tests/acpi: allow expected files change
[qemu/ar7.git] / hw / nvram / fw_cfg.c
blob282ba93e2e93c02a5d1285778d1196e023b55151
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pci_bus.h"
45 #define FW_CFG_FILE_SLOTS_DFLT 0x20
47 /* FW_CFG_VERSION bits */
48 #define FW_CFG_VERSION 0x01
49 #define FW_CFG_VERSION_DMA 0x02
51 /* FW_CFG_DMA_CONTROL bits */
52 #define FW_CFG_DMA_CTL_ERROR 0x01
53 #define FW_CFG_DMA_CTL_READ 0x02
54 #define FW_CFG_DMA_CTL_SKIP 0x04
55 #define FW_CFG_DMA_CTL_SELECT 0x08
56 #define FW_CFG_DMA_CTL_WRITE 0x10
58 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
60 struct FWCfgEntry {
61 uint32_t len;
62 bool allow_write;
63 uint8_t *data;
64 void *callback_opaque;
65 FWCfgCallback select_cb;
66 FWCfgWriteCallback write_cb;
69 /**
70 * key_name:
72 * @key: The uint16 selector key.
74 * Returns: The stringified name if the selector refers to a well-known
75 * numerically defined item, or NULL on key lookup failure.
77 static const char *key_name(uint16_t key)
79 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
80 [FW_CFG_SIGNATURE] = "signature",
81 [FW_CFG_ID] = "id",
82 [FW_CFG_UUID] = "uuid",
83 [FW_CFG_RAM_SIZE] = "ram_size",
84 [FW_CFG_NOGRAPHIC] = "nographic",
85 [FW_CFG_NB_CPUS] = "nb_cpus",
86 [FW_CFG_MACHINE_ID] = "machine_id",
87 [FW_CFG_KERNEL_ADDR] = "kernel_addr",
88 [FW_CFG_KERNEL_SIZE] = "kernel_size",
89 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
90 [FW_CFG_INITRD_ADDR] = "initrd_addr",
91 [FW_CFG_INITRD_SIZE] = "initdr_size",
92 [FW_CFG_BOOT_DEVICE] = "boot_device",
93 [FW_CFG_NUMA] = "numa",
94 [FW_CFG_BOOT_MENU] = "boot_menu",
95 [FW_CFG_MAX_CPUS] = "max_cpus",
96 [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
97 [FW_CFG_KERNEL_DATA] = "kernel_data",
98 [FW_CFG_INITRD_DATA] = "initrd_data",
99 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
100 [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
101 [FW_CFG_CMDLINE_DATA] = "cmdline_data",
102 [FW_CFG_SETUP_ADDR] = "setup_addr",
103 [FW_CFG_SETUP_SIZE] = "setup_size",
104 [FW_CFG_SETUP_DATA] = "setup_data",
105 [FW_CFG_FILE_DIR] = "file_dir",
108 if (key & FW_CFG_ARCH_LOCAL) {
109 return fw_cfg_arch_key_name(key);
111 if (key < FW_CFG_FILE_FIRST) {
112 return fw_cfg_wellknown_keys[key];
115 return NULL;
118 static inline const char *trace_key_name(uint16_t key)
120 const char *name = key_name(key);
122 return name ? name : "unknown";
125 #define JPG_FILE 0
126 #define BMP_FILE 1
128 static char *read_splashfile(char *filename, gsize *file_sizep,
129 int *file_typep)
131 GError *err = NULL;
132 gchar *content;
133 int file_type;
134 unsigned int filehead;
135 int bmp_bpp;
137 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
138 error_report("failed to read splash file '%s': %s",
139 filename, err->message);
140 g_error_free(err);
141 return NULL;
144 /* check file size */
145 if (*file_sizep < 30) {
146 goto error;
149 /* check magic ID */
150 filehead = lduw_le_p(content);
151 if (filehead == 0xd8ff) {
152 file_type = JPG_FILE;
153 } else if (filehead == 0x4d42) {
154 file_type = BMP_FILE;
155 } else {
156 goto error;
159 /* check BMP bpp */
160 if (file_type == BMP_FILE) {
161 bmp_bpp = lduw_le_p(&content[28]);
162 if (bmp_bpp != 24) {
163 goto error;
167 /* return values */
168 *file_typep = file_type;
170 return content;
172 error:
173 error_report("splash file '%s' format not recognized; must be JPEG "
174 "or 24 bit BMP", filename);
175 g_free(content);
176 return NULL;
179 static void fw_cfg_bootsplash(FWCfgState *s)
181 const char *boot_splash_filename = NULL;
182 const char *boot_splash_time = NULL;
183 char *filename, *file_data;
184 gsize file_size;
185 int file_type;
187 /* get user configuration */
188 QemuOptsList *plist = qemu_find_opts("boot-opts");
189 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
190 boot_splash_filename = qemu_opt_get(opts, "splash");
191 boot_splash_time = qemu_opt_get(opts, "splash-time");
