Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / exec.c
blob7313133495167537b4eb092daf7babe0bd0fc8c9
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
105 #endif
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
123 uintptr_t qemu_real_host_page_size;
124 intptr_t qemu_real_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 MemoryRegionSection *mru_section;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map;
195 PhysPageMap map;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t {
200 MemoryRegion iomem;
201 FlatView *fv;
202 hwaddr base;
203 uint16_t sub_section[];
204 } subpage_t;
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener *listener);
215 static MemoryRegion io_mem_watch;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
231 struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
237 #endif
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
243 static unsigned alloc_hint = 16;
244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
248 alloc_hint = map->nodes_nb_alloc;
252 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
254 unsigned i;
255 uint32_t ret;
256 PhysPageEntry e;
257 PhysPageEntry *p;
259 ret = map->nodes_nb++;
260 p = map->nodes[ret];
261 assert(ret != PHYS_MAP_NODE_NIL);
262 assert(ret != map->nodes_nb_alloc);
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
266 for (i = 0; i < P_L2_SIZE; ++i) {
267 memcpy(&p[i], &e, sizeof(e));
269 return ret;
272 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
274 int level)
276 PhysPageEntry *p;
277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
280 lp->ptr = phys_map_node_alloc(map, level == 0);
282 p = map->nodes[lp->ptr];
283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
285 while (*nb && lp < &p[P_L2_SIZE]) {
286 if ((*index & (step - 1)) == 0 && *nb >= step) {
287 lp->skip = 0;
288 lp->ptr = leaf;
289 *index += step;
290 *nb -= step;
291 } else {
292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
294 ++lp;
298 static void phys_page_set(AddressSpaceDispatch *d,
299 hwaddr index, hwaddr nb,
300 uint16_t leaf)
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
331 phys_page_compact(&p[i], nodes);
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
340 assert(valid_ptr < P_L2_SIZE);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
361 void address_space_dispatch_compact(AddressSpaceDispatch *d)
363 if (d->phys_map.skip) {
364 phys_page_compact(&d->phys_map, d->map.nodes);
368 static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section->size) ||
375 range_covers_byte(section->offset_within_address_space,
376 int128_getlo(section->size), addr);
379 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
384 hwaddr index = addr >> TARGET_PAGE_BITS;
385 int i;
387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
389 return &sections[PHYS_SECTION_UNASSIGNED];
391 p = nodes[lp.ptr];
392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
395 if (section_covers_addr(&sections[lp.ptr], addr)) {
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
402 bool memory_region_is_unassigned(MemoryRegion *mr)
404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
405 && mr != &io_mem_watch;
408 /* Called from RCU critical section */
409 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
410 hwaddr addr,
411 bool resolve_subpage)
413 MemoryRegionSection *section = atomic_read(&d->mru_section);
414 subpage_t *subpage;
415 bool update;
417 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
418 section_covers_addr(section, addr)) {
419 update = false;
420 } else {
421 section = phys_page_find(d, addr);
422 update = true;
424 if (resolve_subpage && section->mr->subpage) {
425 subpage = container_of(section->mr, subpage_t, iomem);
426 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
428 if (update) {
429 atomic_set(&d->mru_section, section);
431 return section;
434 /* Called from RCU critical section */
435 static MemoryRegionSection *
436 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
437 hwaddr *plen, bool resolve_subpage)
439 MemoryRegionSection *section;
440 MemoryRegion *mr;
441 Int128 diff;
443 section = address_space_lookup_region(d, addr, resolve_subpage);
444 /* Compute offset within MemoryRegionSection */
445 addr -= section->offset_within_address_space;
447 /* Compute offset within MemoryRegion */
448 *xlat = addr + section->offset_within_region;
450 mr = section->mr;
452 /* MMIO registers can be expected to perform full-width accesses based only
453 * on their address, without considering adjacent registers that could
454 * decode to completely different MemoryRegions. When such registers
455 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
456 * regions overlap wildly. For this reason we cannot clamp the accesses
457 * here.
459 * If the length is small (as is the case for address_space_ldl/stl),
460 * everything works fine. If the incoming length is large, however,
461 * the caller really has to do the clamping through memory_access_size.
463 if (memory_region_is_ram(mr)) {
464 diff = int128_sub(section->size, int128_make64(addr));
465 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
467 return section;
470 /* Called from RCU critical section */
471 static MemoryRegionSection flatview_do_translate(FlatView *fv,
472 hwaddr addr,
473 hwaddr *xlat,
474 hwaddr *plen,
475 bool is_write,
476 bool is_mmio,
477 AddressSpace **target_as)
479 IOMMUTLBEntry iotlb;
480 MemoryRegionSection *section;
481 IOMMUMemoryRegion *iommu_mr;
482 IOMMUMemoryRegionClass *imrc;
484 for (;;) {
485 section = address_space_translate_internal(
486 flatview_to_dispatch(fv), addr, &addr,
487 plen, is_mmio);
489 iommu_mr = memory_region_get_iommu(section->mr);
490 if (!iommu_mr) {
491 break;
493 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
495 iotlb = imrc->translate(iommu_mr, addr, is_write ?
496 IOMMU_WO : IOMMU_RO);
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
500 if (!(iotlb.perm & (1 << is_write))) {
501 goto translate_fail;
504 fv = address_space_to_flatview(iotlb.target_as);
505 *target_as = iotlb.target_as;
508 *xlat = addr;
510 return *section;
512 translate_fail:
513 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
516 /* Called from RCU critical section */
517 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
518 bool is_write)
520 MemoryRegionSection section;
521 hwaddr xlat, plen;
523 /* Try to get maximum page mask during translation. */
524 plen = (hwaddr)-1;
526 /* This can never be MMIO. */
527 section = flatview_do_translate(address_space_to_flatview(as), addr,
528 &xlat, &plen, is_write, false, &as);
530 /* Illegal translation */
531 if (section.mr == &io_mem_unassigned) {
532 goto iotlb_fail;
535 /* Convert memory region offset into address space offset */
536 xlat += section.offset_within_address_space -
537 section.offset_within_region;
539 if (plen == (hwaddr)-1) {
541 * We use default page size here. Logically it only happens
542 * for identity mappings.
544 plen = TARGET_PAGE_SIZE;
547 /* Convert to address mask */
548 plen -= 1;
550 return (IOMMUTLBEntry) {
551 .target_as = as,
552 .iova = addr & ~plen,
553 .translated_addr = xlat & ~plen,
554 .addr_mask = plen,
555 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
556 .perm = IOMMU_RW,
559 iotlb_fail:
560 return (IOMMUTLBEntry) {0};
563 /* Called from RCU critical section */
564 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
565 hwaddr *plen, bool is_write)
567 MemoryRegion *mr;
568 MemoryRegionSection section;
569 AddressSpace *as = NULL;
571 /* This can be MMIO, so setup MMIO bit. */
572 section = flatview_do_translate(fv, addr, xlat, plen, is_write, true, &as);
573 mr = section.mr;
575 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
576 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
577 *plen = MIN(page, *plen);
580 return mr;
583 /* Called from RCU critical section */
584 MemoryRegionSection *
585 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
586 hwaddr *xlat, hwaddr *plen)
588 MemoryRegionSection *section;
589 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
591 section = address_space_translate_internal(d, addr, xlat, plen, false);
593 assert(!memory_region_is_iommu(section->mr));
594 return section;
596 #endif
598 #if !defined(CONFIG_USER_ONLY)
600 static int cpu_common_post_load(void *opaque, int version_id)
602 CPUState *cpu = opaque;
604 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
605 version_id is increased. */
606 cpu->interrupt_request &= ~0x01;
607 tlb_flush(cpu);
609 return 0;
612 static int cpu_common_pre_load(void *opaque)
614 CPUState *cpu = opaque;
616 cpu->exception_index = -1;
618 return 0;
621 static bool cpu_common_exception_index_needed(void *opaque)
623 CPUState *cpu = opaque;
625 return tcg_enabled() && cpu->exception_index != -1;
628 static const VMStateDescription vmstate_cpu_common_exception_index = {
629 .name = "cpu_common/exception_index",
630 .version_id = 1,
631 .minimum_version_id = 1,
632 .needed = cpu_common_exception_index_needed,
633 .fields = (VMStateField[]) {
634 VMSTATE_INT32(exception_index, CPUState),
635 VMSTATE_END_OF_LIST()
639 static bool cpu_common_crash_occurred_needed(void *opaque)
641 CPUState *cpu = opaque;
643 return cpu->crash_occurred;
646 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
647 .name = "cpu_common/crash_occurred",
648 .version_id = 1,
649 .minimum_version_id = 1,
650 .needed = cpu_common_crash_occurred_needed,
651 .fields = (VMStateField[]) {
652 VMSTATE_BOOL(crash_occurred, CPUState),
653 VMSTATE_END_OF_LIST()
657 const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .pre_load = cpu_common_pre_load,
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField[]) {
664 VMSTATE_UINT32(halted, CPUState),
665 VMSTATE_UINT32(interrupt_request, CPUState),
666 VMSTATE_END_OF_LIST()
668 .subsections = (const VMStateDescription*[]) {
669 &vmstate_cpu_common_exception_index,
670 &vmstate_cpu_common_crash_occurred,
671 NULL
675 #endif
677 CPUState *qemu_get_cpu(int index)
679 CPUState *cpu;
681 CPU_FOREACH(cpu) {
682 if (cpu->cpu_index == index) {
683 return cpu;
687 return NULL;
690 #if !defined(CONFIG_USER_ONLY)
691 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
693 CPUAddressSpace *newas;
695 /* Target code should have set num_ases before calling us */
696 assert(asidx < cpu->num_ases);
698 if (asidx == 0) {
699 /* address space 0 gets the convenience alias */
700 cpu->as = as;
703 /* KVM cannot currently support multiple address spaces. */
704 assert(asidx == 0 || !kvm_enabled());
706 if (!cpu->cpu_ases) {
707 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
710 newas = &cpu->cpu_ases[asidx];
711 newas->cpu = cpu;
712 newas->as = as;
713 if (tcg_enabled()) {
714 newas->tcg_as_listener.commit = tcg_commit;
715 memory_listener_register(&newas->tcg_as_listener, as);
719 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
721 /* Return the AddressSpace corresponding to the specified index */
722 return cpu->cpu_ases[asidx].as;
724 #endif
726 void cpu_exec_unrealizefn(CPUState *cpu)
728 CPUClass *cc = CPU_GET_CLASS(cpu);
730 cpu_list_remove(cpu);
732 if (cc->vmsd != NULL) {
733 vmstate_unregister(NULL, cc->vmsd, cpu);
735 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
736 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
740 Property cpu_common_props[] = {
741 #ifndef CONFIG_USER_ONLY
742 /* Create a memory property for softmmu CPU object,
743 * so users can wire up its memory. (This can't go in qom/cpu.c
744 * because that file is compiled only once for both user-mode
745 * and system builds.) The default if no link is set up is to use
746 * the system address space.
