than is needed for Linux guests */
1312 shift = ctz64(pow2ceil(ramsize)) - 7;
1313 shift = MAX(shift, 18); /* Minimum architected size */
1314 shift = MIN(shift, 46); /* Maximum architected size */
1315 return shift;
1318 void spapr_free_hpt(sPAPRMachineState *spapr)
1320 g_free(spapr->htab);
1321 spapr->htab = NULL;
1322 spapr->htab_shift = 0;
1323 close_htab_fd(spapr);
1326 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1327 Error **errp)
1329 long rc;
1331 /* Clean up any HPT info from a previous boot */
1332 spapr_free_hpt(spapr);
1334 rc = kvmppc_reset_htab(shift);
1335 if (rc < 0) {
1336 /* kernel-side HPT needed, but couldn't allocate one */
1337 error_setg_errno(errp, errno,
1338 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1339 shift);
1340 /* This is almost certainly fatal, but if the caller really
1341 * wants to carry on with shift == 0, it's welcome to try */
1342 } else if (rc > 0) {
1343 /* kernel-side HPT allocated */
1344 if (rc != shift) {
1345 error_setg(errp,
1346 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1347 shift, rc);
1350 spapr->htab_shift = shift;
1351 spapr->htab = NULL;
1352 } else {
1353 /* kernel-side HPT not needed, allocate in userspace instead */
1354 size_t size = 1ULL << shift;
1355 int i;
1357 spapr->htab = qemu_memalign(size, size);
1358 if (!spapr->htab) {
1359 error_setg_errno(errp, errno,
1360 "Could not allocate HPT of order %d", shift);
1361 return;
1364 memset(spapr->htab, 0, size);
1365 spapr->htab_shift = shift;
1367 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1368 DIRTY_HPTE(HPTE(spapr->htab, i));
1373 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1375 int hpt_shift;
1377 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1378 || (spapr->cas_reboot
1379 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1380 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1381 } else {
1382 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1384 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1386 if (spapr->vrma_adjust) {
1387 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1388 spapr->htab_shift);
1390 /* We're setting up a hash table, so that means we're not radix */
1391 spapr->patb_entry = 0;
1394 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1396 bool matched = false;
1398 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1399 matched = true;
1402 if (!matched) {
1403 error_report("Device %s is not supported by this machine yet.",
1404 qdev_fw_name(DEVICE(sbdev)));
1405 exit(1);
1409 static void ppc_spapr_reset(void)
1411 MachineState *machine = MACHINE(qdev_get_machine());
1412 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1413 PowerPCCPU *first_ppc_cpu;
1414 uint32_t rtas_limit;
1415 hwaddr rtas_addr, fdt_addr;
1416 void *fdt;
1417 int rc;
1419 /* Check for unknown sysbus devices */
1420 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1422 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1423 /* If using KVM with radix mode available, VCPUs can be started
1424 * without a HPT because KVM will start them in radix mode.
1425 * Set the GR bit in PATB so that we know there is no HPT. */
1426 spapr->patb_entry = PATBE1_GR;
1427 } else {
1428 spapr_setup_hpt_and_vrma(spapr);
1431 qemu_devices_reset();
1432 spapr_clear_pending_events(spapr);
1435 * We place the device tree and RTAS just below either the top of the RMA,
1436 * or just below 2GB, whichever is lowere, so that it can be
1437 * processed with 32-bit real mode code if necessary
1439 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1440 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1441 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1443 /* if this reset wasn't generated by CAS, we should reset our
1444 * negotiated options and start from scratch */
1445 if (!spapr->cas_reboot) {
1446 spapr_ovec_cleanup(spapr->ov5_cas);
1447 spapr->ov5_cas = spapr_ovec_new();
1449 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1452 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1454 spapr_load_rtas(spapr, fdt, rtas_addr);
1456 rc = fdt_pack(fdt);
1458 /* Should only fail if we've built a corrupted tree */
1459 assert(rc == 0);
1461 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1462 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1463 fdt_totalsize(fdt), FDT_MAX_SIZE);
1464 exit(1);
1467 /* Load the fdt */
1468 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1469 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1470 g_free(fdt);
1472 /* Set up the entry state */
1473 first_ppc_cpu = POWERPC_CPU(first_cpu);
1474 first_ppc_cpu->env.gpr[3] = fdt_addr;
1475 first_ppc_cpu->env.gpr[5] = 0;
1476 first_cpu->halted = 0;
1477 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1479 spapr->cas_reboot = false;
1482 static void spapr_create_nvram(sPAPRMachineState *spapr)
1484 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1485 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1487 if (dinfo) {
1488 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1489 &error_fatal);
1492 qdev_init_nofail(dev);
1494 spapr->nvram = (struct sPAPRNVRAM *)dev;
1497 static void spapr_rtc_create(sPAPRMachineState *spapr)
1499 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1500 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1501 &error_fatal);
1502 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1503 &error_fatal);
1504 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1505 "date", &error_fatal);
1508 /* Returns whether we want to use VGA or not */
1509 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1511 switch (vga_interface_type) {
1512 case VGA_NONE:
1513 return false;
1514 case VGA_DEVICE:
1515 return true;
1516 case VGA_STD:
1517 case VGA_VIRTIO:
1518 return pci_vga_init(pci_bus) != NULL;
1519 default:
1520 error_setg(errp,
1521 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1522 return false;
1526 static int spapr_post_load(void *opaque, int version_id)
1528 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1529 int err = 0;
1531 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1532 CPUState *cs;
1533 CPU_FOREACH(cs) {
1534 PowerPCCPU *cpu = POWERPC_CPU(cs);
1535 icp_resend(ICP(cpu->intc));
1539 /* In earlier versions, there was no separate qdev for the PAPR
1540 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1541 * So when migrating from those versions, poke the incoming offset
1542 * value into the RTC device */
1543 if (version_id < 3) {
1544 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1547 if (spapr->patb_entry) {
1548 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1549 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1550 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1552 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1553 if (err) {
1554 error_report("Process table config unsupported by the host");
1555 return -EINVAL;
1559 return err;
1562 static bool version_before_3(void *opaque, int version_id)
1564 return version_id < 3;
1567 static bool spapr_pending_events_needed(void *opaque)
1569 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1570 return !QTAILQ_EMPTY(&spapr->pending_events);
1573 static const VMStateDescription vmstate_spapr_event_entry = {
1574 .name = "spapr_event_log_entry",
1575 .version_id = 1,
1576 .minimum_version_id = 1,
1577 .fields = (VMStateField[]) {
1578 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1579 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1580 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1581 NULL, extended_length),
1582 VMSTATE_END_OF_LIST()
1586 static const VMStateDescription vmstate_spapr_pending_events = {
1587 .name = "spapr_pending_events",
1588 .version_id = 1,
1589 .minimum_version_id = 1,
1590 .needed = spapr_pending_events_needed,
1591 .fields = (VMStateField[]) {
1592 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1593 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1594 VMSTATE_END_OF_LIST()
1598 static bool spapr_ov5_cas_needed(void *opaque)
1600 sPAPRMachineState *spapr = opaque;
1601 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1602 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1603 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1604 bool cas_needed;
1606 /* Prior to the introduction of sPAPROptionVector, we had two option
1607 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1608 * Both of these options encode machine topology into the device-tree
1609 * in such a way that the now-booted OS should still be able to interact
1610 * appropriately with QEMU regardless of what options were actually
1611 * negotiatied on the source side.
1613 * As such, we can avoid migrating the CAS-negotiated options if these
1614 * are the only options available on the current machine/platform.
1615 * Since these are the only options available for pseries-2.7 and
1616 * earlier, this allows us to maintain old->new/new->old migration
1617 * compatibility.
1619 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1620 * via default pseries-2.8 machines and explicit command-line parameters.
1621 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1622 * of the actual CAS-negotiated values to continue working properly. For
1623 * example, availability of memory unplug depends on knowing whether
1624 * OV5_HP_EVT was negotiated via CAS.
1626 * Thus, for any cases where the set of available CAS-negotiatable
1627 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1628 * include the CAS-negotiated options in the migration stream.
1630 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1631 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1633 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1634 * the mask itself since in the future it's possible "legacy" bits may be
1635 * removed via machine options, which could generate a false positive
1636 * that breaks migration.