193 /* insert splash time if user configurated */
194 if (boot_splash_time) {
195 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
196 uint16_t bst_le16;
198 /* validate the input */
199 if (bst_val < 0 || bst_val > 0xffff) {
200 error_report("splash-time is invalid,"
201 "it should be a value between 0 and 65535");
202 exit(1);
204 /* use little endian format */
205 bst_le16 = cpu_to_le16(bst_val);
206 fw_cfg_add_file(s, "etc/boot-menu-wait",
207 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
210 /* insert splash file if user configurated */
211 if (boot_splash_filename) {
212 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
213 if (filename == NULL) {
214 error_report("failed to find file '%s'", boot_splash_filename);
215 return;
218 /* loading file data */
219 file_data = read_splashfile(filename, &file_size, &file_type);
220 if (file_data == NULL) {
221 g_free(filename);
222 return;
224 g_free(boot_splash_filedata);
225 boot_splash_filedata = (uint8_t *)file_data;
227 /* insert data */
228 if (file_type == JPG_FILE) {
229 fw_cfg_add_file(s, "bootsplash.jpg",
230 boot_splash_filedata, file_size);
231 } else {
232 fw_cfg_add_file(s, "bootsplash.bmp",
233 boot_splash_filedata, file_size);
235 g_free(filename);
239 static void fw_cfg_reboot(FWCfgState *s)
241 const char *reboot_timeout = NULL;
242 uint64_t rt_val = -1;
243 uint32_t rt_le32;
245 /* get user configuration */
246 QemuOptsList *plist = qemu_find_opts("boot-opts");
247 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
248 reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
250 if (reboot_timeout) {
251 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
253 /* validate the input */
254 if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
255 error_report("reboot timeout is invalid,"
256 "it should be a value between -1 and 65535");
257 exit(1);
261 rt_le32 = cpu_to_le32(rt_val);
262 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
265 static void fw_cfg_write(FWCfgState *s, uint8_t value)
267 /* nothing, write support removed in QEMU v2.4+ */
270 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
272 return s->file_slots;
275 /* Note: this function returns an exclusive limit. */
276 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
278 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
281 static int fw_cfg_select(FWCfgState *s, uint16_t key)
283 int arch, ret;
284 FWCfgEntry *e;
286 s->cur_offset = 0;
287 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
288 s->cur_entry = FW_CFG_INVALID;
289 ret = 0;
290 } else {
291 s->cur_entry = key;
292 ret = 1;
293 /* entry successfully selected, now run callback if present */
294 arch = !!(key & FW_CFG_ARCH_LOCAL);
295 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
296 if (e->select_cb) {
297 e->select_cb(e->callback_opaque);
301 trace_fw_cfg_select(s, key, trace_key_name(key), ret);
302 return ret;
305 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
307 FWCfgState *s = opaque;
308 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
309 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
310 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
311 uint64_t value = 0;
313 assert(size > 0 && size <= sizeof(value));
314 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
315 /* The least significant 'size' bytes of the return value are
316 * expected to contain a string preserving portion of the item
317 * data, padded with zeros on the right in case we run out early.
318 * In technical terms, we're composing the host-endian representation
319 * of the big endian interpretation of the fw_cfg string.
321 do {
322 value = (value << 8) | e->data[s->cur_offset++];
323 } while (--size && s->cur_offset < e->len);
324 /* If size is still not zero, we *did* run out early, so continue
325 * left-shifting, to add the appropriate number of padding zeros
326 * on the right.
