2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/qdev-properties.h"
33 #include "migration/vmstate.h"
35 //#define DEBUG_UNASSIGNED
37 static unsigned memory_region_transaction_depth
;
38 static bool memory_region_update_pending
;
39 static bool ioeventfd_update_pending
;
40 static bool global_dirty_log
= false;
42 static QTAILQ_HEAD(memory_listeners
, MemoryListener
) memory_listeners
43 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
45 static QTAILQ_HEAD(, AddressSpace
) address_spaces
46 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
48 static GHashTable
*flat_views
;
50 typedef struct AddrRange AddrRange
;
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
61 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
63 return (AddrRange
) { start
, size
};
66 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
68 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
71 static Int128
addrrange_end(AddrRange r
)
73 return int128_add(r
.start
, r
.size
);
76 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
78 int128_addto(&range
.start
, delta
);
82 static bool addrrange_contains(AddrRange range
, Int128 addr
)
84 return int128_ge(addr
, range
.start
)
85 && int128_lt(addr
, addrrange_end(range
));
88 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
90 return addrrange_contains(r1
, r2
.start
)
91 || addrrange_contains(r2
, r1
.start
);
94 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
96 Int128 start
= int128_max(r1
.start
, r2
.start
);
97 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
98 return addrrange_make(start
, int128_sub(end
, start
));
101 enum ListenerDirection
{ Forward
, Reverse
};
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
105 MemoryListener *_listener; \
107 switch (_direction) { \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
117 memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130 MemoryListener *_listener; \
131 struct memory_listeners_as *list = &(_as)->listeners; \
133 switch (_direction) { \
135 QTAILQ_FOREACH(_listener, list, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
142 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 struct CoalescedMemoryRange
{
164 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
167 struct MemoryRegionIoeventfd
{
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
175 MemoryRegionIoeventfd
*b
)
177 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
179 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
181 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
183 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
185 } else if (a
->match_data
< b
->match_data
) {
187 } else if (a
->match_data
> b
->match_data
) {
189 } else if (a
->match_data
) {
190 if (a
->data
< b
->data
) {
192 } else if (a
->data
> b
->data
) {
198 } else if (a
->e
> b
->e
) {
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
205 MemoryRegionIoeventfd
*b
)
207 return !memory_region_ioeventfd_before(a
, b
)
208 && !memory_region_ioeventfd_before(b
, a
);
211 /* Range of memory in the global map. Addresses are absolute. */
214 hwaddr offset_in_region
;
216 uint8_t dirty_log_mask
;
221 #define FOR_EACH_FLAT_RANGE(var, view) \
222 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224 static inline MemoryRegionSection
225 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
227 return (MemoryRegionSection
) {
230 .offset_within_region
= fr
->offset_in_region
,
231 .size
= fr
->addr
.size
,
232 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
233 .readonly
= fr
->readonly
,
237 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
239 return a
->mr
== b
->mr
240 && addrrange_equal(a
->addr
, b
->addr
)
241 && a
->offset_in_region
== b
->offset_in_region
242 && a
->romd_mode
== b
->romd_mode
243 && a
->readonly
== b
->readonly
;
246 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
250 view
= g_new0(FlatView
, 1);
252 view
->root
= mr_root
;
253 memory_region_ref(mr_root
);
254 trace_flatview_new(view
, mr_root
);
259 /* Insert a range into a given position. Caller is responsible for maintaining
262 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
264 if (view
->nr
== view
->nr_allocated
) {
265 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
266 view
->ranges
= g_realloc(view
->ranges
,
267 view
->nr_allocated
* sizeof(*view
->ranges
));
269 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
270 (view
->nr
- pos
) * sizeof(FlatRange
));
271 view
->ranges
[pos
] = *range
;
272 memory_region_ref(range
->mr
);
276 static void flatview_destroy(FlatView
*view
)
280 trace_flatview_destroy(view
, view
->root
);
281 if (view
->dispatch
) {
282 address_space_dispatch_free(view
->dispatch
);
284 for (i
= 0; i
< view
->nr
; i
++) {
285 memory_region_unref(view
->ranges
[i
].mr
);
287 g_free(view
->ranges
);
288 memory_region_unref(view
->root
);
292 static bool flatview_ref(FlatView
*view
)
294 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
297 void flatview_unref(FlatView
*view
)
299 if (atomic_fetch_dec(&view
->ref
) == 1) {
300 trace_flatview_destroy_rcu(view
, view
->root
);
302 call_rcu(view
, flatview_destroy
, rcu
);
306 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
308 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
310 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
312 int128_make64(r2
->offset_in_region
))
313 && r1
->dirty_log_mask
== r2
->dirty_log_mask
314 && r1
->romd_mode
== r2
->romd_mode
315 && r1
->readonly
== r2
->readonly
;
318 /* Attempt to simplify a view by merging adjacent ranges */
319 static void flatview_simplify(FlatView
*view
)
324 while (i
< view
->nr
) {
327 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
328 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
332 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
333 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
338 static bool memory_region_big_endian(MemoryRegion
*mr
)
340 #ifdef TARGET_WORDS_BIGENDIAN
341 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
343 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
347 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
349 #ifdef TARGET_WORDS_BIGENDIAN
350 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
352 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
356 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
358 if (memory_region_wrong_endianness(mr
)) {
363 *data
= bswap16(*data
);
366 *data
= bswap32(*data
);
369 *data
= bswap64(*data
);
377 static inline void memory_region_shift_read_access(uint64_t *value
,
383 *value
|= (tmp
& mask
) << shift
;
385 *value
|= (tmp
& mask
) >> -shift
;
389 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
396 tmp
= (*value
>> shift
) & mask
;
398 tmp
= (*value
<< -shift
) & mask
;
404 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
407 hwaddr abs_addr
= offset
;
409 abs_addr
+= mr
->addr
;
410 for (root
= mr
; root
->container
; ) {
411 root
= root
->container
;
412 abs_addr
+= root
->addr
;
418 static int get_cpu_index(void)
421 return current_cpu
->cpu_index
;
426 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
436 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
438 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
439 } else if (mr
== &io_mem_notdirty
) {
440 /* Accesses to code which has previously been translated into a TB show
441 * up in the MMIO path, as accesses to the io_mem_notdirty
443 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
444 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
445 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
446 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
448 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
452 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
463 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
465 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
466 } else if (mr
== &io_mem_notdirty
) {
467 /* Accesses to code which has previously been translated into a TB show
468 * up in the MMIO path, as accesses to the io_mem_notdirty
470 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
471 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
472 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
473 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
475 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
479 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
487 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
490 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
491 } else if (mr
== &io_mem_notdirty
) {
492 /* Accesses to code which has previously been translated into a TB show
493 * up in the MMIO path, as accesses to the io_mem_notdirty
495 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
496 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
497 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
498 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
500 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
504 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
512 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
515 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
516 } else if (mr
== &io_mem_notdirty
) {
517 /* Accesses to code which has previously been translated into a TB show
518 * up in the MMIO path, as accesses to the io_mem_notdirty
520 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
521 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
522 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
523 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
