spapr: Clean up RMA size calculation
[qemu/ar7.git] / hw / block / pflash_cfi01.c
blob24f3bce7efd0b064881e5b86f27b3c140bffa100
1 /*
2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
24 * - flash read
25 * - flash write
26 * - flash ID read
27 * - sector erase
28 * - CFI queries
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "qemu/osdep.h"
40 #include "hw/block/block.h"
41 #include "hw/block/flash.h"
42 #include "hw/qdev-properties.h"
43 #include "sysemu/block-backend.h"
44 #include "qapi/error.h"
45 #include "qemu/timer.h"
46 #include "qemu/bitops.h"
47 #include "qemu/error-report.h"
48 #include "qemu/host-utils.h"
49 #include "qemu/log.h"
50 #include "qemu/module.h"
51 #include "qemu/option.h"
52 #include "hw/sysbus.h"
53 #include "migration/vmstate.h"
54 #include "sysemu/blockdev.h"
55 #include "sysemu/runstate.h"
56 #include "trace.h"
58 /* #define PFLASH_DEBUG */
59 #ifdef PFLASH_DEBUG
60 #define DPRINTF(fmt, ...) \
61 do { \
62 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
63 } while (0)
64 #else
65 #define DPRINTF(fmt, ...) do { } while (0)
66 #endif
68 #define PFLASH_BE 0
69 #define PFLASH_SECURE 1
71 struct PFlashCFI01 {
72 /*< private >*/
73 SysBusDevice parent_obj;
74 /*< public >*/
76 BlockBackend *blk;
77 uint32_t nb_blocs;
78 uint64_t sector_len;
79 uint8_t bank_width;
80 uint8_t device_width; /* If 0, device width not specified. */
81 uint8_t max_device_width; /* max device width in bytes */
82 uint32_t features;
83 uint8_t wcycle; /* if 0, the flash is read normally */
84 int ro;
85 uint8_t cmd;
86 uint8_t status;
87 uint16_t ident0;
88 uint16_t ident1;
89 uint16_t ident2;
90 uint16_t ident3;
91 uint8_t cfi_table[0x52];
92 uint64_t counter;
93 unsigned int writeblock_size;
94 QEMUTimer *timer;
95 MemoryRegion mem;
96 char *name;
97 void *storage;
98 VMChangeStateEntry *vmstate;
99 bool old_multiple_chip_handling;
102 static int pflash_post_load(void *opaque, int version_id);
104 static const VMStateDescription vmstate_pflash = {
105 .name = "pflash_cfi01",
106 .version_id = 1,
107 .minimum_version_id = 1,
108 .post_load = pflash_post_load,
109 .fields = (VMStateField[]) {
110 VMSTATE_UINT8(wcycle, PFlashCFI01),
111 VMSTATE_UINT8(cmd, PFlashCFI01),
112 VMSTATE_UINT8(status, PFlashCFI01),
113 VMSTATE_UINT64(counter, PFlashCFI01),
114 VMSTATE_END_OF_LIST()
118 static void pflash_timer (void *opaque)
120 PFlashCFI01 *pfl = opaque;
122 trace_pflash_timer_expired(pfl->cmd);
123 /* Reset flash */
124 pfl->status ^= 0x80;
125 memory_region_rom_device_set_romd(&pfl->mem, true);
126 pfl->wcycle = 0;
127 pfl->cmd = 0;
130 /* Perform a CFI query based on the bank width of the flash.
131 * If this code is called we know we have a device_width set for
132 * this flash.
134 static uint32_t pflash_cfi_query(PFlashCFI01 *pfl, hwaddr offset)
136 int i;
137 uint32_t resp = 0;
138 hwaddr boff;
140 /* Adjust incoming offset to match expected device-width
141 * addressing. CFI query addresses are always specified in terms of
142 * the maximum supported width of the device. This means that x8
143 * devices and x8/x16 devices in x8 mode behave differently. For
144 * devices that are not used at their max width, we will be
145 * provided with addresses that use higher address bits than
146 * expected (based on the max width), so we will shift them lower
147 * so that they will match the addresses used when
148 * device_width==max_device_width.