328 value <<= 8 * size;
331 trace_fw_cfg_read(s, value);
332 return value;
335 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
336 uint64_t value, unsigned size)
338 FWCfgState *s = opaque;
339 unsigned i = size;
341 do {
342 fw_cfg_write(s, value >> (8 * --i));
343 } while (i);
346 static void fw_cfg_dma_transfer(FWCfgState *s)
348 dma_addr_t len;
349 FWCfgDmaAccess dma;
350 int arch;
351 FWCfgEntry *e;
352 int read = 0, write = 0;
353 dma_addr_t dma_addr;
355 /* Reset the address before the next access */
356 dma_addr = s->dma_addr;
357 s->dma_addr = 0;
359 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
360 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
361 FW_CFG_DMA_CTL_ERROR);
362 return;
365 dma.address = be64_to_cpu(dma.address);
366 dma.length = be32_to_cpu(dma.length);
367 dma.control = be32_to_cpu(dma.control);
369 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
370 fw_cfg_select(s, dma.control >> 16);
373 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
374 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
375 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
377 if (dma.control & FW_CFG_DMA_CTL_READ) {
378 read = 1;
379 write = 0;
380 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
381 read = 0;
382 write = 1;
383 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
384 read = 0;
385 write = 0;
386 } else {
387 dma.length = 0;
390 dma.control = 0;
392 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
393 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
394 s->cur_offset >= e->len) {
395 len = dma.length;
397 /* If the access is not a read access, it will be a skip access,
398 * tested before.
400 if (read) {
401 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
402 dma.control |= FW_CFG_DMA_CTL_ERROR;
405 if (write) {
406 dma.control |= FW_CFG_DMA_CTL_ERROR;
408 } else {
409 if (dma.length <= (e->len - s->cur_offset)) {
410 len = dma.length;
411 } else {
412 len = (e->len - s->cur_offset);
415 /* If the access is not a read access, it will be a skip access,
416 * tested before.
418 if (read) {
419 if (dma_memory_write(s->dma_as, dma.address,
420 &e->data[s->cur_offset], len)) {
421 dma.control |= FW_CFG_DMA_CTL_ERROR;
424 if (write) {
425 if (!e->allow_write ||
426 len != dma.length ||
427 dma_memory_read(s->dma_as, dma.address,
428 &e->data[s->cur_offset], len)) {
429 dma.control |= FW_CFG_DMA_CTL_ERROR;
430 } else if (e->write_cb) {
431 e->write_cb(e->callback_opaque, s->cur_offset, len);
435 s->cur_offset += len;
438 dma.address += len;
439 dma.length -= len;
443 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
444 dma.control);
446 trace_fw_cfg_read(s, 0);
449 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
450 unsigned size)
452 /* Return a signature value (and handle various read sizes) */
453 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
456 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
457 uint64_t value, unsigned size)
459 FWCfgState *s = opaque;
461 if (size == 4) {
462 if (addr == 0) {
463 /* FWCfgDmaAccess high address */
464 s->dma_addr = value << 32;
465 } else if (addr == 4) {
466 /* FWCfgDmaAccess low address */
467 s->dma_addr |= value;
468 fw_cfg_dma_transfer(s);
470 } else if (size == 8 && addr == 0) {
471 s->dma_addr = value;
472 fw_cfg_dma_transfer(s);
476 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
477 unsigned size, bool is_write,
478 MemTxAttrs attrs)
480 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
481 (size == 8 && addr == 0));
484 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
485 unsigned size, bool is_write,
486 MemTxAttrs attrs)
488 return addr == 0;
491 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
493 return 0;
496 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
497 uint64_t value, unsigned size)
499 fw_cfg_select(opaque, (uint16_t)value);
502 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
503 unsigned size, bool is_write,
504 MemTxAttrs attrs)
506 return is_write && size == 2;
509 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
510 uint64_t value, unsigned size)
512 switch (size) {
513 case 1:
514 fw_cfg_write(opaque, (uint8_t)value);
515 break;
516 case 2:
517 fw_cfg_select(opaque, (uint16_t)value);
518 break;
522 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
523 unsigned size, bool is_write,
524 MemTxAttrs attrs)
526 return (size == 1) || (is_write && size == 2);
529 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
530 .read = fw_cfg_ctl_mem_read,
531 .write = fw_cfg_ctl_mem_write,
532 .endianness = DEVICE_BIG_ENDIAN,
533 .valid.accepts = fw_cfg_ctl_mem_valid,
536 static const MemoryRegionOps fw_cfg_data_mem_ops = {
537 .read = fw_cfg_data_read,
538 .write = fw_cfg_data_mem_write,
539 .endianness = DEVICE_BIG_ENDIAN,
540 .valid = {
541 .min_access_size = 1,
542 .max_access_size = 1,
543 .accepts = fw_cfg_data_mem_valid,
547 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
548 .read = fw_cfg_data_read,
549 .write = fw_cfg_comb_write,
550 .endianness = DEVICE_LITTLE_ENDIAN,
551 .valid.accepts = fw_cfg_comb_valid,
554 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
555 .read = fw_cfg_dma_mem_read,
556 .write = fw_cfg_dma_mem_write,
557 .endianness = DEVICE_BIG_ENDIAN,
558 .valid.accepts = fw_cfg_dma_mem_valid,
559 .valid.max_access_size = 8,
560 .impl.max_access_size = 8,
563 static void fw_cfg_reset(DeviceState *d)
565 FWCfgState *s = FW_CFG(d);
567 /* we never register a read callback for FW_CFG_SIGNATURE */
568 fw_cfg_select(s, FW_CFG_SIGNATURE);