525 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
528 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
531 unsigned access_size_min
,
532 unsigned access_size_max
,
533 MemTxResult (*access_fn
)
544 uint64_t access_mask
;
545 unsigned access_size
;
547 MemTxResult r
= MEMTX_OK
;
549 if (!access_size_min
) {
552 if (!access_size_max
) {
556 /* FIXME: support unaligned access? */
557 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
558 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
559 if (memory_region_big_endian(mr
)) {
560 for (i
= 0; i
< size
; i
+= access_size
) {
561 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
562 (size
- access_size
- i
) * 8, access_mask
, attrs
);
565 for (i
= 0; i
< size
; i
+= access_size
) {
566 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
573 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
577 while (mr
->container
) {
580 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
581 if (mr
== as
->root
) {
588 /* Render a memory region into the global view. Ranges in @view obscure
591 static void render_memory_region(FlatView
*view
,
597 MemoryRegion
*subregion
;
599 hwaddr offset_in_region
;
609 int128_addto(&base
, int128_make64(mr
->addr
));
610 readonly
|= mr
->readonly
;
612 tmp
= addrrange_make(base
, mr
->size
);
614 if (!addrrange_intersects(tmp
, clip
)) {
618 clip
= addrrange_intersection(tmp
, clip
);
621 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
622 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
623 render_memory_region(view
, mr
->alias
, base
, clip
, readonly
);
627 /* Render subregions in priority order. */
628 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
629 render_memory_region(view
, subregion
, base
, clip
, readonly
);
632 if (!mr
->terminates
) {
636 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
641 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
642 fr
.romd_mode
= mr
->romd_mode
;
643 fr
.readonly
= readonly
;
645 /* Render the region itself into any gaps left by the current view. */
646 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
647 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
650 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
651 now
= int128_min(remain
,
652 int128_sub(view
->ranges
[i
].addr
.start
, base
));
653 fr
.offset_in_region
= offset_in_region
;
654 fr
.addr
= addrrange_make(base
, now
);
655 flatview_insert(view
, i
, &fr
);
657 int128_addto(&base
, now
);
658 offset_in_region
+= int128_get64(now
);
659 int128_subfrom(&remain
, now
);
661 now
= int128_sub(int128_min(int128_add(base
, remain
),
662 addrrange_end(view
->ranges
[i
].addr
)),
664 int128_addto(&base
, now
);
665 offset_in_region
+= int128_get64(now
);
666 int128_subfrom(&remain
, now
);
668 if (int128_nz(remain
)) {
669 fr
.offset_in_region
= offset_in_region
;
670 fr
.addr
= addrrange_make(base
, remain
);
671 flatview_insert(view
, i
, &fr
);
675 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
677 while (mr
->enabled
) {
679 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
680 /* The alias is included in its entirety. Use it as
681 * the "real" root, so that we can share more FlatViews.
686 } else if (!mr
->terminates
) {
687 unsigned int found
= 0;
688 MemoryRegion
*child
, *next
= NULL
;
689 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
690 if (child
->enabled
) {
695 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
696 /* A child is included in its entirety. If it's the only
697 * enabled one, use it in the hope of finding an alias down the
698 * way. This will also let us share FlatViews.
719 /* Render a memory topology into a list of disjoint absolute ranges. */
720 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
725 view
= flatview_new(mr
);
728 render_memory_region(view
, mr
, int128_zero(),
729 addrrange_make(int128_zero(), int128_2_64()), false);
731 flatview_simplify(view
);
733 view
->dispatch
= address_space_dispatch_new(view
);
734 for (i
= 0; i
< view
->nr
; i
++) {
735 MemoryRegionSection mrs
=
736 section_from_flat_range(&view
->ranges
[i
], view
);
737 flatview_add_to_dispatch(view
, &mrs
);
739 address_space_dispatch_compact(view
->dispatch
);
740 g_hash_table_replace(flat_views
, mr
, view
);
745 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
746 MemoryRegionIoeventfd
*fds_new
,
748 MemoryRegionIoeventfd
*fds_old
,
752 MemoryRegionIoeventfd
*fd
;
753 MemoryRegionSection section
;
755 /* Generate a symmetric difference of the old and new fd sets, adding
756 * and deleting as necessary.
760 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
761 if (iold
< fds_old_nb
762 && (inew
== fds_new_nb
763 || memory_region_ioeventfd_before(&fds_old
[iold
],
766 section
= (MemoryRegionSection
) {
767 .fv
= address_space_to_flatview(as
),
768 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
769 .size
= fd
->addr
.size
,
771 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
772 fd
->match_data
, fd
->data
, fd
->e
);
774 } else if (inew
< fds_new_nb
775 && (iold
== fds_old_nb
776 || memory_region_ioeventfd_before(&fds_new
[inew
],
779 section
= (MemoryRegionSection
) {
780 .fv
= address_space_to_flatview(as
),
781 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
782 .size
= fd
->addr
.size
,
784 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
785 fd
->match_data
, fd
->data
, fd
->e
);
794 FlatView
*address_space_get_flatview(AddressSpace
*as
)
800 view
= address_space_to_flatview(as
);
801 /* If somebody has replaced as->current_map concurrently,
802 * flatview_ref returns false.
804 } while (!flatview_ref(view
));
809 static void address_space_update_ioeventfds(AddressSpace
*as
)
813 unsigned ioeventfd_nb
= 0;
814 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
818 view
= address_space_get_flatview(as
);
819 FOR_EACH_FLAT_RANGE(fr
, view
) {
820 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
821 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
822 int128_sub(fr
->addr
.start
,
823 int128_make64(fr
->offset_in_region
)));
824 if (addrrange_intersects(fr
->addr
, tmp
)) {
826 ioeventfds
= g_realloc(ioeventfds
,
827 ioeventfd_nb
* sizeof(*ioeventfds
));
828 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
829 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
834 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
835 as
->ioeventfds
, as
->ioeventfd_nb
);
837 g_free(as
->ioeventfds
);
838 as
->ioeventfds
= ioeventfds
;
839 as
->ioeventfd_nb
= ioeventfd_nb
;
840 flatview_unref(view
);
843 static void address_space_update_topology_pass(AddressSpace
*as
,
844 const FlatView
*old_view
,
845 const FlatView
*new_view
,
849 FlatRange
*frold
, *frnew
;
851 /* Generate a symmetric difference of the old and new memory maps.
852 * Kill ranges in the old map, and instantiate ranges in the new map.
855 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
856 if (iold
< old_view
->nr
) {
857 frold
= &old_view
->ranges
[iold
];
861 if (inew
< new_view
->nr
) {
862 frnew
= &new_view
->ranges
[inew
];
869 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
870 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
871 && !flatrange_equal(frold
, frnew
)))) {
872 /* In old but not in new, or in both but attributes changed. */
875 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
879 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
880 /* In both and unchanged (except logging may have changed) */
883 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
884 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
885 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
886 frold
->dirty_log_mask
,
887 frnew
->dirty_log_mask
);
889 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
890 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
891 frold
->dirty_log_mask
,
892 frnew
->dirty_log_mask
);
902 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
910 static void flatviews_init(void)
912 static FlatView
*empty_view
;
918 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
919 (GDestroyNotify
) flatview_unref
);
921 empty_view
= generate_memory_topology(NULL
);
922 /* We keep it alive forever in the global variable. */
923 flatview_ref(empty_view
);
925 g_hash_table_replace(flat_views
, NULL
, empty_view
);
926 flatview_ref(empty_view
);
930 static void flatviews_reset(void)
935 g_hash_table_unref(flat_views
);
940 /* Render unique FVs */
941 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
942 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
944 if (g_hash_table_lookup(flat_views
, physmr
)) {
948 generate_memory_topology(physmr
);
952 static void address_space_set_flatview(AddressSpace
*as
)
954 FlatView
*old_view
= address_space_to_flatview(as
);
955 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
956 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
960 if (old_view
== new_view
) {
965 flatview_ref(old_view
);
968 flatview_ref(new_view
);
970 if (!QTAILQ_EMPTY(&as
->listeners
)) {
971 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
974 old_view2
= &tmpview
;
976 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
977 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
980 /* Writes are protected by the BQL. */
981 atomic_rcu_set(&as
->current_map
, new_view
);
983 flatview_unref(old_view
);
986 /* Note that all the old MemoryRegions are still alive up to this
987 * point. This relieves most MemoryListeners from the need to
988 * ref/unref the MemoryRegions they get---unless they use them
989 * outside the iothread mutex, in which case precise reference
990 * counting is necessary.