748 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
749 MemoryRegion *),
750 #endif
751 DEFINE_PROP_END_OF_LIST(),
754 void cpu_exec_initfn(CPUState *cpu)
756 #ifdef TARGET_WORDS_BIGENDIAN
757 cpu->bigendian = true;
758 #else
759 cpu->bigendian = false;
760 #endif
761 cpu->as = NULL;
762 cpu->num_ases = 0;
764 #ifndef CONFIG_USER_ONLY
765 cpu->thread_id = qemu_get_thread_id();
766 cpu->memory = system_memory;
767 object_ref(OBJECT(cpu->memory));
768 #endif
771 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
773 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
775 cpu_list_add(cpu);
777 #ifndef CONFIG_USER_ONLY
778 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
779 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
781 if (cc->vmsd != NULL) {
782 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
784 #endif
787 #if defined(CONFIG_USER_ONLY)
788 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
790 mmap_lock();
791 tb_lock();
792 tb_invalidate_phys_page_range(pc, pc + 1, 0);
793 tb_unlock();
794 mmap_unlock();
796 #else
797 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
799 MemTxAttrs attrs;
800 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
801 int asidx = cpu_asidx_from_attrs(cpu, attrs);
802 if (phys != -1) {
803 /* Locks grabbed by tb_invalidate_phys_addr */
804 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
805 phys | (pc & ~TARGET_PAGE_MASK));
808 #endif
810 #if defined(CONFIG_USER_ONLY)
811 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
816 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
817 int flags)
819 return -ENOSYS;
822 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
826 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
827 int flags, CPUWatchpoint **watchpoint)
829 return -ENOSYS;
831 #else
832 /* Add a watchpoint. */
833 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
834 int flags, CPUWatchpoint **watchpoint)
836 CPUWatchpoint *wp;
838 /* forbid ranges which are empty or run off the end of the address space */
839 if (len == 0 || (addr + len - 1) < addr) {
840 error_report("tried to set invalid watchpoint at %"
841 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
842 return -EINVAL;
844 wp = g_malloc(sizeof(*wp));
846 wp->vaddr = addr;
847 wp->len = len;
848 wp->flags = flags;
850 /* keep all GDB-injected watchpoints in front */
851 if (flags & BP_GDB) {
852 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
853 } else {
854 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
857 tlb_flush_page(cpu, addr);
859 if (watchpoint)
860 *watchpoint = wp;
861 return 0;
864 /* Remove a specific watchpoint. */
865 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
866 int flags)
868 CPUWatchpoint *wp;
870 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
871 if (addr == wp->vaddr && len == wp->len
872 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
873 cpu_watchpoint_remove_by_ref(cpu, wp);
874 return 0;
877 return -ENOENT;
880 /* Remove a specific watchpoint by reference. */
881 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
883 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
885 tlb_flush_page(cpu, watchpoint->vaddr);
887 g_free(watchpoint);
890 /* Remove all matching watchpoints. */
891 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
893 CPUWatchpoint *wp, *next;
895 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
896 if (wp->flags & mask) {
897 cpu_watchpoint_remove_by_ref(cpu, wp);
902 /* Return true if this watchpoint address matches the specified
903 * access (ie the address range covered by the watchpoint overlaps
904 * partially or completely with the address range covered by the
905 * access).
907 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
908 vaddr addr,
909 vaddr len)
911 /* We know the lengths are non-zero, but a little caution is
912 * required to avoid errors in the case where the range ends
913 * exactly at the top of the address space and so addr + len
914 * wraps round to zero.
916 vaddr wpend = wp->vaddr + wp->len - 1;
917 vaddr addrend = addr + len - 1;
919 return !(addr > wpend || wp->vaddr > addrend);
922 #endif
924 /* Add a breakpoint. */
925 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
926 CPUBreakpoint **breakpoint)
928 CPUBreakpoint *bp;
930 bp = g_malloc(sizeof(*bp));
932 bp->pc = pc;
933 bp->flags = flags;
935 /* keep all GDB-injected breakpoints in front */
936 if (flags & BP_GDB) {
937 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
938 } else {
939 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
942 breakpoint_invalidate(cpu, pc);
944 if (breakpoint) {
945 *breakpoint = bp;
947 return 0;
950 /* Remove a specific breakpoint. */
951 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
953 CPUBreakpoint *bp;
955 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
956 if (bp->pc == pc && bp->flags == flags) {
957 cpu_breakpoint_remove_by_ref(cpu, bp);
958 return 0;
961 return -ENOENT;
964 /* Remove a specific breakpoint by reference. */
965 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
967 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
969 breakpoint_invalidate(cpu, breakpoint->pc);
971 g_free(breakpoint);
974 /* Remove all matching breakpoints. */
975 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
977 CPUBreakpoint *bp, *next;
979 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
980 if (bp->flags & mask) {
981 cpu_breakpoint_remove_by_ref(cpu, bp);
986 /* enable or disable single step mode. EXCP_DEBUG is returned by the
987 CPU loop after each instruction */
988 void cpu_single_step(CPUState *cpu, int enabled)
990 if (cpu->singlestep_enabled != enabled) {
991 cpu->singlestep_enabled = enabled;
992 if (kvm_enabled()) {
993 kvm_update_guest_debug(cpu, 0);
994 } else {
995 /* must flush all the translated code to avoid inconsistencies */
996 /* XXX: only flush what is necessary */
997 tb_flush(cpu);
1002 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1004 va_list ap;
1005 va_list ap2;
1007 va_start(ap, fmt);
1008 va_copy(ap2, ap);
1009 fprintf(stderr, "qemu: fatal: ");
1010 vfprintf(stderr, fmt, ap);
1011 fprintf(stderr, "\n");
1012 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1013 if (qemu_log_separate()) {
1014 qemu_log_lock();
1015 qemu_log("qemu: fatal: ");
1016 qemu_log_vprintf(fmt, ap2);
1017 qemu_log("\n");
1018 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1019 qemu_log_flush();
1020 qemu_log_unlock();
1021 qemu_log_close();
1023 va_end(ap2);
1024 va_end(ap);
1025 replay_finish();
1026 #if defined(CONFIG_USER_ONLY)
1028 struct sigaction act;
1029 sigfillset(&act.sa_mask);
1030 act.sa_handler = SIG_DFL;
1031 sigaction(SIGABRT, &act, NULL);
1033 #endif
1034 abort();
1037 #if !defined(CONFIG_USER_ONLY)
1038 /* Called from RCU critical section */
1039 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1041 RAMBlock *block;
1043 block = atomic_rcu_read(&ram_list.mru_block);
1044 if (block && addr - block->offset < block->max_length) {
1045 return block;
1047 RAMBLOCK_FOREACH(block) {
1048 if (addr - block->offset < block->max_length) {
1049 goto found;
1053 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1054 abort();
1056 found:
1057 /* It is safe to write mru_block outside the iothread lock. This
1058 * is what happens:
1060 * mru_block = xxx
1061 * rcu_read_unlock()
1062 * xxx removed from list
1063 * rcu_read_lock()
1064 * read mru_block
1065 * mru_block = NULL;
1066 * call_rcu(reclaim_ramblock, xxx);
1067 * rcu_read_unlock()
1069 * atomic_rcu_set is not needed here. The block was already published
1070 * when it was placed into the list. Here we're just making an extra
1071 * copy of the pointer.
1073 ram_list.mru_block = block;
1074 return block;
1077 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1079 CPUState *cpu;
1080 ram_addr_t start1;
1081 RAMBlock *block;
1082 ram_addr_t end;
1084 end = TARGET_PAGE_ALIGN(start + length);
1085 start &= TARGET_PAGE_MASK;
1087 rcu_read_lock();
1088 block = qemu_get_ram_block(start);
1089 assert(block == qemu_get_ram_block(end - 1));
1090 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1091 CPU_FOREACH(cpu) {
1092 tlb_reset_dirty(cpu, start1, length);
1094 rcu_read_unlock();
1097 /* Note: start and end must be within the same ram block. */
1098 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1099 ram_addr_t length,
1100 unsigned client)
1102 DirtyMemoryBlocks *blocks;
1103 unsigned long end, page;
1104 bool dirty = false;
1106 if (length == 0) {
1107 return false;
1110 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1111 page = start >> TARGET_PAGE_BITS;
1113 rcu_read_lock();
1115 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1117 while (page < end) {
1118 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1119 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1120 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1122 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1123 offset, num);
1124 page += num;
1127 rcu_read_unlock();
1129 if (dirty && tcg_enabled()) {
1130 tlb_reset_dirty_range_all(start, length);
1133 return dirty;
1136 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1137 (ram_addr_t start, ram_addr_t length, unsigned client)
1139 DirtyMemoryBlocks *blocks;
1140 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1141 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1142 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1143 DirtyBitmapSnapshot *snap;
1144 unsigned long page, end, dest;
1146 snap = g_malloc0(sizeof(*snap) +
1147 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1148 snap->start = first;
1149 snap->end = last;
1151 page = first >> TARGET_PAGE_BITS;
1152 end = last >> TARGET_PAGE_BITS;
1153 dest = 0;
1155 rcu_read_lock();
1157 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1159 while (page < end) {
1160 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1161 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1162 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1164 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1165 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1166 offset >>= BITS_PER_LEVEL;
1168 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1169 blocks->blocks[idx] + offset,
1170 num);
1171 page += num;
1172 dest += num >> BITS_PER_LEVEL;
1175 rcu_read_unlock();
1177 if (tcg_enabled()) {
1178 tlb_reset_dirty_range_all(start, length);
1181 return snap;
1184 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1185 ram_addr_t start,
1186 ram_addr_t length)
1188 unsigned long page, end;
1190 assert(start >= snap->start);
1191 assert(start + length <= snap->end);
1193 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1194 page = (start - snap->start) >> TARGET_PAGE_BITS;
1196 while (page < end) {
1197 if (test_bit(page, snap->dirty)) {
1198 return true;
1200 page++;
1202 return false;
1205 /* Called from RCU critical section */
1206 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1207 MemoryRegionSection *section,
1208 target_ulong vaddr,
1209 hwaddr paddr, hwaddr xlat,
1210 int prot,
1211 target_ulong *address)
1213 hwaddr iotlb;
1214 CPUWatchpoint *wp;
1216 if (memory_region_is_ram(section->mr)) {
1217 /* Normal RAM. */
1218 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1219 if (!section->readonly) {
1220 iotlb |= PHYS_SECTION_NOTDIRTY;
1221 } else {
1222 iotlb |= PHYS_SECTION_ROM;
1224 } else {
1225 AddressSpaceDispatch *d;
1227 d = flatview_to_dispatch(section->fv);
1228 iotlb = section - d->map.sections;
1229 iotlb += xlat;
1232 /* Make accesses to pages with watchpoints go via the
1233 watchpoint trap routines. */
1234 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1235 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1236 /* Avoid trapping reads of pages with a write breakpoint. */
1237 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1238 iotlb = PHYS_SECTION_WATCH + paddr;
1239 *address |= TLB_MMIO;
1240 break;
1245 return iotlb;
1247 #endif /* defined(CONFIG_USER_ONLY) */
1249 #if !defined(CONFIG_USER_ONLY)
1251 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1252 uint16_t section);
1253 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1255 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1256 qemu_anon_ram_alloc;
1259 * Set a custom physical guest memory alloator.
