4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
49 #include "hw/boards.h"
51 /* This check must be after config-host.h is included */
53 #include <sys/eventfd.h>
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
62 #define PAGE_SIZE qemu_real_host_page_size
67 #define DPRINTF(fmt, ...) \
68 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
70 #define DPRINTF(fmt, ...) \
74 #define KVM_MSI_HASHTAB_SIZE 256
76 struct KVMParkedVcpu
{
77 unsigned long vcpu_id
;
79 QLIST_ENTRY(KVMParkedVcpu
) node
;
82 enum KVMDirtyRingReaperState
{
83 KVM_DIRTY_RING_REAPER_NONE
= 0,
84 /* The reaper is sleeping */
85 KVM_DIRTY_RING_REAPER_WAIT
,
86 /* The reaper is reaping for dirty pages */
87 KVM_DIRTY_RING_REAPER_REAPING
,
91 * KVM reaper instance, responsible for collecting the KVM dirty bits
94 struct KVMDirtyRingReaper
{
95 /* The reaper thread */
96 QemuThread reaper_thr
;
97 volatile uint64_t reaper_iteration
; /* iteration number of reaper thr */
98 volatile enum KVMDirtyRingReaperState reaper_state
; /* reap thr state */
103 AccelState parent_obj
;
110 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
111 bool coalesced_flush_in_progress
;
113 int robust_singlestep
;
115 #ifdef KVM_CAP_SET_GUEST_DEBUG
116 QTAILQ_HEAD(, kvm_sw_breakpoint
) kvm_sw_breakpoints
;
118 int max_nested_state_len
;
122 bool kernel_irqchip_allowed
;
123 bool kernel_irqchip_required
;
124 OnOffAuto kernel_irqchip_split
;
126 uint64_t manual_dirty_log_protect
;
127 /* The man page (and posix) say ioctl numbers are signed int, but
128 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
129 * unsigned, and treating them as signed here can break things */
130 unsigned irq_set_ioctl
;
131 unsigned int sigmask_len
;
133 #ifdef KVM_CAP_IRQ_ROUTING
134 struct kvm_irq_routing
*irq_routes
;
135 int nr_allocated_irq_routes
;
136 unsigned long *used_gsi_bitmap
;
137 unsigned int gsi_count
;
138 QTAILQ_HEAD(, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
140 KVMMemoryListener memory_listener
;
141 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
143 /* For "info mtree -f" to tell if an MR is registered in KVM */
146 KVMMemoryListener
*ml
;
149 uint64_t kvm_dirty_ring_bytes
; /* Size of the per-vcpu dirty ring */
150 uint32_t kvm_dirty_ring_size
; /* Number of dirty GFNs per ring */
151 struct KVMDirtyRingReaper reaper
;
155 bool kvm_kernel_irqchip
;
156 bool kvm_split_irqchip
;
157 bool kvm_async_interrupts_allowed
;
158 bool kvm_halt_in_kernel_allowed
;
159 bool kvm_eventfds_allowed
;
160 bool kvm_irqfds_allowed
;
161 bool kvm_resamplefds_allowed
;
162 bool kvm_msi_via_irqfd_allowed
;
163 bool kvm_gsi_routing_allowed
;
164 bool kvm_gsi_direct_mapping
;
166 bool kvm_readonly_mem_allowed
;
167 bool kvm_vm_attributes_allowed
;
168 bool kvm_direct_msi_allowed
;
169 bool kvm_ioeventfd_any_length_allowed
;
170 bool kvm_msi_use_devid
;
171 static bool kvm_immediate_exit
;
172 static hwaddr kvm_max_slot_size
= ~0;
174 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
175 KVM_CAP_INFO(USER_MEMORY
),
176 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
177 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
181 static NotifierList kvm_irqchip_change_notifiers
=
182 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers
);
184 struct KVMResampleFd
{
186 EventNotifier
*resample_event
;
187 QLIST_ENTRY(KVMResampleFd
) node
;
189 typedef struct KVMResampleFd KVMResampleFd
;
192 * Only used with split irqchip where we need to do the resample fd
193 * kick for the kernel from userspace.