150 boff = offset >> (ctz32(pfl->bank_width) +
151 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
153 if (boff >= sizeof(pfl->cfi_table)) {
154 return 0;
156 /* Now we will construct the CFI response generated by a single
157 * device, then replicate that for all devices that make up the
158 * bus. For wide parts used in x8 mode, CFI query responses
159 * are different than native byte-wide parts.
161 resp = pfl->cfi_table[boff];
162 if (pfl->device_width != pfl->max_device_width) {
163 /* The only case currently supported is x8 mode for a
164 * wider part.
166 if (pfl->device_width != 1 || pfl->bank_width > 4) {
167 DPRINTF("%s: Unsupported device configuration: "
168 "device_width=%d, max_device_width=%d\n",
169 __func__, pfl->device_width,
170 pfl->max_device_width);
171 return 0;
173 /* CFI query data is repeated, rather than zero padded for
174 * wide devices used in x8 mode.
176 for (i = 1; i < pfl->max_device_width; i++) {
177 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
180 /* Replicate responses for each device in bank. */
181 if (pfl->device_width < pfl->bank_width) {
182 for (i = pfl->device_width;
183 i < pfl->bank_width; i += pfl->device_width) {
184 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
188 return resp;
193 /* Perform a device id query based on the bank width of the flash. */
194 static uint32_t pflash_devid_query(PFlashCFI01 *pfl, hwaddr offset)
196 int i;
197 uint32_t resp;
198 hwaddr boff;
200 /* Adjust incoming offset to match expected device-width
201 * addressing. Device ID read addresses are always specified in
202 * terms of the maximum supported width of the device. This means
203 * that x8 devices and x8/x16 devices in x8 mode behave
204 * differently. For devices that are not used at their max width,
205 * we will be provided with addresses that use higher address bits
206 * than expected (based on the max width), so we will shift them
207 * lower so that they will match the addresses used when
208 * device_width==max_device_width.
210 boff = offset >> (ctz32(pfl->bank_width) +
211 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
213 /* Mask off upper bits which may be used in to query block
214 * or sector lock status at other addresses.
215 * Offsets 2/3 are block lock status, is not emulated.
217 switch (boff & 0xFF) {
218 case 0:
219 resp = pfl->ident0;
220 trace_pflash_manufacturer_id(resp);
221 break;
222 case 1:
223 resp = pfl->ident1;
224 trace_pflash_device_id(resp);
225 break;
226 default:
227 trace_pflash_device_info(offset);
228 return 0;
229 break;
231 /* Replicate responses for each device in bank. */
232 if (pfl->device_width < pfl->bank_width) {
233 for (i = pfl->device_width;
234 i < pfl->bank_width; i += pfl->device_width) {
235 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
239 return resp;
242 static uint32_t pflash_data_read(PFlashCFI01 *pfl, hwaddr offset,
243 int width, int be)
245 uint8_t *p;
246 uint32_t ret;
248 p = pfl->storage;
249 switch (width) {
250 case 1:
251 ret = p[offset];
252 break;
253 case 2:
254 if (be) {
255 ret = p[offset] << 8;
256 ret |= p[offset + 1];
257 } else {
258 ret = p[offset];
259 ret |= p[offset + 1] << 8;
261 break;
262 case 4:
263 if (be) {
264 ret = p[offset] << 24;
265 ret |= p[offset + 1] << 16;
266 ret |= p[offset + 2] << 8;
267 ret |= p[offset + 3];
268 } else {
269 ret = p[offset];
270 ret |= p[offset + 1] << 8;
271 ret |= p[offset + 2] << 16;
272 ret |= p[offset + 3] << 24;
274 break;
275 default:
276 DPRINTF("BUG in %s\n", __func__);
277 abort();
279 trace_pflash_data_read(offset, width, ret);
280 return ret;
283 static uint32_t pflash_read(PFlashCFI01 *pfl, hwaddr offset,
284 int width, int be)
286 hwaddr boff;
287 uint32_t ret;
289 ret = -1;
290 switch (pfl->cmd) {
291 default:
292 /* This should never happen : reset state & treat it as a read */
293 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
294 pfl->wcycle = 0;
295 pfl->cmd = 0;
296 /* fall through to read code */
297 case 0x00:
298 /* Flash area read */
299 ret = pflash_data_read(pfl, offset, width, be);
300 break;
301 case 0x10: /* Single byte program */
302 case 0x20: /* Block erase */
303 case 0x28: /* Block erase */
304 case 0x40: /* single byte program */
305 case 0x50: /* Clear status register */
306 case 0x60: /* Block /un)lock */
307 case 0x70: /* Status Register */
308 case 0xe8: /* Write block */
309 /* Status register read. Return status from each device in
310 * bank.