1260 * Accelerators with unusual needs may need this. Hopefully, we can
1261 * get rid of it eventually.
1263 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1265 phys_mem_alloc = alloc;
1268 static uint16_t phys_section_add(PhysPageMap *map,
1269 MemoryRegionSection *section)
1271 /* The physical section number is ORed with a page-aligned
1272 * pointer to produce the iotlb entries. Thus it should
1273 * never overflow into the page-aligned value.
1275 assert(map->sections_nb < TARGET_PAGE_SIZE);
1277 if (map->sections_nb == map->sections_nb_alloc) {
1278 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1279 map->sections = g_renew(MemoryRegionSection, map->sections,
1280 map->sections_nb_alloc);
1282 map->sections[map->sections_nb] = *section;
1283 memory_region_ref(section->mr);
1284 return map->sections_nb++;
1287 static void phys_section_destroy(MemoryRegion *mr)
1289 bool have_sub_page = mr->subpage;
1291 memory_region_unref(mr);
1293 if (have_sub_page) {
1294 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1295 object_unref(OBJECT(&subpage->iomem));
1296 g_free(subpage);
1300 static void phys_sections_free(PhysPageMap *map)
1302 while (map->sections_nb > 0) {
1303 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1304 phys_section_destroy(section->mr);
1306 g_free(map->sections);
1307 g_free(map->nodes);
1310 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1312 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1313 subpage_t *subpage;
1314 hwaddr base = section->offset_within_address_space
1315 & TARGET_PAGE_MASK;
1316 MemoryRegionSection *existing = phys_page_find(d, base);
1317 MemoryRegionSection subsection = {
1318 .offset_within_address_space = base,
1319 .size = int128_make64(TARGET_PAGE_SIZE),
1321 hwaddr start, end;
1323 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1325 if (!(existing->mr->subpage)) {
1326 subpage = subpage_init(fv, base);
1327 subsection.fv = fv;
1328 subsection.mr = &subpage->iomem;
1329 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1330 phys_section_add(&d->map, &subsection));
1331 } else {
1332 subpage = container_of(existing->mr, subpage_t, iomem);
1334 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1335 end = start + int128_get64(section->size) - 1;
1336 subpage_register(subpage, start, end,
1337 phys_section_add(&d->map, section));
1341 static void register_multipage(FlatView *fv,
1342 MemoryRegionSection *section)
1344 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1345 hwaddr start_addr = section->offset_within_address_space;
1346 uint16_t section_index = phys_section_add(&d->map, section);
1347 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1348 TARGET_PAGE_BITS));
1350 assert(num_pages);
1351 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1354 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1356 MemoryRegionSection now = *section, remain = *section;
1357 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1359 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1360 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1361 - now.offset_within_address_space;
1363 now.size = int128_min(int128_make64(left), now.size);
1364 register_subpage(fv, &now);
1365 } else {
1366 now.size = int128_zero();
1368 while (int128_ne(remain.size, now.size)) {
1369 remain.size = int128_sub(remain.size, now.size);
1370 remain.offset_within_address_space += int128_get64(now.size);
1371 remain.offset_within_region += int128_get64(now.size);
1372 now = remain;
1373 if (int128_lt(remain.size, page_size)) {
1374 register_subpage(fv, &now);
1375 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1376 now.size = page_size;
1377 register_subpage(fv, &now);
1378 } else {
1379 now.size = int128_and(now.size, int128_neg(page_size));
1380 register_multipage(fv, &now);
1385 void qemu_flush_coalesced_mmio_buffer(void)
1387 if (kvm_enabled())
1388 kvm_flush_coalesced_mmio_buffer();
1391 void qemu_mutex_lock_ramlist(void)
1393 qemu_mutex_lock(&ram_list.mutex);
1396 void qemu_mutex_unlock_ramlist(void)
1398 qemu_mutex_unlock(&ram_list.mutex);
1401 void ram_block_dump(Monitor *mon)
1403 RAMBlock *block;
1404 char *psize;
1406 rcu_read_lock();
1407 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1408 "Block Name", "PSize", "Offset", "Used", "Total");
1409 RAMBLOCK_FOREACH(block) {
1410 psize = size_to_str(block->page_size);
1411 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1412 " 0x%016" PRIx64 "\n", block->idstr, psize,
1413 (uint64_t)block->offset,
1414 (uint64_t)block->used_length,
1415 (uint64_t)block->max_length);
1416 g_free(psize);
1418 rcu_read_unlock();
1421 #ifdef __linux__
1423 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1424 * may or may not name the same files / on the same filesystem now as
1425 * when we actually open and map them. Iterate over the file
1426 * descriptors instead, and use qemu_fd_getpagesize().
1428 static int find_max_supported_pagesize(Object *obj, void *opaque)
1430 char *mem_path;
1431 long *hpsize_min = opaque;
1433 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1434 mem_path = object_property_get_str(obj, "mem-path", NULL);
1435 if (mem_path) {
1436 long hpsize = qemu_mempath_getpagesize(mem_path);
1437 if (hpsize < *hpsize_min) {
1438 *hpsize_min = hpsize;
1440 } else {
1441 *hpsize_min = getpagesize();
1445 return 0;
1448 long qemu_getrampagesize(void)
1450 long hpsize = LONG_MAX;
1451 long mainrampagesize;
1452 Object *memdev_root;
1454 if (mem_path) {
1455 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1456 } else {
1457 mainrampagesize = getpagesize();
1460 /* it's possible we have memory-backend objects with
1461 * hugepage-backed RAM. these may get mapped into system
1462 * address space via -numa parameters or memory hotplug
1463 * hooks. we want to take these into account, but we
1464 * also want to make sure these supported hugepage
1465 * sizes are applicable across the entire range of memory
1466 * we may boot from, so we take the min across all
1467 * backends, and assume normal pages in cases where a
1468 * backend isn't backed by hugepages.
1470 memdev_root = object_resolve_path("/objects", NULL);
1471 if (memdev_root) {
1472 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1474 if (hpsize == LONG_MAX) {
1475 /* No additional memory regions found ==> Report main RAM page size */
1476 return mainrampagesize;
1479 /* If NUMA is disabled or the NUMA nodes are not backed with a
1480 * memory-backend, then there is at least one node using "normal" RAM,
1481 * so if its page size is smaller we have got to report that size instead.
1483 if (hpsize > mainrampagesize &&
1484 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1485 static bool warned;
1486 if (!warned) {
1487 error_report("Huge page support disabled (n/a for main memory).");
1488 warned = true;
1490 return mainrampagesize;
1493 return hpsize;
1495 #else
1496 long qemu_getrampagesize(void)
1498 return getpagesize();
1500 #endif
1502 #ifdef __linux__
1503 static int64_t get_file_size(int fd)
1505 int64_t size = lseek(fd, 0, SEEK_END);
1506 if (size < 0) {
1507 return -errno;
1509 return size;
1512 static int file_ram_open(const char *path,
1513 const char *region_name,
1514 bool *created,
1515 Error **errp)
1517 char *filename;
1518 char *sanitized_name;
1519 char *c;
1520 int fd = -1;
1522 *created = false;
1523 for (;;) {
1524 fd = open(path, O_RDWR);
1525 if (fd >= 0) {
1526 /* @path names an existing file, use it */
1527 break;
1529 if (errno == ENOENT) {
1530 /* @path names a file that doesn't exist, create it */
1531 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1532 if (fd >= 0) {
1533 *created = true;
1534 break;
1536 } else if (errno == EISDIR) {
1537 /* @path names a directory, create a file there */
1538 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1539 sanitized_name = g_strdup(region_name);
1540 for (c = sanitized_name; *c != '\0'; c++) {
1541 if (*c == '/') {
1542 *c = '_';
1546 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1547 sanitized_name);
1548 g_free(sanitized_name);
1550 fd = mkstemp(filename);
1551 if (fd >= 0) {
1552 unlink(filename);
1553 g_free(filename);
1554 break;
1556 g_free(filename);
1558 if (errno != EEXIST && errno != EINTR) {
1559 error_setg_errno(errp, errno,
1560 "can't open backing store %s for guest RAM",
1561 path);
1562 return -1;
1565 * Try again on EINTR and EEXIST. The latter happens when
1566 * something else creates the file between our two open().
1570 return fd;
1573 static void *file_ram_alloc(RAMBlock *block,
1574 ram_addr_t memory,
1575 int fd,
1576 bool truncate,
1577 Error **errp)
1579 void *area;
1581 block->page_size = qemu_fd_getpagesize(fd);
1582 block->mr->align = block->page_size;
1583 #if defined(__s390x__)
1584 if (kvm_enabled()) {
1585 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1587 #endif
1589 if (memory < block->page_size) {
1590 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1591 "or larger than page size 0x%zx",
1592 memory, block->page_size);
1593 return NULL;
1596 memory = ROUND_UP(memory, block->page_size);
1599 * ftruncate is not supported by hugetlbfs in older
1600 * hosts, so don't bother bailing out on errors.
1601 * If anything goes wrong with it under other filesystems,
1602 * mmap will fail.