571 /* Save restore 32 bit int as uint16_t
572 This is a Big hack, but it is how the old state did it.
573 Or we broke compatibility in the state, or we can't use struct tm
576 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
577 const VMStateField *field)
579 uint32_t *v = pv;
580 *v = qemu_get_be16(f);
581 return 0;
584 static int put_unused(QEMUFile *f, void *pv, size_t size,
585 const VMStateField *field, QJSON *vmdesc)
587 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
588 fprintf(stderr, "This functions shouldn't be called.\n");
590 return 0;
593 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
594 .name = "int32_as_uint16",
595 .get = get_uint32_as_uint16,
596 .put = put_unused,
599 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
600 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
603 static bool is_version_1(void *opaque, int version_id)
605 return version_id == 1;
608 bool fw_cfg_dma_enabled(void *opaque)
610 FWCfgState *s = opaque;
612 return s->dma_enabled;
615 static bool fw_cfg_acpi_mr_restore(void *opaque)
617 FWCfgState *s = opaque;
618 bool mr_aligned;
620 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size) &&
621 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size) &&
622 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size);
623 return s->acpi_mr_restore && !mr_aligned;
626 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
628 MemoryRegion *mr;
629 ram_addr_t offset;
630 int arch = !!(key & FW_CFG_ARCH_LOCAL);
631 void *ptr;
633 key &= FW_CFG_ENTRY_MASK;
634 assert(key < fw_cfg_max_entry(s));
636 ptr = s->entries[arch][key].data;
637 mr = memory_region_from_host(ptr, &offset);
639 memory_region_ram_resize(mr, size, &error_abort);
642 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
644 FWCfgState *s = opaque;
645 int i, index;
647 assert(s->files);
649 index = be32_to_cpu(s->files->count);
651 for (i = 0; i < index; i++) {
652 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
653 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
654 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
655 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
656 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
657 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
661 return 0;
664 static const VMStateDescription vmstate_fw_cfg_dma = {
665 .name = "fw_cfg/dma",
666 .needed = fw_cfg_dma_enabled,
667 .fields = (VMStateField[]) {
668 VMSTATE_UINT64(dma_addr, FWCfgState),
669 VMSTATE_END_OF_LIST()
673 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
674 .name = "fw_cfg/acpi_mr",
675 .version_id = 1,
676 .minimum_version_id = 1,
677 .needed = fw_cfg_acpi_mr_restore,
678 .post_load = fw_cfg_acpi_mr_restore_post_load,
679 .fields = (VMStateField[]) {
680 VMSTATE_UINT64(table_mr_size, FWCfgState),
681 VMSTATE_UINT64(linker_mr_size, FWCfgState),
682 VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
683 VMSTATE_END_OF_LIST()
687 static const VMStateDescription vmstate_fw_cfg = {
688 .name = "fw_cfg",
689 .version_id = 2,
690 .minimum_version_id = 1,
691 .fields = (VMStateField[]) {
692 VMSTATE_UINT16(cur_entry, FWCfgState),
693 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
694 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
695 VMSTATE_END_OF_LIST()
697 .subsections = (const VMStateDescription*[]) {
698 &vmstate_fw_cfg_dma,
699 &vmstate_fw_cfg_acpi_mr,
700 NULL,
704 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
705 FWCfgCallback select_cb,
706 FWCfgWriteCallback write_cb,
707 void *callback_opaque,
708 void *data, size_t len,
709 bool read_only)
711 int arch = !!(key & FW_CFG_ARCH_LOCAL);
713 key &= FW_CFG_ENTRY_MASK;
715 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
716 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