993 flatview_unref(old_view
);
997 static void address_space_update_topology(AddressSpace
*as
)
999 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1002 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1003 generate_memory_topology(physmr
);
1005 address_space_set_flatview(as
);
1008 void memory_region_transaction_begin(void)
1010 qemu_flush_coalesced_mmio_buffer();
1011 ++memory_region_transaction_depth
;
1014 void memory_region_transaction_commit(void)
1018 assert(memory_region_transaction_depth
);
1019 assert(qemu_mutex_iothread_locked());
1021 --memory_region_transaction_depth
;
1022 if (!memory_region_transaction_depth
) {
1023 if (memory_region_update_pending
) {
1026 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1028 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1029 address_space_set_flatview(as
);
1030 address_space_update_ioeventfds(as
);
1032 memory_region_update_pending
= false;
1033 ioeventfd_update_pending
= false;
1034 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1035 } else if (ioeventfd_update_pending
) {
1036 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1037 address_space_update_ioeventfds(as
);
1039 ioeventfd_update_pending
= false;
1044 static void memory_region_destructor_none(MemoryRegion
*mr
)
1048 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1050 qemu_ram_free(mr
->ram_block
);
1053 static bool memory_region_need_escape(char c
)
1055 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1058 static char *memory_region_escape_name(const char *name
)
1065 for (p
= name
; *p
; p
++) {
1066 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1068 if (bytes
== p
- name
) {
1069 return g_memdup(name
, bytes
+ 1);
1072 escaped
= g_malloc(bytes
+ 1);
1073 for (p
= name
, q
= escaped
; *p
; p
++) {
1075 if (unlikely(memory_region_need_escape(c
))) {
1078 *q
++ = "0123456789abcdef"[c
>> 4];
1079 c
= "0123456789abcdef"[c
& 15];
1087 static void memory_region_do_init(MemoryRegion
*mr
,
1092 mr
->size
= int128_make64(size
);
1093 if (size
== UINT64_MAX
) {
1094 mr
->size
= int128_2_64();
1096 mr
->name
= g_strdup(name
);
1098 mr
->ram_block
= NULL
;
1101 char *escaped_name
= memory_region_escape_name(name
);
1102 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1105 owner
= container_get(qdev_get_machine(), "/unattached");
1108 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1109 object_unref(OBJECT(mr
));
1111 g_free(escaped_name
);
1115 void memory_region_init(MemoryRegion
*mr
,
1120 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1121 memory_region_do_init(mr
, owner
, name
, size
);
1124 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1125 void *opaque
, Error
**errp
)
1127 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1128 uint64_t value
= mr
->addr
;
1130 visit_type_uint64(v
, name
, &value
, errp
);
1133 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1134 const char *name
, void *opaque
,
1137 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1138 gchar
*path
= (gchar
*)"";
1140 if (mr
->container
) {
1141 path
= object_get_canonical_path(OBJECT(mr
->container
));
1143 visit_type_str(v
, name
, &path
, errp
);
1144 if (mr
->container
) {
1149 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1152 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1154 return OBJECT(mr
->container
);
1157 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1158 const char *name
, void *opaque
,
1161 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1162 int32_t value
= mr
->priority
;
1164 visit_type_int32(v
, name
, &value
, errp
);
1167 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1168 void *opaque
, Error
**errp
)
1170 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1171 uint64_t value
= memory_region_size(mr
);
1173 visit_type_uint64(v
, name
, &value
, errp
);
1176 static void memory_region_initfn(Object
*obj
)
1178 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1181 mr
->ops
= &unassigned_mem_ops
;
1183 mr
->romd_mode
= true;
1184 mr
->global_locking
= true;
1185 mr
->destructor
= memory_region_destructor_none
;
1186 QTAILQ_INIT(&mr
->subregions
);
1187 QTAILQ_INIT(&mr
->coalesced
);
1189 op
= object_property_add(OBJECT(mr
), "container",
1190 "link<" TYPE_MEMORY_REGION
">",
1191 memory_region_get_container
,
1192 NULL
, /* memory_region_set_container */
1193 NULL
, NULL
, &error_abort
);
1194 op
->resolve
= memory_region_resolve_container
;
1196 object_property_add(OBJECT(mr
), "addr", "uint64",
1197 memory_region_get_addr
,
1198 NULL
, /* memory_region_set_addr */
1199 NULL
, NULL
, &error_abort
);
1200 object_property_add(OBJECT(mr
), "priority", "uint32",
1201 memory_region_get_priority
,
1202 NULL
, /* memory_region_set_priority */
1203 NULL
, NULL
, &error_abort
);
1204 object_property_add(OBJECT(mr
), "size", "uint64",
1205 memory_region_get_size
,
1206 NULL
, /* memory_region_set_size, */
1207 NULL
, NULL
, &error_abort
);
1210 static void iommu_memory_region_initfn(Object
*obj
)
1212 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1214 mr
->is_iommu
= true;
1217 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1220 #ifdef DEBUG_UNASSIGNED
1221 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1223 if (current_cpu
!= NULL
) {
1224 bool is_exec
= current_cpu
->mem_io_access_type
== MMU_INST_FETCH
;
1225 cpu_unassigned_access(current_cpu
, addr
, false, is_exec
, 0, size
);
1230 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1231 uint64_t val
, unsigned size
)
1233 #ifdef DEBUG_UNASSIGNED
1234 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1236 if (current_cpu
!= NULL
) {
1237 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1241 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1242 unsigned size
, bool is_write
,
1248 const MemoryRegionOps unassigned_mem_ops
= {
1249 .valid
.accepts
= unassigned_mem_accepts
,
1250 .endianness
= DEVICE_NATIVE_ENDIAN
,
1253 static uint64_t memory_region_ram_device_read(void *opaque
,
1254 hwaddr addr
, unsigned size
)
1256 MemoryRegion
*mr
= opaque
;
1257 uint64_t data
= (uint64_t)~0;
1261 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1264 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1267 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1270 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1274 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1279 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1280 uint64_t data
, unsigned size
)
1282 MemoryRegion
*mr
= opaque
;
1284 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1288 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1291 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1294 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1297 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1302 static const MemoryRegionOps ram_device_mem_ops
= {
1303 .read
= memory_region_ram_device_read
,
1304 .write
= memory_region_ram_device_write
,
1305 .endianness
= DEVICE_HOST_ENDIAN
,
1307 .min_access_size
= 1,
1308 .max_access_size
= 8,
1312 .min_access_size
= 1,
1313 .max_access_size
= 8,
1318 bool memory_region_access_valid(MemoryRegion
*mr
,
1324 int access_size_min
, access_size_max
;
1327 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1331 if (!mr
->ops
->valid
.accepts
) {
1335 access_size_min
= mr
->ops
->valid
.min_access_size
;
1336 if (!mr
->ops
->valid
.min_access_size
) {
1337 access_size_min
= 1;
1340 access_size_max
= mr
->ops
->valid
.max_access_size
;
1341 if (!mr
->ops
->valid
.max_access_size
) {
1342 access_size_max
= 4;
1345 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1346 for (i
= 0; i
< size
; i
+= access_size
) {