1604 * Do not truncate the non-empty backend file to avoid corrupting
1605 * the existing data in the file. Disabling shrinking is not
1606 * enough. For example, the current vNVDIMM implementation stores
1607 * the guest NVDIMM labels at the end of the backend file. If the
1608 * backend file is later extended, QEMU will not be able to find
1609 * those labels. Therefore, extending the non-empty backend file
1610 * is disabled as well.
1612 if (truncate && ftruncate(fd, memory)) {
1613 perror("ftruncate");
1616 area = qemu_ram_mmap(fd, memory, block->mr->align,
1617 block->flags & RAM_SHARED);
1618 if (area == MAP_FAILED) {
1619 error_setg_errno(errp, errno,
1620 "unable to map backing store for guest RAM");
1621 return NULL;
1624 if (mem_prealloc) {
1625 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1626 if (errp && *errp) {
1627 qemu_ram_munmap(area, memory);
1628 return NULL;
1632 block->fd = fd;
1633 return area;
1635 #endif
1637 /* Called with the ramlist lock held. */
1638 static ram_addr_t find_ram_offset(ram_addr_t size)
1640 RAMBlock *block, *next_block;
1641 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1643 assert(size != 0); /* it would hand out same offset multiple times */
1645 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1646 return 0;
1649 RAMBLOCK_FOREACH(block) {
1650 ram_addr_t end, next = RAM_ADDR_MAX;
1652 end = block->offset + block->max_length;
1654 RAMBLOCK_FOREACH(next_block) {
1655 if (next_block->offset >= end) {
1656 next = MIN(next, next_block->offset);
1659 if (next - end >= size && next - end < mingap) {
1660 offset = end;
1661 mingap = next - end;
1665 if (offset == RAM_ADDR_MAX) {
1666 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1667 (uint64_t)size);
1668 abort();
1671 return offset;
1674 unsigned long last_ram_page(void)
1676 RAMBlock *block;
1677 ram_addr_t last = 0;
1679 rcu_read_lock();
1680 RAMBLOCK_FOREACH(block) {
1681 last = MAX(last, block->offset + block->max_length);
1683 rcu_read_unlock();
1684 return last >> TARGET_PAGE_BITS;
1687 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1689 int ret;
1691 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1692 if (!machine_dump_guest_core(current_machine)) {
1693 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1694 if (ret) {
1695 perror("qemu_madvise");
1696 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1697 "but dump_guest_core=off specified\n");
1702 const char *qemu_ram_get_idstr(RAMBlock *rb)
1704 return rb->idstr;
1707 bool qemu_ram_is_shared(RAMBlock *rb)
1709 return rb->flags & RAM_SHARED;
1712 /* Called with iothread lock held. */
1713 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1715 RAMBlock *block;
1717 assert(new_block);
1718 assert(!new_block->idstr[0]);
1720 if (dev) {
1721 char *id = qdev_get_dev_path(dev);
1722 if (id) {
1723 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1724 g_free(id);
1727 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1729 rcu_read_lock();
1730 RAMBLOCK_FOREACH(block) {
1731 if (block != new_block &&
1732 !strcmp(block->idstr, new_block->idstr)) {
1733 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1734 new_block->idstr);
1735 abort();
1738 rcu_read_unlock();
1741 /* Called with iothread lock held. */
1742 void qemu_ram_unset_idstr(RAMBlock *block)
1744 /* FIXME: arch_init.c assumes that this is not called throughout
1745 * migration. Ignore the problem since hot-unplug during migration
1746 * does not work anyway.
1748 if (block) {
1749 memset(block->idstr, 0, sizeof(block->idstr));
1753 size_t qemu_ram_pagesize(RAMBlock *rb)
1755 return rb->page_size;
1758 /* Returns the largest size of page in use */
1759 size_t qemu_ram_pagesize_largest(void)
1761 RAMBlock *block;
1762 size_t largest = 0;
1764 RAMBLOCK_FOREACH(block) {
1765 largest = MAX(largest, qemu_ram_pagesize(block));
1768 return largest;
1771 static int memory_try_enable_merging(void *addr, size_t len)
1773 if (!machine_mem_merge(current_machine)) {
1774 /* disabled by the user */
1775 return 0;
1778 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1781 /* Only legal before guest might have detected the memory size: e.g. on
1782 * incoming migration, or right after reset.
1784 * As memory core doesn't know how is memory accessed, it is up to
1785 * resize callback to update device state and/or add assertions to detect
1786 * misuse, if necessary.
1788 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1790 assert(block);
1792 newsize = HOST_PAGE_ALIGN(newsize);
1794 if (block->used_length == newsize) {
1795 return 0;
1798 if (!(block->flags & RAM_RESIZEABLE)) {
1799 error_setg_errno(errp, EINVAL,
1800 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1801 " in != 0x" RAM_ADDR_FMT, block->idstr,
1802 newsize, block->used_length);
1803 return -EINVAL;
1806 if (block->max_length < newsize) {
1807 error_setg_errno(errp, EINVAL,
1808 "Length too large: %s: 0x" RAM_ADDR_FMT
1809 " > 0x" RAM_ADDR_FMT, block->idstr,
1810 newsize, block->max_length);
1811 return -EINVAL;
1814 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1815 block->used_length = newsize;
1816 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1817 DIRTY_CLIENTS_ALL);
1818 memory_region_set_size(block->mr, newsize);
1819 if (block->resized) {
1820 block->resized(block->idstr, newsize, block->host);
1822 return 0;
1825 /* Called with ram_list.mutex held */
1826 static void dirty_memory_extend(ram_addr_t old_ram_size,
1827 ram_addr_t new_ram_size)
1829 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1830 DIRTY_MEMORY_BLOCK_SIZE);
1831 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1832 DIRTY_MEMORY_BLOCK_SIZE);
1833 int i;
1835 /* Only need to extend if block count increased */
1836 if (new_num_blocks <= old_num_blocks) {
1837 return;
1840 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1841 DirtyMemoryBlocks *old_blocks;
1842 DirtyMemoryBlocks *new_blocks;
1843 int j;
1845 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1846 new_blocks = g_malloc(sizeof(*new_blocks) +
1847 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1849 if (old_num_blocks) {
1850 memcpy(new_blocks->blocks, old_blocks->blocks,
1851 old_num_blocks * sizeof(old_blocks->blocks[0]));
1854 for (j = old_num_blocks; j < new_num_blocks; j++) {
1855 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1858 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1860 if (old_blocks) {
1861 g_free_rcu(old_blocks, rcu);
1866 static void ram_block_add(RAMBlock *new_block, Error **errp)
1868 RAMBlock *block;
1869 RAMBlock *last_block = NULL;
1870 ram_addr_t old_ram_size, new_ram_size;
1871 Error *err = NULL;
1873 old_ram_size = last_ram_page();
1875 qemu_mutex_lock_ramlist();
1876 new_block->offset = find_ram_offset(new_block->max_length);
1878 if (!new_block->host) {
1879 if (xen_enabled()) {
1880 xen_ram_alloc(new_block->offset, new_block->max_length,
1881 new_block->mr, &err);
1882 if (err) {
1883 error_propagate(errp, err);
1884 qemu_mutex_unlock_ramlist();
1885 return;
1887 } else {
1888 new_block->host = phys_mem_alloc(new_block->max_length,
1889 &new_block->mr->align);
1890 if (!new_block->host) {
1891 error_setg_errno(errp, errno,
1892 "cannot set up guest memory '%s'",
1893 memory_region_name(new_block->mr));
1894 qemu_mutex_unlock_ramlist();
1895 return;
1897 memory_try_enable_merging(new_block->host, new_block->max_length);
1901 new_ram_size = MAX(old_ram_size,
1902 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1903 if (new_ram_size > old_ram_size) {
1904 dirty_memory_extend(old_ram_size, new_ram_size);
1906 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1907 * QLIST (which has an RCU-friendly variant) does not have insertion at
1908 * tail, so save the last element in last_block.
1910 RAMBLOCK_FOREACH(block) {
1911 last_block = block;
1912 if (block->max_length < new_block->max_length) {
1913 break;
1916 if (block) {
1917 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1918 } else if (last_block) {
1919 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1920 } else { /* list is empty */
1921 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1923 ram_list.mru_block = NULL;
1925 /* Write list before version */
1926 smp_wmb();
1927 ram_list.version++;
1928 qemu_mutex_unlock_ramlist();
1930 cpu_physical_memory_set_dirty_range(new_block->offset,
1931 new_block->used_length,
1932 DIRTY_CLIENTS_ALL);
1934 if (new_block->host) {
1935 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1936 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1937 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1938 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1939 ram_block_notify_add(new_block->host, new_block->max_length);
1943 #ifdef __linux__
1944 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1945 bool share, int fd,
1946 Error **errp)
1948 RAMBlock *new_block;
1949 Error *local_err = NULL;
1950 int64_t file_size;
1952 if (xen_enabled()) {
1953 error_setg(errp, "-mem-path not supported with Xen");
1954 return NULL;
1957 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1958 error_setg(errp,
1959 "host lacks kvm mmu notifiers, -mem-path unsupported");
1960 return NULL;
1963 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1965 * file_ram_alloc() needs to allocate just like
1966 * phys_mem_alloc, but we haven't bothered to provide
1967 * a hook there.
