4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
69 #include "qemu/pmem.h"
71 #include "migration/vmstate.h"
73 #include "qemu/range.h"
75 #include "qemu/mmap-alloc.h"
78 #include "monitor/monitor.h"
80 #ifdef CONFIG_LIBDAXCTL
81 #include <daxctl/libdaxctl.h>
84 //#define DEBUG_SUBPAGE
86 #if !defined(CONFIG_USER_ONLY)
87 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
88 * are protected by the ramlist lock.
90 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
92 static MemoryRegion
*system_memory
;
93 static MemoryRegion
*system_io
;
95 AddressSpace address_space_io
;
96 AddressSpace address_space_memory
;
98 static MemoryRegion io_mem_unassigned
;
101 uintptr_t qemu_host_page_size
;
102 intptr_t qemu_host_page_mask
;
104 #if !defined(CONFIG_USER_ONLY)
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
110 typedef struct PhysPageEntry PhysPageEntry
;
112 struct PhysPageEntry
{
113 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
115 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
119 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
121 /* Size of the L2 (and L3, etc) page tables. */
122 #define ADDR_SPACE_BITS 64
125 #define P_L2_SIZE (1 << P_L2_BITS)
127 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
129 typedef PhysPageEntry Node
[P_L2_SIZE
];
131 typedef struct PhysPageMap
{
134 unsigned sections_nb
;
135 unsigned sections_nb_alloc
;
137 unsigned nodes_nb_alloc
;
139 MemoryRegionSection
*sections
;
142 struct AddressSpaceDispatch
{
143 MemoryRegionSection
*mru_section
;
144 /* This is a multi-level map on the physical address space.
145 * The bottom level has pointers to MemoryRegionSections.
147 PhysPageEntry phys_map
;
151 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152 typedef struct subpage_t
{
156 uint16_t sub_section
[];
159 #define PHYS_SECTION_UNASSIGNED 0
161 static void io_mem_init(void);
162 static void memory_map_init(void);
163 static void tcg_log_global_after_sync(MemoryListener
*listener
);
164 static void tcg_commit(MemoryListener
*listener
);
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
173 struct CPUAddressSpace
{
176 struct AddressSpaceDispatch
*memory_dispatch
;
177 MemoryListener tcg_as_listener
;
180 struct DirtyBitmapSnapshot
{
183 unsigned long dirty
[];
188 #if !defined(CONFIG_USER_ONLY)
190 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
192 static unsigned alloc_hint
= 16;
193 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
194 map
->nodes_nb_alloc
= MAX(alloc_hint
, map
->nodes_nb
+ nodes
);
195 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
196 alloc_hint
= map
->nodes_nb_alloc
;
200 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
207 ret
= map
->nodes_nb
++;
209 assert(ret
!= PHYS_MAP_NODE_NIL
);
210 assert(ret
!= map
->nodes_nb_alloc
);
212 e
.skip
= leaf
? 0 : 1;
213 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
214 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
215 memcpy(&p
[i
], &e
, sizeof(e
));
220 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
221 hwaddr
*index
, uint64_t *nb
, uint16_t leaf
,
225 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
227 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
228 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
230 p
= map
->nodes
[lp
->ptr
];
231 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
233 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
234 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
240 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
246 static void phys_page_set(AddressSpaceDispatch
*d
,
247 hwaddr index
, uint64_t nb
,
250 /* Wildly overreserve - it doesn't matter much. */
251 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
253 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
256 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
257 * and update our entry so we can skip it and go directly to the destination.
259 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
261 unsigned valid_ptr
= P_L2_SIZE
;
266 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
271 for (i
= 0; i
< P_L2_SIZE
; i
++) {
272 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
279 phys_page_compact(&p
[i
], nodes
);
283 /* We can only compress if there's only one child. */
288 assert(valid_ptr
< P_L2_SIZE
);
290 /* Don't compress if it won't fit in the # of bits we have. */
291 if (P_L2_LEVELS
>= (1 << 6) &&
292 lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 6)) {
296 lp
->ptr
= p
[valid_ptr
].ptr
;
297 if (!p
[valid_ptr
].skip
) {
298 /* If our only child is a leaf, make this a leaf. */
299 /* By design, we should have made this node a leaf to begin with so we
300 * should never reach here.
301 * But since it's so simple to handle this, let's do it just in case we
306 lp
->skip
+= p
[valid_ptr
].skip
;
310 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
312 if (d
->phys_map
.skip
) {
313 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
317 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
323 return int128_gethi(section
->size
) ||
324 range_covers_byte(section
->offset_within_address_space
,
325 int128_getlo(section
->size
), addr
);
328 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
330 PhysPageEntry lp
= d
->phys_map
, *p
;
331 Node
*nodes
= d
->map
.nodes
;
332 MemoryRegionSection
*sections
= d
->map
.sections
;
333 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
336 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
337 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
338 return §ions
[PHYS_SECTION_UNASSIGNED
];
341 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
344 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
345 return §ions
[lp
.ptr
];
347 return §ions
[PHYS_SECTION_UNASSIGNED
];
351 /* Called from RCU critical section */
352 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
354 bool resolve_subpage
)
356 MemoryRegionSection
*section
= qatomic_read(&d
->mru_section
);
359 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
360 !section_covers_addr(section
, addr
)) {
361 section
= phys_page_find(d
, addr
);
362 qatomic_set(&d
->mru_section
, section
);
364 if (resolve_subpage
&& section
->mr
->subpage
) {
365 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
366 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
371 /* Called from RCU critical section */
372 static MemoryRegionSection
*
373 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
374 hwaddr
*plen
, bool resolve_subpage
)
376 MemoryRegionSection
*section
;
380 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
381 /* Compute offset within MemoryRegionSection */
382 addr
-= section
->offset_within_address_space
;
384 /* Compute offset within MemoryRegion */
385 *xlat
= addr
+ section
->offset_within_region
;
389 /* MMIO registers can be expected to perform full-width accesses based only
390 * on their address, without considering adjacent registers that could
391 * decode to completely different MemoryRegions. When such registers
392 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
393 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * If the length is small (as is the case for address_space_ldl/stl),
397 * everything works fine. If the incoming length is large, however,
398 * the caller really has to do the clamping through memory_access_size.
400 if (memory_region_is_ram(mr
)) {
401 diff
= int128_sub(section
->size
, int128_make64(addr
));
402 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
408 * address_space_translate_iommu - translate an address through an IOMMU
409 * memory region and then through the target address space.
411 * @iommu_mr: the IOMMU memory region that we start the translation from
412 * @addr: the address to be translated through the MMU
413 * @xlat: the translated address offset within the destination memory region.
414 * It cannot be %NULL.
415 * @plen_out: valid read/write length of the translated address. It
417 * @page_mask_out: page mask for the translated address. This
418 * should only be meaningful for IOMMU translated
419 * addresses, since there may be huge pages that this bit
420 * would tell. It can be %NULL if we don't care about it.
421 * @is_write: whether the translation operation is for write
422 * @is_mmio: whether this can be MMIO, set true if it can
423 * @target_as: the address space targeted by the IOMMU
424 * @attrs: transaction attributes
426 * This function is called from RCU critical section. It is the common
427 * part of flatview_do_translate and address_space_translate_cached.
429 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
432 hwaddr
*page_mask_out
,
435 AddressSpace
**target_as
,
438 MemoryRegionSection
*section
;
439 hwaddr page_mask
= (hwaddr
)-1;
443 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
447 if (imrc
->attrs_to_index
) {
448 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
451 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
452 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
454 if (!(iotlb
.perm
& (1 << is_write
))) {
458 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
459 | (addr
& iotlb
.addr_mask
));
460 page_mask
&= iotlb
.addr_mask
;
461 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
462 *target_as
= iotlb
.target_as
;
464 section
= address_space_translate_internal(
465 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
468 iommu_mr
= memory_region_get_iommu(section
->mr
);
469 } while (unlikely(iommu_mr
));
472 *page_mask_out
= page_mask
;
477 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
481 * flatview_do_translate - translate an address in FlatView
483 * @fv: the flat view that we want to translate on
484 * @addr: the address to be translated in above address space
485 * @xlat: the translated address offset within memory region. It
487 * @plen_out: valid read/write length of the translated address. It
488 * can be @NULL when we don't care about it.
489 * @page_mask_out: page mask for the translated address. This
490 * should only be meaningful for IOMMU translated
491 * addresses, since there may be huge pages that this bit
492 * would tell. It can be @NULL if we don't care about it.
493 * @is_write: whether the translation operation is for write
494 * @is_mmio: whether this can be MMIO, set true if it can
495 * @target_as: the address space targeted by the IOMMU
496 * @attrs: memory transaction attributes
498 * This function is called from RCU critical section
500 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
504 hwaddr
*page_mask_out
,
507 AddressSpace
**target_as
,
510 MemoryRegionSection
*section
;
511 IOMMUMemoryRegion
*iommu_mr
;
512 hwaddr plen
= (hwaddr
)(-1);
518 section
= address_space_translate_internal(
519 flatview_to_dispatch(fv
), addr
, xlat
,
522 iommu_mr
= memory_region_get_iommu(section
->mr
);
523 if (unlikely(iommu_mr
)) {
524 return address_space_translate_iommu(iommu_mr
, xlat
,
525 plen_out
, page_mask_out
,
530 /* Not behind an IOMMU, use default page size. */
531 *page_mask_out
= ~TARGET_PAGE_MASK
;
537 /* Called from RCU critical section */
538 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
539 bool is_write
, MemTxAttrs attrs
)
541 MemoryRegionSection section
;
542 hwaddr xlat
, page_mask
;
545 * This can never be MMIO, and we don't really care about plen,
548 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
549 NULL
, &page_mask
, is_write
, false, &as
,
552 /* Illegal translation */
553 if (section
.mr
== &io_mem_unassigned
) {
557 /* Convert memory region offset into address space offset */
558 xlat
+= section
.offset_within_address_space
-
559 section
.offset_within_region
;
561 return (IOMMUTLBEntry
) {
563 .iova
= addr
& ~page_mask
,
564 .translated_addr
= xlat
& ~page_mask
,
565 .addr_mask
= page_mask
,
566 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
571 return (IOMMUTLBEntry
) {0};
574 /* Called from RCU critical section */
575 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
576 hwaddr
*plen
, bool is_write
,
580 MemoryRegionSection section
;
581 AddressSpace
*as
= NULL
;
583 /* This can be MMIO, so setup MMIO bit. */
584 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
585 is_write
, true, &as
, attrs
);
588 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
589 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
590 *plen
= MIN(page
, *plen
);
596 typedef struct TCGIOMMUNotifier
{
604 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
606 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
608 if (!notifier
->active
) {
611 tlb_flush(notifier
->cpu
);
612 notifier
->active
= false;
613 /* We leave the notifier struct on the list to avoid reallocating it later.