718 s->entries[arch][key].data = data;
719 s->entries[arch][key].len = (uint32_t)len;
720 s->entries[arch][key].select_cb = select_cb;
721 s->entries[arch][key].write_cb = write_cb;
722 s->entries[arch][key].callback_opaque = callback_opaque;
723 s->entries[arch][key].allow_write = !read_only;
726 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
727 void *data, size_t len)
729 void *ptr;
730 int arch = !!(key & FW_CFG_ARCH_LOCAL);
732 key &= FW_CFG_ENTRY_MASK;
734 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
736 /* return the old data to the function caller, avoid memory leak */
737 ptr = s->entries[arch][key].data;
738 s->entries[arch][key].data = data;
739 s->entries[arch][key].len = len;
740 s->entries[arch][key].callback_opaque = NULL;
741 s->entries[arch][key].allow_write = false;
743 return ptr;
746 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
748 trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
749 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
752 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
754 size_t sz = strlen(value) + 1;
756 trace_fw_cfg_add_string(key, trace_key_name(key), value);
757 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
760 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
762 size_t sz = strlen(value) + 1;
763 char *old;
765 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
766 g_free(old);
769 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
771 uint16_t *copy;
773 copy = g_malloc(sizeof(value));
774 *copy = cpu_to_le16(value);
775 trace_fw_cfg_add_i16(key, trace_key_name(key), value);
776 fw_cfg_add_bytes(s, key, copy, sizeof(value));
779 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
781 uint16_t *copy, *old;
783 copy = g_malloc(sizeof(value));
784 *copy = cpu_to_le16(value);
785 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
786 g_free(old);
789 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
791 uint32_t *copy;
793 copy = g_malloc(sizeof(value));
794 *copy = cpu_to_le32(value);
795 trace_fw_cfg_add_i32(key, trace_key_name(key), value);
796 fw_cfg_add_bytes(s, key, copy, sizeof(value));
799 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
801 uint32_t *copy, *old;
803 copy = g_malloc(sizeof(value));
804 *copy = cpu_to_le32(value);
805 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
806 g_free(old);
809 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
811 uint64_t *copy;
813 copy = g_malloc(sizeof(value));
814 *copy = cpu_to_le64(value);
815 trace_fw_cfg_add_i64(key, trace_key_name(key), value);
816 fw_cfg_add_bytes(s, key, copy, sizeof(value));
819 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
821 uint64_t *copy, *old;
823 copy = g_malloc(sizeof(value));
824 *copy = cpu_to_le64(value);
825 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
826 g_free(old);
829 void fw_cfg_set_order_override(FWCfgState *s, int order)
831 assert(s->fw_cfg_order_override == 0);
832 s->fw_cfg_order_override = order;
835 void fw_cfg_reset_order_override(FWCfgState *s)
837 assert(s->fw_cfg_order_override != 0);
838 s->fw_cfg_order_override = 0;
842 * This is the legacy order list. For legacy systems, files are in
843 * the fw_cfg in the order defined below, by the "order" value. Note
844 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
845 * specific area, but there may be more than one and they occur in the
846 * order that the user specifies them on the command line. Those are
847 * handled in a special manner, using the order override above.
849 * For non-legacy, the files are sorted by filename to avoid this kind
850 * of complexity in the future.
852 * This is only for x86, other arches don't implement versioning so
853 * they won't set legacy mode.