1638 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1639 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1641 spapr_ovec_cleanup(ov5_mask);
1642 spapr_ovec_cleanup(ov5_legacy);
1643 spapr_ovec_cleanup(ov5_removed);
1645 return cas_needed;
1648 static const VMStateDescription vmstate_spapr_ov5_cas = {
1649 .name = "spapr_option_vector_ov5_cas",
1650 .version_id = 1,
1651 .minimum_version_id = 1,
1652 .needed = spapr_ov5_cas_needed,
1653 .fields = (VMStateField[]) {
1654 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1655 vmstate_spapr_ovec, sPAPROptionVector),
1656 VMSTATE_END_OF_LIST()
1660 static bool spapr_patb_entry_needed(void *opaque)
1662 sPAPRMachineState *spapr = opaque;
1664 return !!spapr->patb_entry;
1667 static const VMStateDescription vmstate_spapr_patb_entry = {
1668 .name = "spapr_patb_entry",
1669 .version_id = 1,
1670 .minimum_version_id = 1,
1671 .needed = spapr_patb_entry_needed,
1672 .fields = (VMStateField[]) {
1673 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1674 VMSTATE_END_OF_LIST()
1678 static const VMStateDescription vmstate_spapr = {
1679 .name = "spapr",
1680 .version_id = 3,
1681 .minimum_version_id = 1,
1682 .post_load = spapr_post_load,
1683 .fields = (VMStateField[]) {
1684 /* used to be @next_irq */
1685 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1687 /* RTC offset */
1688 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1690 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1691 VMSTATE_END_OF_LIST()
1693 .subsections = (const VMStateDescription*[]) {
1694 &vmstate_spapr_ov5_cas,
1695 &vmstate_spapr_patb_entry,
1696 &vmstate_spapr_pending_events,
1697 NULL
1701 static int htab_save_setup(QEMUFile *f, void *opaque)
1703 sPAPRMachineState *spapr = opaque;
1705 /* "Iteration" header */
1706 if (!spapr->htab_shift) {
1707 qemu_put_be32(f, -1);
1708 } else {
1709 qemu_put_be32(f, spapr->htab_shift);
1712 if (spapr->htab) {
1713 spapr->htab_save_index = 0;
1714 spapr->htab_first_pass = true;
1715 } else {
1716 if (spapr->htab_shift) {
1717 assert(kvm_enabled());
1722 return 0;
1725 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1726 int chunkstart, int n_valid, int n_invalid)
1728 qemu_put_be32(f, chunkstart);
1729 qemu_put_be16(f, n_valid);
1730 qemu_put_be16(f, n_invalid);
1731 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1732 HASH_PTE_SIZE_64 * n_valid);
1735 static void htab_save_end_marker(QEMUFile *f)
1737 qemu_put_be32(f, 0);
1738 qemu_put_be16(f, 0);
1739 qemu_put_be16(f, 0);
1742 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1743 int64_t max_ns)
1745 bool has_timeout = max_ns != -1;
1746 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1747 int index = spapr->htab_save_index;
1748 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1750 assert(spapr->htab_first_pass);
1752 do {
1753 int chunkstart;
1755 /* Consume invalid HPTEs */
1756 while ((index < htabslots)
1757 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1758 CLEAN_HPTE(HPTE(spapr->htab, index));
1759 index++;
1762 /* Consume valid HPTEs */
1763 chunkstart = index;
1764 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1765 && HPTE_VALID(HPTE(spapr->htab, index))) {
1766 CLEAN_HPTE(HPTE(spapr->htab, index));
1767 index++;
1770 if (index > chunkstart) {
1771 int n_valid = index - chunkstart;
1773 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1775 if (has_timeout &&
1776 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1777 break;
1780 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1782 if (index >= htabslots) {
1783 assert(index == htabslots);
1784 index = 0;
1785 spapr->htab_first_pass = false;
1787 spapr->htab_save_index = index;
1790 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1791 int64_t max_ns)
1793 bool final = max_ns < 0;
1794 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1795 int examined = 0, sent = 0;
1796 int index = spapr->htab_save_index;
1797 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1799 assert(!spapr->htab_first_pass);
1801 do {
1802 int chunkstart, invalidstart;
1804 /* Consume non-dirty HPTEs */
1805 while ((index < htabslots)
1806 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1807 index++;
1808 examined++;
1811 chunkstart = index;
1812 /* Consume valid dirty HPTEs */
1813 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1814 && HPTE_DIRTY(HPTE(spapr->htab, index))
1815 && HPTE_VALID(HPTE(spapr->htab, index))) {
1816 CLEAN_HPTE(HPTE(spapr->htab, index));
1817 index++;
1818 examined++;
1821 invalidstart = index;
1822 /* Consume invalid dirty HPTEs */
1823 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1824 && HPTE_DIRTY(HPTE(spapr->htab, index))
1825 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1826 CLEAN_HPTE(HPTE(spapr->htab, index));
1827 index++;
1828 examined++;
1831 if (index > chunkstart) {
1832 int n_valid = invalidstart - chunkstart;
1833 int n_invalid = index - invalidstart;
1835 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1836 sent += index - chunkstart;
1838 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1839 break;
1843 if (examined >= htabslots) {
1844 break;
1847 if (index >= htabslots) {
1848 assert(index == htabslots);
1849 index = 0;
1851 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1853 if (index >= htabslots) {
1854 assert(index == htabslots);
1855 index = 0;
1858 spapr->htab_save_index = index;
1860 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1863 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1864 #define MAX_KVM_BUF_SIZE 2048
1866 static int htab_save_iterate(QEMUFile *f, void *opaque)
1868 sPAPRMachineState *spapr = opaque;
1869 int fd;
1870 int rc = 0;
1872 /* Iteration header */
1873 if (!spapr->htab_shift) {
1874 qemu_put_be32(f, -1);
1875 return 1;
1876 } else {
1877 qemu_put_be32(f, 0);
1880 if (!spapr->htab) {
1881 assert(kvm_enabled());
1883 fd = get_htab_fd(spapr);
1884 if (fd < 0) {
1885 return fd;
1888 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1889 if (rc < 0) {
1890 return rc;
1892 } else if (spapr->htab_first_pass) {
1893 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1894 } else {
1895 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1898 htab_save_end_marker(f);
1900 return rc;
1903 static int htab_save_complete(QEMUFile *f, void *opaque)
1905 sPAPRMachineState *spapr = opaque;
1906 int fd;
1908 /* Iteration header */
1909 if (!spapr->htab_shift) {
1910 qemu_put_be32(f, -1);
1911 return 0;
1912 } else {
1913 qemu_put_be32(f, 0);
1916 if (!spapr->htab) {
1917 int rc;
1919 assert(kvm_enabled());
1921 fd = get_htab_fd(spapr);
1922 if (fd < 0) {
1923 return fd;
1926 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1927 if (rc < 0) {
1928 return rc;
1930 } else {
1931 if (spapr->htab_first_pass) {
1932 htab_save_first_pass(f, spapr, -1);
1934 htab_save_later_pass(f, spapr, -1);
1937 /* End marker */
1938 htab_save_end_marker(f);
1940 return 0;
1943 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1945 sPAPRMachineState *spapr = opaque;
1946 uint32_t section_hdr;
1947 int fd = -1;
1948 Error *local_err = NULL;
1950 if (version_id < 1 || version_id > 1) {
1951 error_report("htab_load() bad version");
1952 return -EINVAL;
1955 section_hdr = qemu_get_be32(f);
1957 if (section_hdr == -1) {
1958 spapr_free_hpt(spapr);
1959 return 0;
1962 if (section_hdr) {
1963 /* First section gives the htab size */
1964 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1965 if (local_err) {
1966 error_report_err(local_err);
1967 return -EINVAL;
1969 return 0;
1972 if (!spapr->htab) {
1973 assert(kvm_enabled());
1975 fd = kvmppc_get_htab_fd(true, 0, &local_err);
1976 if (fd < 0) {
1977 error_report_err(local_err);
1978 return fd;
1982 while (true) {
1983 uint32_t index;
1984 uint16_t n_valid, n_invalid;
1986 index = qemu_get_be32(f);
1987 n_valid = qemu_get_be16(f);
1988 n_invalid = qemu_get_be16(f);
1990 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1991 /* End of Stream */
1992 break;
1995 if ((index + n_valid + n_invalid) >
1996 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1997 /* Bad index in stream */
1998 error_report(
1999 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2000 index, n_valid, n_invalid, spapr->htab_shift);
2001 return -EINVAL;
2004 if (spapr->htab) {
2005 if (n_valid) {
2006 qemu_get_buffer(f, HPTE(spapr->htab, index),
2007 HASH_PTE_SIZE_64 * n_valid);
2009 if (n_invalid) {