614 * Generally the number of IOMMUs a CPU deals with will be small.
615 * In any case we can't unregister the iommu notifier from a notify
620 static void tcg_register_iommu_notifier(CPUState
*cpu
,
621 IOMMUMemoryRegion
*iommu_mr
,
624 /* Make sure this CPU has an IOMMU notifier registered for this
625 * IOMMU/IOMMU index combination, so that we can flush its TLB
626 * when the IOMMU tells us the mappings we've cached have changed.
628 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
629 TCGIOMMUNotifier
*notifier
;
633 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
634 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
635 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
639 if (i
== cpu
->iommu_notifiers
->len
) {
640 /* Not found, add a new entry at the end of the array */
641 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
642 notifier
= g_new0(TCGIOMMUNotifier
, 1);
643 g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
) = notifier
;
646 notifier
->iommu_idx
= iommu_idx
;
648 /* Rather than trying to register interest in the specific part
649 * of the iommu's address space that we've accessed and then
650 * expand it later as subsequent accesses touch more of it, we
651 * just register interest in the whole thing, on the assumption
652 * that iommu reconfiguration will be rare.
654 iommu_notifier_init(¬ifier
->n
,
655 tcg_iommu_unmap_notify
,
656 IOMMU_NOTIFIER_UNMAP
,
660 ret
= memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
,
663 error_report_err(err
);
668 if (!notifier
->active
) {
669 notifier
->active
= true;
673 static void tcg_iommu_free_notifier_list(CPUState
*cpu
)
675 /* Destroy the CPU's notifier list */
677 TCGIOMMUNotifier
*notifier
;
679 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
680 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
681 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
684 g_array_free(cpu
->iommu_notifiers
, true);
687 /* Called from RCU critical section */
688 MemoryRegionSection
*
689 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
690 hwaddr
*xlat
, hwaddr
*plen
,
691 MemTxAttrs attrs
, int *prot
)
693 MemoryRegionSection
*section
;
694 IOMMUMemoryRegion
*iommu_mr
;
695 IOMMUMemoryRegionClass
*imrc
;
698 AddressSpaceDispatch
*d
=
699 qatomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
702 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
704 iommu_mr
= memory_region_get_iommu(section
->mr
);
709 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
711 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
712 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
713 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
714 * doesn't short-cut its translation table walk.
716 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
717 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
718 | (addr
& iotlb
.addr_mask
));
719 /* Update the caller's prot bits to remove permissions the IOMMU
720 * is giving us a failure response for. If we get down to no
721 * permissions left at all we can give up now.
723 if (!(iotlb
.perm
& IOMMU_RO
)) {
724 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
726 if (!(iotlb
.perm
& IOMMU_WO
)) {
727 *prot
&= ~PAGE_WRITE
;
734 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
737 assert(!memory_region_is_iommu(section
->mr
));
742 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
746 #if !defined(CONFIG_USER_ONLY)
748 static int cpu_common_post_load(void *opaque
, int version_id
)
750 CPUState
*cpu
= opaque
;
752 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
753 version_id is increased. */
754 cpu
->interrupt_request
&= ~0x01;
757 /* loadvm has just updated the content of RAM, bypassing the
758 * usual mechanisms that ensure we flush TBs for writes to
759 * memory we've translated code from. So we must flush all TBs,
760 * which will now be stale.
767 static int cpu_common_pre_load(void *opaque
)
769 CPUState
*cpu
= opaque
;
771 cpu
->exception_index
= -1;
776 static bool cpu_common_exception_index_needed(void *opaque
)
778 CPUState
*cpu
= opaque
;
780 return tcg_enabled() && cpu
->exception_index
!= -1;
783 static const VMStateDescription vmstate_cpu_common_exception_index
= {
784 .name
= "cpu_common/exception_index",
786 .minimum_version_id
= 1,
787 .needed
= cpu_common_exception_index_needed
,
788 .fields
= (VMStateField
[]) {
789 VMSTATE_INT32(exception_index
, CPUState
),
790 VMSTATE_END_OF_LIST()
794 static bool cpu_common_crash_occurred_needed(void *opaque
)
796 CPUState
*cpu
= opaque
;
798 return cpu
->crash_occurred
;
801 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
802 .name
= "cpu_common/crash_occurred",
804 .minimum_version_id
= 1,
805 .needed
= cpu_common_crash_occurred_needed
,
806 .fields
= (VMStateField
[]) {
807 VMSTATE_BOOL(crash_occurred
, CPUState
),
808 VMSTATE_END_OF_LIST()
812 const VMStateDescription vmstate_cpu_common
= {
813 .name
= "cpu_common",
815 .minimum_version_id
= 1,
816 .pre_load
= cpu_common_pre_load
,
817 .post_load
= cpu_common_post_load
,
818 .fields
= (VMStateField
[]) {
819 VMSTATE_UINT32(halted
, CPUState
),
820 VMSTATE_UINT32(interrupt_request
, CPUState
),
821 VMSTATE_END_OF_LIST()
823 .subsections
= (const VMStateDescription
*[]) {
824 &vmstate_cpu_common_exception_index
,
825 &vmstate_cpu_common_crash_occurred
,
830 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
831 const char *prefix
, MemoryRegion
*mr
)
833 CPUAddressSpace
*newas
;
834 AddressSpace
*as
= g_new0(AddressSpace
, 1);
838 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
839 address_space_init(as
, mr
, as_name
);
842 /* Target code should have set num_ases before calling us */
843 assert(asidx
< cpu
->num_ases
);
846 /* address space 0 gets the convenience alias */
850 /* KVM cannot currently support multiple address spaces. */
851 assert(asidx
== 0 || !kvm_enabled());
853 if (!cpu
->cpu_ases
) {
854 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
857 newas
= &cpu
->cpu_ases
[asidx
];
861 newas
->tcg_as_listener
.log_global_after_sync
= tcg_log_global_after_sync
;
862 newas
->tcg_as_listener
.commit
= tcg_commit
;
863 memory_listener_register(&newas
->tcg_as_listener
, as
);
867 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
869 /* Return the AddressSpace corresponding to the specified index */
870 return cpu
->cpu_ases
[asidx
].as
;
874 void cpu_exec_unrealizefn(CPUState
*cpu
)
876 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
879 cpu_list_remove(cpu
);
881 if (cc
->vmsd
!= NULL
) {
882 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
884 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
885 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
887 #ifndef CONFIG_USER_ONLY
888 tcg_iommu_free_notifier_list(cpu
);
892 Property cpu_common_props
[] = {
893 #ifndef CONFIG_USER_ONLY
894 /* Create a memory property for softmmu CPU object,
895 * so users can wire up its memory. (This can't go in hw/core/cpu.c
896 * because that file is compiled only once for both user-mode
897 * and system builds.) The default if no link is set up is to use
898 * the system address space.
900 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
903 DEFINE_PROP_BOOL("start-powered-off", CPUState
, start_powered_off
, false),
904 DEFINE_PROP_END_OF_LIST(),
907 void cpu_exec_initfn(CPUState
*cpu
)
912 #ifndef CONFIG_USER_ONLY
913 cpu
->thread_id
= qemu_get_thread_id();
914 cpu
->memory
= system_memory
;
915 object_ref(OBJECT(cpu
->memory
));
919 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
921 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
922 static bool tcg_target_initialized
;
926 if (tcg_enabled() && !tcg_target_initialized
) {
927 tcg_target_initialized
= true;
928 cc
->tcg_initialize();
932 qemu_plugin_vcpu_init_hook(cpu
);
934 #ifdef CONFIG_USER_ONLY
935 assert(cc
->vmsd
== NULL
);
936 #else /* !CONFIG_USER_ONLY */
937 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
938 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
940 if (cc
->vmsd
!= NULL
) {
941 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
944 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
*));
948 const char *parse_cpu_option(const char *cpu_option
)
952 gchar
**model_pieces
;
953 const char *cpu_type
;
955 model_pieces
= g_strsplit(cpu_option
, ",", 2);
956 if (!model_pieces
[0]) {
957 error_report("-cpu option cannot be empty");
961 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
963 error_report("unable to find CPU model '%s'", model_pieces
[0]);
964 g_strfreev(model_pieces
);
968 cpu_type
= object_class_get_name(oc
);
970 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
971 g_strfreev(model_pieces
);
975 #if defined(CONFIG_USER_ONLY)
976 void tb_invalidate_phys_addr(target_ulong addr
)
979 tb_invalidate_phys_page_range(addr
, addr
+ 1);
983 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
985 tb_invalidate_phys_addr(pc
);
988 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
)
994 if (!tcg_enabled()) {
998 RCU_READ_LOCK_GUARD();
999 mr
= address_space_translate(as
, addr
, &addr
, &l
, false, attrs
);
1000 if (!(memory_region_is_ram(mr
)
1001 || memory_region_is_romd(mr
))) {
1004 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1005 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1);
1008 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1011 * There may not be a virtual to physical translation for the pc
1012 * right now, but there may exist cached TB for this pc.
1013 * Flush the whole TB cache to force re-translation of such TBs.
1014 * This is heavyweight, but we're debugging anyway.
1020 #ifndef CONFIG_USER_ONLY
1021 /* Add a watchpoint. */
1022 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1023 int flags
, CPUWatchpoint
**watchpoint
)
1028 /* forbid ranges which are empty or run off the end of the address space */
1029 if (len
== 0 || (addr
+ len
- 1) < addr
) {
1030 error_report("tried to set invalid watchpoint at %"
1031 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
1034 wp
= g_malloc(sizeof(*wp
));
1040 /* keep all GDB-injected watchpoints in front */
1041 if (flags
& BP_GDB
) {
1042 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
1044 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
1047 in_page
= -(addr
| TARGET_PAGE_MASK
);
1048 if (len
<= in_page
) {
1049 tlb_flush_page(cpu
, addr
);
1059 /* Remove a specific watchpoint. */
1060 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1065 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1066 if (addr
== wp
->vaddr
&& len
== wp
->len
1067 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1068 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1075 /* Remove a specific watchpoint by reference. */
1076 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1078 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
1080 tlb_flush_page(cpu
, watchpoint
->vaddr
);
1085 /* Remove all matching watchpoints. */
1086 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1088 CPUWatchpoint
*wp
, *next
;
1090 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
1091 if (wp
->flags
& mask
) {
1092 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1097 /* Return true if this watchpoint address matches the specified
1098 * access (ie the address range covered by the watchpoint overlaps
1099 * partially or completely with the address range covered by the
1102 static inline bool watchpoint_address_matches(CPUWatchpoint
*wp
,
1103 vaddr addr
, vaddr len
)
1105 /* We know the lengths are non-zero, but a little caution is
1106 * required to avoid errors in the case where the range ends
1107 * exactly at the top of the address space and so addr + len
1108 * wraps round to zero.