855 static struct {
856 const char *name;
857 int order;
858 } fw_cfg_order[] = {
859 { "etc/boot-menu-wait", 10 },
860 { "bootsplash.jpg", 11 },
861 { "bootsplash.bmp", 12 },
862 { "etc/boot-fail-wait", 15 },
863 { "etc/smbios/smbios-tables", 20 },
864 { "etc/smbios/smbios-anchor", 30 },
865 { "etc/e820", 40 },
866 { "etc/reserved-memory-end", 50 },
867 { "genroms/kvmvapic.bin", 55 },
868 { "genroms/linuxboot.bin", 60 },
869 { }, /* VGA ROMs from pc_vga_init come here, 70. */
870 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
871 { "etc/system-states", 90 },
872 { }, /* User ROMs come here, 100. */
873 { }, /* Device FW comes here, 110. */
874 { "etc/extra-pci-roots", 120 },
875 { "etc/acpi/tables", 130 },
876 { "etc/table-loader", 140 },
877 { "etc/tpm/log", 150 },
878 { "etc/acpi/rsdp", 160 },
879 { "bootorder", 170 },
881 #define FW_CFG_ORDER_OVERRIDE_LAST 200
885 * Any sub-page size update to these table MRs will be lost during migration,
886 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
887 * In order to avoid the inconsistency in sizes save them seperately and
888 * migrate over in vmstate post_load().
890 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
892 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
893 s->table_mr_size = len;
894 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
895 s->linker_mr_size = len;
896 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
897 s->rsdp_mr_size = len;
901 static int get_fw_cfg_order(FWCfgState *s, const char *name)
903 int i;
905 if (s->fw_cfg_order_override > 0) {
906 return s->fw_cfg_order_override;
909 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
910 if (fw_cfg_order[i].name == NULL) {
911 continue;
914 if (strcmp(name, fw_cfg_order[i].name) == 0) {
915 return fw_cfg_order[i].order;
919 /* Stick unknown stuff at the end. */
920 warn_report("Unknown firmware file in legacy mode: %s", name);
921 return FW_CFG_ORDER_OVERRIDE_LAST;
924 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
925 FWCfgCallback select_cb,
926 FWCfgWriteCallback write_cb,
927 void *callback_opaque,
928 void *data, size_t len, bool read_only)
930 int i, index, count;
931 size_t dsize;
932 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
933 int order = 0;
935 if (!s->files) {
936 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
937 s->files = g_malloc0(dsize);
938 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
941 count = be32_to_cpu(s->files->count);
942 assert(count < fw_cfg_file_slots(s));
944 /* Find the insertion point. */
945 if (mc->legacy_fw_cfg_order) {
947 * Sort by order. For files with the same order, we keep them
948 * in the sequence in which they were added.
950 order = get_fw_cfg_order(s, filename);
951 for (index = count;
952 index > 0 && order < s->entry_order[index - 1];
953 index--);
954 } else {
955 /* Sort by file name. */
956 for (index = count;
957 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
958 index--);
962 * Move all the entries from the index point and after down one
963 * to create a slot for the new entry. Because calculations are
964 * being done with the index, make it so that "i" is the current
965 * index and "i - 1" is the one being copied from, thus the
966 * unusual start and end in the for statement.
968 for (i = count; i > index; i--) {
969 s->files->f[i] = s->files->f[i - 1];
970 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
971 s->entries[0][FW_CFG_FILE_FIRST + i] =
972 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
973 s->entry_order[i] = s->entry_order[i - 1];
976 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
977 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
979 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
980 for (i = 0; i <= count; i++) {
981 if (i != index &&
982 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
983 error_report("duplicate fw_cfg file name: %s",
984 s->files->f[index].name);
985 exit(1);
989 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
990 select_cb, write_cb,
991 callback_opaque, data, len,
992 read_only);
994 s->files->f[index].size = cpu_to_be32(len);
995 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
996 s->entry_order[index] = order;
997 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
999 s->files->count = cpu_to_be32(count+1);
1000 fw_cfg_acpi_mr_save(s, filename, len);
1003 void fw_cfg_add_file(FWCfgState *s, const char *filename,
1004 void *data, size_t len)
1006 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1009 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1010 void *data, size_t len)
1012 int i, index;
1013 void *ptr = NULL;
1015 assert(s->files);
1017 index = be32_to_cpu(s->files->count);
1019 for (i = 0; i < index; i++) {
1020 if (strcmp(filename, s->files->f[i].name) == 0) {
1021 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1022 data, len);
