target/m68k: remove useless qregs array
[qemu/ar7.git] / hw / riscv / boot.c
blobd62f3dc7581ef3f1cf3df33ccb570a3dcd53d8d7
1 /*
2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/error-report.h"
25 #include "exec/cpu-defs.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/riscv/boot.h"
29 #include "hw/riscv/boot_opensbi.h"
30 #include "elf.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/qtest.h"
34 #include <libfdt.h>
36 #if defined(TARGET_RISCV32)
37 #define fw_dynamic_info_data(__val) cpu_to_le32(__val)
38 #else
39 #define fw_dynamic_info_data(__val) cpu_to_le64(__val)
40 #endif
42 bool riscv_is_32_bit(MachineState *machine)
44 if (!strncmp(machine->cpu_type, "rv32", 4)) {
45 return true;
46 } else {
47 return false;
51 target_ulong riscv_calc_kernel_start_addr(MachineState *machine,
52 target_ulong firmware_end_addr) {
53 if (riscv_is_32_bit(machine)) {
54 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
55 } else {
56 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
60 target_ulong riscv_find_and_load_firmware(MachineState *machine,
61 const char *default_machine_firmware,
62 hwaddr firmware_load_addr,
63 symbol_fn_t sym_cb)
65 char *firmware_filename = NULL;
66 target_ulong firmware_end_addr = firmware_load_addr;
68 if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
70 * The user didn't specify -bios, or has specified "-bios default".
71 * That means we are going to load the OpenSBI binary included in
72 * the QEMU source.
74 firmware_filename = riscv_find_firmware(default_machine_firmware);
75 } else if (strcmp(machine->firmware, "none")) {
76 firmware_filename = riscv_find_firmware(machine->firmware);
79 if (firmware_filename) {
80 /* If not "none" load the firmware */
81 firmware_end_addr = riscv_load_firmware(firmware_filename,
82 firmware_load_addr, sym_cb);
83 g_free(firmware_filename);
86 return firmware_end_addr;
89 char *riscv_find_firmware(const char *firmware_filename)
91 char *filename;
93 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
94 if (filename == NULL) {
95 if (!qtest_enabled()) {
97 * We only ship plain binary bios images in the QEMU source.
98 * With Spike machine that uses ELF images as the default bios,
99 * running QEMU test will complain hence let's suppress the error
100 * report for QEMU testing.
102 error_report("Unable to load the RISC-V firmware \"%s\"",
103 firmware_filename);
104 exit(1);
108 return filename;
111 target_ulong riscv_load_firmware(const char *firmware_filename,
112 hwaddr firmware_load_addr,
113 symbol_fn_t sym_cb)
115 uint64_t firmware_entry, firmware_size, firmware_end;
117 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
118 &firmware_entry, NULL, &firmware_end, NULL,
119 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
120 return firmware_end;
123 firmware_size = load_image_targphys_as(firmware_filename,
124 firmware_load_addr,
125 current_machine->ram_size, NULL);
127 if (firmware_size > 0) {
128 return firmware_load_addr + firmware_size;
131 error_report("could not load firmware '%s'", firmware_filename);
132 exit(1);
135 target_ulong riscv_load_kernel(const char *kernel_filename,
136 target_ulong kernel_start_addr,
137 symbol_fn_t sym_cb)
139 uint64_t kernel_entry;
141 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
142 &kernel_entry, NULL, NULL, NULL, 0,
143 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
144 return kernel_entry;
147 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
148 NULL, NULL, NULL) > 0) {
149 return kernel_entry;
152 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
153 current_machine->ram_size, NULL) > 0) {
154 return kernel_start_addr;
157 error_report("could not load kernel '%s'", kernel_filename);
158 exit(1);
161 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
162 uint64_t kernel_entry, hwaddr *start)
164 int size;
167 * We want to put the initrd far enough into RAM that when the
168 * kernel is uncompressed it will not clobber the initrd. However
169 * on boards without much RAM we must ensure that we still leave
170 * enough room for a decent sized initrd, and on boards with large
171 * amounts of RAM we must avoid the initrd being so far up in RAM
172 * that it is outside lowmem and inaccessible to the kernel.