312 ret = pfl->status;
313 if (pfl->device_width && width > pfl->device_width) {
314 int shift = pfl->device_width * 8;
315 while (shift + pfl->device_width * 8 <= width * 8) {
316 ret |= pfl->status << shift;
317 shift += pfl->device_width * 8;
319 } else if (!pfl->device_width && width > 2) {
320 /* Handle 32 bit flash cases where device width is not
321 * set. (Existing behavior before device width added.)
323 ret |= pfl->status << 16;
325 DPRINTF("%s: status %x\n", __func__, ret);
326 break;
327 case 0x90:
328 if (!pfl->device_width) {
329 /* Preserve old behavior if device width not specified */
330 boff = offset & 0xFF;
331 if (pfl->bank_width == 2) {
332 boff = boff >> 1;
333 } else if (pfl->bank_width == 4) {
334 boff = boff >> 2;
337 switch (boff) {
338 case 0:
339 ret = pfl->ident0 << 8 | pfl->ident1;
340 trace_pflash_manufacturer_id(ret);
341 break;
342 case 1:
343 ret = pfl->ident2 << 8 | pfl->ident3;
344 trace_pflash_device_id(ret);
345 break;
346 default:
347 trace_pflash_device_info(boff);
348 ret = 0;
349 break;
351 } else {
352 /* If we have a read larger than the bank_width, combine multiple
353 * manufacturer/device ID queries into a single response.
355 int i;
356 for (i = 0; i < width; i += pfl->bank_width) {
357 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
358 pflash_devid_query(pfl,
359 offset + i * pfl->bank_width));
362 break;
363 case 0x98: /* Query mode */
364 if (!pfl->device_width) {
365 /* Preserve old behavior if device width not specified */
366 boff = offset & 0xFF;
367 if (pfl->bank_width == 2) {
368 boff = boff >> 1;
369 } else if (pfl->bank_width == 4) {
370 boff = boff >> 2;
373 if (boff < sizeof(pfl->cfi_table)) {
374 ret = pfl->cfi_table[boff];
375 } else {
376 ret = 0;
378 } else {
379 /* If we have a read larger than the bank_width, combine multiple
380 * CFI queries into a single response.
382 int i;
383 for (i = 0; i < width; i += pfl->bank_width) {
384 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
385 pflash_cfi_query(pfl,
386 offset + i * pfl->bank_width));
390 break;
392 trace_pflash_io_read(offset, width, ret, pfl->cmd, pfl->wcycle);
394 return ret;
397 /* update flash content on disk */
398 static void pflash_update(PFlashCFI01 *pfl, int offset,
399 int size)
401 int offset_end;
402 if (pfl->blk) {
403 offset_end = offset + size;
404 /* widen to sector boundaries */
405 offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
406 offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
407 blk_pwrite(pfl->blk, offset, pfl->storage + offset,
408 offset_end - offset, 0);
412 static inline void pflash_data_write(PFlashCFI01 *pfl, hwaddr offset,
413 uint32_t value, int width, int be)
415 uint8_t *p = pfl->storage;
417 trace_pflash_data_write(offset, width, value, pfl->counter);
418 switch (width) {
419 case 1:
420 p[offset] = value;
421 break;
422 case 2:
423 if (be) {
424 p[offset] = value >> 8;
425 p[offset + 1] = value;
426 } else {
427 p[offset] = value;
428 p[offset + 1] = value >> 8;
430 break;
431 case 4:
432 if (be) {
433 p[offset] = value >> 24;
434 p[offset + 1] = value >> 16;
435 p[offset + 2] = value >> 8;