1023 s->files->f[i].size = cpu_to_be32(len);
1024 fw_cfg_acpi_mr_save(s, filename, len);
1025 return ptr;
1029 assert(index < fw_cfg_file_slots(s));
1031 /* add new one */
1032 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1033 return NULL;
1036 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1037 const char *gen_id, Error **errp)
1039 FWCfgDataGeneratorClass *klass;
1040 GByteArray *array;
1041 Object *obj;
1042 gsize size;
1044 obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1045 if (!obj) {
1046 error_setg(errp, "Cannot find object ID '%s'", gen_id);
1047 return false;
1049 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1050 error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1051 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1052 return false;
1054 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1055 array = klass->get_data(obj, errp);
1056 if (!array) {
1057 return false;
1059 size = array->len;
1060 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1062 return true;
1065 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1067 int extra_hosts = 0;
1069 if (!bus) {
1070 return;
1073 QLIST_FOREACH(bus, &bus->child, sibling) {
1074 /* look for expander root buses */
1075 if (pci_bus_is_root(bus)) {
1076 extra_hosts++;
1080 if (extra_hosts && s) {
1081 uint64_t *val = g_malloc(sizeof(*val));
1082 *val = cpu_to_le64(extra_hosts);
1083 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1087 static void fw_cfg_machine_reset(void *opaque)
1089 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1090 FWCfgState *s = opaque;
1091 void *ptr;
1092 size_t len;
1093 char *buf;
1095 buf = get_boot_devices_list(&len);
1096 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1097 g_free(ptr);
1099 if (!mc->legacy_fw_cfg_order) {
1100 buf = get_boot_devices_lchs_list(&len);
1101 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1102 g_free(ptr);
1106 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1108 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1109 qemu_register_reset(fw_cfg_machine_reset, s);
1112 static Property fw_cfg_properties[] = {
1113 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1114 DEFINE_PROP_END_OF_LIST(),
1117 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1119 FWCfgState *s = FW_CFG(dev);
1120 MachineState *machine = MACHINE(qdev_get_machine());
1121 uint32_t version = FW_CFG_VERSION;
1123 if (!fw_cfg_find()) {
1124 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1125 return;
1128 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1129 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1130 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1131 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
1132 fw_cfg_bootsplash(s);
1133 fw_cfg_reboot(s);
1135 if (s->dma_enabled) {
1136 version |= FW_CFG_VERSION_DMA;
1139 fw_cfg_add_i32(s, FW_CFG_ID, version);
1141 s->machine_ready.notify = fw_cfg_machine_ready;
1142 qemu_add_machine_init_done_notifier(&s->machine_ready);
1145 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1146 AddressSpace *dma_as)
1148 DeviceState *dev;
1149 SysBusDevice *sbd;
1150 FWCfgIoState *ios;
1151 FWCfgState *s;
1152 bool dma_requested = dma_iobase && dma_as;
1154 dev = qdev_new(TYPE_FW_CFG_IO);
1155 if (!dma_requested) {
1156 qdev_prop_set_bit(dev, "dma_enabled", false);
1159 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1160 OBJECT(dev));
1162 sbd = SYS_BUS_DEVICE(dev);
1163 sysbus_realize_and_unref(sbd, &error_fatal);
1164 ios = FW_CFG_IO(dev);
1165 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1167 s = FW_CFG(dev);
1169 if (s->dma_enabled) {
1170 /* 64 bits for the address field */
1171 s->dma_as = dma_as;
1172 s->dma_addr = 0;
1173 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1176 return s;
1179 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1181 return fw_cfg_init_io_dma(iobase, 0, NULL);
1184 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1185 hwaddr data_addr, uint32_t data_width,
1186 hwaddr dma_addr, AddressSpace *dma_as)
1188 DeviceState *dev;
1189 SysBusDevice *sbd;
1190 FWCfgState *s;
1191 bool dma_requested = dma_addr && dma_as;
1193 dev = qdev_new(TYPE_FW_CFG_MEM);
1194 qdev_prop_set_uint32(dev, "data_width", data_width);
1195 if (!dma_requested) {
1196 qdev_prop_set_bit(dev, "dma_enabled", false);
1199 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1200 OBJECT(dev));
1202 sbd = SYS_BUS_DEVICE(dev);
1203 sysbus_realize_and_unref(sbd, &error_fatal);
1204 sysbus_mmio_map(sbd, 0, ctl_addr);
1205 sysbus_mmio_map(sbd, 1, data_addr);
1207 s = FW_CFG(dev);
1209 if (s->dma_enabled) {
1210 s->dma_as = dma_as;
1211 s->dma_addr = 0;
1212 sysbus_mmio_map(sbd, 2, dma_addr);
1215 return s;
1218 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1220 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1221 fw_cfg_data_mem_ops.valid.max_access_size,