2010 memset(HPTE(spapr->htab, index + n_valid), 0,
2011 HASH_PTE_SIZE_64 * n_invalid);
2013 } else {
2014 int rc;
2016 assert(fd >= 0);
2018 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2019 if (rc < 0) {
2020 return rc;
2025 if (!spapr->htab) {
2026 assert(fd >= 0);
2027 close(fd);
2030 return 0;
2033 static void htab_save_cleanup(void *opaque)
2035 sPAPRMachineState *spapr = opaque;
2037 close_htab_fd(spapr);
2040 static SaveVMHandlers savevm_htab_handlers = {
2041 .save_setup = htab_save_setup,
2042 .save_live_iterate = htab_save_iterate,
2043 .save_live_complete_precopy = htab_save_complete,
2044 .save_cleanup = htab_save_cleanup,
2045 .load_state = htab_load,
2048 static void spapr_boot_set(void *opaque, const char *boot_device,
2049 Error **errp)
2051 MachineState *machine = MACHINE(opaque);
2052 machine->boot_order = g_strdup(boot_device);
2055 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2057 MachineState *machine = MACHINE(spapr);
2058 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2059 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2060 int i;
2062 for (i = 0; i < nr_lmbs; i++) {
2063 uint64_t addr;
2065 addr = i * lmb_size + spapr->hotplug_memory.base;
2066 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2067 addr / lmb_size);
2072 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2073 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2074 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2076 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2078 int i;
2080 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2081 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2082 " is not aligned to %llu MiB",
2083 machine->ram_size,
2084 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2085 return;
2088 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2089 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2090 " is not aligned to %llu MiB",
2091 machine->ram_size,
2092 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2093 return;
2096 for (i = 0; i < nb_numa_nodes; i++) {
2097 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2098 error_setg(errp,
2099 "Node %d memory size 0x%" PRIx64
2100 " is not aligned to %llu MiB",
2101 i, numa_info[i].node_mem,
2102 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2103 return;
2108 /* find cpu slot in machine->possible_cpus by core_id */
2109 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2111 int index = id / smp_threads;
2113 if (index >= ms->possible_cpus->len) {
2114 return NULL;
2116 if (idx) {
2117 *idx = index;
2119 return &ms->possible_cpus->cpus[index];
2122 static void spapr_init_cpus(sPAPRMachineState *spapr)
2124 MachineState *machine = MACHINE(spapr);
2125 MachineClass *mc = MACHINE_GET_CLASS(machine);
2126 char *type = spapr_get_cpu_core_type(machine->cpu_model);
2127 int smt = kvmppc_smt_threads();
2128 const CPUArchIdList *possible_cpus;
2129 int boot_cores_nr = smp_cpus / smp_threads;
2130 int i;
2132 if (!type) {
2133 error_report("Unable to find sPAPR CPU Core definition");
2134 exit(1);
2137 possible_cpus = mc->possible_cpu_arch_ids(machine);
2138 if (mc->has_hotpluggable_cpus) {
2139 if (smp_cpus % smp_threads) {
2140 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2141 smp_cpus, smp_threads);
2142 exit(1);
2144 if (max_cpus % smp_threads) {
2145 error_report("max_cpus (%u) must be multiple of threads (%u)",
2146 max_cpus, smp_threads);
2147 exit(1);
2149 } else {
2150 if (max_cpus != smp_cpus) {
2151 error_report("This machine version does not support CPU hotplug");
2152 exit(1);
2154 boot_cores_nr = possible_cpus->len;
2157 for (i = 0; i < possible_cpus->len; i++) {
2158 int core_id = i * smp_threads;
2160 if (mc->has_hotpluggable_cpus) {
2161 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2162 (core_id / smp_threads) * smt);
2165 if (i < boot_cores_nr) {
2166 Object *core = object_new(type);
2167 int nr_threads = smp_threads;
2169 /* Handle the partially filled core for older machine types */
2170 if ((i + 1) * smp_threads >= smp_cpus) {
2171 nr_threads = smp_cpus - i * smp_threads;
2174 object_property_set_int(core, nr_threads, "nr-threads",
2175 &error_fatal);
2176 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2177 &error_fatal);
2178 object_property_set_bool(core, true, "realized", &error_fatal);
2181 g_free(type);
2184 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2186 Error *local_err = NULL;
2187 bool vsmt_user = !!spapr->vsmt;
2188 int kvm_smt = kvmppc_smt_threads();
2189 int ret;
2191 if (!kvm_enabled() && (smp_threads > 1)) {
2192 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2193 "on a pseries machine");
2194 goto out;
2196 if (!is_power_of_2(smp_threads)) {
2197 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2198 "machine because it must be a power of 2", smp_threads);
2199 goto out;
2202 /* Detemine the VSMT mode to use: */
2203 if (vsmt_user) {
2204 if (spapr->vsmt < smp_threads) {
2205 error_setg(&local_err, "Cannot support VSMT mode %d"
2206 " because it must be >= threads/core (%d)",
2207 spapr->vsmt, smp_threads);
2208 goto out;
2210 /* In this case, spapr->vsmt has been set by the command line */
2211 } else {
2212 /* Choose a VSMT mode that may be higher than necessary but is
2213 * likely to be compatible with hosts that don't have VSMT. */
2214 spapr->vsmt = MAX(kvm_smt, smp_threads);
2217 /* KVM: If necessary, set the SMT mode: */
2218 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2219 ret = kvmppc_set_smt_threads(spapr->vsmt);
2220 if (ret) {
2221 error_setg(&local_err,
2222 "Failed to set KVM's VSMT mode to %d (errno %d)",
2223 spapr->vsmt, ret);
2224 if (!vsmt_user) {
2225 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2226 "core on a host with %d threads/core requires "
2227 " the use of VSMT mode %d.\n",
2228 smp_threads, kvm_smt, spapr->vsmt);
2230 kvmppc_hint_smt_possible(&local_err);
2231 goto out;
2234 /* else TCG: nothing to do currently */
2235 out:
2236 error_propagate(errp, local_err);
2239 /* pSeries LPAR / sPAPR hardware init */
2240 static void ppc_spapr_init(MachineState *machine)
2242 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2243 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2244 const char *kernel_filename = machine->kernel_filename;
2245 const char *initrd_filename = machine->initrd_filename;
2246 PCIHostState *phb;
2247 int i;
2248 MemoryRegion *sysmem = get_system_memory();
2249 MemoryRegion *ram = g_new(MemoryRegion, 1);
2250 MemoryRegion *rma_region;
2251 void *rma = NULL;
2252 hwaddr rma_alloc_size;
2253 hwaddr node0_size = spapr_node0_size(machine);
2254 long load_limit, fw_size;
2255 char *filename;
2256 Error *resize_hpt_err = NULL;
2258 msi_nonbroken = true;
2260 QLIST_INIT(&spapr->phbs);
2261 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2263 /* Check HPT resizing availability */
2264 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2265 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2267 * If the user explicitly requested a mode we should either
2268 * supply it, or fail completely (which we do below). But if
2269 * it's not set explicitly, we reset our mode to something
2270 * that works
2272 if (resize_hpt_err) {
2273 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2274 error_free(resize_hpt_err);
2275 resize_hpt_err = NULL;
2276 } else {
2277 spapr->resize_hpt = smc->resize_hpt_default;
2281 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2283 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2285 * User requested HPT resize, but this host can't supply it. Bail out
2287 error_report_err(resize_hpt_err);
2288 exit(1);
2291 /* Allocate RMA if necessary */
2292 rma_alloc_size = kvmppc_alloc_rma(&rma);
2294 if (rma_alloc_size == -1) {
2295 error_report("Unable to create RMA");
2296 exit(1);
2299 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2300 spapr->rma_size = rma_alloc_size;
2301 } else {
2302 spapr->rma_size = node0_size;
2304 /* With KVM, we don't actually know whether KVM supports an
2305 * unbounded RMA (PR KVM) or is limited by the hash table size
2306 * (HV KVM using VRMA), so we always assume the latter
2308 * In that case, we also limit the initial allocations for RTAS
2309 * etc... to 256M since we have no way to know what the VRMA size
2310 * is going to be as it depends on the size of the hash table
2311 * isn't determined yet.