436 p[offset + 3] = value;
437 } else {
438 p[offset] = value;
439 p[offset + 1] = value >> 8;
440 p[offset + 2] = value >> 16;
441 p[offset + 3] = value >> 24;
443 break;
448 static void pflash_write(PFlashCFI01 *pfl, hwaddr offset,
449 uint32_t value, int width, int be)
451 uint8_t *p;
452 uint8_t cmd;
454 cmd = value;
456 trace_pflash_io_write(offset, width, value, pfl->wcycle);
457 if (!pfl->wcycle) {
458 /* Set the device in I/O access mode */
459 memory_region_rom_device_set_romd(&pfl->mem, false);
462 switch (pfl->wcycle) {
463 case 0:
464 /* read mode */
465 switch (cmd) {
466 case 0x00: /* ??? */
467 goto reset_flash;
468 case 0x10: /* Single Byte Program */
469 case 0x40: /* Single Byte Program */
470 DPRINTF("%s: Single Byte Program\n", __func__);
471 break;
472 case 0x20: /* Block erase */
473 p = pfl->storage;
474 offset &= ~(pfl->sector_len - 1);
476 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
477 __func__, offset, (unsigned)pfl->sector_len);
479 if (!pfl->ro) {
480 memset(p + offset, 0xff, pfl->sector_len);
481 pflash_update(pfl, offset, pfl->sector_len);
482 } else {
483 pfl->status |= 0x20; /* Block erase error */
485 pfl->status |= 0x80; /* Ready! */
486 break;
487 case 0x50: /* Clear status bits */
488 DPRINTF("%s: Clear status bits\n", __func__);
489 pfl->status = 0x0;
490 goto reset_flash;
491 case 0x60: /* Block (un)lock */
492 DPRINTF("%s: Block unlock\n", __func__);
493 break;
494 case 0x70: /* Status Register */
495 DPRINTF("%s: Read status register\n", __func__);
496 pfl->cmd = cmd;
497 return;
498 case 0x90: /* Read Device ID */
499 DPRINTF("%s: Read Device information\n", __func__);
500 pfl->cmd = cmd;
501 return;
502 case 0x98: /* CFI query */
503 DPRINTF("%s: CFI query\n", __func__);
504 break;
505 case 0xe8: /* Write to buffer */
506 DPRINTF("%s: Write to buffer\n", __func__);
507 /* FIXME should save @offset, @width for case 1+ */
508 qemu_log_mask(LOG_UNIMP,
509 "%s: Write to buffer emulation is flawed\n",
510 __func__);
511 pfl->status |= 0x80; /* Ready! */
512 break;
513 case 0xf0: /* Probe for AMD flash */
514 DPRINTF("%s: Probe for AMD flash\n", __func__);
515 goto reset_flash;
516 case 0xff: /* Read array mode */
517 DPRINTF("%s: Read array mode\n", __func__);
518 goto reset_flash;
519 default:
520 goto error_flash;
522 pfl->wcycle++;
523 pfl->cmd = cmd;
524 break;
525 case 1:
526 switch (pfl->cmd) {
527 case 0x10: /* Single Byte Program */
528 case 0x40: /* Single Byte Program */
529 DPRINTF("%s: Single Byte Program\n", __func__);
530 if (!pfl->ro) {
531 pflash_data_write(pfl, offset, value, width, be);
532 pflash_update(pfl, offset, width);
533 } else {
534 pfl->status |= 0x10; /* Programming error */
536 pfl->status |= 0x80; /* Ready! */
537 pfl->wcycle = 0;
538 break;
539 case 0x20: /* Block erase */
540 case 0x28:
541 if (cmd == 0xd0) { /* confirm */
542 pfl->wcycle = 0;
543 pfl->status |= 0x80;
544 } else if (cmd == 0xff) { /* read array mode */
545 goto reset_flash;
546 } else
547 goto error_flash;
549 break;
550 case 0xe8:
551 /* Mask writeblock size based on device width, or bank width if
552 * device width not specified.