1222 0, NULL);
1226 FWCfgState *fw_cfg_find(void)
1228 /* Returns NULL unless there is exactly one fw_cfg device */
1229 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1233 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1235 DeviceClass *dc = DEVICE_CLASS(klass);
1237 dc->reset = fw_cfg_reset;
1238 dc->vmsd = &vmstate_fw_cfg;
1240 device_class_set_props(dc, fw_cfg_properties);
1243 static const TypeInfo fw_cfg_info = {
1244 .name = TYPE_FW_CFG,
1245 .parent = TYPE_SYS_BUS_DEVICE,
1246 .abstract = true,
1247 .instance_size = sizeof(FWCfgState),
1248 .class_init = fw_cfg_class_init,
1251 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1253 uint16_t file_slots_max;
1255 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1256 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1257 FW_CFG_FILE_SLOTS_MIN);
1258 return;
1261 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1262 * that we permit. The actual (exclusive) value coming from the
1263 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1264 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1265 if (fw_cfg_file_slots(s) > file_slots_max) {
1266 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1267 file_slots_max);
1268 return;
1271 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1272 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1273 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1276 static Property fw_cfg_io_properties[] = {
1277 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1278 true),
1279 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1280 FW_CFG_FILE_SLOTS_DFLT),
1281 DEFINE_PROP_END_OF_LIST(),
1284 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1286 ERRP_GUARD();
1287 FWCfgIoState *s = FW_CFG_IO(dev);
1289 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1290 if (*errp) {
1291 return;
1294 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1295 * with half of the 16-bit control register. Hence, the total size
1296 * of the i/o region used is FW_CFG_CTL_SIZE */
1297 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1298 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1300 if (FW_CFG(s)->dma_enabled) {
1301 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1302 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1303 sizeof(dma_addr_t));
1306 fw_cfg_common_realize(dev, errp);
1309 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1311 DeviceClass *dc = DEVICE_CLASS(klass);
1313 dc->realize = fw_cfg_io_realize;
1314 device_class_set_props(dc, fw_cfg_io_properties);
1317 static const TypeInfo fw_cfg_io_info = {
1318 .name = TYPE_FW_CFG_IO,
1319 .parent = TYPE_FW_CFG,
1320 .instance_size = sizeof(FWCfgIoState),
1321 .class_init = fw_cfg_io_class_init,
1325 static Property fw_cfg_mem_properties[] = {
1326 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1327 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1328 true),
1329 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1330 FW_CFG_FILE_SLOTS_DFLT),
1331 DEFINE_PROP_END_OF_LIST(),
1334 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1336 ERRP_GUARD();
1337 FWCfgMemState *s = FW_CFG_MEM(dev);
1338 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1339 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1341 fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1342 if (*errp) {
1343 return;
1346 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1347 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1348 sysbus_init_mmio(sbd, &s->ctl_iomem);
1350 if (s->data_width > data_ops->valid.max_access_size) {
1351 s->wide_data_ops = *data_ops;
1353 s->wide_data_ops.valid.max_access_size = s->data_width;
1354 s->wide_data_ops.impl.max_access_size = s->data_width;
1355 data_ops = &s->wide_data_ops;
1357 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1358 "fwcfg.data", data_ops->valid.max_access_size);
1359 sysbus_init_mmio(sbd, &s->data_iomem);
1361 if (FW_CFG(s)->dma_enabled) {
1362 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1363 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1364 sizeof(dma_addr_t));
1365 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1368 fw_cfg_common_realize(dev, errp);
1371 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1373 DeviceClass *dc = DEVICE_CLASS(klass);
1375 dc->realize = fw_cfg_mem_realize;
1376 device_class_set_props(dc, fw_cfg_mem_properties);
1379 static const TypeInfo fw_cfg_mem_info = {
1380 .name = TYPE_FW_CFG_MEM,
1381 .parent = TYPE_FW_CFG,
1382 .instance_size = sizeof(FWCfgMemState),
1383 .class_init = fw_cfg_mem_class_init,
1386 static void fw_cfg_register_types(void)
1388 type_register_static(&fw_cfg_info);
1389 type_register_static(&fw_cfg_io_info);
1390 type_register_static(&fw_cfg_mem_info);
1393 type_init(fw_cfg_register_types)