1969 error_setg(errp,
1970 "-mem-path not supported with this accelerator");
1971 return NULL;
1974 size = HOST_PAGE_ALIGN(size);
1975 file_size = get_file_size(fd);
1976 if (file_size > 0 && file_size < size) {
1977 error_setg(errp, "backing store %s size 0x%" PRIx64
1978 " does not match 'size' option 0x" RAM_ADDR_FMT,
1979 mem_path, file_size, size);
1980 return NULL;
1983 new_block = g_malloc0(sizeof(*new_block));
1984 new_block->mr = mr;
1985 new_block->used_length = size;
1986 new_block->max_length = size;
1987 new_block->flags = share ? RAM_SHARED : 0;
1988 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
1989 if (!new_block->host) {
1990 g_free(new_block);
1991 return NULL;
1994 ram_block_add(new_block, &local_err);
1995 if (local_err) {
1996 g_free(new_block);
1997 error_propagate(errp, local_err);
1998 return NULL;
2000 return new_block;
2005 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2006 bool share, const char *mem_path,
2007 Error **errp)
2009 int fd;
2010 bool created;
2011 RAMBlock *block;
2013 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2014 if (fd < 0) {
2015 return NULL;
2018 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2019 if (!block) {
2020 if (created) {
2021 unlink(mem_path);
2023 close(fd);
2024 return NULL;
2027 return block;
2029 #endif
2031 static
2032 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2033 void (*resized)(const char*,
2034 uint64_t length,
2035 void *host),
2036 void *host, bool resizeable,
2037 MemoryRegion *mr, Error **errp)
2039 RAMBlock *new_block;
2040 Error *local_err = NULL;
2042 size = HOST_PAGE_ALIGN(size);
2043 max_size = HOST_PAGE_ALIGN(max_size);
2044 new_block = g_malloc0(sizeof(*new_block));
2045 new_block->mr = mr;
2046 new_block->resized = resized;
2047 new_block->used_length = size;
2048 new_block->max_length = max_size;
2049 assert(max_size >= size);
2050 new_block->fd = -1;
2051 new_block->page_size = getpagesize();
2052 new_block->host = host;
2053 if (host) {
2054 new_block->flags |= RAM_PREALLOC;
2056 if (resizeable) {
2057 new_block->flags |= RAM_RESIZEABLE;
2059 ram_block_add(new_block, &local_err);
2060 if (local_err) {
2061 g_free(new_block);
2062 error_propagate(errp, local_err);
2063 return NULL;
2065 return new_block;
2068 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2069 MemoryRegion *mr, Error **errp)
2071 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2074 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2076 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2079 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2080 void (*resized)(const char*,
2081 uint64_t length,
2082 void *host),
2083 MemoryRegion *mr, Error **errp)
2085 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2088 static void reclaim_ramblock(RAMBlock *block)
2090 if (block->flags & RAM_PREALLOC) {
2092 } else if (xen_enabled()) {
2093 xen_invalidate_map_cache_entry(block->host);
2094 #ifndef _WIN32
2095 } else if (block->fd >= 0) {
2096 qemu_ram_munmap(block->host, block->max_length);
2097 close(block->fd);
2098 #endif
2099 } else {
2100 qemu_anon_ram_free(block->host, block->max_length);
2102 g_free(block);
2105 void qemu_ram_free(RAMBlock *block)
2107 if (!block) {
2108 return;
2111 if (block->host) {
2112 ram_block_notify_remove(block->host, block->max_length);
2115 qemu_mutex_lock_ramlist();
2116 QLIST_REMOVE_RCU(block, next);
2117 ram_list.mru_block = NULL;
2118 /* Write list before version */
2119 smp_wmb();
2120 ram_list.version++;
2121 call_rcu(block, reclaim_ramblock, rcu);
2122 qemu_mutex_unlock_ramlist();
2125 #ifndef _WIN32
2126 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2128 RAMBlock *block;
2129 ram_addr_t offset;
2130 int flags;
2131 void *area, *vaddr;
2133 RAMBLOCK_FOREACH(block) {
2134 offset = addr - block->offset;
2135 if (offset < block->max_length) {
2136 vaddr = ramblock_ptr(block, offset);
2137 if (block->flags & RAM_PREALLOC) {
2139 } else if (xen_enabled()) {
2140 abort();
2141 } else {
2142 flags = MAP_FIXED;
2143 if (block->fd >= 0) {
2144 flags |= (block->flags & RAM_SHARED ?
2145 MAP_SHARED : MAP_PRIVATE);
2146 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2147 flags, block->fd, offset);
2148 } else {
2150 * Remap needs to match alloc. Accelerators that
2151 * set phys_mem_alloc never remap. If they did,
2152 * we'd need a remap hook here.
2154 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2156 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2157 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2158 flags, -1, 0);
2160 if (area != vaddr) {
2161 fprintf(stderr, "Could not remap addr: "
2162 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2163 length, addr);
2164 exit(1);
2166 memory_try_enable_merging(vaddr, length);
2167 qemu_ram_setup_dump(vaddr, length);
2172 #endif /* !_WIN32 */
2174 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2175 * This should not be used for general purpose DMA. Use address_space_map
2176 * or address_space_rw instead. For local memory (e.g. video ram) that the
2177 * device owns, use memory_region_get_ram_ptr.
2179 * Called within RCU critical section.
2181 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2183 RAMBlock *block = ram_block;
2185 if (block == NULL) {
2186 block = qemu_get_ram_block(addr);
2187 addr -= block->offset;
2190 if (xen_enabled() && block->host == NULL) {
2191 /* We need to check if the requested address is in the RAM
2192 * because we don't want to map the entire memory in QEMU.
2193 * In that case just map until the end of the page.
2195 if (block->offset == 0) {
2196 return xen_map_cache(addr, 0, 0, false);
2199 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2201 return ramblock_ptr(block, addr);
2204 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2205 * but takes a size argument.
2207 * Called within RCU critical section.
2209 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2210 hwaddr *size, bool lock)
2212 RAMBlock *block = ram_block;
2213 if (*size == 0) {
2214 return NULL;
2217 if (block == NULL) {
2218 block = qemu_get_ram_block(addr);
2219 addr -= block->offset;
2221 *size = MIN(*size, block->max_length - addr);
2223 if (xen_enabled() && block->host == NULL) {
2224 /* We need to check if the requested address is in the RAM
2225 * because we don't want to map the entire memory in QEMU.
2226 * In that case just map the requested area.
2228 if (block->offset == 0) {
2229 return xen_map_cache(addr, *size, lock, lock);
2232 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2235 return ramblock_ptr(block, addr);
2239 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2240 * in that RAMBlock.
2242 * ptr: Host pointer to look up
2243 * round_offset: If true round the result offset down to a page boundary
2244 * *ram_addr: set to result ram_addr
2245 * *offset: set to result offset within the RAMBlock
2247 * Returns: RAMBlock (or NULL if not found)
2249 * By the time this function returns, the returned pointer is not protected
2250 * by RCU anymore. If the caller is not within an RCU critical section and
2251 * does not hold the iothread lock, it must have other means of protecting the
2252 * pointer, such as a reference to the region that includes the incoming
2253 * ram_addr_t.
2255 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2256 ram_addr_t *offset)
2258 RAMBlock *block;
2259 uint8_t *host = ptr;
2261 if (xen_enabled()) {
2262 ram_addr_t ram_addr;
2263 rcu_read_lock();
2264 ram_addr = xen_ram_addr_from_mapcache(ptr);
2265 block = qemu_get_ram_block(ram_addr);
2266 if (block) {
2267 *offset = ram_addr - block->offset;
2269 rcu_read_unlock();
2270 return block;
2273 rcu_read_lock();
2274 block = atomic_rcu_read(&ram_list.mru_block);
2275 if (block && block->host && host - block->host < block->max_length) {
2276 goto found;
2279 RAMBLOCK_FOREACH(block) {
2280 /* This case append when the block is not mapped. */
2281 if (block->host == NULL) {
2282 continue;
2284 if (host - block->host < block->max_length) {
2285 goto found;
2289 rcu_read_unlock();
2290 return NULL;
2292 found:
2293 *offset = (host - block->host);
2294 if (round_offset) {
2295 *offset &= TARGET_PAGE_MASK;
2297 rcu_read_unlock();
2298 return block;
2302 * Finds the named RAMBlock
2304 * name: The name of RAMBlock to find
2306 * Returns: RAMBlock (or NULL if not found)
2308 RAMBlock *qemu_ram_block_by_name(const char *name)
2310 RAMBlock *block;
2312 RAMBLOCK_FOREACH(block) {
2313 if (!strcmp(name, block->idstr)) {
2314 return block;
2318 return NULL;
2321 /* Some of the softmmu routines need to translate from a host pointer
2322 (typically a TLB entry) back to a ram offset. */
2323 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2325 RAMBlock *block;
2326 ram_addr_t offset;
2328 block = qemu_ram_block_from_host(ptr, false, &offset);
2329 if (!block) {
2330 return RAM_ADDR_INVALID;
2333 return block->offset + offset;
2336 /* Called within RCU critical section. */
2337 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2338 uint64_t val, unsigned size)
2340 bool locked = false;
2342 assert(tcg_enabled());
2343 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2344 locked = true;
2345 tb_lock();
2346 tb_invalidate_phys_page_fast(ram_addr, size);
2348 switch (size) {
2349 case 1:
2350 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2351 break;
2352 case 2:
2353 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2354 break;
2355 case 4:
2356 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2357 break;
2358 default:
2359 abort();
2362 if (locked) {
2363 tb_unlock();
2366 /* Set both VGA and migration bits for simplicity and to remove
2367 * the notdirty callback faster.
2369 cpu_physical_memory_set_dirty_range(ram_addr, size,
2370 DIRTY_CLIENTS_NOCODE);
2371 /* we remove the notdirty callback only if the code has been
2372 flushed */
2373 if (!cpu_physical_memory_is_clean(ram_addr)) {
2374 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2378 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2379 unsigned size, bool is_write)
2381 return is_write;
2384 static const MemoryRegionOps notdirty_mem_ops = {
2385 .write = notdirty_mem_write,
2386 .valid.accepts = notdirty_mem_accepts,
2387 .endianness = DEVICE_NATIVE_ENDIAN,
2390 /* Generate a debug exception if a watchpoint has been hit. */
2391 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2393 CPUState *cpu = current_cpu;
2394 CPUClass *cc = CPU_GET_CLASS(cpu);
2395 CPUArchState *env = cpu->env_ptr;
2396 target_ulong pc, cs_base;
2397 target_ulong vaddr;
2398 CPUWatchpoint *wp;
2399 uint32_t cpu_flags;
2401 assert(tcg_enabled());
2402 if (cpu->watchpoint_hit) {
2403 /* We re-entered the check after replacing the TB. Now raise
2404 * the debug interrupt so that is will trigger after the
2405 * current instruction. */
2406 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2407 return;
2409 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2410 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2411 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2412 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2413 && (wp->flags & flags)) {
2414 if (flags == BP_MEM_READ) {
2415 wp->flags |= BP_WATCHPOINT_HIT_READ;
2416 } else {
2417 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2419 wp->hitaddr = vaddr;
2420 wp->hitattrs = attrs;
2421 if (!cpu->watchpoint_hit) {
2422 if (wp->flags & BP_CPU &&
2423 !cc->debug_check_watchpoint(cpu, wp)) {
2424 wp->flags &= ~BP_WATCHPOINT_HIT;
2425 continue;
2427 cpu->watchpoint_hit = wp;
2429 /* Both tb_lock and iothread_mutex will be reset when
2430 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2431 * back into the cpu_exec main loop.