195 static QLIST_HEAD(, KVMResampleFd
) kvm_resample_fd_list
=
196 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list
);
198 static QemuMutex kml_slots_lock
;
200 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
201 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
203 static void kvm_slot_init_dirty_bitmap(KVMSlot
*mem
);
205 static inline void kvm_resample_fd_remove(int gsi
)
209 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
210 if (rfd
->gsi
== gsi
) {
211 QLIST_REMOVE(rfd
, node
);
218 static inline void kvm_resample_fd_insert(int gsi
, EventNotifier
*event
)
220 KVMResampleFd
*rfd
= g_new0(KVMResampleFd
, 1);
223 rfd
->resample_event
= event
;
225 QLIST_INSERT_HEAD(&kvm_resample_fd_list
, rfd
, node
);
228 void kvm_resample_fd_notify(int gsi
)
232 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
233 if (rfd
->gsi
== gsi
) {
234 event_notifier_set(rfd
->resample_event
);
235 trace_kvm_resample_fd_notify(gsi
);
241 int kvm_get_max_memslots(void)
243 KVMState
*s
= KVM_STATE(current_accel());
248 /* Called with KVMMemoryListener.slots_lock held */
249 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
251 KVMState
*s
= kvm_state
;
254 for (i
= 0; i
< s
->nr_slots
; i
++) {
255 if (kml
->slots
[i
].memory_size
== 0) {
256 return &kml
->slots
[i
];
263 bool kvm_has_free_slot(MachineState
*ms
)
265 KVMState
*s
= KVM_STATE(ms
->accelerator
);
267 KVMMemoryListener
*kml
= &s
->memory_listener
;
270 result
= !!kvm_get_free_slot(kml
);
276 /* Called with KVMMemoryListener.slots_lock held */
277 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
279 KVMSlot
*slot
= kvm_get_free_slot(kml
);
285 fprintf(stderr
, "%s: no free slot available\n", __func__
);
289 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
293 KVMState
*s
= kvm_state
;
296 for (i
= 0; i
< s
->nr_slots
; i
++) {
297 KVMSlot
*mem
= &kml
->slots
[i
];
299 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
308 * Calculate and align the start address and the size of the section.
309 * Return the size. If the size is 0, the aligned section is empty.
311 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
314 hwaddr size
= int128_get64(section
->size
);
315 hwaddr delta
, aligned
;
317 /* kvm works in page size chunks, but the function may be called
318 with sub-page size and unaligned start address. Pad the start
319 address to next and truncate size to previous page boundary. */
320 aligned
= ROUND_UP(section
->offset_within_address_space
,
321 qemu_real_host_page_size
);
322 delta
= aligned
- section
->offset_within_address_space
;
328 return (size
- delta
) & qemu_real_host_page_mask
;
331 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
334 KVMMemoryListener
*kml
= &s
->memory_listener
;
338 for (i
= 0; i
< s
->nr_slots
; i
++) {
339 KVMSlot
*mem
= &kml
->slots
[i
];
341 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
342 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
352 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
354 KVMState
*s
= kvm_state
;
355 struct kvm_userspace_memory_region mem
;
358 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
359 mem
.guest_phys_addr
= slot
->start_addr
;
360 mem
.userspace_addr
= (unsigned long)slot
->ram
;
361 mem
.flags
= slot
->flags
;
363 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
364 /* Set the slot size to 0 before setting the slot to the desired
365 * value. This is needed based on KVM commit 75d61fbc. */
367 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
372 mem
.memory_size
= slot
->memory_size
;
373 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
374 slot
->old_flags
= mem
.flags
;
376 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
377 mem
.memory_size
, mem
.userspace_addr
, ret
);