1347 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1356 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1364 if (mr
->ops
->read
) {
1365 return access_with_adjusted_size(addr
, pval
, size
,
1366 mr
->ops
->impl
.min_access_size
,
1367 mr
->ops
->impl
.max_access_size
,
1368 memory_region_read_accessor
,
1371 return access_with_adjusted_size(addr
, pval
, size
,
1372 mr
->ops
->impl
.min_access_size
,
1373 mr
->ops
->impl
.max_access_size
,
1374 memory_region_read_with_attrs_accessor
,
1379 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1387 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1388 *pval
= unassigned_mem_read(mr
, addr
, size
);
1389 return MEMTX_DECODE_ERROR
;
1392 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1393 adjust_endianness(mr
, pval
, size
);
1397 /* Return true if an eventfd was signalled */
1398 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1404 MemoryRegionIoeventfd ioeventfd
= {
1405 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1410 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1411 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1412 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1414 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1415 event_notifier_set(ioeventfd
.e
);
1423 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1429 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1430 unassigned_mem_write(mr
, addr
, data
, size
);
1431 return MEMTX_DECODE_ERROR
;
1434 adjust_endianness(mr
, &data
, size
);
1436 if ((!kvm_eventfds_enabled()) &&
1437 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1441 if (mr
->ops
->write
) {
1442 return access_with_adjusted_size(addr
, &data
, size
,
1443 mr
->ops
->impl
.min_access_size
,
1444 mr
->ops
->impl
.max_access_size
,
1445 memory_region_write_accessor
, mr
,
1449 access_with_adjusted_size(addr
, &data
, size
,
1450 mr
->ops
->impl
.min_access_size
,
1451 mr
->ops
->impl
.max_access_size
,
1452 memory_region_write_with_attrs_accessor
,
1457 void memory_region_init_io(MemoryRegion
*mr
,
1459 const MemoryRegionOps
*ops
,
1464 memory_region_init(mr
, owner
, name
, size
);
1465 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1466 mr
->opaque
= opaque
;
1467 mr
->terminates
= true;
1470 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1476 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1479 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1487 memory_region_init(mr
, owner
, name
, size
);
1489 mr
->terminates
= true;
1490 mr
->destructor
= memory_region_destructor_ram
;
1491 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1492 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1494 mr
->size
= int128_zero();
1495 object_unparent(OBJECT(mr
));
1496 error_propagate(errp
, err
);
1500 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1505 void (*resized
)(const char*,
1511 memory_region_init(mr
, owner
, name
, size
);
1513 mr
->terminates
= true;
1514 mr
->destructor
= memory_region_destructor_ram
;
1515 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1517 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1519 mr
->size
= int128_zero();
1520 object_unparent(OBJECT(mr
));
1521 error_propagate(errp
, err
);
1526 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1527 struct Object
*owner
,
1536 memory_region_init(mr
, owner
, name
, size
);
1538 mr
->terminates
= true;
1539 mr
->destructor
= memory_region_destructor_ram
;
1541 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1542 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1544 mr
->size
= int128_zero();
1545 object_unparent(OBJECT(mr
));
1546 error_propagate(errp
, err
);
1550 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1551 struct Object
*owner
,
1559 memory_region_init(mr
, owner
, name
, size
);
1561 mr
->terminates
= true;
1562 mr
->destructor
= memory_region_destructor_ram
;
1563 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1564 share
? RAM_SHARED
: 0,
1566 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1568 mr
->size
= int128_zero();
1569 object_unparent(OBJECT(mr
));
1570 error_propagate(errp
, err
);
1575 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1581 memory_region_init(mr
, owner
, name
, size
);
1583 mr
->terminates
= true;
1584 mr
->destructor
= memory_region_destructor_ram
;
1585 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1587 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1588 assert(ptr
!= NULL
);
1589 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1592 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1598 memory_region_init_ram_ptr(mr
, owner
, name
, size
, ptr
);
1599 mr
->ram_device
= true;
1600 mr
->ops
= &ram_device_mem_ops
;
1604 void memory_region_init_alias(MemoryRegion
*mr
,
1611 memory_region_init(mr
, owner
, name
, size
);
1613 mr
->alias_offset
= offset
;
1616 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1617 struct Object
*owner
,
1623 memory_region_init(mr
, owner
, name
, size
);
1625 mr
->readonly
= true;
1626 mr
->terminates
= true;
1627 mr
->destructor
= memory_region_destructor_ram
;
1628 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1629 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1631 mr
->size
= int128_zero();
1632 object_unparent(OBJECT(mr
));
1633 error_propagate(errp
, err
);
1637 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1639 const MemoryRegionOps
*ops
,
1647 memory_region_init(mr
, owner
, name
, size
);
1649 mr
->opaque
= opaque
;
1650 mr
->terminates
= true;
1651 mr
->rom_device
= true;
1652 mr
->destructor
= memory_region_destructor_ram
;
1653 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1655 mr
->size
= int128_zero();
1656 object_unparent(OBJECT(mr
));
1657 error_propagate(errp
, err
);
1661 void memory_region_init_iommu(void *_iommu_mr
,
1662 size_t instance_size
,
1663 const char *mrtypename
,
1668 struct IOMMUMemoryRegion
*iommu_mr
;
1669 struct MemoryRegion
*mr
;
1671 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1672 mr
= MEMORY_REGION(_iommu_mr
);
1673 memory_region_do_init(mr
, owner
, name
, size
);
1674 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1675 mr
->terminates
= true; /* then re-forwards */
1676 QLIST_INIT(&iommu_mr
->iommu_notify
);
1677 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1680 static void memory_region_finalize(Object
*obj
)
1682 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1684 assert(!mr
->container
);
1686 /* We know the region is not visible in any address space (it
1687 * does not have a container and cannot be a root either because
1688 * it has no references, so we can blindly clear mr->enabled.
1689 * memory_region_set_enabled instead could trigger a transaction
1690 * and cause an infinite loop.
1692 mr
->enabled
= false;
1693 memory_region_transaction_begin();
1694 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1695 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1696 memory_region_del_subregion(mr
, subregion
);
1698 memory_region_transaction_commit();
1701 memory_region_clear_coalescing(mr
);
1702 g_free((char *)mr
->name
);
1703 g_free(mr
->ioeventfds
);
1706 Object
*memory_region_owner(MemoryRegion
*mr
)
1708 Object
*obj
= OBJECT(mr
);
1712 void memory_region_ref(MemoryRegion
*mr
)
1714 /* MMIO callbacks most likely will access data that belongs
1715 * to the owner, hence the need to ref/unref the owner whenever
1716 * the memory region is in use.
1718 * The memory region is a child of its owner. As long as the
1719 * owner doesn't call unparent itself on the memory region,
1720 * ref-ing the owner will also keep the memory region alive.