2433 tb_lock();
2434 tb_check_watchpoint(cpu);
2435 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2436 cpu->exception_index = EXCP_DEBUG;
2437 cpu_loop_exit(cpu);
2438 } else {
2439 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2440 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2441 cpu_loop_exit_noexc(cpu);
2444 } else {
2445 wp->flags &= ~BP_WATCHPOINT_HIT;
2450 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2451 so these check for a hit then pass through to the normal out-of-line
2452 phys routines. */
2453 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2454 unsigned size, MemTxAttrs attrs)
2456 MemTxResult res;
2457 uint64_t data;
2458 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2459 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2461 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2462 switch (size) {
2463 case 1:
2464 data = address_space_ldub(as, addr, attrs, &res);
2465 break;
2466 case 2:
2467 data = address_space_lduw(as, addr, attrs, &res);
2468 break;
2469 case 4:
2470 data = address_space_ldl(as, addr, attrs, &res);
2471 break;
2472 default: abort();
2474 *pdata = data;
2475 return res;
2478 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2479 uint64_t val, unsigned size,
2480 MemTxAttrs attrs)
2482 MemTxResult res;
2483 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2484 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2486 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2487 switch (size) {
2488 case 1:
2489 address_space_stb(as, addr, val, attrs, &res);
2490 break;
2491 case 2:
2492 address_space_stw(as, addr, val, attrs, &res);
2493 break;
2494 case 4:
2495 address_space_stl(as, addr, val, attrs, &res);
2496 break;
2497 default: abort();
2499 return res;
2502 static const MemoryRegionOps watch_mem_ops = {
2503 .read_with_attrs = watch_mem_read,
2504 .write_with_attrs = watch_mem_write,
2505 .endianness = DEVICE_NATIVE_ENDIAN,
2508 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2509 const uint8_t *buf, int len);
2510 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2511 bool is_write);
2513 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2514 unsigned len, MemTxAttrs attrs)
2516 subpage_t *subpage = opaque;
2517 uint8_t buf[8];
2518 MemTxResult res;
2520 #if defined(DEBUG_SUBPAGE)
2521 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2522 subpage, len, addr);
2523 #endif
2524 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2525 if (res) {
2526 return res;
2528 switch (len) {
2529 case 1:
2530 *data = ldub_p(buf);
2531 return MEMTX_OK;
2532 case 2:
2533 *data = lduw_p(buf);
2534 return MEMTX_OK;
2535 case 4:
2536 *data = ldl_p(buf);
2537 return MEMTX_OK;
2538 case 8:
2539 *data = ldq_p(buf);
2540 return MEMTX_OK;
2541 default:
2542 abort();
2546 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2547 uint64_t value, unsigned len, MemTxAttrs attrs)
2549 subpage_t *subpage = opaque;
2550 uint8_t buf[8];
2552 #if defined(DEBUG_SUBPAGE)
2553 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2554 " value %"PRIx64"\n",
2555 __func__, subpage, len, addr, value);
2556 #endif
2557 switch (len) {
2558 case 1:
2559 stb_p(buf, value);
2560 break;
2561 case 2:
2562 stw_p(buf, value);
2563 break;
2564 case 4:
2565 stl_p(buf, value);
2566 break;
2567 case 8:
2568 stq_p(buf, value);
2569 break;
2570 default:
2571 abort();
2573 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2576 static bool subpage_accepts(void *opaque, hwaddr addr,
2577 unsigned len, bool is_write)
2579 subpage_t *subpage = opaque;
2580 #if defined(DEBUG_SUBPAGE)
2581 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2582 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2583 #endif
2585 return flatview_access_valid(subpage->fv, addr + subpage->base,
2586 len, is_write);
2589 static const MemoryRegionOps subpage_ops = {
2590 .read_with_attrs = subpage_read,
2591 .write_with_attrs = subpage_write,
2592 .impl.min_access_size = 1,
2593 .impl.max_access_size = 8,
2594 .valid.min_access_size = 1,
2595 .valid.max_access_size = 8,
2596 .valid.accepts = subpage_accepts,
2597 .endianness = DEVICE_NATIVE_ENDIAN,
2600 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2601 uint16_t section)
2603 int idx, eidx;
2605 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2606 return -1;
2607 idx = SUBPAGE_IDX(start);
2608 eidx = SUBPAGE_IDX(end);
2609 #if defined(DEBUG_SUBPAGE)
2610 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2611 __func__, mmio, start, end, idx, eidx, section);
2612 #endif
2613 for (; idx <= eidx; idx++) {
2614 mmio->sub_section[idx] = section;
2617 return 0;
2620 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2622 subpage_t *mmio;
2624 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2625 mmio->fv = fv;
2626 mmio->base = base;
2627 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2628 NULL, TARGET_PAGE_SIZE);
2629 mmio->iomem.subpage = true;
2630 #if defined(DEBUG_SUBPAGE)
2631 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2632 mmio, base, TARGET_PAGE_SIZE);
2633 #endif
2634 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2636 return mmio;
2639 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2641 assert(fv);
2642 MemoryRegionSection section = {
2643 .fv = fv,
2644 .mr = mr,
2645 .offset_within_address_space = 0,
2646 .offset_within_region = 0,
2647 .size = int128_2_64(),
2650 return phys_section_add(map, &section);
2653 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2655 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2656 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2657 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2658 MemoryRegionSection *sections = d->map.sections;
2660 return sections[index & ~TARGET_PAGE_MASK].mr;
2663 static void io_mem_init(void)
2665 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2666 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2667 NULL, UINT64_MAX);
2669 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2670 * which can be called without the iothread mutex.
2672 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2673 NULL, UINT64_MAX);
2674 memory_region_clear_global_locking(&io_mem_notdirty);
2676 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2677 NULL, UINT64_MAX);
2680 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2682 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2683 uint16_t n;
2685 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2686 assert(n == PHYS_SECTION_UNASSIGNED);
2687 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2688 assert(n == PHYS_SECTION_NOTDIRTY);
2689 n = dummy_section(&d->map, fv, &io_mem_rom);
2690 assert(n == PHYS_SECTION_ROM);
2691 n = dummy_section(&d->map, fv, &io_mem_watch);
2692 assert(n == PHYS_SECTION_WATCH);
2694 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2696 return d;
2699 void address_space_dispatch_free(AddressSpaceDispatch *d)
2701 phys_sections_free(&d->map);
2702 g_free(d);
2705 static void tcg_commit(MemoryListener *listener)
2707 CPUAddressSpace *cpuas;
2708 AddressSpaceDispatch *d;
2710 /* since each CPU stores ram addresses in its TLB cache, we must
2711 reset the modified entries */
2712 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2713 cpu_reloading_memory_map();
2714 /* The CPU and TLB are protected by the iothread lock.
2715 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2716 * may have split the RCU critical section.
2718 d = address_space_to_dispatch(cpuas->as);
2719 atomic_rcu_set(&cpuas->memory_dispatch, d);
2720 tlb_flush(cpuas->cpu);
2723 static void memory_map_init(void)
2725 system_memory = g_malloc(sizeof(*system_memory));
2727 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2728 address_space_init(&address_space_memory, system_memory, "memory");
2730 system_io = g_malloc(sizeof(*system_io));
2731 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2732 65536);
2733 address_space_init(&address_space_io, system_io, "I/O");
2736 MemoryRegion *get_system_memory(void)
2738 return system_memory;
2741 MemoryRegion *get_system_io(void)
2743 return system_io;
2746 #endif /* !defined(CONFIG_USER_ONLY) */
2748 /* physical memory access (slow version, mainly for debug) */
2749 #if defined(CONFIG_USER_ONLY)
2750 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2751 uint8_t *buf, int len, int is_write)
2753 int l, flags;
2754 target_ulong page;
2755 void * p;
2757 while (len > 0) {
2758 page = addr & TARGET_PAGE_MASK;
2759 l = (page + TARGET_PAGE_SIZE) - addr;
2760 if (l > len)
2761 l = len;
2762 flags = page_get_flags(page);
2763 if (!(flags & PAGE_VALID))
2764 return -1;
2765 if (is_write) {
2766 if (!(flags & PAGE_WRITE))
2767 return -1;
2768 /* XXX: this code should not depend on lock_user */
2769 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2770 return -1;
2771 memcpy(p, buf, l);
2772 unlock_user(p, addr, l);
2773 } else {
2774 if (!(flags & PAGE_READ))
2775 return -1;
2776 /* XXX: this code should not depend on lock_user */
2777 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2778 return -1;
2779 memcpy(buf, p, l);
2780 unlock_user(p, addr, 0);
2782 len -= l;
2783 buf += l;
2784 addr += l;
2786 return 0;
2789 #else
2791 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2792 hwaddr length)
2794 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2795 addr += memory_region_get_ram_addr(mr);
2797 /* No early return if dirty_log_mask is or becomes 0, because
2798 * cpu_physical_memory_set_dirty_range will still call
2799 * xen_modified_memory.