379 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
380 " start=0x%" PRIx64
", size=0x%" PRIx64
": %s",
381 __func__
, mem
.slot
, slot
->start_addr
,
382 (uint64_t)mem
.memory_size
, strerror(errno
));
387 static int do_kvm_destroy_vcpu(CPUState
*cpu
)
389 KVMState
*s
= kvm_state
;
391 struct KVMParkedVcpu
*vcpu
= NULL
;
394 DPRINTF("kvm_destroy_vcpu\n");
396 ret
= kvm_arch_destroy_vcpu(cpu
);
401 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
404 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
408 ret
= munmap(cpu
->kvm_run
, mmap_size
);
413 if (cpu
->kvm_dirty_gfns
) {
414 ret
= munmap(cpu
->kvm_dirty_gfns
, s
->kvm_dirty_ring_size
);
420 vcpu
= g_malloc0(sizeof(*vcpu
));
421 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
422 vcpu
->kvm_fd
= cpu
->kvm_fd
;
423 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
428 void kvm_destroy_vcpu(CPUState
*cpu
)
430 if (do_kvm_destroy_vcpu(cpu
) < 0) {
431 error_report("kvm_destroy_vcpu failed");
436 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
438 struct KVMParkedVcpu
*cpu
;
440 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
441 if (cpu
->vcpu_id
== vcpu_id
) {
444 QLIST_REMOVE(cpu
, node
);
445 kvm_fd
= cpu
->kvm_fd
;
451 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
454 int kvm_init_vcpu(CPUState
*cpu
, Error
**errp
)
456 KVMState
*s
= kvm_state
;
460 trace_kvm_init_vcpu(cpu
->cpu_index
, kvm_arch_vcpu_id(cpu
));
462 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
464 error_setg_errno(errp
, -ret
, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
465 kvm_arch_vcpu_id(cpu
));
471 cpu
->vcpu_dirty
= true;
473 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
476 error_setg_errno(errp
, -mmap_size
,
477 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
481 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
483 if (cpu
->kvm_run
== MAP_FAILED
) {
485 error_setg_errno(errp
, ret
,
486 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
487 kvm_arch_vcpu_id(cpu
));
491 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
492 s
->coalesced_mmio_ring
=
493 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
496 if (s
->kvm_dirty_ring_size
) {
497 /* Use MAP_SHARED to share pages with the kernel */
498 cpu
->kvm_dirty_gfns
= mmap(NULL
, s
->kvm_dirty_ring_size
,
499 PROT_READ
| PROT_WRITE
, MAP_SHARED
,
501 PAGE_SIZE
* KVM_DIRTY_LOG_PAGE_OFFSET
);
502 if (cpu
->kvm_dirty_gfns
== MAP_FAILED
) {
504 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret
);
509 ret
= kvm_arch_init_vcpu(cpu
);
511 error_setg_errno(errp
, -ret
,
512 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
513 kvm_arch_vcpu_id(cpu
));
520 * dirty pages logging control
523 static int kvm_mem_flags(MemoryRegion
*mr
)
525 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
528 if (memory_region_get_dirty_log_mask(mr
) != 0) {
529 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
531 if (readonly
&& kvm_readonly_mem_allowed
) {
532 flags
|= KVM_MEM_READONLY
;
537 /* Called with KVMMemoryListener.slots_lock held */
538 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
541 mem
->flags
= kvm_mem_flags(mr
);
543 /* If nothing changed effectively, no need to issue ioctl */
544 if (mem
->flags
== mem
->old_flags
) {
548 kvm_slot_init_dirty_bitmap(mem
);
549 return kvm_set_user_memory_region(kml
, mem
, false);
552 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
553 MemoryRegionSection
*section
)
555 hwaddr start_addr
, size
, slot_size
;
559 size
= kvm_align_section(section
, &start_addr
);
566 while (size
&& !ret
) {
567 slot_size
= MIN(kvm_max_slot_size
, size
);
568 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
570 /* We don't have a slot if we want to trap every access. */
574 ret
= kvm_slot_update_flags(kml