1110 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1111 vaddr addrend
= addr
+ len
- 1;
1113 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1116 /* Return flags for watchpoints that match addr + prot. */
1117 int cpu_watchpoint_address_matches(CPUState
*cpu
, vaddr addr
, vaddr len
)
1122 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1123 if (watchpoint_address_matches(wp
, addr
, len
)) {
1129 #endif /* !CONFIG_USER_ONLY */
1131 /* Add a breakpoint. */
1132 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1133 CPUBreakpoint
**breakpoint
)
1137 bp
= g_malloc(sizeof(*bp
));
1142 /* keep all GDB-injected breakpoints in front */
1143 if (flags
& BP_GDB
) {
1144 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1146 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1149 breakpoint_invalidate(cpu
, pc
);
1157 /* Remove a specific breakpoint. */
1158 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1162 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1163 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1164 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1171 /* Remove a specific breakpoint by reference. */
1172 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1174 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1176 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1181 /* Remove all matching breakpoints. */
1182 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1184 CPUBreakpoint
*bp
, *next
;
1186 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1187 if (bp
->flags
& mask
) {
1188 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1193 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1194 CPU loop after each instruction */
1195 void cpu_single_step(CPUState
*cpu
, int enabled
)
1197 if (cpu
->singlestep_enabled
!= enabled
) {
1198 cpu
->singlestep_enabled
= enabled
;
1199 if (kvm_enabled()) {
1200 kvm_update_guest_debug(cpu
, 0);
1202 /* must flush all the translated code to avoid inconsistencies */
1203 /* XXX: only flush what is necessary */
1209 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1216 fprintf(stderr
, "qemu: fatal: ");
1217 vfprintf(stderr
, fmt
, ap
);
1218 fprintf(stderr
, "\n");
1219 cpu_dump_state(cpu
, stderr
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1220 if (qemu_log_separate()) {
1221 FILE *logfile
= qemu_log_lock();
1222 qemu_log("qemu: fatal: ");
1223 qemu_log_vprintf(fmt
, ap2
);
1225 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1227 qemu_log_unlock(logfile
);
1233 #if defined(CONFIG_USER_ONLY)
1235 struct sigaction act
;
1236 sigfillset(&act
.sa_mask
);
1237 act
.sa_handler
= SIG_DFL
;
1239 sigaction(SIGABRT
, &act
, NULL
);
1245 #if !defined(CONFIG_USER_ONLY)
1246 /* Called from RCU critical section */
1247 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1251 block
= qatomic_rcu_read(&ram_list
.mru_block
);
1252 if (block
&& addr
- block
->offset
< block
->max_length
) {
1255 RAMBLOCK_FOREACH(block
) {
1256 if (addr
- block
->offset
< block
->max_length
) {
1261 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1265 /* It is safe to write mru_block outside the iothread lock. This
1270 * xxx removed from list
1274 * call_rcu(reclaim_ramblock, xxx);
1277 * qatomic_rcu_set is not needed here. The block was already published
1278 * when it was placed into the list. Here we're just making an extra
1279 * copy of the pointer.
1281 ram_list
.mru_block
= block
;
1285 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1292 assert(tcg_enabled());
1293 end
= TARGET_PAGE_ALIGN(start
+ length
);
1294 start
&= TARGET_PAGE_MASK
;
1296 RCU_READ_LOCK_GUARD();
1297 block
= qemu_get_ram_block(start
);
1298 assert(block
== qemu_get_ram_block(end
- 1));
1299 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1301 tlb_reset_dirty(cpu
, start1
, length
);
1305 /* Note: start and end must be within the same ram block. */
1306 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1310 DirtyMemoryBlocks
*blocks
;
1311 unsigned long end
, page
, start_page
;
1314 uint64_t mr_offset
, mr_size
;
1320 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1321 start_page
= start
>> TARGET_PAGE_BITS
;
1324 WITH_RCU_READ_LOCK_GUARD() {
1325 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1326 ramblock
= qemu_get_ram_block(start
);
1327 /* Range sanity check on the ramblock */
1328 assert(start
>= ramblock
->offset
&&
1329 start
+ length
<= ramblock
->offset
+ ramblock
->used_length
);
1331 while (page
< end
) {
1332 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1333 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1334 unsigned long num
= MIN(end
- page
,
1335 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1337 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1342 mr_offset
= (ram_addr_t
)(start_page
<< TARGET_PAGE_BITS
) - ramblock
->offset
;
1343 mr_size
= (end
- start_page
) << TARGET_PAGE_BITS
;
1344 memory_region_clear_dirty_bitmap(ramblock
->mr
, mr_offset
, mr_size
);
1347 if (dirty
&& tcg_enabled()) {
1348 tlb_reset_dirty_range_all(start
, length
);
1354 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1355 (MemoryRegion
*mr
, hwaddr offset
, hwaddr length
, unsigned client
)
1357 DirtyMemoryBlocks
*blocks
;
1358 ram_addr_t start
= memory_region_get_ram_addr(mr
) + offset
;
1359 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1360 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1361 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1362 DirtyBitmapSnapshot
*snap
;
1363 unsigned long page
, end
, dest
;
1365 snap
= g_malloc0(sizeof(*snap
) +
1366 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1367 snap
->start
= first
;
1370 page
= first
>> TARGET_PAGE_BITS
;
1371 end
= last
>> TARGET_PAGE_BITS
;
1374 WITH_RCU_READ_LOCK_GUARD() {
1375 blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1377 while (page
< end
) {
1378 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1379 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1380 unsigned long num
= MIN(end
- page
,
1381 DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1383 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1384 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1385 offset
>>= BITS_PER_LEVEL
;
1387 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1388 blocks
->blocks
[idx
] + offset
,
1391 dest
+= num
>> BITS_PER_LEVEL
;
1395 if (tcg_enabled()) {
1396 tlb_reset_dirty_range_all(start
, length
);
1399 memory_region_clear_dirty_bitmap(mr
, offset
, length
);
1404 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1408 unsigned long page
, end
;
1410 assert(start
>= snap
->start
);
1411 assert(start
+ length
<= snap
->end
);
1413 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1414 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1416 while (page
< end
) {
1417 if (test_bit(page
, snap
->dirty
)) {
1425 /* Called from RCU critical section */
1426 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1427 MemoryRegionSection
*section
)
1429 AddressSpaceDispatch
*d
= flatview_to_dispatch(section
->fv
);
1430 return section
- d
->map
.sections
;
1432 #endif /* defined(CONFIG_USER_ONLY) */
1434 #if !defined(CONFIG_USER_ONLY)
1436 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1438 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1440 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1441 qemu_anon_ram_alloc
;
1444 * Set a custom physical guest memory alloator.
1445 * Accelerators with unusual needs may need this. Hopefully, we can
1446 * get rid of it eventually.
1448 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1450 phys_mem_alloc
= alloc
;
1453 static uint16_t phys_section_add(PhysPageMap
*map
,
1454 MemoryRegionSection
*section
)
1456 /* The physical section number is ORed with a page-aligned
1457 * pointer to produce the iotlb entries. Thus it should
1458 * never overflow into the page-aligned value.
1460 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1462 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1463 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1464 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1465 map
->sections_nb_alloc
);
1467 map
->sections
[map
->sections_nb
] = *section
;
1468 memory_region_ref(section
->mr
);
1469 return map
->sections_nb
++;
1472 static void phys_section_destroy(MemoryRegion
*mr
)
1474 bool have_sub_page
= mr
->subpage
;
1476 memory_region_unref(mr
);
1478 if (have_sub_page
) {
1479 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1480 object_unref(OBJECT(&subpage
->iomem
));
1485 static void phys_sections_free(PhysPageMap
*map
)
1487 while (map
->sections_nb
> 0) {
1488 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1489 phys_section_destroy(section
->mr
);
1491 g_free(map
->sections
);
1495 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1497 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1499 hwaddr base
= section
->offset_within_address_space
1501 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1502 MemoryRegionSection subsection
= {
1503 .offset_within_address_space
= base
,
1504 .size
= int128_make64(TARGET_PAGE_SIZE
),
1508 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1510 if (!(existing
->mr
->subpage
)) {
1511 subpage
= subpage_init(fv
, base
);
1513 subsection
.mr
= &subpage
->iomem
;
1514 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1515 phys_section_add(&d
->map
, &subsection
));
1517 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1519 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1520 end
= start
+ int128_get64(section
->size
) - 1;
1521 subpage_register(subpage
, start
, end
,
1522 phys_section_add(&d
->map
, section
));
1526 static void register_multipage(FlatView
*fv
,
1527 MemoryRegionSection
*section
)
1529 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1530 hwaddr start_addr
= section
->offset_within_address_space
;
1531 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1532 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1536 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1540 * The range in *section* may look like this:
1544 * where s stands for subpage and P for page.
1546 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1548 MemoryRegionSection remain
= *section
;
1549 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1551 /* register first subpage */
1552 if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1553 uint64_t left
= TARGET_PAGE_ALIGN(remain
.offset_within_address_space
)
1554 - remain
.offset_within_address_space
;
1556 MemoryRegionSection now
= remain
;
1557 now
.size
= int128_min(int128_make64(left
), now
.size
);
1558 register_subpage(fv
, &now
);
1559 if (int128_eq(remain
.size
, now
.size
)) {
1562 remain
.size
= int128_sub(remain
.size
, now
.size
);
1563 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1564 remain
.offset_within_region
+= int128_get64(now
.size
);
1567 /* register whole pages */
1568 if (int128_ge(remain
.size
, page_size
)) {
1569 MemoryRegionSection now
= remain
;
1570 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1571 register_multipage(fv
, &now
);
1572 if (int128_eq(remain
.size
, now
.size
)) {
1575 remain
.size
= int128_sub(remain
.size
, now
.size
);
1576 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1577 remain
.offset_within_region
+= int128_get64(now
.size
);
1580 /* register last subpage */
1581 register_subpage(fv
, &remain
);
1584 void qemu_flush_coalesced_mmio_buffer(void)
1587 kvm_flush_coalesced_mmio_buffer();
1590 void qemu_mutex_lock_ramlist(void)
1592 qemu_mutex_lock(&ram_list
.mutex
);
1595 void qemu_mutex_unlock_ramlist(void)
1597 qemu_mutex_unlock(&ram_list
.mutex
);
1600 void ram_block_dump(Monitor
*mon
)
1605 RCU_READ_LOCK_GUARD();
1606 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1607 "Block Name", "PSize", "Offset", "Used", "Total");
1608 RAMBLOCK_FOREACH(block
) {
1609 psize
= size_to_str(block
->page_size
);
1610 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1611 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1612 (uint64_t)block
->offset
,
1613 (uint64_t)block
->used_length
,
1614 (uint64_t)block
->max_length
);
1621 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1622 * may or may not name the same files / on the same filesystem now as
1623 * when we actually open and map them. Iterate over the file
1624 * descriptors instead, and use qemu_fd_getpagesize().