2801 if (dirty_log_mask) {
2802 dirty_log_mask =
2803 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2805 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2806 assert(tcg_enabled());
2807 tb_lock();
2808 tb_invalidate_phys_range(addr, addr + length);
2809 tb_unlock();
2810 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2812 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2815 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2817 unsigned access_size_max = mr->ops->valid.max_access_size;
2819 /* Regions are assumed to support 1-4 byte accesses unless
2820 otherwise specified. */
2821 if (access_size_max == 0) {
2822 access_size_max = 4;
2825 /* Bound the maximum access by the alignment of the address. */
2826 if (!mr->ops->impl.unaligned) {
2827 unsigned align_size_max = addr & -addr;
2828 if (align_size_max != 0 && align_size_max < access_size_max) {
2829 access_size_max = align_size_max;
2833 /* Don't attempt accesses larger than the maximum. */
2834 if (l > access_size_max) {
2835 l = access_size_max;
2837 l = pow2floor(l);
2839 return l;
2842 static bool prepare_mmio_access(MemoryRegion *mr)
2844 bool unlocked = !qemu_mutex_iothread_locked();
2845 bool release_lock = false;
2847 if (unlocked && mr->global_locking) {
2848 qemu_mutex_lock_iothread();
2849 unlocked = false;
2850 release_lock = true;
2852 if (mr->flush_coalesced_mmio) {
2853 if (unlocked) {
2854 qemu_mutex_lock_iothread();
2856 qemu_flush_coalesced_mmio_buffer();
2857 if (unlocked) {
2858 qemu_mutex_unlock_iothread();
2862 return release_lock;
2865 /* Called within RCU critical section. */
2866 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2867 MemTxAttrs attrs,
2868 const uint8_t *buf,
2869 int len, hwaddr addr1,
2870 hwaddr l, MemoryRegion *mr)
2872 uint8_t *ptr;
2873 uint64_t val;
2874 MemTxResult result = MEMTX_OK;
2875 bool release_lock = false;
2877 for (;;) {
2878 if (!memory_access_is_direct(mr, true)) {
2879 release_lock |= prepare_mmio_access(mr);
2880 l = memory_access_size(mr, l, addr1);
2881 /* XXX: could force current_cpu to NULL to avoid
2882 potential bugs */
2883 switch (l) {
2884 case 8:
2885 /* 64 bit write access */
2886 val = ldq_p(buf);
2887 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2888 attrs);
2889 break;
2890 case 4:
2891 /* 32 bit write access */
2892 val = (uint32_t)ldl_p(buf);
2893 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2894 attrs);
2895 break;
2896 case 2:
2897 /* 16 bit write access */
2898 val = lduw_p(buf);
2899 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2900 attrs);
2901 break;
2902 case 1:
2903 /* 8 bit write access */
2904 val = ldub_p(buf);
2905 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2906 attrs);
2907 break;
2908 default:
2909 abort();
2911 } else {
2912 /* RAM case */
2913 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2914 memcpy(ptr, buf, l);
2915 invalidate_and_set_dirty(mr, addr1, l);
2918 if (release_lock) {
2919 qemu_mutex_unlock_iothread();
2920 release_lock = false;
2923 len -= l;
2924 buf += l;
2925 addr += l;
2927 if (!len) {
2928 break;
2931 l = len;
2932 mr = flatview_translate(fv, addr, &addr1, &l, true);
2935 return result;
2938 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2939 const uint8_t *buf, int len)
2941 hwaddr l;
2942 hwaddr addr1;
2943 MemoryRegion *mr;
2944 MemTxResult result = MEMTX_OK;
2946 if (len > 0) {
2947 rcu_read_lock();
2948 l = len;
2949 mr = flatview_translate(fv, addr, &addr1, &l, true);
2950 result = flatview_write_continue(fv, addr, attrs, buf, len,
2951 addr1, l, mr);
2952 rcu_read_unlock();
2955 return result;
2958 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2959 MemTxAttrs attrs,
2960 const uint8_t *buf, int len)
2962 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
2965 /* Called within RCU critical section. */
2966 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2967 MemTxAttrs attrs, uint8_t *buf,
2968 int len, hwaddr addr1, hwaddr l,
2969 MemoryRegion *mr)
2971 uint8_t *ptr;
2972 uint64_t val;
2973 MemTxResult result = MEMTX_OK;
2974 bool release_lock = false;
2976 for (;;) {
2977 if (!memory_access_is_direct(mr, false)) {
2978 /* I/O case */
2979 release_lock |= prepare_mmio_access(mr);
2980 l = memory_access_size(mr, l, addr1);
2981 switch (l) {
2982 case 8:
2983 /* 64 bit read access */
2984 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2985 attrs);
2986 stq_p(buf, val);
2987 break;
2988 case 4:
2989 /* 32 bit read access */
2990 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2991 attrs);
2992 stl_p(buf, val);
2993 break;
2994 case 2:
2995 /* 16 bit read access */
2996 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2997 attrs);
2998 stw_p(buf, val);
2999 break;
3000 case 1:
3001 /* 8 bit read access */
3002 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3003 attrs);
3004 stb_p(buf, val);
3005 break;
3006 default:
3007 abort();
3009 } else {
3010 /* RAM case */
3011 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3012 memcpy(buf, ptr, l);
3015 if (release_lock) {
3016 qemu_mutex_unlock_iothread();
3017 release_lock = false;
3020 len -= l;
3021 buf += l;
3022 addr += l;
3024 if (!len) {
3025 break;
3028 l = len;
3029 mr = flatview_translate(fv, addr, &addr1, &l, false);
3032 return result;
3035 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3036 MemTxAttrs attrs, uint8_t *buf, int len)
3038 hwaddr l;
3039 hwaddr addr1;
3040 MemoryRegion *mr;
3041 MemTxResult result = MEMTX_OK;
3043 if (len > 0) {
3044 rcu_read_lock();
3045 l = len;
3046 mr = flatview_translate(fv, addr, &addr1, &l, false);
3047 result = flatview_read_continue(fv, addr, attrs, buf, len,
3048 addr1, l, mr);
3049 rcu_read_unlock();
3052 return result;
3055 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3056 uint8_t *buf, int len, bool is_write)
3058 if (is_write) {
3059 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3060 } else {
3061 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3065 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3066 MemTxAttrs attrs, uint8_t *buf,
3067 int len, bool is_write)
3069 return flatview_rw(address_space_to_flatview(as),
3070 addr, attrs, buf, len, is_write);
3073 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3074 int len, int is_write)
3076 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3077 buf, len, is_write);
3080 enum write_rom_type {
3081 WRITE_DATA,
3082 FLUSH_CACHE,
3085 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3086 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3088 hwaddr l;
3089 uint8_t *ptr;
3090 hwaddr addr1;
3091 MemoryRegion *mr;
3093 rcu_read_lock();
3094 while (len > 0) {
3095 l = len;
3096 mr = address_space_translate(as, addr, &addr1, &l, true);
3098 if (!(memory_region_is_ram(mr) ||
3099 memory_region_is_romd(mr))) {
3100 l = memory_access_size(mr, l, addr1);
3101 } else {
3102 /* ROM/RAM case */
3103 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3104 switch (type) {
3105 case WRITE_DATA:
3106 memcpy(ptr, buf, l);
3107 invalidate_and_set_dirty(mr, addr1, l);
3108 break;
3109 case FLUSH_CACHE:
3110 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3111 break;
3114 len -= l;
3115 buf += l;
3116 addr += l;
3118 rcu_read_unlock();
3121 /* used for ROM loading : can write in RAM and ROM */
3122 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3123 const uint8_t *buf, int len)
3125 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3128 void cpu_flush_icache_range(hwaddr start, int len)
3131 * This function should do the same thing as an icache flush that was
3132 * triggered from within the guest. For TCG we are always cache coherent,
3133 * so there is no need to flush anything. For KVM / Xen we need to flush
3134 * the host's instruction cache at least.
3136 if (tcg_enabled()) {
3137 return;
3140 cpu_physical_memory_write_rom_internal(&address_space_memory,
3141 start, NULL, len, FLUSH_CACHE);
3144 typedef struct {
3145 MemoryRegion *mr;
3146 void *buffer;
3147 hwaddr addr;
3148 hwaddr len;
3149 bool in_use;
3150 } BounceBuffer;
3152 static BounceBuffer bounce;
3154 typedef struct MapClient {
3155 QEMUBH *bh;
3156 QLIST_ENTRY(MapClient) link;
3157 } MapClient;
3159 QemuMutex map_client_list_lock;
3160 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3161 = QLIST_HEAD_INITIALIZER(map_client_list);
3163 static void cpu_unregister_map_client_do(MapClient *client)
3165 QLIST_REMOVE(client, link);
3166 g_free(client);
3169 static void cpu_notify_map_clients_locked(void)
3171 MapClient *client;
3173 while (!QLIST_EMPTY(&map_client_list)) {
3174 client = QLIST_FIRST(&map_client_list);
3175 qemu_bh_schedule(client->bh);
3176 cpu_unregister_map_client_do(client);
3180 void cpu_register_map_client(QEMUBH *bh)
3182 MapClient *client = g_malloc(sizeof(*client));
3184 qemu_mutex_lock(&map_client_list_lock);
3185 client->bh = bh;
3186 QLIST_INSERT_HEAD(&map_client_list, client, link);
3187 if (!atomic_read(&bounce.in_use)) {
3188 cpu_notify_map_clients_locked();
3190 qemu_mutex_unlock(&map_client_list_lock);
3193 void cpu_exec_init_all(void)
3195 qemu_mutex_init(&ram_list.mutex);
3196 /* The data structures we set up here depend on knowing the page size,
3197 * so no more changes can be made after this point.
3198 * In an ideal world, nothing we did before we had finished the
3199 * machine setup would care about the target page size, and we could
3200 * do this much later, rather than requiring board models to state
3201 * up front what their requirements are.
3203 finalize_target_page_bits();
3204 io_mem_init();
3205 memory_map_init();
3206 qemu_mutex_init(&map_client_list_lock);
3209 void cpu_unregister_map_client(QEMUBH *bh)
3211 MapClient *client;
3213 qemu_mutex_lock(&map_client_list_lock);
3214 QLIST_FOREACH(client, &map_client_list, link) {
3215 if (client->bh == bh) {
3216 cpu_unregister_map_client_do(client);
3217 break;
3220 qemu_mutex_unlock(&map_client_list_lock);
3223 static void cpu_notify_map_clients(void)
3225 qemu_mutex_lock(&map_client_list_lock);
3226 cpu_notify_map_clients_locked();
3227 qemu_mutex_unlock(&map_client_list_lock);
3230 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3231 bool is_write)
3233 MemoryRegion *mr;
3234 hwaddr l, xlat;
3236 rcu_read_lock();
3237 while (len > 0) {
3238 l = len;
3239 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3240 if (!memory_access_is_direct(mr, is_write)) {
3241 l = memory_access_size(mr, l, addr);
3242 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3243 rcu_read_unlock();
3244 return false;
3248 len -= l;
3249 addr += l;
3251 rcu_read_unlock();
3252 return true;
3255 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3256 int len, bool is_write)
3258 return flatview_access_valid(address_space_to_flatview(as),
3259 addr, len, is_write);
3262 static hwaddr
3263 flatview_extend_translation(FlatView *fv, hwaddr addr,
3264 hwaddr target_len,
3265 MemoryRegion *mr, hwaddr base, hwaddr len,
3266 bool is_write)
3268 hwaddr done = 0;
3269 hwaddr xlat;
3270 MemoryRegion *this_mr;
3272 for (;;) {
3273 target_len -= len;
3274 addr += len;
3275 done += len;
3276 if (target_len == 0) {
3277 return done;
3280 len = target_len;
3281 this_mr = flatview_translate(fv, addr, &xlat,
3282 &len, is_write);
3283 if (this_mr != mr || xlat != base + done) {
3284 return done;
3289 /* Map a physical memory region into a host virtual address.
3290 * May map a subset of the requested range, given by and returned in *plen.
3291 * May return NULL if resources needed to perform the mapping are exhausted.
3292 * Use only for reads OR writes - not for read-modify-write operations.
3293 * Use cpu_register_map_client() to know when retrying the map operation is
3294 * likely to succeed.