554 /* FIXME check @offset, @width */
555 if (pfl->device_width) {
556 value = extract32(value, 0, pfl->device_width * 8);
557 } else {
558 value = extract32(value, 0, pfl->bank_width * 8);
560 DPRINTF("%s: block write of %x bytes\n", __func__, value);
561 pfl->counter = value;
562 pfl->wcycle++;
563 break;
564 case 0x60:
565 if (cmd == 0xd0) {
566 pfl->wcycle = 0;
567 pfl->status |= 0x80;
568 } else if (cmd == 0x01) {
569 pfl->wcycle = 0;
570 pfl->status |= 0x80;
571 } else if (cmd == 0xff) {
572 goto reset_flash;
573 } else {
574 DPRINTF("%s: Unknown (un)locking command\n", __func__);
575 goto reset_flash;
577 break;
578 case 0x98:
579 if (cmd == 0xff) {
580 goto reset_flash;
581 } else {
582 DPRINTF("%s: leaving query mode\n", __func__);
584 break;
585 default:
586 goto error_flash;
588 break;
589 case 2:
590 switch (pfl->cmd) {
591 case 0xe8: /* Block write */
592 /* FIXME check @offset, @width */
593 if (!pfl->ro) {
595 * FIXME writing straight to memory is *wrong*. We
596 * should write to a buffer, and flush it to memory
597 * only on confirm command (see below).
599 pflash_data_write(pfl, offset, value, width, be);
600 } else {
601 pfl->status |= 0x10; /* Programming error */
604 pfl->status |= 0x80;
606 if (!pfl->counter) {
607 hwaddr mask = pfl->writeblock_size - 1;
608 mask = ~mask;
610 DPRINTF("%s: block write finished\n", __func__);
611 pfl->wcycle++;
612 if (!pfl->ro) {
613 /* Flush the entire write buffer onto backing storage. */
614 /* FIXME premature! */
615 pflash_update(pfl, offset & mask, pfl->writeblock_size);
616 } else {
617 pfl->status |= 0x10; /* Programming error */
621 pfl->counter--;
622 break;
623 default:
624 goto error_flash;
626 break;
627 case 3: /* Confirm mode */
628 switch (pfl->cmd) {
629 case 0xe8: /* Block write */
630 if (cmd == 0xd0) {
631 /* FIXME this is where we should write out the buffer */
632 pfl->wcycle = 0;
633 pfl->status |= 0x80;
634 } else {
635 qemu_log_mask(LOG_UNIMP,
636 "%s: Aborting write to buffer not implemented,"
637 " the data is already written to storage!\n"
638 "Flash device reset into READ mode.\n",
639 __func__);
640 goto reset_flash;
642 break;
643 default:
644 goto error_flash;
646 break;
647 default:
648 /* Should never happen */
649 DPRINTF("%s: invalid write state\n", __func__);
650 goto reset_flash;
652 return;
654 error_flash:
655 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
656 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
657 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
659 reset_flash:
660 trace_pflash_reset();
661 memory_region_rom_device_set_romd(&pfl->mem, true);
662 pfl->wcycle = 0;
663 pfl->cmd = 0;
667 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
668 unsigned len, MemTxAttrs attrs)
670 PFlashCFI01 *pfl = opaque;
671 bool be = !!(pfl->features & (1 << PFLASH_BE));
673 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
674 *value = pflash_data_read(opaque, addr, len, be);
675 } else {
676 *value = pflash_read(opaque, addr, len, be);
678 return MEMTX_OK;
681 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
682 unsigned len, MemTxAttrs attrs)
684 PFlashCFI01 *pfl = opaque;
685 bool be = !!(pfl->features & (1 << PFLASH_BE));
687 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
688 return MEMTX_ERROR;
689 } else {
690 pflash_write(opaque, addr, value, len, be);
691 return MEMTX_OK;
695 static const MemoryRegionOps pflash_cfi01_ops = {
696 .read_with_attrs = pflash_mem_read_with_attrs,
697 .write_with_attrs = pflash_mem_write_with_attrs,
698 .endianness = DEVICE_NATIVE_ENDIAN,
701 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
703 PFlashCFI01 *pfl = PFLASH_CFI01(dev);
704 uint64_t total_len;
705 int ret;
706 uint64_t blocks_per_device, sector_len_per_device, device_len;
707 int num_devices;
708 Error *local_err = NULL;
710 if (pfl->sector_len == 0) {
711 error_setg(errp, "attribute \"sector-length\" not specified or zero.");
712 return;
714 if (pfl->nb_blocs == 0) {
715 error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
716 return;
718 if (pfl->name == NULL) {
719 error_setg(errp, "attribute \"name\" not specified.");
720 return;
723 total_len = pfl->sector_len * pfl->nb_blocs;
725 /* These are only used to expose the parameters of each device
726 * in the cfi_table[].