1626 static int find_min_backend_pagesize(Object
*obj
, void *opaque
)
1628 long *hpsize_min
= opaque
;
1630 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1631 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1632 long hpsize
= host_memory_backend_pagesize(backend
);
1634 if (host_memory_backend_is_mapped(backend
) && (hpsize
< *hpsize_min
)) {
1635 *hpsize_min
= hpsize
;
1642 static int find_max_backend_pagesize(Object
*obj
, void *opaque
)
1644 long *hpsize_max
= opaque
;
1646 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1647 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1648 long hpsize
= host_memory_backend_pagesize(backend
);
1650 if (host_memory_backend_is_mapped(backend
) && (hpsize
> *hpsize_max
)) {
1651 *hpsize_max
= hpsize
;
1659 * TODO: We assume right now that all mapped host memory backends are
1660 * used as RAM, however some might be used for different purposes.
1662 long qemu_minrampagesize(void)
1664 long hpsize
= LONG_MAX
;
1665 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1667 object_child_foreach(memdev_root
, find_min_backend_pagesize
, &hpsize
);
1671 long qemu_maxrampagesize(void)
1674 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1676 object_child_foreach(memdev_root
, find_max_backend_pagesize
, &pagesize
);
1680 long qemu_minrampagesize(void)
1682 return qemu_real_host_page_size
;
1684 long qemu_maxrampagesize(void)
1686 return qemu_real_host_page_size
;
1691 static int64_t get_file_size(int fd
)
1694 #if defined(__linux__)
1697 if (fstat(fd
, &st
) < 0) {
1701 /* Special handling for devdax character devices */
1702 if (S_ISCHR(st
.st_mode
)) {
1703 g_autofree
char *subsystem_path
= NULL
;
1704 g_autofree
char *subsystem
= NULL
;
1706 subsystem_path
= g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1707 major(st
.st_rdev
), minor(st
.st_rdev
));
1708 subsystem
= g_file_read_link(subsystem_path
, NULL
);
1710 if (subsystem
&& g_str_has_suffix(subsystem
, "/dax")) {
1711 g_autofree
char *size_path
= NULL
;
1712 g_autofree
char *size_str
= NULL
;
1714 size_path
= g_strdup_printf("/sys/dev/char/%d:%d/size",
1715 major(st
.st_rdev
), minor(st
.st_rdev
));
1717 if (g_file_get_contents(size_path
, &size_str
, NULL
, NULL
)) {
1718 return g_ascii_strtoll(size_str
, NULL
, 0);
1722 #endif /* defined(__linux__) */
1724 /* st.st_size may be zero for special files yet lseek(2) works */
1725 size
= lseek(fd
, 0, SEEK_END
);
1732 static int64_t get_file_align(int fd
)
1735 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1738 if (fstat(fd
, &st
) < 0) {
1742 /* Special handling for devdax character devices */
1743 if (S_ISCHR(st
.st_mode
)) {
1744 g_autofree
char *path
= NULL
;
1745 g_autofree
char *rpath
= NULL
;
1746 struct daxctl_ctx
*ctx
;
1747 struct daxctl_region
*region
;
1750 path
= g_strdup_printf("/sys/dev/char/%d:%d",
1751 major(st
.st_rdev
), minor(st
.st_rdev
));
1752 rpath
= realpath(path
, NULL
);
1754 rc
= daxctl_new(&ctx
);
1759 daxctl_region_foreach(ctx
, region
) {
1760 if (strstr(rpath
, daxctl_region_get_path(region
))) {
1761 align
= daxctl_region_get_align(region
);
1767 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1772 static int file_ram_open(const char *path
,
1773 const char *region_name
,
1778 char *sanitized_name
;
1784 fd
= open(path
, O_RDWR
);
1786 /* @path names an existing file, use it */
1789 if (errno
== ENOENT
) {
1790 /* @path names a file that doesn't exist, create it */
1791 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1796 } else if (errno
== EISDIR
) {
1797 /* @path names a directory, create a file there */
1798 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1799 sanitized_name
= g_strdup(region_name
);
1800 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1806 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1808 g_free(sanitized_name
);
1810 fd
= mkstemp(filename
);
1818 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1819 error_setg_errno(errp
, errno
,
1820 "can't open backing store %s for guest RAM",
1825 * Try again on EINTR and EEXIST. The latter happens when
1826 * something else creates the file between our two open().
1833 static void *file_ram_alloc(RAMBlock
*block
,
1841 block
->page_size
= qemu_fd_getpagesize(fd
);
1842 if (block
->mr
->align
% block
->page_size
) {
1843 error_setg(errp
, "alignment 0x%" PRIx64
1844 " must be multiples of page size 0x%zx",
1845 block
->mr
->align
, block
->page_size
);
1847 } else if (block
->mr
->align
&& !is_power_of_2(block
->mr
->align
)) {
1848 error_setg(errp
, "alignment 0x%" PRIx64
1849 " must be a power of two", block
->mr
->align
);
1852 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1853 #if defined(__s390x__)
1854 if (kvm_enabled()) {
1855 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1859 if (memory
< block
->page_size
) {
1860 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1861 "or larger than page size 0x%zx",
1862 memory
, block
->page_size
);
1866 memory
= ROUND_UP(memory
, block
->page_size
);
1869 * ftruncate is not supported by hugetlbfs in older
1870 * hosts, so don't bother bailing out on errors.
1871 * If anything goes wrong with it under other filesystems,
1874 * Do not truncate the non-empty backend file to avoid corrupting
1875 * the existing data in the file. Disabling shrinking is not
1876 * enough. For example, the current vNVDIMM implementation stores
1877 * the guest NVDIMM labels at the end of the backend file. If the
1878 * backend file is later extended, QEMU will not be able to find
1879 * those labels. Therefore, extending the non-empty backend file
1880 * is disabled as well.
1882 if (truncate
&& ftruncate(fd
, memory
)) {
1883 perror("ftruncate");
1886 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1887 block
->flags
& RAM_SHARED
, block
->flags
& RAM_PMEM
);
1888 if (area
== MAP_FAILED
) {
1889 error_setg_errno(errp
, errno
,
1890 "unable to map backing store for guest RAM");
1899 /* Allocate space within the ram_addr_t space that governs the
1901 * Called with the ramlist lock held.
1903 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1905 RAMBlock
*block
, *next_block
;
1906 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1908 assert(size
!= 0); /* it would hand out same offset multiple times */
1910 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1914 RAMBLOCK_FOREACH(block
) {
1915 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1917 /* Align blocks to start on a 'long' in the bitmap
1918 * which makes the bitmap sync'ing take the fast path.
1920 candidate
= block
->offset
+ block
->max_length
;
1921 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1923 /* Search for the closest following block
1926 RAMBLOCK_FOREACH(next_block
) {
1927 if (next_block
->offset
>= candidate
) {
1928 next
= MIN(next
, next_block
->offset
);
1932 /* If it fits remember our place and remember the size
1933 * of gap, but keep going so that we might find a smaller
1934 * gap to fill so avoiding fragmentation.
1936 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1938 mingap
= next
- candidate
;
1941 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1944 if (offset
== RAM_ADDR_MAX
) {
1945 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1950 trace_find_ram_offset(size
, offset
);
1955 static unsigned long last_ram_page(void)
1958 ram_addr_t last
= 0;
1960 RCU_READ_LOCK_GUARD();
1961 RAMBLOCK_FOREACH(block
) {
1962 last
= MAX(last
, block
->offset
+ block
->max_length
);
1964 return last
>> TARGET_PAGE_BITS
;
1967 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1971 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1972 if (!machine_dump_guest_core(current_machine
)) {
1973 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1975 perror("qemu_madvise");
1976 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1977 "but dump_guest_core=off specified\n");
1982 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1987 void *qemu_ram_get_host_addr(RAMBlock
*rb
)
1992 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
)
1997 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
)
1999 return rb
->used_length
;
2002 bool qemu_ram_is_shared(RAMBlock
*rb
)
2004 return rb
->flags
& RAM_SHARED
;
2007 /* Note: Only set at the start of postcopy */
2008 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
2010 return rb
->flags
& RAM_UF_ZEROPAGE
;
2013 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
2015 rb
->flags
|= RAM_UF_ZEROPAGE
;
2018 bool qemu_ram_is_migratable(RAMBlock
*rb
)
2020 return rb
->flags
& RAM_MIGRATABLE
;
2023 void qemu_ram_set_migratable(RAMBlock
*rb
)
2025 rb
->flags
|= RAM_MIGRATABLE
;
2028 void qemu_ram_unset_migratable(RAMBlock
*rb
)
2030 rb
->flags
&= ~RAM_MIGRATABLE
;
2033 /* Called with iothread lock held. */
2034 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
2039 assert(!new_block
->idstr
[0]);
2042 char *id
= qdev_get_dev_path(dev
);
2044 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2048 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2050 RCU_READ_LOCK_GUARD();
2051 RAMBLOCK_FOREACH(block
) {
2052 if (block
!= new_block
&&
2053 !strcmp(block
->idstr
, new_block
->idstr
)) {
2054 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2061 /* Called with iothread lock held. */
2062 void qemu_ram_unset_idstr(RAMBlock
*block
)
2064 /* FIXME: arch_init.c assumes that this is not called throughout
2065 * migration. Ignore the problem since hot-unplug during migration
2066 * does not work anyway.
2069 memset(block
->idstr
, 0, sizeof(block
->idstr
));
2073 size_t qemu_ram_pagesize(RAMBlock
*rb
)
2075 return rb
->page_size
;
2078 /* Returns the largest size of page in use */
2079 size_t qemu_ram_pagesize_largest(void)
2084 RAMBLOCK_FOREACH(block
) {
2085 largest
= MAX(largest
, qemu_ram_pagesize(block
));
2091 static int memory_try_enable_merging(void *addr
, size_t len
)
2093 if (!machine_mem_merge(current_machine
)) {
2094 /* disabled by the user */
2098 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2101 /* Only legal before guest might have detected the memory size: e.g. on
2102 * incoming migration, or right after reset.