1721 * Memory regions without an owner are supposed to never go away;
1722 * we do not ref/unref them because it slows down DMA sensibly.
1724 if (mr
&& mr
->owner
) {
1725 object_ref(mr
->owner
);
1729 void memory_region_unref(MemoryRegion
*mr
)
1731 if (mr
&& mr
->owner
) {
1732 object_unref(mr
->owner
);
1736 uint64_t memory_region_size(MemoryRegion
*mr
)
1738 if (int128_eq(mr
->size
, int128_2_64())) {
1741 return int128_get64(mr
->size
);
1744 const char *memory_region_name(const MemoryRegion
*mr
)
1747 ((MemoryRegion
*)mr
)->name
=
1748 object_get_canonical_path_component(OBJECT(mr
));
1753 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1755 return mr
->ram_device
;
1758 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1760 uint8_t mask
= mr
->dirty_log_mask
;
1761 if (global_dirty_log
&& mr
->ram_block
) {
1762 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1767 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1769 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1772 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
)
1774 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1775 IOMMUNotifier
*iommu_notifier
;
1776 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1778 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1779 flags
|= iommu_notifier
->notifier_flags
;
1782 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1783 imrc
->notify_flag_changed(iommu_mr
,
1784 iommu_mr
->iommu_notify_flags
,
1788 iommu_mr
->iommu_notify_flags
= flags
;
1791 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1794 IOMMUMemoryRegion
*iommu_mr
;
1797 memory_region_register_iommu_notifier(mr
->alias
, n
);
1801 /* We need to register for at least one bitfield */
1802 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1803 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1804 assert(n
->start
<= n
->end
);
1805 assert(n
->iommu_idx
>= 0 &&
1806 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1808 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1809 memory_region_update_iommu_notify_flags(iommu_mr
);
1812 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1814 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1816 if (imrc
->get_min_page_size
) {
1817 return imrc
->get_min_page_size(iommu_mr
);
1819 return TARGET_PAGE_SIZE
;
1822 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1824 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1825 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1826 hwaddr addr
, granularity
;
1827 IOMMUTLBEntry iotlb
;
1829 /* If the IOMMU has its own replay callback, override */
1831 imrc
->replay(iommu_mr
, n
);
1835 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1837 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1838 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1839 if (iotlb
.perm
!= IOMMU_NONE
) {
1840 n
->notify(n
, &iotlb
);
1843 /* if (2^64 - MR size) < granularity, it's possible to get an
1844 * infinite loop here. This should catch such a wraparound */
1845 if ((addr
+ granularity
) < addr
) {
1851 void memory_region_iommu_replay_all(IOMMUMemoryRegion
*iommu_mr
)
1853 IOMMUNotifier
*notifier
;
1855 IOMMU_NOTIFIER_FOREACH(notifier
, iommu_mr
) {
1856 memory_region_iommu_replay(iommu_mr
, notifier
);
1860 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1863 IOMMUMemoryRegion
*iommu_mr
;
1866 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1869 QLIST_REMOVE(n
, node
);
1870 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1871 memory_region_update_iommu_notify_flags(iommu_mr
);
1874 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1875 IOMMUTLBEntry
*entry
)
1877 IOMMUNotifierFlag request_flags
;
1880 * Skip the notification if the notification does not overlap
1881 * with registered range.
1883 if (notifier
->start
> entry
->iova
+ entry
->addr_mask
||
1884 notifier
->end
< entry
->iova
) {
1888 if (entry
->perm
& IOMMU_RW
) {
1889 request_flags
= IOMMU_NOTIFIER_MAP
;
1891 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1894 if (notifier
->notifier_flags
& request_flags
) {
1895 notifier
->notify(notifier
, entry
);
1899 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1901 IOMMUTLBEntry entry
)
1903 IOMMUNotifier
*iommu_notifier
;
1905 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1907 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1908 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
1909 memory_region_notify_one(iommu_notifier
, &entry
);
1914 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1915 enum IOMMUMemoryRegionAttr attr
,
1918 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1920 if (!imrc
->get_attr
) {
1924 return imrc
->get_attr(iommu_mr
, attr
, data
);
1927 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
1930 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1932 if (!imrc
->attrs_to_index
) {
1936 return imrc
->attrs_to_index(iommu_mr
, attrs
);
1939 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
1941 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1943 if (!imrc
->num_indexes
) {
1947 return imrc
->num_indexes(iommu_mr
);
1950 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1952 uint8_t mask
= 1 << client
;
1953 uint8_t old_logging
;
1955 assert(client
== DIRTY_MEMORY_VGA
);
1956 old_logging
= mr
->vga_logging_count
;
1957 mr
->vga_logging_count
+= log
? 1 : -1;
1958 if (!!old_logging
== !!mr
->vga_logging_count
) {
1962 memory_region_transaction_begin();
1963 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1964 memory_region_update_pending
|= mr
->enabled
;
1965 memory_region_transaction_commit();
1968 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1969 hwaddr size
, unsigned client
)
1971 assert(mr
->ram_block
);
1972 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
1976 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1979 assert(mr
->ram_block
);
1980 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
1982 memory_region_get_dirty_log_mask(mr
));
1985 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
1987 MemoryListener
*listener
;
1992 /* If the same address space has multiple log_sync listeners, we
1993 * visit that address space's FlatView multiple times. But because
1994 * log_sync listeners are rare, it's still cheaper than walking each
1995 * address space once.