728 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
729 if (pfl->old_multiple_chip_handling) {
730 blocks_per_device = pfl->nb_blocs / num_devices;
731 sector_len_per_device = pfl->sector_len;
732 } else {
733 blocks_per_device = pfl->nb_blocs;
734 sector_len_per_device = pfl->sector_len / num_devices;
736 device_len = sector_len_per_device * blocks_per_device;
738 memory_region_init_rom_device(
739 &pfl->mem, OBJECT(dev),
740 &pflash_cfi01_ops,
741 pfl,
742 pfl->name, total_len, &local_err);
743 if (local_err) {
744 error_propagate(errp, local_err);
745 return;
748 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
749 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
751 if (pfl->blk) {
752 uint64_t perm;
753 pfl->ro = blk_is_read_only(pfl->blk);
754 perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
755 ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
756 if (ret < 0) {
757 return;
759 } else {
760 pfl->ro = 0;
763 if (pfl->blk) {
764 if (!blk_check_size_and_read_all(pfl->blk, pfl->storage, total_len,
765 errp)) {
766 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
767 return;
771 /* Default to devices being used at their maximum device width. This was
772 * assumed before the device_width support was added.
774 if (!pfl->max_device_width) {
775 pfl->max_device_width = pfl->device_width;
778 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
779 pfl->wcycle = 0;
780 pfl->cmd = 0;
781 pfl->status = 0x80; /* WSM ready */
782 /* Hardcoded CFI table */
783 /* Standard "QRY" string */
784 pfl->cfi_table[0x10] = 'Q';
785 pfl->cfi_table[0x11] = 'R';
786 pfl->cfi_table[0x12] = 'Y';
787 /* Command set (Intel) */
788 pfl->cfi_table[0x13] = 0x01;
789 pfl->cfi_table[0x14] = 0x00;
790 /* Primary extended table address (none) */
791 pfl->cfi_table[0x15] = 0x31;
792 pfl->cfi_table[0x16] = 0x00;
793 /* Alternate command set (none) */
794 pfl->cfi_table[0x17] = 0x00;
795 pfl->cfi_table[0x18] = 0x00;
796 /* Alternate extended table (none) */
797 pfl->cfi_table[0x19] = 0x00;
798 pfl->cfi_table[0x1A] = 0x00;
799 /* Vcc min */
800 pfl->cfi_table[0x1B] = 0x45;
801 /* Vcc max */
802 pfl->cfi_table[0x1C] = 0x55;
803 /* Vpp min (no Vpp pin) */
804 pfl->cfi_table[0x1D] = 0x00;
805 /* Vpp max (no Vpp pin) */
806 pfl->cfi_table[0x1E] = 0x00;
807 /* Reserved */
808 pfl->cfi_table[0x1F] = 0x07;
809 /* Timeout for min size buffer write */
810 pfl->cfi_table[0x20] = 0x07;
811 /* Typical timeout for block erase */
812 pfl->cfi_table[0x21] = 0x0a;
813 /* Typical timeout for full chip erase (4096 ms) */
814 pfl->cfi_table[0x22] = 0x00;
815 /* Reserved */
816 pfl->cfi_table[0x23] = 0x04;
817 /* Max timeout for buffer write */
818 pfl->cfi_table[0x24] = 0x04;
819 /* Max timeout for block erase */
820 pfl->cfi_table[0x25] = 0x04;
821 /* Max timeout for chip erase */
822 pfl->cfi_table[0x26] = 0x00;
823 /* Device size */
824 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
825 /* Flash device interface (8 & 16 bits) */
826 pfl->cfi_table[0x28] = 0x02;
827 pfl->cfi_table[0x29] = 0x00;