2104 * As memory core doesn't know how is memory accessed, it is up to
2105 * resize callback to update device state and/or add assertions to detect
2106 * misuse, if necessary.
2108 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
2110 const ram_addr_t unaligned_size
= newsize
;
2114 newsize
= HOST_PAGE_ALIGN(newsize
);
2116 if (block
->used_length
== newsize
) {
2118 * We don't have to resize the ram block (which only knows aligned
2119 * sizes), however, we have to notify if the unaligned size changed.
2121 if (unaligned_size
!= memory_region_size(block
->mr
)) {
2122 memory_region_set_size(block
->mr
, unaligned_size
);
2123 if (block
->resized
) {
2124 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
2130 if (!(block
->flags
& RAM_RESIZEABLE
)) {
2131 error_setg_errno(errp
, EINVAL
,
2132 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2133 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
2134 newsize
, block
->used_length
);
2138 if (block
->max_length
< newsize
) {
2139 error_setg_errno(errp
, EINVAL
,
2140 "Length too large: %s: 0x" RAM_ADDR_FMT
2141 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
2142 newsize
, block
->max_length
);
2146 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
2147 block
->used_length
= newsize
;
2148 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
2150 memory_region_set_size(block
->mr
, unaligned_size
);
2151 if (block
->resized
) {
2152 block
->resized(block
->idstr
, unaligned_size
, block
->host
);
2158 * Trigger sync on the given ram block for range [start, start + length]
2159 * with the backing store if one is available.
2161 * @Note: this is supposed to be a synchronous op.
2163 void qemu_ram_msync(RAMBlock
*block
, ram_addr_t start
, ram_addr_t length
)
2165 /* The requested range should fit in within the block range */
2166 g_assert((start
+ length
) <= block
->used_length
);
2168 #ifdef CONFIG_LIBPMEM
2169 /* The lack of support for pmem should not block the sync */
2170 if (ramblock_is_pmem(block
)) {
2171 void *addr
= ramblock_ptr(block
, start
);
2172 pmem_persist(addr
, length
);
2176 if (block
->fd
>= 0) {
2178 * Case there is no support for PMEM or the memory has not been
2179 * specified as persistent (or is not one) - use the msync.
2180 * Less optimal but still achieves the same goal
2182 void *addr
= ramblock_ptr(block
, start
);
2183 if (qemu_msync(addr
, length
, block
->fd
)) {
2184 warn_report("%s: failed to sync memory range: start: "
2185 RAM_ADDR_FMT
" length: " RAM_ADDR_FMT
,
2186 __func__
, start
, length
);
2191 /* Called with ram_list.mutex held */
2192 static void dirty_memory_extend(ram_addr_t old_ram_size
,
2193 ram_addr_t new_ram_size
)
2195 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
2196 DIRTY_MEMORY_BLOCK_SIZE
);
2197 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
2198 DIRTY_MEMORY_BLOCK_SIZE
);
2201 /* Only need to extend if block count increased */
2202 if (new_num_blocks
<= old_num_blocks
) {
2206 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
2207 DirtyMemoryBlocks
*old_blocks
;
2208 DirtyMemoryBlocks
*new_blocks
;
2211 old_blocks
= qatomic_rcu_read(&ram_list
.dirty_memory
[i
]);
2212 new_blocks
= g_malloc(sizeof(*new_blocks
) +
2213 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
2215 if (old_num_blocks
) {
2216 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
2217 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
2220 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
2221 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
2224 qatomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
2227 g_free_rcu(old_blocks
, rcu
);
2232 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
2235 RAMBlock
*last_block
= NULL
;
2236 ram_addr_t old_ram_size
, new_ram_size
;
2239 old_ram_size
= last_ram_page();
2241 qemu_mutex_lock_ramlist();
2242 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2244 if (!new_block
->host
) {
2245 if (xen_enabled()) {
2246 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2247 new_block
->mr
, &err
);
2249 error_propagate(errp
, err
);
2250 qemu_mutex_unlock_ramlist();
2254 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2255 &new_block
->mr
->align
, shared
);
2256 if (!new_block
->host
) {
2257 error_setg_errno(errp
, errno
,
2258 "cannot set up guest memory '%s'",
2259 memory_region_name(new_block
->mr
));
2260 qemu_mutex_unlock_ramlist();
2263 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2267 new_ram_size
= MAX(old_ram_size
,
2268 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2269 if (new_ram_size
> old_ram_size
) {
2270 dirty_memory_extend(old_ram_size
, new_ram_size
);
2272 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2273 * QLIST (which has an RCU-friendly variant) does not have insertion at
2274 * tail, so save the last element in last_block.
2276 RAMBLOCK_FOREACH(block
) {
2278 if (block
->max_length
< new_block
->max_length
) {
2283 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2284 } else if (last_block
) {
2285 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2286 } else { /* list is empty */
2287 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2289 ram_list
.mru_block
= NULL
;
2291 /* Write list before version */
2294 qemu_mutex_unlock_ramlist();
2296 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2297 new_block
->used_length
,
2300 if (new_block
->host
) {
2301 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2302 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2304 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2305 * Configure it unless the machine is a qtest server, in which case
2306 * KVM is not used and it may be forked (eg for fuzzing purposes).
2308 if (!qtest_enabled()) {
2309 qemu_madvise(new_block
->host
, new_block
->max_length
,
2310 QEMU_MADV_DONTFORK
);
2312 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2317 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2318 uint32_t ram_flags
, int fd
,
2321 RAMBlock
*new_block
;
2322 Error
*local_err
= NULL
;
2323 int64_t file_size
, file_align
;
2325 /* Just support these ram flags by now. */
2326 assert((ram_flags
& ~(RAM_SHARED
| RAM_PMEM
)) == 0);
2328 if (xen_enabled()) {
2329 error_setg(errp
, "-mem-path not supported with Xen");
2333 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2335 "host lacks kvm mmu notifiers, -mem-path unsupported");
2339 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2341 * file_ram_alloc() needs to allocate just like
2342 * phys_mem_alloc, but we haven't bothered to provide
2346 "-mem-path not supported with this accelerator");
2350 size
= HOST_PAGE_ALIGN(size
);
2351 file_size
= get_file_size(fd
);
2352 if (file_size
> 0 && file_size
< size
) {
2353 error_setg(errp
, "backing store size 0x%" PRIx64
2354 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2359 file_align
= get_file_align(fd
);
2360 if (file_align
> 0 && mr
&& file_align
> mr
->align
) {
2361 error_setg(errp
, "backing store align 0x%" PRIx64
2362 " is larger than 'align' option 0x%" PRIx64
,
2363 file_align
, mr
->align
);
2367 new_block
= g_malloc0(sizeof(*new_block
));
2369 new_block
->used_length
= size
;
2370 new_block
->max_length
= size
;
2371 new_block
->flags
= ram_flags
;
2372 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2373 if (!new_block
->host
) {
2378 ram_block_add(new_block
, &local_err
, ram_flags
& RAM_SHARED
);
2381 error_propagate(errp
, local_err
);
2389 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2390 uint32_t ram_flags
, const char *mem_path
,
2397 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2402 block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, errp
);
2416 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2417 void (*resized
)(const char*,
2420 void *host
, bool resizeable
, bool share
,
2421 MemoryRegion
*mr
, Error
**errp
)
2423 RAMBlock
*new_block
;
2424 Error
*local_err
= NULL
;
2426 size
= HOST_PAGE_ALIGN(size
);
2427 max_size
= HOST_PAGE_ALIGN(max_size
);
2428 new_block
= g_malloc0(sizeof(*new_block
));
2430 new_block
->resized
= resized
;
2431 new_block
->used_length
= size
;
2432 new_block
->max_length
= max_size
;
2433 assert(max_size
>= size
);
2435 new_block
->page_size
= qemu_real_host_page_size
;
2436 new_block
->host
= host
;
2438 new_block
->flags
|= RAM_PREALLOC
;
2441 new_block
->flags
|= RAM_RESIZEABLE
;
2443 ram_block_add(new_block
, &local_err
, share
);
2446 error_propagate(errp
, local_err
);
2452 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2453 MemoryRegion
*mr
, Error
**errp
)
2455 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2459 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2460 MemoryRegion
*mr
, Error
**errp
)
2462 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2466 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2467 void (*resized
)(const char*,
2470 MemoryRegion
*mr
, Error
**errp
)
2472 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2476 static void reclaim_ramblock(RAMBlock
*block
)
2478 if (block
->flags
& RAM_PREALLOC
) {
2480 } else if (xen_enabled()) {
2481 xen_invalidate_map_cache_entry(block
->host
);
2483 } else if (block
->fd
>= 0) {
2484 qemu_ram_munmap(block
->fd
, block
->host
, block
->max_length
);
2488 qemu_anon_ram_free(block
->host
, block
->max_length
);
2493 void qemu_ram_free(RAMBlock
*block
)
2500 ram_block_notify_remove(block
->host
, block
->max_length
);
2503 qemu_mutex_lock_ramlist();
2504 QLIST_REMOVE_RCU(block
, next
);
2505 ram_list
.mru_block
= NULL
;
2506 /* Write list before version */
2509 call_rcu(block
, reclaim_ramblock
, rcu
);
2510 qemu_mutex_unlock_ramlist();
2514 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2521 RAMBLOCK_FOREACH(block
) {
2522 offset
= addr
- block
->offset
;
2523 if (offset
< block
->max_length
) {
2524 vaddr
= ramblock_ptr(block
, offset
);
2525 if (block
->flags
& RAM_PREALLOC
) {
2527 } else if (xen_enabled()) {
2531 if (block
->fd
>= 0) {
2532 flags
|= (block
->flags
& RAM_SHARED
?
2533 MAP_SHARED
: MAP_PRIVATE
);
2534 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2535 flags
, block
->fd
, offset
);
2538 * Remap needs to match alloc. Accelerators that
2539 * set phys_mem_alloc never remap. If they did,
2540 * we'd need a remap hook here.
2542 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2544 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2545 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2548 if (area
!= vaddr
) {
2549 error_report("Could not remap addr: "
2550 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2554 memory_try_enable_merging(vaddr
, length
);
2555 qemu_ram_setup_dump(vaddr
, length
);
2560 #endif /* !_WIN32 */
2562 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2563 * This should not be used for general purpose DMA. Use address_space_map
2564 * or address_space_rw instead. For local memory (e.g. video ram) that the
2565 * device owns, use memory_region_get_ram_ptr.
2567 * Called within RCU critical section.
2569 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2571 RAMBlock
*block
= ram_block
;
2573 if (block
== NULL
) {
2574 block
= qemu_get_ram_block(addr
);
2575 addr
-= block
->offset
;
2578 if (xen_enabled() && block
->host
== NULL
) {
2579 /* We need to check if the requested address is in the RAM
2580 * because we don't want to map the entire memory in QEMU.