2313 if (kvm_enabled()) {
2314 spapr->vrma_adjust = 1;
2315 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2318 /* Actually we don't support unbounded RMA anymore since we
2319 * added proper emulation of HV mode. The max we can get is
2320 * 16G which also happens to be what we configure for PAPR
2321 * mode so make sure we don't do anything bigger than that
2323 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2326 if (spapr->rma_size > node0_size) {
2327 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2328 spapr->rma_size);
2329 exit(1);
2332 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2333 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2335 /* Set up Interrupt Controller before we create the VCPUs */
2336 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2338 /* Set up containers for ibm,client-set-architecture negotiated options */
2339 spapr->ov5 = spapr_ovec_new();
2340 spapr->ov5_cas = spapr_ovec_new();
2342 if (smc->dr_lmb_enabled) {
2343 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2344 spapr_validate_node_memory(machine, &error_fatal);
2347 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2348 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2349 /* KVM and TCG always allow GTSE with radix... */
2350 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2352 /* ... but not with hash (currently). */
2354 /* advertise support for dedicated HP event source to guests */
2355 if (spapr->use_hotplug_event_source) {
2356 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2359 /* advertise support for HPT resizing */
2360 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2361 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2364 /* init CPUs */
2365 if (machine->cpu_model == NULL) {
2366 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2369 spapr_cpu_parse_features(spapr);
2371 spapr_set_vsmt_mode(spapr, &error_fatal);
2373 spapr_init_cpus(spapr);
2375 if (kvm_enabled()) {
2376 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2377 kvmppc_enable_logical_ci_hcalls();
2378 kvmppc_enable_set_mode_hcall();
2380 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2381 kvmppc_enable_clear_ref_mod_hcalls();
2384 /* allocate RAM */
2385 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2386 machine->ram_size);
2387 memory_region_add_subregion(sysmem, 0, ram);
2389 if (rma_alloc_size && rma) {
2390 rma_region = g_new(MemoryRegion, 1);
2391 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2392 rma_alloc_size, rma);
2393 vmstate_register_ram_global(rma_region);
2394 memory_region_add_subregion(sysmem, 0, rma_region);
2397 /* initialize hotplug memory address space */
2398 if (machine->ram_size < machine->maxram_size) {
2399 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2401 * Limit the number of hotpluggable memory slots to half the number
2402 * slots that KVM supports, leaving the other half for PCI and other
2403 * devices. However ensure that number of slots doesn't drop below 32.
2405 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2406 SPAPR_MAX_RAM_SLOTS;
2408 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2409 max_memslots = SPAPR_MAX_RAM_SLOTS;
2411 if (machine->ram_slots > max_memslots) {
2412 error_report("Specified number of memory slots %"
2413 PRIu64" exceeds max supported %d",
2414 machine->ram_slots, max_memslots);
2415 exit(1);
2418 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2419 SPAPR_HOTPLUG_MEM_ALIGN);
2420 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2421 "hotplug-memory", hotplug_mem_size);
2422 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2423 &spapr->hotplug_memory.mr);
2426 if (smc->dr_lmb_enabled) {
2427 spapr_create_lmb_dr_connectors(spapr);
2430 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2431 if (!filename) {
2432 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2433 exit(1);
2435 spapr->rtas_size = get_image_size(filename);
2436 if (spapr->rtas_size < 0) {
2437 error_report("Could not get size of LPAR rtas '%s'", filename);
2438 exit(1);
2440 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2441 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2442 error_report("Could not load LPAR rtas '%s'", filename);
2443 exit(1);
2445 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2446 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2447 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2448 exit(1);
2450 g_free(filename);
2452 /* Set up RTAS event infrastructure */
2453 spapr_events_init(spapr);
2455 /* Set up the RTC RTAS interfaces */
2456 spapr_rtc_create(spapr);
2458 /* Set up VIO bus */
2459 spapr->vio_bus = spapr_vio_bus_init();
2461 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2462 if (serial_hds[i]) {
2463 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2467 /* We always have at least the nvram device on VIO */
2468 spapr_create_nvram(spapr);
2470 /* Set up PCI */
2471 spapr_pci_rtas_init();
2473 phb = spapr_create_phb(spapr, 0);
2475 for (i = 0; i < nb_nics; i++) {
2476 NICInfo *nd = &nd_table[i];
2478 if (!nd->model) {
2479 nd->model = g_strdup("ibmveth");
2482 if (strcmp(nd->model, "ibmveth") == 0) {
2483 spapr_vlan_create(spapr->vio_bus, nd);
2484 } else {
2485 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2489 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2490 spapr_vscsi_create(spapr->vio_bus);
2493 /* Graphics */
2494 if (spapr_vga_init(phb->bus, &error_fatal)) {
2495 spapr->has_graphics = true;
2496 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2499 if (machine->usb) {
2500 if (smc->use_ohci_by_default) {
2501 pci_create_simple(phb->bus, -1, "pci-ohci");
2502 } else {
2503 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2506 if (spapr->has_graphics) {
2507 USBBus *usb_bus = usb_bus_find(-1);
2509 usb_create_simple(usb_bus, "usb-kbd");
2510 usb_create_simple(usb_bus, "usb-mouse");
2514 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2515 error_report(
2516 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2517 MIN_RMA_SLOF);
2518 exit(1);
2521 if (kernel_filename) {
2522 uint64_t lowaddr = 0;
2524 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2525 NULL, NULL, &lowaddr, NULL, 1,
2526 PPC_ELF_MACHINE, 0, 0);
2527 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2528 spapr->kernel_size = load_elf(kernel_filename,
2529 translate_kernel_address, NULL, NULL,
2530 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2531 0, 0);
2532 spapr->kernel_le = spapr->kernel_size > 0;
2534 if (spapr->kernel_size < 0) {
2535 error_report("error loading %s: %s", kernel_filename,
2536 load_elf_strerror(spapr->kernel_size));
2537 exit(1);
2540 /* load initrd */
2541 if (initrd_filename) {
2542 /* Try to locate the initrd in the gap between the kernel
2543 * and the firmware. Add a bit of space just in case
2545 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2546 + 0x1ffff) & ~0xffff;
2547 spapr->initrd_size = load_image_targphys(initrd_filename,
2548 spapr->initrd_base,
2549 load_limit
2550 - spapr->initrd_base);
2551 if (spapr->initrd_size < 0) {
2552 error_report("could not load initial ram disk '%s'",
2553 initrd_filename);
2554 exit(1);
2559 if (bios_name == NULL) {
2560 bios_name = FW_FILE_NAME;
2562 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2563 if (!filename) {
2564 error_report("Could not find LPAR firmware '%s'", bios_name);
2565 exit(1);
2567 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2568 if (fw_size <= 0) {
2569 error_report("Could not load LPAR firmware '%s'", filename);
2570 exit(1);
2572 g_free(filename);
2574 /* FIXME: Should register things through the MachineState's qdev
2575 * interface, this is a legacy from the sPAPREnvironment structure
2576 * which predated MachineState but had a similar function */
2577 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2578 register_savevm_live(NULL, "spapr/htab", -1, 1,
2579 &savevm_htab_handlers, spapr);
2581 qemu_register_boot_set(spapr_boot_set, spapr);
2583 if (kvm_enabled()) {
2584 /* to stop and start vmclock */
2585 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2586 &spapr->tb);
2588 kvmppc_spapr_enable_inkernel_multitce();
2592 static int spapr_kvm_type(const char *vm_type)
2594 if (!vm_type) {
2595 return 0;
2598 if (!strcmp(vm_type, "HV")) {
2599 return 1;
2602 if (!strcmp(vm_type, "PR")) {
2603 return 2;
2606 error_report("Unknown kvm-type specified '%s'", vm_type);
2607 exit(1);
2611 * Implementation of an interface to adjust firmware path
2612 * for the bootindex property handling.