828 /* Max number of bytes in multi-bytes write */
829 if (pfl->bank_width == 1) {
830 pfl->cfi_table[0x2A] = 0x08;
831 } else {
832 pfl->cfi_table[0x2A] = 0x0B;
834 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
835 if (!pfl->old_multiple_chip_handling && num_devices > 1) {
836 pfl->writeblock_size *= num_devices;
839 pfl->cfi_table[0x2B] = 0x00;
840 /* Number of erase block regions (uniform) */
841 pfl->cfi_table[0x2C] = 0x01;
842 /* Erase block region 1 */
843 pfl->cfi_table[0x2D] = blocks_per_device - 1;
844 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
845 pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
846 pfl->cfi_table[0x30] = sector_len_per_device >> 16;
848 /* Extended */
849 pfl->cfi_table[0x31] = 'P';
850 pfl->cfi_table[0x32] = 'R';
851 pfl->cfi_table[0x33] = 'I';
853 pfl->cfi_table[0x34] = '1';
854 pfl->cfi_table[0x35] = '0';
856 pfl->cfi_table[0x36] = 0x00;
857 pfl->cfi_table[0x37] = 0x00;
858 pfl->cfi_table[0x38] = 0x00;
859 pfl->cfi_table[0x39] = 0x00;
861 pfl->cfi_table[0x3a] = 0x00;
863 pfl->cfi_table[0x3b] = 0x00;
864 pfl->cfi_table[0x3c] = 0x00;
866 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
869 static void pflash_cfi01_system_reset(DeviceState *dev)
871 PFlashCFI01 *pfl = PFLASH_CFI01(dev);
874 * The command 0x00 is not assigned by the CFI open standard,
875 * but QEMU historically uses it for the READ_ARRAY command (0xff).
877 pfl->cmd = 0x00;
878 pfl->wcycle = 0;
879 memory_region_rom_device_set_romd(&pfl->mem, true);
881 * The WSM ready timer occurs at most 150ns after system reset.
882 * This model deliberately ignores this delay.
884 pfl->status = 0x80;
887 static Property pflash_cfi01_properties[] = {
888 DEFINE_PROP_DRIVE("drive", PFlashCFI01, blk),
889 /* num-blocks is the number of blocks actually visible to the guest,
890 * ie the total size of the device divided by the sector length.
891 * If we're emulating flash devices wired in parallel the actual
892 * number of blocks per indvidual device will differ.
894 DEFINE_PROP_UINT32("num-blocks", PFlashCFI01, nb_blocs, 0),
895 DEFINE_PROP_UINT64("sector-length", PFlashCFI01, sector_len, 0),
896 /* width here is the overall width of this QEMU device in bytes.
897 * The QEMU device may be emulating a number of flash devices
898 * wired up in parallel; the width of each individual flash
899 * device should be specified via device-width. If the individual
900 * devices have a maximum width which is greater than the width
901 * they are being used for, this maximum width should be set via
902 * max-device-width (which otherwise defaults to device-width).
903 * So for instance a 32-bit wide QEMU flash device made from four
904 * 16-bit flash devices used in 8-bit wide mode would be configured
905 * with width = 4, device-width = 1, max-device-width = 2.
907 * If device-width is not specified we default to backwards
908 * compatible behaviour which is a bad emulation of two
909 * 16 bit devices making up a 32 bit wide QEMU device. This
910 * is deprecated for new uses of this device.