1997 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
1998 if (!listener
->log_sync
) {
2001 as
= listener
->address_space
;
2002 view
= address_space_get_flatview(as
);
2003 FOR_EACH_FLAT_RANGE(fr
, view
) {
2004 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2005 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2006 listener
->log_sync(listener
, &mrs
);
2009 flatview_unref(view
);
2013 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2018 assert(mr
->ram_block
);
2019 memory_region_sync_dirty_bitmap(mr
);
2020 return cpu_physical_memory_snapshot_and_clear_dirty(
2021 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2024 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2025 hwaddr addr
, hwaddr size
)
2027 assert(mr
->ram_block
);
2028 return cpu_physical_memory_snapshot_get_dirty(snap
,
2029 memory_region_get_ram_addr(mr
) + addr
, size
);
2032 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2034 if (mr
->readonly
!= readonly
) {
2035 memory_region_transaction_begin();
2036 mr
->readonly
= readonly
;
2037 memory_region_update_pending
|= mr
->enabled
;
2038 memory_region_transaction_commit();
2042 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2044 if (mr
->romd_mode
!= romd_mode
) {
2045 memory_region_transaction_begin();
2046 mr
->romd_mode
= romd_mode
;
2047 memory_region_update_pending
|= mr
->enabled
;
2048 memory_region_transaction_commit();
2052 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2053 hwaddr size
, unsigned client
)
2055 assert(mr
->ram_block
);
2056 cpu_physical_memory_test_and_clear_dirty(
2057 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2060 int memory_region_get_fd(MemoryRegion
*mr
)
2068 fd
= mr
->ram_block
->fd
;
2074 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2077 uint64_t offset
= 0;
2081 offset
+= mr
->alias_offset
;
2084 assert(mr
->ram_block
);
2085 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2091 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2095 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2103 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2105 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2108 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2110 assert(mr
->ram_block
);
2112 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2115 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
2119 CoalescedMemoryRange
*cmr
;
2121 MemoryRegionSection section
;
2123 view
= address_space_get_flatview(as
);
2124 FOR_EACH_FLAT_RANGE(fr
, view
) {
2126 section
= (MemoryRegionSection
) {
2128 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
2129 .size
= fr
->addr
.size
,
2132 MEMORY_LISTENER_CALL(as
, coalesced_mmio_del
, Reverse
, §ion
,
2133 int128_get64(fr
->addr
.start
),
2134 int128_get64(fr
->addr
.size
));
2135 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
2136 tmp
= addrrange_shift(cmr
->addr
,
2137 int128_sub(fr
->addr
.start
,
2138 int128_make64(fr
->offset_in_region
)));
2139 if (!addrrange_intersects(tmp
, fr
->addr
)) {
2142 tmp
= addrrange_intersection(tmp
, fr
->addr
);
2143 MEMORY_LISTENER_CALL(as
, coalesced_mmio_add
, Forward
, §ion
,
2144 int128_get64(tmp
.start
),
2145 int128_get64(tmp
.size
));
2149 flatview_unref(view
);
2152 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
2156 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2157 memory_region_update_coalesced_range_as(mr
, as
);
2161 void memory_region_set_coalescing(MemoryRegion
*mr
)
2163 memory_region_clear_coalescing(mr
);
2164 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2167 void memory_region_add_coalescing(MemoryRegion
*mr
,
2171 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2173 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2174 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2175 memory_region_update_coalesced_range(mr
);
2176 memory_region_set_flush_coalesced(mr
);
2179 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2181 CoalescedMemoryRange
*cmr
;
2182 bool updated
= false;
2184 qemu_flush_coalesced_mmio_buffer();
2185 mr
->flush_coalesced_mmio
= false;
2187 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2188 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2189 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2195 memory_region_update_coalesced_range(mr
);
2199 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2201 mr
->flush_coalesced_mmio
= true;
2204 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2206 qemu_flush_coalesced_mmio_buffer();
2207 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2208 mr
->flush_coalesced_mmio
= false;
2212 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2214 mr
->global_locking
= false;
2217 static bool userspace_eventfd_warning
;
2219 void memory_region_add_eventfd(MemoryRegion
*mr
,
2226 MemoryRegionIoeventfd mrfd
= {
2227 .addr
.start
= int128_make64(addr
),
2228 .addr
.size
= int128_make64(size
),
2229 .match_data
= match_data
,
2235 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2236 userspace_eventfd_warning
))) {
2237 userspace_eventfd_warning
= true;
2238 error_report("Using eventfd without MMIO binding in KVM. "
2239 "Suboptimal performance expected");
2243 adjust_endianness(mr
, &mrfd
.data
, size
);
2245 memory_region_transaction_begin();
2246 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2247 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2252 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2253 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2254 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2255 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2256 mr
->ioeventfds
[i
] = mrfd
;
2257 ioeventfd_update_pending
|= mr
->enabled
;
2258 memory_region_transaction_commit();
2261 void memory_region_del_eventfd(MemoryRegion
*mr
,
2268 MemoryRegionIoeventfd mrfd
= {
2269 .addr
.start
= int128_make64(addr
),
2270 .addr
.size
= int128_make64(size
),
2271 .match_data
= match_data
,
2278 adjust_endianness(mr
, &mrfd
.data
, size
);
2280 memory_region_transaction_begin();
2281 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2282 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2286 assert(i
!= mr
->ioeventfd_nb
);
2287 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2288 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2290 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2291 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2292 ioeventfd_update_pending
|= mr
->enabled
;
2293 memory_region_transaction_commit();
2296 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2298 MemoryRegion
*mr
= subregion
->container
;
2299 MemoryRegion
*other
;
2301 memory_region_transaction_begin();
2303 memory_region_ref(subregion
);
2304 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2305 if (subregion
->priority
>= other
->priority
) {
2306 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2310 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2312 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2313 memory_region_transaction_commit();
2316 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2318 MemoryRegion
*subregion
)
2320 assert(!subregion
->container
);
2321 subregion
->container
= mr
;
2322 subregion
->addr
= offset
;
2323 memory_region_update_container_subregions(subregion
);
2326 void memory_region_add_subregion(MemoryRegion
*mr
,
2328 MemoryRegion
*subregion
)
2330 subregion
->priority
= 0;
2331 memory_region_add_subregion_common(mr
, offset
, subregion
);
2334 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2336 MemoryRegion
*subregion
,
2339 subregion
->priority
= priority
;
2340 memory_region_add_subregion_common(mr
, offset
, subregion
);
2343 void memory_region_del_subregion(MemoryRegion
*mr
,
2344 MemoryRegion
*subregion
)
2346 memory_region_transaction_begin();
2347 assert(subregion
->container
== mr
);
2348 subregion
->container
= NULL
;
2349 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2350 memory_region_unref(subregion
);
2351 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2352 memory_region_transaction_commit();
2355 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2357 if (enabled
== mr
->enabled
) {
2360 memory_region_transaction_begin();
2361 mr
->enabled
= enabled
;
2362 memory_region_update_pending
= true;
2363 memory_region_transaction_commit();
2366 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2368 Int128 s
= int128_make64(size
);
2370 if (size
== UINT64_MAX
) {
2373 if (int128_eq(s
, mr
->size
)) {
2376 memory_region_transaction_begin();
2378 memory_region_update_pending
= true;
2379 memory_region_transaction_commit();
2382 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2384 MemoryRegion
*container
= mr
->container
;
2387 memory_region_transaction_begin();
2388 memory_region_ref(mr
);
2389 memory_region_del_subregion(container
, mr
);
2390 mr
->container
= container
;
2391 memory_region_update_container_subregions(mr
);
2392 memory_region_unref(mr
);
2393 memory_region_transaction_commit();
2397 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2399 if (addr
!= mr
->addr
) {
2401 memory_region_readd_subregion(mr
);
2405 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2409 if (offset
== mr
->alias_offset
) {
2413 memory_region_transaction_begin();
2414 mr
->alias_offset
= offset
;
2415 memory_region_update_pending
|= mr
->enabled
;
2416 memory_region_transaction_commit();
2419 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2424 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2426 const AddrRange
*addr
= addr_
;
2427 const FlatRange
*fr
= fr_
;
2429 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2431 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2437 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2439 return bsearch(&addr
, view
->ranges
, view
->nr
,
2440 sizeof(FlatRange
), cmp_flatrange_addr
);
2443 bool memory_region_is_mapped(MemoryRegion
*mr
)
2445 return mr
->container
? true : false;
2448 /* Same as memory_region_find, but it does not add a reference to the
2449 * returned region. It must be called from an RCU critical section.