2614 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2615 DeviceState *dev)
2617 #define CAST(type, obj, name) \
2618 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2619 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2620 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2621 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2623 if (d) {
2624 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2625 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2626 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2628 if (spapr) {
2630 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2631 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2632 * in the top 16 bits of the 64-bit LUN
2634 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2635 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2636 (uint64_t)id << 48);
2637 } else if (virtio) {
2639 * We use SRP luns of the form 01000000 | (target << 8) | lun
2640 * in the top 32 bits of the 64-bit LUN
2641 * Note: the quote above is from SLOF and it is wrong,
2642 * the actual binding is:
2643 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2645 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2646 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2647 (uint64_t)id << 32);
2648 } else if (usb) {
2650 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2651 * in the top 32 bits of the 64-bit LUN
2653 unsigned usb_port = atoi(usb->port->path);
2654 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2655 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2656 (uint64_t)id << 32);
2661 * SLOF probes the USB devices, and if it recognizes that the device is a
2662 * storage device, it changes its name to "storage" instead of "usb-host",
2663 * and additionally adds a child node for the SCSI LUN, so the correct
2664 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2666 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2667 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2668 if (usb_host_dev_is_scsi_storage(usbdev)) {
2669 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2673 if (phb) {
2674 /* Replace "pci" with "pci@800000020000000" */
2675 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2678 if (vsc) {
2679 /* Same logic as virtio above */
2680 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2681 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2684 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2685 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2686 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2687 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2690 return NULL;
2693 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2695 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2697 return g_strdup(spapr->kvm_type);
2700 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2702 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2704 g_free(spapr->kvm_type);
2705 spapr->kvm_type = g_strdup(value);
2708 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2710 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2712 return spapr->use_hotplug_event_source;
2715 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2716 Error **errp)
2718 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2720 spapr->use_hotplug_event_source = value;
2723 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2725 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2727 switch (spapr->resize_hpt) {
2728 case SPAPR_RESIZE_HPT_DEFAULT:
2729 return g_strdup("default");
2730 case SPAPR_RESIZE_HPT_DISABLED:
2731 return g_strdup("disabled");
2732 case SPAPR_RESIZE_HPT_ENABLED:
2733 return g_strdup("enabled");
2734 case SPAPR_RESIZE_HPT_REQUIRED:
2735 return g_strdup("required");
2737 g_assert_not_reached();
2740 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2742 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2744 if (strcmp(value, "default") == 0) {
2745 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2746 } else if (strcmp(value, "disabled") == 0) {
2747 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2748 } else if (strcmp(value, "enabled") == 0) {
2749 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2750 } else if (strcmp(value, "required") == 0) {
2751 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2752 } else {
2753 error_setg(errp, "Bad value for \"resize-hpt\" property");
2757 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2758 void *opaque, Error **errp)
2760 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2763 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2764 void *opaque, Error **errp)
2766 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2769 static void spapr_machine_initfn(Object *obj)
2771 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2773 spapr->htab_fd = -1;
2774 spapr->use_hotplug_event_source = true;
2775 object_property_add_str(obj, "kvm-type",
2776 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2777 object_property_set_description(obj, "kvm-type",
2778 "Specifies the KVM virtualization mode (HV, PR)",
2779 NULL);
2780 object_property_add_bool(obj, "modern-hotplug-events",
2781 spapr_get_modern_hotplug_events,
2782 spapr_set_modern_hotplug_events,
2783 NULL);
2784 object_property_set_description(obj, "modern-hotplug-events",
2785 "Use dedicated hotplug event mechanism in"
2786 " place of standard EPOW events when possible"
2787 " (required for memory hot-unplug support)",
2788 NULL);
2790 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2791 "Maximum permitted CPU compatibility mode",
2792 &error_fatal);
2794 object_property_add_str(obj, "resize-hpt",
2795 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2796 object_property_set_description(obj, "resize-hpt",
2797 "Resizing of the Hash Page Table (enabled, disabled, required)",
2798 NULL);
2799 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2800 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2801 object_property_set_description(obj, "vsmt",
2802 "Virtual SMT: KVM behaves as if this were"
2803 " the host's SMT mode", &error_abort);
2806 static void spapr_machine_finalizefn(Object *obj)
2808 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2810 g_free(spapr->kvm_type);
2813 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2815 cpu_synchronize_state(cs);
2816 ppc_cpu_do_system_reset(cs);
2819 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2821 CPUState *cs;
2823 CPU_FOREACH(cs) {
2824 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2828 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2829 uint32_t node, bool dedicated_hp_event_source,
2830 Error **errp)
2832 sPAPRDRConnector *drc;
2833 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2834 int i, fdt_offset, fdt_size;
2835 void *fdt;
2836 uint64_t addr = addr_start;
2837 bool hotplugged = spapr_drc_hotplugged(dev);
2838 Error *local_err = NULL;
2840 for (i = 0; i < nr_lmbs; i++) {
2841 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2842 addr / SPAPR_MEMORY_BLOCK_SIZE);
2843 g_assert(drc);
2845 fdt = create_device_tree(&fdt_size);
2846 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2847 SPAPR_MEMORY_BLOCK_SIZE);
2849 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2850 if (local_err) {
2851 while (addr > addr_start) {
2852 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2853 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2854 addr / SPAPR_MEMORY_BLOCK_SIZE);
2855 spapr_drc_detach(drc);
2857 g_free(fdt);
2858 error_propagate(errp, local_err);
2859 return;
2861 if (!hotplugged) {
2862 spapr_drc_reset(drc);
2864 addr += SPAPR_MEMORY_BLOCK_SIZE;
2866 /* send hotplug notification to the
2867 * guest only in case of hotplugged memory
2869 if (hotplugged) {
2870 if (dedicated_hp_event_source) {
2871 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2872 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2873 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2874 nr_lmbs,
2875 spapr_drc_index(drc));
2876 } else {
2877 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2878 nr_lmbs);
2883 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2884 uint32_t node, Error **errp)
2886 Error *local_err = NULL;
2887 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2888 PCDIMMDevice *dimm = PC_DIMM(dev);
2889 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2890 MemoryRegion *mr;
2891 uint64_t align, size, addr;
2893 mr = ddc->get_memory_region(dimm, &local_err);
2894 if (local_err) {
2895 goto out;
2897 align = memory_region_get_alignment(mr);
2898 size = memory_region_size(mr);
2900 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2901 if (local_err) {
2902 goto out;
2905 addr = object_property_get_uint(OBJECT(dimm),
2906 PC_DIMM_ADDR_PROP, &local_err);
2907 if (local_err) {
2908 goto out_unplug;
2911 spapr_add_lmbs(dev, addr, size, node,
2912 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2913 &local_err);
2914 if (local_err) {
2915 goto out_unplug;
2918 return;
2920 out_unplug:
2921 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2922 out:
2923 error_propagate(errp, local_err);
2926 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2927 Error **errp)
2929 PCDIMMDevice *dimm = PC_DIMM(dev);
2930 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2931 MemoryRegion *mr;
2932 uint64_t size;
2933 char *mem_dev;
2935 mr = ddc->get_memory_region(dimm, errp);
2936 if (!mr) {
2937 return;
2939 size = memory_region_size(mr);
2941 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2942 error_setg(errp, "Hotplugged memory size must be a multiple of "
2943 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2944 return;
2947 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2948 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2949 error_setg(errp, "Memory backend has bad page size. "
2950 "Use 'memory-backend-file' with correct mem-path.");
2951 goto out;
2954 out:
2955 g_free(mem_dev);
2958 struct sPAPRDIMMState {
2959 PCDIMMDevice *dimm;
2960 uint32_t nr_lmbs;
2961 QTAILQ_ENTRY(sPAPRDIMMState) next;
2964 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2965 PCDIMMDevice *dimm)
2967 sPAPRDIMMState *dimm_state = NULL;
2969 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2970 if (dimm_state->dimm == dimm) {
2971 break;
2974 return dimm_state;
2977 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2978 uint32_t nr_lmbs,
2979 PCDIMMDevice *dimm)
2981 sPAPRDIMMState *ds = NULL;
2984 * If this request is for a DIMM whose removal had failed earlier
2985 * (due to guest's refusal to remove the LMBs), we would have this
2986 * dimm already in the pending_dimm_unplugs list. In that
2987 * case don't add again.