173 * So for boards with less than 256MB of RAM we put the initrd
174 * halfway into RAM, and for boards with 256MB of RAM or more we put
175 * the initrd at 128MB.
177 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
179 size = load_ramdisk(filename, *start, mem_size - *start);
180 if (size == -1) {
181 size = load_image_targphys(filename, *start, mem_size - *start);
182 if (size == -1) {
183 error_report("could not load ramdisk '%s'", filename);
184 exit(1);
188 return *start + size;
191 uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
193 uint32_t temp, fdt_addr;
194 hwaddr dram_end = dram_base + mem_size;
195 int fdtsize = fdt_totalsize(fdt);
197 if (fdtsize <= 0) {
198 error_report("invalid device-tree");
199 exit(1);
203 * We should put fdt as far as possible to avoid kernel/initrd overwriting
204 * its content. But it should be addressable by 32 bit system as well.
205 * Thus, put it at an aligned address that less than fdt size from end of
206 * dram or 4GB whichever is lesser.
208 temp = MIN(dram_end, 4096 * MiB);
209 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
211 fdt_pack(fdt);
212 /* copy in the device tree */
213 qemu_fdt_dumpdtb(fdt, fdtsize);
215 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
216 &address_space_memory);
218 return fdt_addr;
221 void riscv_rom_copy_firmware_info(hwaddr rom_base, hwaddr rom_size,
222 uint32_t reset_vec_size, uint64_t kernel_entry)
224 struct fw_dynamic_info dinfo;
225 size_t dinfo_len;
227 dinfo.magic = fw_dynamic_info_data(FW_DYNAMIC_INFO_MAGIC_VALUE);
228 dinfo.version = fw_dynamic_info_data(FW_DYNAMIC_INFO_VERSION);
229 dinfo.next_mode = fw_dynamic_info_data(FW_DYNAMIC_INFO_NEXT_MODE_S);
230 dinfo.next_addr = fw_dynamic_info_data(kernel_entry);
231 dinfo.options = 0;
232 dinfo.boot_hart = 0;
233 dinfo_len = sizeof(dinfo);
236 * copy the dynamic firmware info. This information is specific to
237 * OpenSBI but doesn't break any other firmware as long as they don't
238 * expect any certain value in "a2" register.
240 if (dinfo_len > (rom_size - reset_vec_size)) {
241 error_report("not enough space to store dynamic firmware info");
242 exit(1);
245 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
246 rom_base + reset_vec_size,
247 &address_space_memory);
250 void riscv_setup_rom_reset_vec(hwaddr start_addr, hwaddr rom_base,
251 hwaddr rom_size, uint64_t kernel_entry,
252 uint32_t fdt_load_addr, void *fdt)
254 int i;
255 uint32_t start_addr_hi32 = 0x00000000;
257 #if defined(TARGET_RISCV64)
258 start_addr_hi32 = start_addr >> 32;
259 #endif
260 /* reset vector */
261 uint32_t reset_vec[10] = {
262 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
263 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
264 0xf1402573, /* csrr a0, mhartid */
265 #if defined(TARGET_RISCV32)
266 0x0202a583, /* lw a1, 32(t0) */
267 0x0182a283, /* lw t0, 24(t0) */
268 #elif defined(TARGET_RISCV64)
269 0x0202b583, /* ld a1, 32(t0) */
270 0x0182b283, /* ld t0, 24(t0) */
271 #endif
272 0x00028067, /* jr t0 */
273 start_addr, /* start: .dword */
274 start_addr_hi32,
275 fdt_load_addr, /* fdt_laddr: .dword */
276 0x00000000,
277 /* fw_dyn: */
280 /* copy in the reset vector in little_endian byte order */
281 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
282 reset_vec[i] = cpu_to_le32(reset_vec[i]);
284 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
285 rom_base, &address_space_memory);
286 riscv_rom_copy_firmware_info(rom_base, rom_size, sizeof(reset_vec),
287 kernel_entry);
289 return;