2451 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2452 hwaddr addr
, uint64_t size
)
2454 MemoryRegionSection ret
= { .mr
= NULL
};
2462 for (root
= mr
; root
->container
; ) {
2463 root
= root
->container
;
2467 as
= memory_region_to_address_space(root
);
2471 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2473 view
= address_space_to_flatview(as
);
2474 fr
= flatview_lookup(view
, range
);
2479 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2485 range
= addrrange_intersection(range
, fr
->addr
);
2486 ret
.offset_within_region
= fr
->offset_in_region
;
2487 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2489 ret
.size
= range
.size
;
2490 ret
.offset_within_address_space
= int128_get64(range
.start
);
2491 ret
.readonly
= fr
->readonly
;
2495 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2496 hwaddr addr
, uint64_t size
)
2498 MemoryRegionSection ret
;
2500 ret
= memory_region_find_rcu(mr
, addr
, size
);
2502 memory_region_ref(ret
.mr
);
2508 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2513 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2515 return mr
&& mr
!= container
;
2518 void memory_global_dirty_log_sync(void)
2520 memory_region_sync_dirty_bitmap(NULL
);
2523 static VMChangeStateEntry
*vmstate_change
;
2525 void memory_global_dirty_log_start(void)
2527 if (vmstate_change
) {
2528 qemu_del_vm_change_state_handler(vmstate_change
);
2529 vmstate_change
= NULL
;
2532 global_dirty_log
= true;
2534 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2536 /* Refresh DIRTY_LOG_MIGRATION bit. */
2537 memory_region_transaction_begin();
2538 memory_region_update_pending
= true;
2539 memory_region_transaction_commit();
2542 static void memory_global_dirty_log_do_stop(void)
2544 global_dirty_log
= false;
2546 /* Refresh DIRTY_LOG_MIGRATION bit. */
2547 memory_region_transaction_begin();
2548 memory_region_update_pending
= true;
2549 memory_region_transaction_commit();
2551 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2554 static void memory_vm_change_state_handler(void *opaque
, int running
,
2558 memory_global_dirty_log_do_stop();
2560 if (vmstate_change
) {
2561 qemu_del_vm_change_state_handler(vmstate_change
);
2562 vmstate_change
= NULL
;
2567 void memory_global_dirty_log_stop(void)
2569 if (!runstate_is_running()) {
2570 if (vmstate_change
) {
2573 vmstate_change
= qemu_add_vm_change_state_handler(
2574 memory_vm_change_state_handler
, NULL
);
2578 memory_global_dirty_log_do_stop();
2581 static void listener_add_address_space(MemoryListener
*listener
,
2587 if (listener
->begin
) {
2588 listener
->begin(listener
);
2590 if (global_dirty_log
) {
2591 if (listener
->log_global_start
) {
2592 listener
->log_global_start(listener
);
2596 view
= address_space_get_flatview(as
);
2597 FOR_EACH_FLAT_RANGE(fr
, view
) {
2598 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2600 if (listener
->region_add
) {
2601 listener
->region_add(listener
, §ion
);
2603 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2604 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2607 if (listener
->commit
) {
2608 listener
->commit(listener
);
2610 flatview_unref(view
);
2613 static void listener_del_address_space(MemoryListener
*listener
,
2619 if (listener
->begin
) {
2620 listener
->begin(listener
);
2622 view
= address_space_get_flatview(as
);
2623 FOR_EACH_FLAT_RANGE(fr
, view
) {
2624 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2626 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2627 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2629 if (listener
->region_del
) {
2630 listener
->region_del(listener
, §ion
);
2633 if (listener
->commit
) {
2634 listener
->commit(listener
);
2636 flatview_unref(view
);
2639 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2641 MemoryListener
*other
= NULL
;
2643 listener
->address_space
= as
;
2644 if (QTAILQ_EMPTY(&memory_listeners
)
2645 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
,
2646 memory_listeners
)->priority
) {
2647 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2649 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2650 if (listener
->priority
< other
->priority
) {
2654 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2657 if (QTAILQ_EMPTY(&as
->listeners
)
2658 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
,
2659 memory_listeners
)->priority
) {
2660 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2662 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2663 if (listener
->priority
< other
->priority
) {
2667 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2670 listener_add_address_space(listener
, as
);
2673 void memory_listener_unregister(MemoryListener
*listener
)
2675 if (!listener
->address_space
) {
2679 listener_del_address_space(listener
, listener
->address_space
);
2680 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2681 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2682 listener
->address_space
= NULL
;
2685 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2687 memory_region_ref(root
);
2689 as
->current_map
= NULL
;
2690 as
->ioeventfd_nb
= 0;
2691 as
->ioeventfds
= NULL
;
2692 QTAILQ_INIT(&as
->listeners
);
2693 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2694 as
->name
= g_strdup(name
? name
: "anonymous");
2695 address_space_update_topology(as
);
2696 address_space_update_ioeventfds(as
);
2699 static void do_address_space_destroy(AddressSpace
*as
)
2701 assert(QTAILQ_EMPTY(&as
->listeners
));
2703 flatview_unref(as
->current_map
);
2705 g_free(as
->ioeventfds
);
2706 memory_region_unref(as
->root
);
2709 void address_space_destroy(AddressSpace
*as
)
2711 MemoryRegion
*root
= as
->root
;
2713 /* Flush out anything from MemoryListeners listening in on this */
2714 memory_region_transaction_begin();
2716 memory_region_transaction_commit();
2717 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2719 /* At this point, as->dispatch and as->current_map are dummy
2720 * entries that the guest should never use. Wait for the old
2721 * values to expire before freeing the data.
2724 call_rcu(as
, do_address_space_destroy
, rcu
);
2727 static const char *memory_region_type(MemoryRegion
*mr
)
2729 if (memory_region_is_ram_device(mr
)) {
2731 } else if (memory_region_is_romd(mr
)) {
2733 } else if (memory_region_is_rom(mr
)) {
2735 } else if (memory_region_is_ram(mr
)) {
2742 typedef struct MemoryRegionList MemoryRegionList
;
2744 struct MemoryRegionList
{
2745 const MemoryRegion
*mr
;
2746 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2749 typedef QTAILQ_HEAD(mrqueue
, MemoryRegionList
) MemoryRegionListHead
;
2751 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2752 int128_sub((size), int128_one())) : 0)
2753 #define MTREE_INDENT " "
2755 static void mtree_expand_owner(fprintf_function mon_printf
, void *f
,
2756 const char *label
, Object
*obj
)
2758 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2760 mon_printf(f
, " %s:{%s", label
, dev
? "dev" : "obj");
2761 if (dev
&& dev
->id
) {
2762 mon_printf(f
, " id=%s", dev
->id
);
2764 gchar
*canonical_path
= object_get_canonical_path(obj
);
2765 if (canonical_path
) {
2766 mon_printf(f
, " path=%s", canonical_path
);
2767 g_free(canonical_path
);
2769 mon_printf(f
, " type=%s", object_get_typename(obj
));
2775 static void mtree_print_mr_owner(fprintf_function mon_printf
, void *f
,
2776 const MemoryRegion
*mr
)
2778 Object
*owner
= mr
->owner
;
2779 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2781 if (!owner
&& !parent
) {
2782 mon_printf(f
, " orphan");
2786 mtree_expand_owner(mon_printf
, f
, "owner", owner
);
2788 if (parent
&& parent
!= owner
) {
2789 mtree_expand_owner(mon_printf
, f
, "parent", parent
);
2793 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2794 const MemoryRegion
*mr
, unsigned int level
,
2796 MemoryRegionListHead
*alias_print_queue
,
2799 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2800 MemoryRegionListHead submr_print_queue
;
2801 const MemoryRegion
*submr
;
2803 hwaddr cur_start
, cur_end
;
2809 for (i
= 0; i
< level
; i
++) {
2810 mon_printf(f
, MTREE_INDENT
);
2813 cur_start
= base
+ mr
->addr
;
2814 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2817 * Try to detect overflow of memory region. This should never
2818 * happen normally. When it happens, we dump something to warn the
2819 * user who is observing this.