912 DEFINE_PROP_UINT8("width", PFlashCFI01, bank_width, 0),
913 DEFINE_PROP_UINT8("device-width", PFlashCFI01, device_width, 0),
914 DEFINE_PROP_UINT8("max-device-width", PFlashCFI01, max_device_width, 0),
915 DEFINE_PROP_BIT("big-endian", PFlashCFI01, features, PFLASH_BE, 0),
916 DEFINE_PROP_BIT("secure", PFlashCFI01, features, PFLASH_SECURE, 0),
917 DEFINE_PROP_UINT16("id0", PFlashCFI01, ident0, 0),
918 DEFINE_PROP_UINT16("id1", PFlashCFI01, ident1, 0),
919 DEFINE_PROP_UINT16("id2", PFlashCFI01, ident2, 0),
920 DEFINE_PROP_UINT16("id3", PFlashCFI01, ident3, 0),
921 DEFINE_PROP_STRING("name", PFlashCFI01, name),
922 DEFINE_PROP_BOOL("old-multiple-chip-handling", PFlashCFI01,
923 old_multiple_chip_handling, false),
924 DEFINE_PROP_END_OF_LIST(),
927 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
929 DeviceClass *dc = DEVICE_CLASS(klass);
931 dc->reset = pflash_cfi01_system_reset;
932 dc->realize = pflash_cfi01_realize;
933 device_class_set_props(dc, pflash_cfi01_properties);
934 dc->vmsd = &vmstate_pflash;
935 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
939 static const TypeInfo pflash_cfi01_info = {
940 .name = TYPE_PFLASH_CFI01,
941 .parent = TYPE_SYS_BUS_DEVICE,
942 .instance_size = sizeof(PFlashCFI01),
943 .class_init = pflash_cfi01_class_init,
946 static void pflash_cfi01_register_types(void)
948 type_register_static(&pflash_cfi01_info);
951 type_init(pflash_cfi01_register_types)
953 PFlashCFI01 *pflash_cfi01_register(hwaddr base,
954 const char *name,
955 hwaddr size,
956 BlockBackend *blk,
957 uint32_t sector_len,
958 int bank_width,
959 uint16_t id0, uint16_t id1,
960 uint16_t id2, uint16_t id3,
961 int be)
963 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
965 if (blk) {
966 qdev_prop_set_drive(dev, "drive", blk, &error_abort);
968 assert(size % sector_len == 0);
969 qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
970 qdev_prop_set_uint64(dev, "sector-length", sector_len);
971 qdev_prop_set_uint8(dev, "width", bank_width);
972 qdev_prop_set_bit(dev, "big-endian", !!be);
973 qdev_prop_set_uint16(dev, "id0", id0);
974 qdev_prop_set_uint16(dev, "id1", id1);
975 qdev_prop_set_uint16(dev, "id2", id2);
976 qdev_prop_set_uint16(dev, "id3", id3);
977 qdev_prop_set_string(dev, "name", name);
978 qdev_init_nofail(dev);
980 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
981 return PFLASH_CFI01(dev);
984 BlockBackend *pflash_cfi01_get_blk(PFlashCFI01 *fl)
986 return fl->blk;
989 MemoryRegion *pflash_cfi01_get_memory(PFlashCFI01 *fl)
991 return &fl->mem;
995 * Handle -drive if=pflash for machines that use properties.
996 * If @dinfo is null, do nothing.
997 * Else if @fl's property "drive" is already set, fatal error.
998 * Else set it to the BlockBackend with @dinfo.
1000 void pflash_cfi01_legacy_drive(PFlashCFI01 *fl, DriveInfo *dinfo)
1002 Location loc;
1004 if (!dinfo) {
1005 return;
1008 loc_push_none(&loc);
1009 qemu_opts_loc_restore(dinfo->opts);
1010 if (fl->blk) {
1011 error_report("clashes with -machine");
1012 exit(1);
1014 qdev_prop_set_drive(DEVICE(fl), "drive",
1015 blk_by_legacy_dinfo(dinfo), &error_fatal);
1016 loc_pop(&loc);
1019 static void postload_update_cb(void *opaque, int running, RunState state)
1021 PFlashCFI01 *pfl = opaque;
1023 /* This is called after bdrv_invalidate_cache_all. */
1024 qemu_del_vm_change_state_handler(pfl->vmstate);
1025 pfl->vmstate = NULL;
1027 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
1028 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
1031 static int pflash_post_load(void *opaque, int version_id)
1033 PFlashCFI01 *pfl = opaque;
1035 if (!pfl->ro) {
1036 pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
1037 pfl);
1039 return 0;