2989 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
2990 if (!ds) {
2991 ds = g_malloc0(sizeof(sPAPRDIMMState));
2992 ds->nr_lmbs = nr_lmbs;
2993 ds->dimm = dimm;
2994 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
2996 return ds;
2999 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3000 sPAPRDIMMState *dimm_state)
3002 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3003 g_free(dimm_state);
3006 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3007 PCDIMMDevice *dimm)
3009 sPAPRDRConnector *drc;
3010 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3011 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3012 uint64_t size = memory_region_size(mr);
3013 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3014 uint32_t avail_lmbs = 0;
3015 uint64_t addr_start, addr;
3016 int i;
3018 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3019 &error_abort);
3021 addr = addr_start;
3022 for (i = 0; i < nr_lmbs; i++) {
3023 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3024 addr / SPAPR_MEMORY_BLOCK_SIZE);
3025 g_assert(drc);
3026 if (drc->dev) {
3027 avail_lmbs++;
3029 addr += SPAPR_MEMORY_BLOCK_SIZE;
3032 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3035 /* Callback to be called during DRC release. */
3036 void spapr_lmb_release(DeviceState *dev)
3038 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3039 PCDIMMDevice *dimm = PC_DIMM(dev);
3040 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3041 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3042 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3044 /* This information will get lost if a migration occurs
3045 * during the unplug process. In this case recover it. */
3046 if (ds == NULL) {
3047 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3048 g_assert(ds);
3049 /* The DRC being examined by the caller at least must be counted */
3050 g_assert(ds->nr_lmbs);
3053 if (--ds->nr_lmbs) {
3054 return;
3057 spapr_pending_dimm_unplugs_remove(spapr, ds);
3060 * Now that all the LMBs have been removed by the guest, call the
3061 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3063 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3064 object_unparent(OBJECT(dev));
3067 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3068 DeviceState *dev, Error **errp)
3070 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3071 Error *local_err = NULL;
3072 PCDIMMDevice *dimm = PC_DIMM(dev);
3073 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3074 MemoryRegion *mr;
3075 uint32_t nr_lmbs;
3076 uint64_t size, addr_start, addr;
3077 int i;
3078 sPAPRDRConnector *drc;
3080 mr = ddc->get_memory_region(dimm, &local_err);
3081 if (local_err) {
3082 goto out;
3084 size = memory_region_size(mr);
3085 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3087 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3088 &local_err);
3089 if (local_err) {
3090 goto out;
3093 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3095 addr = addr_start;
3096 for (i = 0; i < nr_lmbs; i++) {
3097 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3098 addr / SPAPR_MEMORY_BLOCK_SIZE);
3099 g_assert(drc);
3101 spapr_drc_detach(drc);
3102 addr += SPAPR_MEMORY_BLOCK_SIZE;
3105 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3106 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3107 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3108 nr_lmbs, spapr_drc_index(drc));
3109 out:
3110 error_propagate(errp, local_err);
3113 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3114 sPAPRMachineState *spapr)
3116 PowerPCCPU *cpu = POWERPC_CPU(cs);
3117 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3118 int id = spapr_vcpu_id(cpu);
3119 void *fdt;
3120 int offset, fdt_size;
3121 char *nodename;
3123 fdt = create_device_tree(&fdt_size);
3124 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3125 offset = fdt_add_subnode(fdt, 0, nodename);
3127 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3128 g_free(nodename);
3130 *fdt_offset = offset;
3131 return fdt;
3134 /* Callback to be called during DRC release. */
3135 void spapr_core_release(DeviceState *dev)
3137 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3138 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3139 CPUCore *cc = CPU_CORE(dev);
3140 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3142 if (smc->pre_2_10_has_unused_icps) {
3143 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3144 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3145 const char *typename = object_class_get_name(scc->cpu_class);
3146 size_t size = object_type_get_instance_size(typename);
3147 int i;
3149 for (i = 0; i < cc->nr_threads; i++) {
3150 CPUState *cs = CPU(sc->threads + i * size);
3152 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3156 assert(core_slot);
3157 core_slot->cpu = NULL;
3158 object_unparent(OBJECT(dev));
3161 static
3162 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3163 Error **errp)
3165 int index;
3166 sPAPRDRConnector *drc;
3167 CPUCore *cc = CPU_CORE(dev);
3168 int smt = kvmppc_smt_threads();
3170 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3171 error_setg(errp, "Unable to find CPU core with core-id: %d",
3172 cc->core_id);
3173 return;
3175 if (index == 0) {
3176 error_setg(errp, "Boot CPU core may not be unplugged");
3177 return;
3180 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3181 g_assert(drc);
3183 spapr_drc_detach(drc);
3185 spapr_hotplug_req_remove_by_index(drc);
3188 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3189 Error **errp)
3191 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3192 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3193 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3194 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3195 CPUCore *cc = CPU_CORE(dev);
3196 CPUState *cs = CPU(core->threads);
3197 sPAPRDRConnector *drc;
3198 Error *local_err = NULL;
3199 int smt = kvmppc_smt_threads();
3200 CPUArchId *core_slot;
3201 int index;
3202 bool hotplugged = spapr_drc_hotplugged(dev);
3204 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3205 if (!core_slot) {
3206 error_setg(errp, "Unable to find CPU core with core-id: %d",
3207 cc->core_id);
3208 return;
3210 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3212 g_assert(drc || !mc->has_hotpluggable_cpus);
3214 if (drc) {
3215 void *fdt;
3216 int fdt_offset;
3218 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3220 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3221 if (local_err) {
3222 g_free(fdt);
3223 error_propagate(errp, local_err);
3224 return;
3227 if (hotplugged) {
3229 * Send hotplug notification interrupt to the guest only
3230 * in case of hotplugged CPUs.
3232 spapr_hotplug_req_add_by_index(drc);
3233 } else {
3234 spapr_drc_reset(drc);
3238 core_slot->cpu = OBJECT(dev);
3240 if (smc->pre_2_10_has_unused_icps) {
3241 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3242 const char *typename = object_class_get_name(scc->cpu_class);
3243 size_t size = object_type_get_instance_size(typename);
3244 int i;
3246 for (i = 0; i < cc->nr_threads; i++) {
3247 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3248 void *obj = sc->threads + i * size;
3250 cs = CPU(obj);
3251 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3256 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3257 Error **errp)
3259 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3260 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3261 Error *local_err = NULL;
3262 CPUCore *cc = CPU_CORE(dev);
3263 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3264 const char *type = object_get_typename(OBJECT(dev));
3265 CPUArchId *core_slot;
3266 int index;
3268 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3269 error_setg(&local_err, "CPU hotplug not supported for this machine");
3270 goto out;
3273 if (strcmp(base_core_type, type)) {
3274 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3275 goto out;
3278 if (cc->core_id % smp_threads) {
3279 error_setg(&local_err, "invalid core id %d", cc->core_id);
3280 goto out;
3284 * In general we should have homogeneous threads-per-core, but old
3285 * (pre hotplug support) machine types allow the last core to have
3286 * reduced threads as a compatibility hack for when we allowed
3287 * total vcpus not a multiple of threads-per-core.
3289 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3290 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3291 cc->nr_threads, smp_threads);
3292 goto out;
3295 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3296 if (!core_slot) {
3297 error_setg(&local_err, "core id %d out of range", cc->core_id);
3298 goto out;
3301 if (core_slot->cpu) {
3302 error_setg(&local_err, "core %d already populated", cc->core_id);
3303 goto out;
3306 numa_cpu_pre_plug(core_slot, dev, &local_err);
3308 out:
3309 g_free(base_core_type);
3310 error_propagate(errp, local_err);
3313 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3314 DeviceState *dev, Error **errp)
3316 MachineState *ms = MACHINE(hotplug_dev);
3317 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3319 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3320 int node;
3322 if (!smc->dr_lmb_enabled) {
3323 error_setg(errp, "Memory hotplug not supported for this machine");
3324 return;
3326 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3327 if (*errp) {
3328 return;
3330 if (node < 0 || node >= MAX_NODES) {
3331 error_setg(errp, "Invaild node %d", node);
3332 return;
3336 * Currently PowerPC kernel doesn't allow hot-adding memory to
3337 * memory-less node, but instead will silently add the memory
3338 * to the first node that has some memory. This causes two
3339 * unexpected behaviours for the user.
3341 * - Memory gets hotplugged to a different node than what the user
3342 * specified.