2581 * In that case just map until the end of the page.
2583 if (block
->offset
== 0) {
2584 return xen_map_cache(addr
, 0, 0, false);
2587 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2589 return ramblock_ptr(block
, addr
);
2592 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2593 * but takes a size argument.
2595 * Called within RCU critical section.
2597 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2598 hwaddr
*size
, bool lock
)
2600 RAMBlock
*block
= ram_block
;
2605 if (block
== NULL
) {
2606 block
= qemu_get_ram_block(addr
);
2607 addr
-= block
->offset
;
2609 *size
= MIN(*size
, block
->max_length
- addr
);
2611 if (xen_enabled() && block
->host
== NULL
) {
2612 /* We need to check if the requested address is in the RAM
2613 * because we don't want to map the entire memory in QEMU.
2614 * In that case just map the requested area.
2616 if (block
->offset
== 0) {
2617 return xen_map_cache(addr
, *size
, lock
, lock
);
2620 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2623 return ramblock_ptr(block
, addr
);
2626 /* Return the offset of a hostpointer within a ramblock */
2627 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2629 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2630 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2631 assert(res
< rb
->max_length
);
2637 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2640 * ptr: Host pointer to look up
2641 * round_offset: If true round the result offset down to a page boundary
2642 * *ram_addr: set to result ram_addr
2643 * *offset: set to result offset within the RAMBlock
2645 * Returns: RAMBlock (or NULL if not found)
2647 * By the time this function returns, the returned pointer is not protected
2648 * by RCU anymore. If the caller is not within an RCU critical section and
2649 * does not hold the iothread lock, it must have other means of protecting the
2650 * pointer, such as a reference to the region that includes the incoming
2653 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2657 uint8_t *host
= ptr
;
2659 if (xen_enabled()) {
2660 ram_addr_t ram_addr
;
2661 RCU_READ_LOCK_GUARD();
2662 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2663 block
= qemu_get_ram_block(ram_addr
);
2665 *offset
= ram_addr
- block
->offset
;
2670 RCU_READ_LOCK_GUARD();
2671 block
= qatomic_rcu_read(&ram_list
.mru_block
);
2672 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2676 RAMBLOCK_FOREACH(block
) {
2677 /* This case append when the block is not mapped. */
2678 if (block
->host
== NULL
) {
2681 if (host
- block
->host
< block
->max_length
) {
2689 *offset
= (host
- block
->host
);
2691 *offset
&= TARGET_PAGE_MASK
;
2697 * Finds the named RAMBlock
2699 * name: The name of RAMBlock to find
2701 * Returns: RAMBlock (or NULL if not found)
2703 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2707 RAMBLOCK_FOREACH(block
) {
2708 if (!strcmp(name
, block
->idstr
)) {
2716 /* Some of the softmmu routines need to translate from a host pointer
2717 (typically a TLB entry) back to a ram offset. */
2718 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2723 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2725 return RAM_ADDR_INVALID
;
2728 return block
->offset
+ offset
;
2731 /* Generate a debug exception if a watchpoint has been hit. */
2732 void cpu_check_watchpoint(CPUState
*cpu
, vaddr addr
, vaddr len
,
2733 MemTxAttrs attrs
, int flags
, uintptr_t ra
)
2735 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2738 assert(tcg_enabled());
2739 if (cpu
->watchpoint_hit
) {
2741 * We re-entered the check after replacing the TB.
2742 * Now raise the debug interrupt so that it will
2743 * trigger after the current instruction.
2745 qemu_mutex_lock_iothread();
2746 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2747 qemu_mutex_unlock_iothread();
2751 addr
= cc
->adjust_watchpoint_address(cpu
, addr
, len
);
2752 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2753 if (watchpoint_address_matches(wp
, addr
, len
)
2754 && (wp
->flags
& flags
)) {
2755 if (flags
== BP_MEM_READ
) {
2756 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2758 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2760 wp
->hitaddr
= MAX(addr
, wp
->vaddr
);
2761 wp
->hitattrs
= attrs
;
2762 if (!cpu
->watchpoint_hit
) {
2763 if (wp
->flags
& BP_CPU
&&
2764 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2765 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2768 cpu
->watchpoint_hit
= wp
;
2771 tb_check_watchpoint(cpu
, ra
);
2772 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2773 cpu
->exception_index
= EXCP_DEBUG
;
2775 cpu_loop_exit_restore(cpu
, ra
);
2777 /* Force execution of one insn next time. */
2778 cpu
->cflags_next_tb
= 1 | curr_cflags();
2781 cpu_restore_state(cpu
, ra
, true);
2783 cpu_loop_exit_noexc(cpu
);
2787 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2792 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2793 MemTxAttrs attrs
, void *buf
, hwaddr len
);
2794 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2795 const void *buf
, hwaddr len
);
2796 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
2797 bool is_write
, MemTxAttrs attrs
);
2799 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2800 unsigned len
, MemTxAttrs attrs
)
2802 subpage_t
*subpage
= opaque
;
2806 #if defined(DEBUG_SUBPAGE)
2807 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2808 subpage
, len
, addr
);
2810 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2814 *data
= ldn_p(buf
, len
);
2818 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2819 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2821 subpage_t
*subpage
= opaque
;
2824 #if defined(DEBUG_SUBPAGE)
2825 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2826 " value %"PRIx64
"\n",
2827 __func__
, subpage
, len
, addr
, value
);
2829 stn_p(buf
, len
, value
);
2830 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2833 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2834 unsigned len
, bool is_write
,
2837 subpage_t
*subpage
= opaque
;
2838 #if defined(DEBUG_SUBPAGE)
2839 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2840 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2843 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2844 len
, is_write
, attrs
);
2847 static const MemoryRegionOps subpage_ops
= {
2848 .read_with_attrs
= subpage_read
,
2849 .write_with_attrs
= subpage_write
,
2850 .impl
.min_access_size
= 1,
2851 .impl
.max_access_size
= 8,
2852 .valid
.min_access_size
= 1,
2853 .valid
.max_access_size
= 8,
2854 .valid
.accepts
= subpage_accepts
,
2855 .endianness
= DEVICE_NATIVE_ENDIAN
,
2858 static int subpage_register(subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2863 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2865 idx
= SUBPAGE_IDX(start
);
2866 eidx
= SUBPAGE_IDX(end
);
2867 #if defined(DEBUG_SUBPAGE)
2868 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2869 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2871 for (; idx
<= eidx
; idx
++) {
2872 mmio
->sub_section
[idx
] = section
;
2878 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2882 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2883 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2886 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2887 NULL
, TARGET_PAGE_SIZE
);
2888 mmio
->iomem
.subpage
= true;
2889 #if defined(DEBUG_SUBPAGE)
2890 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2891 mmio
, base
, TARGET_PAGE_SIZE
);
2897 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2900 MemoryRegionSection section
= {
2903 .offset_within_address_space
= 0,
2904 .offset_within_region
= 0,
2905 .size
= int128_2_64(),
2908 return phys_section_add(map
, §ion
);
2911 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
2912 hwaddr index
, MemTxAttrs attrs
)
2914 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2915 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2916 AddressSpaceDispatch
*d
= qatomic_rcu_read(&cpuas
->memory_dispatch
);
2917 MemoryRegionSection
*sections
= d
->map
.sections
;
2919 return §ions
[index
& ~TARGET_PAGE_MASK
];
2922 static void io_mem_init(void)
2924 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2928 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2930 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2933 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2934 assert(n
== PHYS_SECTION_UNASSIGNED
);
2936 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2941 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2943 phys_sections_free(&d
->map
);
2947 static void do_nothing(CPUState
*cpu
, run_on_cpu_data d
)
2951 static void tcg_log_global_after_sync(MemoryListener
*listener
)
2953 CPUAddressSpace
*cpuas
;
2955 /* Wait for the CPU to end the current TB. This avoids the following
2959 * ---------------------- -------------------------
2960 * TLB check -> slow path
2961 * notdirty_mem_write
2965 * TLB check -> fast path
2969 * by pushing the migration thread's memory read after the vCPU thread has
2970 * written the memory.
2972 if (replay_mode
== REPLAY_MODE_NONE
) {
2974 * VGA can make calls to this function while updating the screen.
2975 * In record/replay mode this causes a deadlock, because
2976 * run_on_cpu waits for rr mutex. Therefore no races are possible
2977 * in this case and no need for making run_on_cpu when
2978 * record/replay is not enabled.
2980 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2981 run_on_cpu(cpuas
->cpu
, do_nothing
, RUN_ON_CPU_NULL
);
2985 static void tcg_commit(MemoryListener
*listener
)
2987 CPUAddressSpace
*cpuas
;
2988 AddressSpaceDispatch
*d
;
2990 assert(tcg_enabled());
2991 /* since each CPU stores ram addresses in its TLB cache, we must
2992 reset the modified entries */
2993 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2994 cpu_reloading_memory_map();
2995 /* The CPU and TLB are protected by the iothread lock.
2996 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2997 * may have split the RCU critical section.
2999 d
= address_space_to_dispatch(cpuas
->as
);
3000 qatomic_rcu_set(&cpuas
->memory_dispatch
, d
);
3001 tlb_flush(cpuas
->cpu
);
3004 static void memory_map_init(void)
3006 system_memory
= g_malloc(sizeof(*system_memory
));
3008 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
3009 address_space_init(&address_space_memory
, system_memory
, "memory");
3011 system_io
= g_malloc(sizeof(*system_io
));
3012 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
3014 address_space_init(&address_space_io
, system_io
, "I/O");
3017 MemoryRegion
*get_system_memory(void)
3019 return system_memory
;
3022 MemoryRegion
*get_system_io(void)
3027 #endif /* !defined(CONFIG_USER_ONLY) */
3029 /* physical memory access (slow version, mainly for debug) */
3030 #if defined(CONFIG_USER_ONLY)
3031 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3032 void *ptr
, target_ulong len
, bool is_write
)
3035 target_ulong l
, page
;
3040 page
= addr
& TARGET_PAGE_MASK
;
3041 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3044 flags
= page_get_flags(page
);
3045 if (!(flags
& PAGE_VALID
))
3048 if (!(flags
& PAGE_WRITE
))
3050 /* XXX: this code should not depend on lock_user */
3051 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3054 unlock_user(p
, addr
, l
);
3056 if (!(flags
& PAGE_READ
))
3058 /* XXX: this code should not depend on lock_user */
3059 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3062 unlock_user(p
, addr
, 0);
3073 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3076 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3077 addr
+= memory_region_get_ram_addr(mr
);
3079 /* No early return if dirty_log_mask is or becomes 0, because
3080 * cpu_physical_memory_set_dirty_range will still call
3081 * xen_modified_memory.