3296 void *address_space_map(AddressSpace *as,
3297 hwaddr addr,
3298 hwaddr *plen,
3299 bool is_write)
3301 hwaddr len = *plen;
3302 hwaddr l, xlat;
3303 MemoryRegion *mr;
3304 void *ptr;
3305 FlatView *fv = address_space_to_flatview(as);
3307 if (len == 0) {
3308 return NULL;
3311 l = len;
3312 rcu_read_lock();
3313 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3315 if (!memory_access_is_direct(mr, is_write)) {
3316 if (atomic_xchg(&bounce.in_use, true)) {
3317 rcu_read_unlock();
3318 return NULL;
3320 /* Avoid unbounded allocations */
3321 l = MIN(l, TARGET_PAGE_SIZE);
3322 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3323 bounce.addr = addr;
3324 bounce.len = l;
3326 memory_region_ref(mr);
3327 bounce.mr = mr;
3328 if (!is_write) {
3329 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3330 bounce.buffer, l);
3333 rcu_read_unlock();
3334 *plen = l;
3335 return bounce.buffer;
3339 memory_region_ref(mr);
3340 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3341 l, is_write);
3342 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3343 rcu_read_unlock();
3345 return ptr;
3348 /* Unmaps a memory region previously mapped by address_space_map().
3349 * Will also mark the memory as dirty if is_write == 1. access_len gives
3350 * the amount of memory that was actually read or written by the caller.
3352 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3353 int is_write, hwaddr access_len)
3355 if (buffer != bounce.buffer) {
3356 MemoryRegion *mr;
3357 ram_addr_t addr1;
3359 mr = memory_region_from_host(buffer, &addr1);
3360 assert(mr != NULL);
3361 if (is_write) {
3362 invalidate_and_set_dirty(mr, addr1, access_len);
3364 if (xen_enabled()) {
3365 xen_invalidate_map_cache_entry(buffer);
3367 memory_region_unref(mr);
3368 return;
3370 if (is_write) {
3371 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3372 bounce.buffer, access_len);
3374 qemu_vfree(bounce.buffer);
3375 bounce.buffer = NULL;
3376 memory_region_unref(bounce.mr);
3377 atomic_mb_set(&bounce.in_use, false);
3378 cpu_notify_map_clients();
3381 void *cpu_physical_memory_map(hwaddr addr,
3382 hwaddr *plen,
3383 int is_write)
3385 return address_space_map(&address_space_memory, addr, plen, is_write);
3388 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3389 int is_write, hwaddr access_len)
3391 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3394 #define ARG1_DECL AddressSpace *as
3395 #define ARG1 as
3396 #define SUFFIX
3397 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3398 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3399 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3400 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3401 #define RCU_READ_LOCK(...) rcu_read_lock()
3402 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3403 #include "memory_ldst.inc.c"
3405 int64_t address_space_cache_init(MemoryRegionCache *cache,
3406 AddressSpace *as,
3407 hwaddr addr,
3408 hwaddr len,
3409 bool is_write)
3411 cache->len = len;
3412 cache->as = as;
3413 cache->xlat = addr;
3414 return len;
3417 void address_space_cache_invalidate(MemoryRegionCache *cache,
3418 hwaddr addr,
3419 hwaddr access_len)
3423 void address_space_cache_destroy(MemoryRegionCache *cache)
3425 cache->as = NULL;
3428 #define ARG1_DECL MemoryRegionCache *cache
3429 #define ARG1 cache
3430 #define SUFFIX _cached
3431 #define TRANSLATE(addr, ...) \
3432 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3433 #define IS_DIRECT(mr, is_write) true
3434 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3435 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3436 #define RCU_READ_LOCK() rcu_read_lock()
3437 #define RCU_READ_UNLOCK() rcu_read_unlock()
3438 #include "memory_ldst.inc.c"
3440 /* virtual memory access for debug (includes writing to ROM) */
3441 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3442 uint8_t *buf, int len, int is_write)
3444 int l;
3445 hwaddr phys_addr;
3446 target_ulong page;
3448 cpu_synchronize_state(cpu);
3449 while (len > 0) {
3450 int asidx;
3451 MemTxAttrs attrs;
3453 page = addr & TARGET_PAGE_MASK;
3454 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3455 asidx = cpu_asidx_from_attrs(cpu, attrs);
3456 /* if no physical page mapped, return an error */
3457 if (phys_addr == -1)
3458 return -1;
3459 l = (page + TARGET_PAGE_SIZE) - addr;
3460 if (l > len)
3461 l = len;
3462 phys_addr += (addr & ~TARGET_PAGE_MASK);
3463 if (is_write) {
3464 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3465 phys_addr, buf, l);
3466 } else {
3467 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3468 MEMTXATTRS_UNSPECIFIED,
3469 buf, l, 0);
3471 len -= l;
3472 buf += l;
3473 addr += l;
3475 return 0;
3479 * Allows code that needs to deal with migration bitmaps etc to still be built
3480 * target independent.
3482 size_t qemu_target_page_size(void)
3484 return TARGET_PAGE_SIZE;
3487 int qemu_target_page_bits(void)
3489 return TARGET_PAGE_BITS;
3492 int qemu_target_page_bits_min(void)
3494 return TARGET_PAGE_BITS_MIN;
3496 #endif
3499 * A helper function for the _utterly broken_ virtio device model to find out if
3500 * it's running on a big endian machine. Don't do this at home kids!
3502 bool target_words_bigendian(void);
3503 bool target_words_bigendian(void)
3505 #if defined(TARGET_WORDS_BIGENDIAN)
3506 return true;
3507 #else
3508 return false;
3509 #endif
3512 #ifndef CONFIG_USER_ONLY
3513 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3515 MemoryRegion*mr;
3516 hwaddr l = 1;
3517 bool res;
3519 rcu_read_lock();
3520 mr = address_space_translate(&address_space_memory,
3521 phys_addr, &phys_addr, &l, false);
3523 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3524 rcu_read_unlock();
3525 return res;
3528 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3530 RAMBlock *block;
3531 int ret = 0;
3533 rcu_read_lock();
3534 RAMBLOCK_FOREACH(block) {
3535 ret = func(block->idstr, block->host, block->offset,
3536 block->used_length, opaque);
3537 if (ret) {
3538 break;
3541 rcu_read_unlock();
3542 return ret;
3546 * Unmap pages of memory from start to start+length such that
3547 * they a) read as 0, b) Trigger whatever fault mechanism
3548 * the OS provides for postcopy.
3549 * The pages must be unmapped by the end of the function.
3550 * Returns: 0 on success, none-0 on failure
3553 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3555 int ret = -1;
3557 uint8_t *host_startaddr = rb->host + start;
3559 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3560 error_report("ram_block_discard_range: Unaligned start address: %p",
3561 host_startaddr);
3562 goto err;
3565 if ((start + length) <= rb->used_length) {
3566 uint8_t *host_endaddr = host_startaddr + length;
3567 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3568 error_report("ram_block_discard_range: Unaligned end address: %p",
3569 host_endaddr);
3570 goto err;
3573 errno = ENOTSUP; /* If we are missing MADVISE etc */
3575 if (rb->page_size == qemu_host_page_size) {
3576 #if defined(CONFIG_MADVISE)
3577 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3578 * freeing the page.
3580 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3581 #endif
3582 } else {
3583 /* Huge page case - unfortunately it can't do DONTNEED, but
3584 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3585 * huge page file.
3587 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3588 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3589 start, length);
3590 #endif
3592 if (ret) {
3593 ret = -errno;
3594 error_report("ram_block_discard_range: Failed to discard range "
3595 "%s:%" PRIx64 " +%zx (%d)",
3596 rb->idstr, start, length, ret);
3598 } else {
3599 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3600 "/%zx/" RAM_ADDR_FMT")",
3601 rb->idstr, start, length, rb->used_length);
3604 err:
3605 return ret;
3608 #endif
3610 void page_size_init(void)
3612 /* NOTE: we can always suppose that qemu_host_page_size >=
3613 TARGET_PAGE_SIZE */
3614 qemu_real_host_page_size = getpagesize();
3615 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
3616 if (qemu_host_page_size == 0) {
3617 qemu_host_page_size = qemu_real_host_page_size;
3619 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3620 qemu_host_page_size = TARGET_PAGE_SIZE;
3622 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3625 #if !defined(CONFIG_USER_ONLY)
3627 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3628 int start, int end, int skip, int ptr)
3630 if (start == end - 1) {
3631 mon(f, "\t%3d ", start);
3632 } else {
3633 mon(f, "\t%3d..%-3d ", start, end - 1);
3635 mon(f, " skip=%d ", skip);
3636 if (ptr == PHYS_MAP_NODE_NIL) {
3637 mon(f, " ptr=NIL");
3638 } else if (!skip) {
3639 mon(f, " ptr=#%d", ptr);
3640 } else {
3641 mon(f, " ptr=[%d]", ptr);
3643 mon(f, "\n");
3646 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3647 int128_sub((size), int128_one())) : 0)
3649 void mtree_print_dispatch(fprintf_function mon, void *f,
3650 AddressSpaceDispatch *d, MemoryRegion *root)
3652 int i;
3654 mon(f, " Dispatch\n");
3655 mon(f, " Physical sections\n");
3657 for (i = 0; i < d->map.sections_nb; ++i) {
3658 MemoryRegionSection *s = d->map.sections + i;
3659 const char *names[] = { " [unassigned]", " [not dirty]",
3660 " [ROM]", " [watch]" };
3662 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3664 s->offset_within_address_space,
3665 s->offset_within_address_space + MR_SIZE(s->mr->size),
3666 s->mr->name ? s->mr->name : "(noname)",
3667 i < ARRAY_SIZE(names) ? names[i] : "",
3668 s->mr == root ? " [ROOT]" : "",
3669 s == d->mru_section ? " [MRU]" : "",
3670 s->mr->is_iommu ? " [iommu]" : "");
3672 if (s->mr->alias) {
3673 mon(f, " alias=%s", s->mr->alias->name ?
3674 s->mr->alias->name : "noname");
3676 mon(f, "\n");
3679 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3680 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3681 for (i = 0; i < d->map.nodes_nb; ++i) {
3682 int j, jprev;
3683 PhysPageEntry prev;
3684 Node *n = d->map.nodes + i;
3686 mon(f, " [%d]\n", i);
3688 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3689 PhysPageEntry *pe = *n + j;
3691 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3692 continue;
3695 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3697 jprev = j;
3698 prev = *pe;
3701 if (jprev != ARRAY_SIZE(*n)) {
3702 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3707 #endif