3343 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3344 * to memory-less node, a reboot will set things accordingly
3345 * and the previously hotplugged memory now ends in the right node.
3346 * This appears as if some memory moved from one node to another.
3348 * So until kernel starts supporting memory hotplug to memory-less
3349 * nodes, just prevent such attempts upfront in QEMU.
3351 if (nb_numa_nodes && !numa_info[node].node_mem) {
3352 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3353 node);
3354 return;
3357 spapr_memory_plug(hotplug_dev, dev, node, errp);
3358 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3359 spapr_core_plug(hotplug_dev, dev, errp);
3363 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3364 DeviceState *dev, Error **errp)
3366 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3367 MachineClass *mc = MACHINE_GET_CLASS(sms);
3369 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3370 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3371 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3372 } else {
3373 /* NOTE: this means there is a window after guest reset, prior to
3374 * CAS negotiation, where unplug requests will fail due to the
3375 * capability not being detected yet. This is a bit different than
3376 * the case with PCI unplug, where the events will be queued and
3377 * eventually handled by the guest after boot
3379 error_setg(errp, "Memory hot unplug not supported for this guest");
3381 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3382 if (!mc->has_hotpluggable_cpus) {
3383 error_setg(errp, "CPU hot unplug not supported on this machine");
3384 return;
3386 spapr_core_unplug_request(hotplug_dev, dev, errp);
3390 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3391 DeviceState *dev, Error **errp)
3393 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3394 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3395 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3396 spapr_core_pre_plug(hotplug_dev, dev, errp);
3400 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3401 DeviceState *dev)
3403 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3404 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3405 return HOTPLUG_HANDLER(machine);
3407 return NULL;
3410 static CpuInstanceProperties
3411 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3413 CPUArchId *core_slot;
3414 MachineClass *mc = MACHINE_GET_CLASS(machine);
3416 /* make sure possible_cpu are intialized */
3417 mc->possible_cpu_arch_ids(machine);
3418 /* get CPU core slot containing thread that matches cpu_index */
3419 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3420 assert(core_slot);
3421 return core_slot->props;
3424 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3426 return idx / smp_cores % nb_numa_nodes;
3429 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3431 int i;
3432 int spapr_max_cores = max_cpus / smp_threads;
3433 MachineClass *mc = MACHINE_GET_CLASS(machine);
3435 if (!mc->has_hotpluggable_cpus) {
3436 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3438 if (machine->possible_cpus) {
3439 assert(machine->possible_cpus->len == spapr_max_cores);
3440 return machine->possible_cpus;
3443 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3444 sizeof(CPUArchId) * spapr_max_cores);
3445 machine->possible_cpus->len = spapr_max_cores;
3446 for (i = 0; i < machine->possible_cpus->len; i++) {
3447 int core_id = i * smp_threads;
3449 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3450 machine->possible_cpus->cpus[i].arch_id = core_id;
3451 machine->possible_cpus->cpus[i].props.has_core_id = true;
3452 machine->possible_cpus->cpus[i].props.core_id = core_id;
3454 return machine->possible_cpus;
3457 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3458 uint64_t *buid, hwaddr *pio,
3459 hwaddr *mmio32, hwaddr *mmio64,
3460 unsigned n_dma, uint32_t *liobns, Error **errp)
3463 * New-style PHB window placement.
3465 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3466 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3467 * windows.
3469 * Some guest kernels can't work with MMIO windows above 1<<46
3470 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3472 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3473 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3474 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3475 * 1TiB 64-bit MMIO windows for each PHB.
3477 const uint64_t base_buid = 0x800000020000000ULL;
3478 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3479 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3480 int i;
3482 /* Sanity check natural alignments */
3483 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3484 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3485 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3486 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3487 /* Sanity check bounds */
3488 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3489 SPAPR_PCI_MEM32_WIN_SIZE);
3490 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3491 SPAPR_PCI_MEM64_WIN_SIZE);
3493 if (index >= SPAPR_MAX_PHBS) {
3494 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3495 SPAPR_MAX_PHBS - 1);
3496 return;
3499 *buid = base_buid + index;
3500 for (i = 0; i < n_dma; ++i) {
3501 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3504 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3505 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3506 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3509 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3511 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3513 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3516 static void spapr_ics_resend(XICSFabric *dev)
3518 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3520 ics_resend(spapr->ics);
3523 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3525 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3527 return cpu ? ICP(cpu->intc) : NULL;
3530 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3531 Monitor *mon)
3533 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3534 CPUState *cs;
3536 CPU_FOREACH(cs) {
3537 PowerPCCPU *cpu = POWERPC_CPU(cs);
3539 icp_pic_print_info(ICP(cpu->intc), mon);
3542 ics_pic_print_info(spapr->ics, mon);
3545 int spapr_vcpu_id(PowerPCCPU *cpu)
3547 CPUState *cs = CPU(cpu);
3549 if (kvm_enabled()) {
3550 return kvm_arch_vcpu_id(cs);
3551 } else {
3552 return cs->cpu_index;
3556 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3558 CPUState *cs;
3560 CPU_FOREACH(cs) {
3561 PowerPCCPU *cpu = POWERPC_CPU(cs);
3563 if (spapr_vcpu_id(cpu) == vcpu_id) {
3564 return cpu;
3568 return NULL;
3571 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3573 MachineClass *mc = MACHINE_CLASS(oc);
3574 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3575 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3576 NMIClass *nc = NMI_CLASS(oc);
3577 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3578 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3579 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3580 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3582 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3585 * We set up the default / latest behaviour here. The class_init
3586 * functions for the specific versioned machine types can override
3587 * these details for backwards compatibility
3589 mc->init = ppc_spapr_init;
3590 mc->reset = ppc_spapr_reset;
3591 mc->block_default_type = IF_SCSI;
3592 mc->max_cpus = 1024;
3593 mc->no_parallel = 1;
3594 mc->default_boot_order = "";
3595 mc->default_ram_size = 512 * M_BYTE;
3596 mc->kvm_type = spapr_kvm_type;
3597 mc->has_dynamic_sysbus = true;
3598 mc->pci_allow_0_address = true;
3599 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3600 hc->pre_plug = spapr_machine_device_pre_plug;
3601 hc->plug = spapr_machine_device_plug;
3602 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3603 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3604 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3605 hc->unplug_request = spapr_machine_device_unplug_request;
3607 smc->dr_lmb_enabled = true;
3608 smc->tcg_default_cpu = "POWER8";
3609 mc->has_hotpluggable_cpus = true;
3610 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3611 fwc->get_dev_path = spapr_get_fw_dev_path;
3612 nc->nmi_monitor_handler = spapr_nmi;
3613 smc->phb_placement = spapr_phb_placement;
3614 vhc->hypercall = emulate_spapr_hypercall;
3615 vhc->hpt_mask = spapr_hpt_mask;
3616 vhc->map_hptes = spapr_map_hptes;
3617 vhc->unmap_hptes = spapr_unmap_hptes;
3618 vhc->store_hpte = spapr_store_hpte;
3619 vhc->get_patbe = spapr_get_patbe;
3620 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3621 xic->ics_get = spapr_ics_get;
3622 xic->ics_resend = spapr_ics_resend;
3623 xic->icp_get = spapr_icp_get;
3624 ispc->print_info = spapr_pic_print_info;
3625 /* Force NUMA node memory size to be a multiple of
3626 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3627 * in which LMBs are represented and hot-added
3629 mc->numa_mem_align_shift = 28;
3632 static const TypeInfo spapr_machine_info = {
3633 .name = TYPE_SPAPR_MACHINE,
3634 .parent = TYPE_MACHINE,
3635 .abstract = true,
3636 .instance_size = sizeof(sPAPRMachineState),
3637 .instance_init = spapr_machine_initfn,
3638 .instance_finalize = spapr_machine_finalizefn,