3083 if (dirty_log_mask
) {
3085 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3087 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3088 assert(tcg_enabled());
3089 tb_invalidate_phys_range(addr
, addr
+ length
);
3090 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3092 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3095 void memory_region_flush_rom_device(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
3098 * In principle this function would work on other memory region types too,
3099 * but the ROM device use case is the only one where this operation is
3100 * necessary. Other memory regions should use the
3101 * address_space_read/write() APIs.
3103 assert(memory_region_is_romd(mr
));
3105 invalidate_and_set_dirty(mr
, addr
, size
);
3108 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3110 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3112 /* Regions are assumed to support 1-4 byte accesses unless
3113 otherwise specified. */
3114 if (access_size_max
== 0) {
3115 access_size_max
= 4;
3118 /* Bound the maximum access by the alignment of the address. */
3119 if (!mr
->ops
->impl
.unaligned
) {
3120 unsigned align_size_max
= addr
& -addr
;
3121 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3122 access_size_max
= align_size_max
;
3126 /* Don't attempt accesses larger than the maximum. */
3127 if (l
> access_size_max
) {
3128 l
= access_size_max
;
3135 static bool prepare_mmio_access(MemoryRegion
*mr
)
3137 bool unlocked
= !qemu_mutex_iothread_locked();
3138 bool release_lock
= false;
3140 if (unlocked
&& mr
->global_locking
) {
3141 qemu_mutex_lock_iothread();
3143 release_lock
= true;
3145 if (mr
->flush_coalesced_mmio
) {
3147 qemu_mutex_lock_iothread();
3149 qemu_flush_coalesced_mmio_buffer();
3151 qemu_mutex_unlock_iothread();
3155 return release_lock
;
3158 /* Called within RCU critical section. */
3159 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3162 hwaddr len
, hwaddr addr1
,
3163 hwaddr l
, MemoryRegion
*mr
)
3167 MemTxResult result
= MEMTX_OK
;
3168 bool release_lock
= false;
3169 const uint8_t *buf
= ptr
;
3172 if (!memory_access_is_direct(mr
, true)) {
3173 release_lock
|= prepare_mmio_access(mr
);
3174 l
= memory_access_size(mr
, l
, addr1
);
3175 /* XXX: could force current_cpu to NULL to avoid
3177 val
= ldn_he_p(buf
, l
);
3178 result
|= memory_region_dispatch_write(mr
, addr1
, val
,
3179 size_memop(l
), attrs
);
3182 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3183 memcpy(ram_ptr
, buf
, l
);
3184 invalidate_and_set_dirty(mr
, addr1
, l
);
3188 qemu_mutex_unlock_iothread();
3189 release_lock
= false;
3201 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3207 /* Called from RCU critical section. */
3208 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3209 const void *buf
, hwaddr len
)
3214 MemTxResult result
= MEMTX_OK
;
3217 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3218 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3224 /* Called within RCU critical section. */
3225 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3226 MemTxAttrs attrs
, void *ptr
,
3227 hwaddr len
, hwaddr addr1
, hwaddr l
,
3232 MemTxResult result
= MEMTX_OK
;
3233 bool release_lock
= false;
3237 if (!memory_access_is_direct(mr
, false)) {
3239 release_lock
|= prepare_mmio_access(mr
);
3240 l
= memory_access_size(mr
, l
, addr1
);
3241 result
|= memory_region_dispatch_read(mr
, addr1
, &val
,
3242 size_memop(l
), attrs
);
3243 stn_he_p(buf
, l
, val
);
3246 ram_ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3247 memcpy(buf
, ram_ptr
, l
);
3251 qemu_mutex_unlock_iothread();
3252 release_lock
= false;
3264 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3270 /* Called from RCU critical section. */
3271 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3272 MemTxAttrs attrs
, void *buf
, hwaddr len
)
3279 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3280 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3284 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3285 MemTxAttrs attrs
, void *buf
, hwaddr len
)
3287 MemTxResult result
= MEMTX_OK
;
3291 RCU_READ_LOCK_GUARD();
3292 fv
= address_space_to_flatview(as
);
3293 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3299 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3301 const void *buf
, hwaddr len
)
3303 MemTxResult result
= MEMTX_OK
;
3307 RCU_READ_LOCK_GUARD();
3308 fv
= address_space_to_flatview(as
);
3309 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3315 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3316 void *buf
, hwaddr len
, bool is_write
)
3319 return address_space_write(as
, addr
, attrs
, buf
, len
);
3321 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3325 void cpu_physical_memory_rw(hwaddr addr
, void *buf
,
3326 hwaddr len
, bool is_write
)
3328 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3329 buf
, len
, is_write
);
3332 enum write_rom_type
{
3337 static inline MemTxResult
address_space_write_rom_internal(AddressSpace
*as
,
3342 enum write_rom_type type
)
3348 const uint8_t *buf
= ptr
;
3350 RCU_READ_LOCK_GUARD();
3353 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true, attrs
);
3355 if (!(memory_region_is_ram(mr
) ||
3356 memory_region_is_romd(mr
))) {
3357 l
= memory_access_size(mr
, l
, addr1
);
3360 ram_ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3363 memcpy(ram_ptr
, buf
, l
);
3364 invalidate_and_set_dirty(mr
, addr1
, l
);
3367 flush_icache_range((uintptr_t)ram_ptr
, (uintptr_t)ram_ptr
+ l
);
3378 /* used for ROM loading : can write in RAM and ROM */
3379 MemTxResult
address_space_write_rom(AddressSpace
*as
, hwaddr addr
,
3381 const void *buf
, hwaddr len
)
3383 return address_space_write_rom_internal(as
, addr
, attrs
,
3384 buf
, len
, WRITE_DATA
);
3387 void cpu_flush_icache_range(hwaddr start
, hwaddr len
)
3390 * This function should do the same thing as an icache flush that was
3391 * triggered from within the guest. For TCG we are always cache coherent,
3392 * so there is no need to flush anything. For KVM / Xen we need to flush
3393 * the host's instruction cache at least.
3395 if (tcg_enabled()) {
3399 address_space_write_rom_internal(&address_space_memory
,
3400 start
, MEMTXATTRS_UNSPECIFIED
,
3401 NULL
, len
, FLUSH_CACHE
);
3412 static BounceBuffer bounce
;
3414 typedef struct MapClient
{
3416 QLIST_ENTRY(MapClient
) link
;
3419 QemuMutex map_client_list_lock
;
3420 static QLIST_HEAD(, MapClient
) map_client_list
3421 = QLIST_HEAD_INITIALIZER(map_client_list
);
3423 static void cpu_unregister_map_client_do(MapClient
*client
)
3425 QLIST_REMOVE(client
, link
);
3429 static void cpu_notify_map_clients_locked(void)
3433 while (!QLIST_EMPTY(&map_client_list
)) {
3434 client
= QLIST_FIRST(&map_client_list
);
3435 qemu_bh_schedule(client
->bh
);
3436 cpu_unregister_map_client_do(client
);
3440 void cpu_register_map_client(QEMUBH
*bh
)
3442 MapClient
*client
= g_malloc(sizeof(*client
));
3444 qemu_mutex_lock(&map_client_list_lock
);
3446 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3447 if (!qatomic_read(&bounce
.in_use
)) {
3448 cpu_notify_map_clients_locked();
3450 qemu_mutex_unlock(&map_client_list_lock
);
3453 void cpu_exec_init_all(void)
3455 qemu_mutex_init(&ram_list
.mutex
);
3456 /* The data structures we set up here depend on knowing the page size,
3457 * so no more changes can be made after this point.
3458 * In an ideal world, nothing we did before we had finished the
3459 * machine setup would care about the target page size, and we could
3460 * do this much later, rather than requiring board models to state
3461 * up front what their requirements are.
3463 finalize_target_page_bits();
3466 qemu_mutex_init(&map_client_list_lock
);
3469 void cpu_unregister_map_client(QEMUBH
*bh
)
3473 qemu_mutex_lock(&map_client_list_lock
);
3474 QLIST_FOREACH(client
, &map_client_list
, link
) {
3475 if (client
->bh
== bh
) {
3476 cpu_unregister_map_client_do(client
);
3480 qemu_mutex_unlock(&map_client_list_lock
);
3483 static void cpu_notify_map_clients(void)
3485 qemu_mutex_lock(&map_client_list_lock
);
3486 cpu_notify_map_clients_locked();
3487 qemu_mutex_unlock(&map_client_list_lock
);
3490 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
3491 bool is_write
, MemTxAttrs attrs
)
3498 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3499 if (!memory_access_is_direct(mr
, is_write
)) {
3500 l
= memory_access_size(mr
, l
, addr
);
3501 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3512 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3513 hwaddr len
, bool is_write
,
3519 RCU_READ_LOCK_GUARD();
3520 fv
= address_space_to_flatview(as
);
3521 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3526 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3528 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3529 bool is_write
, MemTxAttrs attrs
)
3533 MemoryRegion
*this_mr
;
3539 if (target_len
== 0) {
3544 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3545 &len
, is_write
, attrs
);
3546 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3552 /* Map a physical memory region into a host virtual address.
3553 * May map a subset of the requested range, given by and returned in *plen.
3554 * May return NULL if resources needed to perform the mapping are exhausted.
3555 * Use only for reads OR writes - not for read-modify-write operations.
3556 * Use cpu_register_map_client() to know when retrying the map operation is
3557 * likely to succeed.
3559 void *address_space_map(AddressSpace
*as
,
3576 RCU_READ_LOCK_GUARD();
3577 fv
= address_space_to_flatview(as
);
3578 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3580 if (!memory_access_is_direct(mr
, is_write
)) {
3581 if (qatomic_xchg(&bounce
.in_use
, true)) {
3585 /* Avoid unbounded allocations */
3586 l
= MIN(l
, TARGET_PAGE_SIZE
);
3587 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3591 memory_region_ref(mr
);
3594 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3599 return bounce
.buffer
;
3603 memory_region_ref(mr
);
3604 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3605 l
, is_write
, attrs
);
3606 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3611 /* Unmaps a memory region previously mapped by address_space_map().
3612 * Will also mark the memory as dirty if is_write is true. access_len gives
3613 * the amount of memory that was actually read or written by the caller.