2821 if (cur_start
< base
|| cur_end
< cur_start
) {
2822 mon_printf(f
, "[DETECTED OVERFLOW!] ");
2826 MemoryRegionList
*ml
;
2829 /* check if the alias is already in the queue */
2830 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2831 if (ml
->mr
== mr
->alias
) {
2837 ml
= g_new(MemoryRegionList
, 1);
2839 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2841 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2842 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2843 "-" TARGET_FMT_plx
"%s",
2846 memory_region_type((MemoryRegion
*)mr
),
2847 memory_region_name(mr
),
2848 memory_region_name(mr
->alias
),
2850 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2851 mr
->enabled
? "" : " [disabled]");
2853 mtree_print_mr_owner(mon_printf
, f
, mr
);
2857 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %s): %s%s",
2860 memory_region_type((MemoryRegion
*)mr
),
2861 memory_region_name(mr
),
2862 mr
->enabled
? "" : " [disabled]");
2864 mtree_print_mr_owner(mon_printf
, f
, mr
);
2867 mon_printf(f
, "\n");
2869 QTAILQ_INIT(&submr_print_queue
);
2871 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2872 new_ml
= g_new(MemoryRegionList
, 1);
2874 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2875 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2876 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2877 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2878 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2884 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2888 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2889 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, cur_start
,
2890 alias_print_queue
, owner
);
2893 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2898 struct FlatViewInfo
{
2899 fprintf_function mon_printf
;
2906 static void mtree_print_flatview(gpointer key
, gpointer value
,
2909 FlatView
*view
= key
;
2910 GArray
*fv_address_spaces
= value
;
2911 struct FlatViewInfo
*fvi
= user_data
;
2912 fprintf_function p
= fvi
->mon_printf
;
2914 FlatRange
*range
= &view
->ranges
[0];
2920 p(f
, "FlatView #%d\n", fvi
->counter
);
2923 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
2924 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
2925 p(f
, " AS \"%s\", root: %s", as
->name
, memory_region_name(as
->root
));
2926 if (as
->root
->alias
) {
2927 p(f
, ", alias %s", memory_region_name(as
->root
->alias
));
2932 p(f
, " Root memory region: %s\n",
2933 view
->root
? memory_region_name(view
->root
) : "(none)");
2936 p(f
, MTREE_INDENT
"No rendered FlatView\n\n");
2942 if (range
->offset_in_region
) {
2943 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2944 TARGET_FMT_plx
" (prio %d, %s): %s @" TARGET_FMT_plx
,
2945 int128_get64(range
->addr
.start
),
2946 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2948 range
->readonly
? "rom" : memory_region_type(mr
),
2949 memory_region_name(mr
),
2950 range
->offset_in_region
);
2952 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2953 TARGET_FMT_plx
" (prio %d, %s): %s",
2954 int128_get64(range
->addr
.start
),
2955 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2957 range
->readonly
? "rom" : memory_region_type(mr
),
2958 memory_region_name(mr
));
2961 mtree_print_mr_owner(p
, f
, mr
);
2967 #if !defined(CONFIG_USER_ONLY)
2968 if (fvi
->dispatch_tree
&& view
->root
) {
2969 mtree_print_dispatch(p
, f
, view
->dispatch
, view
->root
);
2976 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
2979 FlatView
*view
= key
;
2980 GArray
*fv_address_spaces
= value
;
2982 g_array_unref(fv_address_spaces
);
2983 flatview_unref(view
);
2988 void mtree_info(fprintf_function mon_printf
, void *f
, bool flatview
,
2989 bool dispatch_tree
, bool owner
)
2991 MemoryRegionListHead ml_head
;
2992 MemoryRegionList
*ml
, *ml2
;
2997 struct FlatViewInfo fvi
= {
2998 .mon_printf
= mon_printf
,
3001 .dispatch_tree
= dispatch_tree
,
3004 GArray
*fv_address_spaces
;
3005 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3007 /* Gather all FVs in one table */
3008 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3009 view
= address_space_get_flatview(as
);
3011 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3012 if (!fv_address_spaces
) {
3013 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3014 g_hash_table_insert(views
, view
, fv_address_spaces
);
3017 g_array_append_val(fv_address_spaces
, as
);
3021 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3024 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3025 g_hash_table_unref(views
);
3030 QTAILQ_INIT(&ml_head
);
3032 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3033 mon_printf(f
, "address-space: %s\n", as
->name
);
3034 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
, owner
);
3035 mon_printf(f
, "\n");
3038 /* print aliased regions */
3039 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3040 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
3041 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
, owner
);
3042 mon_printf(f
, "\n");
3045 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3050 void memory_region_init_ram(MemoryRegion
*mr
,
3051 struct Object
*owner
,
3056 DeviceState
*owner_dev
;
3059 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3061 error_propagate(errp
, err
);
3064 /* This will assert if owner is neither NULL nor a DeviceState.
3065 * We only want the owner here for the purposes of defining a
3066 * unique name for migration. TODO: Ideally we should implement
3067 * a naming scheme for Objects which are not DeviceStates, in
3068 * which case we can relax this restriction.
3070 owner_dev
= DEVICE(owner
);
3071 vmstate_register_ram(mr
, owner_dev
);
3074 void memory_region_init_rom(MemoryRegion
*mr
,
3075 struct Object
*owner
,
3080 DeviceState
*owner_dev
;
3083 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3085 error_propagate(errp
, err
);
3088 /* This will assert if owner is neither NULL nor a DeviceState.
3089 * We only want the owner here for the purposes of defining a
3090 * unique name for migration. TODO: Ideally we should implement
3091 * a naming scheme for Objects which are not DeviceStates, in
3092 * which case we can relax this restriction.
3094 owner_dev
= DEVICE(owner
);
3095 vmstate_register_ram(mr
, owner_dev
);
3098 void memory_region_init_rom_device(MemoryRegion
*mr
,
3099 struct Object
*owner
,
3100 const MemoryRegionOps
*ops
,
3106 DeviceState
*owner_dev
;
3109 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3112 error_propagate(errp
, err
);
3115 /* This will assert if owner is neither NULL nor a DeviceState.
3116 * We only want the owner here for the purposes of defining a
3117 * unique name for migration. TODO: Ideally we should implement
3118 * a naming scheme for Objects which are not DeviceStates, in
3119 * which case we can relax this restriction.
3121 owner_dev
= DEVICE(owner
);
3122 vmstate_register_ram(mr
, owner_dev
);
3125 static const TypeInfo memory_region_info
= {
3126 .parent
= TYPE_OBJECT
,
3127 .name
= TYPE_MEMORY_REGION
,
3128 .instance_size
= sizeof(MemoryRegion
),
3129 .instance_init
= memory_region_initfn
,
3130 .instance_finalize
= memory_region_finalize
,
3133 static const TypeInfo iommu_memory_region_info
= {
3134 .parent
= TYPE_MEMORY_REGION
,
3135 .name
= TYPE_IOMMU_MEMORY_REGION
,
3136 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3137 .instance_size
= sizeof(IOMMUMemoryRegion
),
3138 .instance_init
= iommu_memory_region_initfn
,
3142 static void memory_register_types(void)
3144 type_register_static(&memory_region_info
);
3145 type_register_static(&iommu_memory_region_info
);
3148 type_init(memory_register_types
)