3639 .class_size = sizeof(sPAPRMachineClass),
3640 .class_init = spapr_machine_class_init,
3641 .interfaces = (InterfaceInfo[]) {
3642 { TYPE_FW_PATH_PROVIDER },
3643 { TYPE_NMI },
3644 { TYPE_HOTPLUG_HANDLER },
3645 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3646 { TYPE_XICS_FABRIC },
3647 { TYPE_INTERRUPT_STATS_PROVIDER },
3652 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3653 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3654 void *data) \
3656 MachineClass *mc = MACHINE_CLASS(oc); \
3657 spapr_machine_##suffix##_class_options(mc); \
3658 if (latest) { \
3659 mc->alias = "pseries"; \
3660 mc->is_default = 1; \
3663 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3665 MachineState *machine = MACHINE(obj); \
3666 spapr_machine_##suffix##_instance_options(machine); \
3668 static const TypeInfo spapr_machine_##suffix##_info = { \
3669 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3670 .parent = TYPE_SPAPR_MACHINE, \
3671 .class_init = spapr_machine_##suffix##_class_init, \
3672 .instance_init = spapr_machine_##suffix##_instance_init, \
3673 }; \
3674 static void spapr_machine_register_##suffix(void) \
3676 type_register(&spapr_machine_##suffix##_info); \
3678 type_init(spapr_machine_register_##suffix)
3681 * pseries-2.11
3683 static void spapr_machine_2_11_instance_options(MachineState *machine)
3687 static void spapr_machine_2_11_class_options(MachineClass *mc)
3689 /* Defaults for the latest behaviour inherited from the base class */
3692 DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
3695 * pseries-2.10
3697 #define SPAPR_COMPAT_2_10 \
3698 HW_COMPAT_2_10 \
3700 static void spapr_machine_2_10_instance_options(MachineState *machine)
3704 static void spapr_machine_2_10_class_options(MachineClass *mc)
3706 spapr_machine_2_11_class_options(mc);
3707 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3710 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3713 * pseries-2.9
3715 #define SPAPR_COMPAT_2_9 \
3716 HW_COMPAT_2_9 \
3718 .driver = TYPE_POWERPC_CPU, \
3719 .property = "pre-2.10-migration", \
3720 .value = "on", \
3721 }, \
3723 static void spapr_machine_2_9_instance_options(MachineState *machine)
3725 spapr_machine_2_10_instance_options(machine);
3728 static void spapr_machine_2_9_class_options(MachineClass *mc)
3730 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3732 spapr_machine_2_10_class_options(mc);
3733 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3734 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3735 smc->pre_2_10_has_unused_icps = true;
3736 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3739 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3742 * pseries-2.8
3744 #define SPAPR_COMPAT_2_8 \
3745 HW_COMPAT_2_8 \
3747 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3748 .property = "pcie-extended-configuration-space", \
3749 .value = "off", \
3752 static void spapr_machine_2_8_instance_options(MachineState *machine)
3754 spapr_machine_2_9_instance_options(machine);
3757 static void spapr_machine_2_8_class_options(MachineClass *mc)
3759 spapr_machine_2_9_class_options(mc);
3760 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3761 mc->numa_mem_align_shift = 23;
3764 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3767 * pseries-2.7
3769 #define SPAPR_COMPAT_2_7 \
3770 HW_COMPAT_2_7 \
3772 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3773 .property = "mem_win_size", \
3774 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3775 }, \
3777 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3778 .property = "mem64_win_size", \
3779 .value = "0", \
3780 }, \
3782 .driver = TYPE_POWERPC_CPU, \
3783 .property = "pre-2.8-migration", \
3784 .value = "on", \
3785 }, \
3787 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3788 .property = "pre-2.8-migration", \
3789 .value = "on", \
3792 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3793 uint64_t *buid, hwaddr *pio,
3794 hwaddr *mmio32, hwaddr *mmio64,
3795 unsigned n_dma, uint32_t *liobns, Error **errp)
3797 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3798 const uint64_t base_buid = 0x800000020000000ULL;
3799 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3800 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3801 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3802 const uint32_t max_index = 255;
3803 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3805 uint64_t ram_top = MACHINE(spapr)->ram_size;
3806 hwaddr phb0_base, phb_base;
3807 int i;
3809 /* Do we have hotpluggable memory? */
3810 if (MACHINE(spapr)->maxram_size > ram_top) {
3811 /* Can't just use maxram_size, because there may be an
3812 * alignment gap between normal and hotpluggable memory
3813 * regions */
3814 ram_top = spapr->hotplug_memory.base +
3815 memory_region_size(&spapr->hotplug_memory.mr);
3818 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3820 if (index > max_index) {
3821 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3822 max_index);
3823 return;
3826 *buid = base_buid + index;
3827 for (i = 0; i < n_dma; ++i) {
3828 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3831 phb_base = phb0_base + index * phb_spacing;
3832 *pio = phb_base + pio_offset;
3833 *mmio32 = phb_base + mmio_offset;
3835 * We don't set the 64-bit MMIO window, relying on the PHB's
3836 * fallback behaviour of automatically splitting a large "32-bit"
3837 * window into contiguous 32-bit and 64-bit windows
3841 static void spapr_machine_2_7_instance_options(MachineState *machine)
3843 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3845 spapr_machine_2_8_instance_options(machine);
3846 spapr->use_hotplug_event_source = false;
3849 static void spapr_machine_2_7_class_options(MachineClass *mc)
3851 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3853 spapr_machine_2_8_class_options(mc);
3854 smc->tcg_default_cpu = "POWER7";
3855 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3856 smc->phb_placement = phb_placement_2_7;
3859 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3862 * pseries-2.6
3864 #define SPAPR_COMPAT_2_6 \
3865 HW_COMPAT_2_6 \
3867 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3868 .property = "ddw",\
3869 .value = stringify(off),\
3872 static void spapr_machine_2_6_instance_options(MachineState *machine)
3874 spapr_machine_2_7_instance_options(machine);
3877 static void spapr_machine_2_6_class_options(MachineClass *mc)
3879 spapr_machine_2_7_class_options(mc);
3880 mc->has_hotpluggable_cpus = false;
3881 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3884 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3887 * pseries-2.5
3889 #define SPAPR_COMPAT_2_5 \
3890 HW_COMPAT_2_5 \
3892 .driver = "spapr-vlan", \
3893 .property = "use-rx-buffer-pools", \
3894 .value = "off", \
3897 static void spapr_machine_2_5_instance_options(MachineState *machine)
3899 spapr_machine_2_6_instance_options(machine);
3902 static void spapr_machine_2_5_class_options(MachineClass *mc)
3904 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3906 spapr_machine_2_6_class_options(mc);
3907 smc->use_ohci_by_default = true;
3908 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3911 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3914 * pseries-2.4
3916 #define SPAPR_COMPAT_2_4 \
3917 HW_COMPAT_2_4
3919 static void spapr_machine_2_4_instance_options(MachineState *machine)
3921 spapr_machine_2_5_instance_options(machine);
3924 static void spapr_machine_2_4_class_options(MachineClass *mc)
3926 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3928 spapr_machine_2_5_class_options(mc);
3929 smc->dr_lmb_enabled = false;
3930 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3933 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3936 * pseries-2.3
3938 #define SPAPR_COMPAT_2_3 \
3939 HW_COMPAT_2_3 \
3941 .driver = "spapr-pci-host-bridge",\
3942 .property = "dynamic-reconfiguration",\
3943 .value = "off",\
3946 static void spapr_machine_2_3_instance_options(MachineState *machine)
3948 spapr_machine_2_4_instance_options(machine);
3951 static void spapr_machine_2_3_class_options(MachineClass *mc)
3953 spapr_machine_2_4_class_options(mc);
3954 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3956 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3959 * pseries-2.2
3962 #define SPAPR_COMPAT_2_2 \
3963 HW_COMPAT_2_2 \
3965 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3966 .property = "mem_win_size",\
3967 .value = "0x20000000",\
3970 static void spapr_machine_2_2_instance_options(MachineState *machine)
3972 spapr_machine_2_3_instance_options(machine);
3973 machine->suppress_vmdesc = true;
3976 static void spapr_machine_2_2_class_options(MachineClass *mc)
3978 spapr_machine_2_3_class_options(mc);
3979 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3981 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3984 * pseries-2.1
3986 #define SPAPR_COMPAT_2_1 \
3987 HW_COMPAT_2_1
3989 static void spapr_machine_2_1_instance_options(MachineState *machine)
3991 spapr_machine_2_2_instance_options(machine);
3994 static void spapr_machine_2_1_class_options(MachineClass *mc)
3996 spapr_machine_2_2_class_options(mc);
3997 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3999 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4001 static void spapr_machine_register_types(void)
4003 type_register_static(&spapr_machine_info);
4006 type_init(spapr_machine_register_types)