3615 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3616 bool is_write
, hwaddr access_len
)
3618 if (buffer
!= bounce
.buffer
) {
3622 mr
= memory_region_from_host(buffer
, &addr1
);
3625 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3627 if (xen_enabled()) {
3628 xen_invalidate_map_cache_entry(buffer
);
3630 memory_region_unref(mr
);
3634 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3635 bounce
.buffer
, access_len
);
3637 qemu_vfree(bounce
.buffer
);
3638 bounce
.buffer
= NULL
;
3639 memory_region_unref(bounce
.mr
);
3640 qatomic_mb_set(&bounce
.in_use
, false);
3641 cpu_notify_map_clients();
3644 void *cpu_physical_memory_map(hwaddr addr
,
3648 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3649 MEMTXATTRS_UNSPECIFIED
);
3652 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3653 bool is_write
, hwaddr access_len
)
3655 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3658 #define ARG1_DECL AddressSpace *as
3661 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3662 #define RCU_READ_LOCK(...) rcu_read_lock()
3663 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3664 #include "memory_ldst.c.inc"
3666 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3672 AddressSpaceDispatch
*d
;
3679 cache
->fv
= address_space_get_flatview(as
);
3680 d
= flatview_to_dispatch(cache
->fv
);
3681 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3684 memory_region_ref(mr
);
3685 if (memory_access_is_direct(mr
, is_write
)) {
3686 /* We don't care about the memory attributes here as we're only
3687 * doing this if we found actual RAM, which behaves the same
3688 * regardless of attributes; so UNSPECIFIED is fine.
3690 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3691 cache
->xlat
, l
, is_write
,
3692 MEMTXATTRS_UNSPECIFIED
);
3693 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3699 cache
->is_write
= is_write
;
3703 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3707 assert(cache
->is_write
);
3708 if (likely(cache
->ptr
)) {
3709 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3713 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3715 if (!cache
->mrs
.mr
) {
3719 if (xen_enabled()) {
3720 xen_invalidate_map_cache_entry(cache
->ptr
);
3722 memory_region_unref(cache
->mrs
.mr
);
3723 flatview_unref(cache
->fv
);
3724 cache
->mrs
.mr
= NULL
;
3728 /* Called from RCU critical section. This function has the same
3729 * semantics as address_space_translate, but it only works on a
3730 * predefined range of a MemoryRegion that was mapped with
3731 * address_space_cache_init.
3733 static inline MemoryRegion
*address_space_translate_cached(
3734 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3735 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3737 MemoryRegionSection section
;
3739 IOMMUMemoryRegion
*iommu_mr
;
3740 AddressSpace
*target_as
;
3742 assert(!cache
->ptr
);
3743 *xlat
= addr
+ cache
->xlat
;
3746 iommu_mr
= memory_region_get_iommu(mr
);
3752 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3753 NULL
, is_write
, true,
3758 /* Called from RCU critical section. address_space_read_cached uses this
3759 * out of line function when the target is an MMIO or IOMMU region.
3762 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3763 void *buf
, hwaddr len
)
3769 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3770 MEMTXATTRS_UNSPECIFIED
);
3771 return flatview_read_continue(cache
->fv
,
3772 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3776 /* Called from RCU critical section. address_space_write_cached uses this
3777 * out of line function when the target is an MMIO or IOMMU region.
3780 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3781 const void *buf
, hwaddr len
)
3787 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3788 MEMTXATTRS_UNSPECIFIED
);
3789 return flatview_write_continue(cache
->fv
,
3790 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3794 #define ARG1_DECL MemoryRegionCache *cache
3796 #define SUFFIX _cached_slow
3797 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3798 #define RCU_READ_LOCK() ((void)0)
3799 #define RCU_READ_UNLOCK() ((void)0)
3800 #include "memory_ldst.c.inc"
3802 /* virtual memory access for debug (includes writing to ROM) */
3803 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3804 void *ptr
, target_ulong len
, bool is_write
)
3807 target_ulong l
, page
;
3810 cpu_synchronize_state(cpu
);
3816 page
= addr
& TARGET_PAGE_MASK
;
3817 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3818 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3819 /* if no physical page mapped, return an error */
3820 if (phys_addr
== -1)
3822 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3825 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3827 res
= address_space_write_rom(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3830 res
= address_space_read(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3833 if (res
!= MEMTX_OK
) {
3844 * Allows code that needs to deal with migration bitmaps etc to still be built
3845 * target independent.
3847 size_t qemu_target_page_size(void)
3849 return TARGET_PAGE_SIZE
;
3852 int qemu_target_page_bits(void)
3854 return TARGET_PAGE_BITS
;
3857 int qemu_target_page_bits_min(void)
3859 return TARGET_PAGE_BITS_MIN
;
3863 bool target_words_bigendian(void)
3865 #if defined(TARGET_WORDS_BIGENDIAN)
3872 #ifndef CONFIG_USER_ONLY
3873 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3879 RCU_READ_LOCK_GUARD();
3880 mr
= address_space_translate(&address_space_memory
,
3881 phys_addr
, &phys_addr
, &l
, false,
3882 MEMTXATTRS_UNSPECIFIED
);
3884 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3888 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3893 RCU_READ_LOCK_GUARD();
3894 RAMBLOCK_FOREACH(block
) {
3895 ret
= func(block
, opaque
);
3904 * Unmap pages of memory from start to start+length such that
3905 * they a) read as 0, b) Trigger whatever fault mechanism
3906 * the OS provides for postcopy.
3907 * The pages must be unmapped by the end of the function.
3908 * Returns: 0 on success, none-0 on failure
3911 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3915 uint8_t *host_startaddr
= rb
->host
+ start
;
3917 if (!QEMU_PTR_IS_ALIGNED(host_startaddr
, rb
->page_size
)) {
3918 error_report("ram_block_discard_range: Unaligned start address: %p",
3923 if ((start
+ length
) <= rb
->used_length
) {
3924 bool need_madvise
, need_fallocate
;
3925 if (!QEMU_IS_ALIGNED(length
, rb
->page_size
)) {
3926 error_report("ram_block_discard_range: Unaligned length: %zx",
3931 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3933 /* The logic here is messy;
3934 * madvise DONTNEED fails for hugepages
3935 * fallocate works on hugepages and shmem
3937 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3938 need_fallocate
= rb
->fd
!= -1;
3939 if (need_fallocate
) {
3940 /* For a file, this causes the area of the file to be zero'd
3941 * if read, and for hugetlbfs also causes it to be unmapped
3942 * so a userfault will trigger.
3944 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3945 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3949 error_report("ram_block_discard_range: Failed to fallocate "
3950 "%s:%" PRIx64
" +%zx (%d)",
3951 rb
->idstr
, start
, length
, ret
);
3956 error_report("ram_block_discard_range: fallocate not available/file"
3957 "%s:%" PRIx64
" +%zx (%d)",
3958 rb
->idstr
, start
, length
, ret
);
3963 /* For normal RAM this causes it to be unmapped,
3964 * for shared memory it causes the local mapping to disappear
3965 * and to fall back on the file contents (which we just
3966 * fallocate'd away).
3968 #if defined(CONFIG_MADVISE)
3969 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3972 error_report("ram_block_discard_range: Failed to discard range "
3973 "%s:%" PRIx64
" +%zx (%d)",
3974 rb
->idstr
, start
, length
, ret
);
3979 error_report("ram_block_discard_range: MADVISE not available"
3980 "%s:%" PRIx64
" +%zx (%d)",
3981 rb
->idstr
, start
, length
, ret
);
3985 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3986 need_madvise
, need_fallocate
, ret
);
3988 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3989 "/%zx/" RAM_ADDR_FMT
")",
3990 rb
->idstr
, start
, length
, rb
->used_length
);
3997 bool ramblock_is_pmem(RAMBlock
*rb
)
3999 return rb
->flags
& RAM_PMEM
;
4004 void page_size_init(void)
4006 /* NOTE: we can always suppose that qemu_host_page_size >=
4008 if (qemu_host_page_size
== 0) {
4009 qemu_host_page_size
= qemu_real_host_page_size
;
4011 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
4012 qemu_host_page_size
= TARGET_PAGE_SIZE
;
4014 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
4017 #if !defined(CONFIG_USER_ONLY)
4019 static void mtree_print_phys_entries(int start
, int end
, int skip
, int ptr
)
4021 if (start
== end
- 1) {
4022 qemu_printf("\t%3d ", start
);
4024 qemu_printf("\t%3d..%-3d ", start
, end
- 1);
4026 qemu_printf(" skip=%d ", skip
);
4027 if (ptr
== PHYS_MAP_NODE_NIL
) {
4028 qemu_printf(" ptr=NIL");
4030 qemu_printf(" ptr=#%d", ptr
);
4032 qemu_printf(" ptr=[%d]", ptr
);
4037 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4038 int128_sub((size), int128_one())) : 0)
4040 void mtree_print_dispatch(AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4044 qemu_printf(" Dispatch\n");
4045 qemu_printf(" Physical sections\n");
4047 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4048 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4049 const char *names
[] = { " [unassigned]", " [not dirty]",
4050 " [ROM]", " [watch]" };
4052 qemu_printf(" #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
4055 s
->offset_within_address_space
,
4056 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4057 s
->mr
->name
? s
->mr
->name
: "(noname)",
4058 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4059 s
->mr
== root
? " [ROOT]" : "",
4060 s
== d
->mru_section
? " [MRU]" : "",
4061 s
->mr
->is_iommu
? " [iommu]" : "");
4064 qemu_printf(" alias=%s", s
->mr
->alias
->name
?
4065 s
->mr
->alias
->name
: "noname");
4070 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4071 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4072 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4075 Node
*n
= d
->map
.nodes
+ i
;
4077 qemu_printf(" [%d]\n", i
);
4079 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4080 PhysPageEntry
*pe
= *n
+ j
;
4082 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4086 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
4092 if (jprev
!= ARRAY_SIZE(*n
)) {
4093 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
4099 * If positive, discarding RAM is disabled. If negative, discarding RAM is
4100 * required to work and cannot be disabled.
4102 static int ram_block_discard_disabled
;
4104 int ram_block_discard_disable(bool state
)
4109 qatomic_dec(&ram_block_discard_disabled
);
4114 old
= qatomic_read(&ram_block_discard_disabled
);
4118 } while (qatomic_cmpxchg(&ram_block_discard_disabled
,
4119 old
, old
+ 1) != old
);
4123 int ram_block_discard_require(bool state
)
4128 qatomic_inc(&ram_block_discard_disabled
);
4133 old
= qatomic_read(&ram_block_discard_disabled
);
4137 } while (qatomic_cmpxchg(&ram_block_discard_disabled
,
4138 old
, old
- 1) != old
);
4142 bool ram_block_discard_is_disabled(void)
4144 return qatomic_read(&ram_block_discard_disabled
) > 0;
4147 bool ram_block_discard_is_required(void)
4149 return qatomic_read(&ram_block_discard_disabled
) < 0;