, mem
, section
->mr
);
575 start_addr
+= slot_size
;
584 static void kvm_log_start(MemoryListener
*listener
,
585 MemoryRegionSection
*section
,
588 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
595 r
= kvm_section_update_flags(kml
, section
);
601 static void kvm_log_stop(MemoryListener
*listener
,
602 MemoryRegionSection
*section
,
605 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
612 r
= kvm_section_update_flags(kml
, section
);
618 /* get kvm's dirty pages bitmap and update qemu's */
619 static void kvm_slot_sync_dirty_pages(KVMSlot
*slot
)
621 ram_addr_t start
= slot
->ram_start_offset
;
622 ram_addr_t pages
= slot
->memory_size
/ qemu_real_host_page_size
;
624 cpu_physical_memory_set_dirty_lebitmap(slot
->dirty_bmap
, start
, pages
);
627 static void kvm_slot_reset_dirty_pages(KVMSlot
*slot
)
629 memset(slot
->dirty_bmap
, 0, slot
->dirty_bmap_size
);
632 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
634 /* Allocate the dirty bitmap for a slot */
635 static void kvm_slot_init_dirty_bitmap(KVMSlot
*mem
)
637 if (!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) || mem
->dirty_bmap
) {
642 * XXX bad kernel interface alert
643 * For dirty bitmap, kernel allocates array of size aligned to
644 * bits-per-long. But for case when the kernel is 64bits and
645 * the userspace is 32bits, userspace can't align to the same
646 * bits-per-long, since sizeof(long) is different between kernel
647 * and user space. This way, userspace will provide buffer which
648 * may be 4 bytes less than the kernel will use, resulting in
649 * userspace memory corruption (which is not detectable by valgrind
650 * too, in most cases).
651 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
652 * a hope that sizeof(long) won't become >8 any time soon.
654 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
655 * And mem->memory_size is aligned to it (otherwise this mem can't
656 * be registered to KVM).
658 hwaddr bitmap_size
= ALIGN(mem
->memory_size
/ qemu_real_host_page_size
,
659 /*HOST_LONG_BITS*/ 64) / 8;
660 mem
->dirty_bmap
= g_malloc0(bitmap_size
);
661 mem
->dirty_bmap_size
= bitmap_size
;
665 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
666 * succeeded, false otherwise
668 static bool kvm_slot_get_dirty_log(KVMState
*s
, KVMSlot
*slot
)
670 struct kvm_dirty_log d
= {};
673 d
.dirty_bitmap
= slot
->dirty_bmap
;
674 d
.slot
= slot
->slot
| (slot
->as_id
<< 16);
675 ret
= kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
);
677 if (ret
== -ENOENT
) {
678 /* kernel does not have dirty bitmap in this slot */
682 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
688 /* Should be with all slots_lock held for the address spaces. */
689 static void kvm_dirty_ring_mark_page(KVMState
*s
, uint32_t as_id
,
690 uint32_t slot_id
, uint64_t offset
)
692 KVMMemoryListener
*kml
;
695 if (as_id
>= s
->nr_as
) {
699 kml
= s
->as
[as_id
].ml
;
700 mem
= &kml
->slots
[slot_id
];
702 if (!mem
->memory_size
|| offset
>=
703 (mem
->memory_size
/ qemu_real_host_page_size
)) {
707 set_bit(offset
, mem
->dirty_bmap
);
710 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn
*gfn
)
712 return gfn
->flags
== KVM_DIRTY_GFN_F_DIRTY
;
715 static void dirty_gfn_set_collected(struct kvm_dirty_gfn
*gfn
)
717 gfn
->flags
= KVM_DIRTY_GFN_F_RESET
;
721 * Should be with all slots_lock held for the address spaces. It returns the
722 * dirty page we've collected on this dirty ring.
724 static uint32_t kvm_dirty_ring_reap_one(KVMState
*s
, CPUState
*cpu
)
726 struct kvm_dirty_gfn
*dirty_gfns
= cpu
->kvm_dirty_gfns
, *cur
;
727 uint32_t ring_size
= s
->kvm_dirty_ring_size
;
728 uint32_t count
= 0, fetch
= cpu
->kvm_fetch_index
;
730 assert(dirty_gfns
&& ring_size
);
731 trace_kvm_dirty_ring_reap_vcpu(cpu
->cpu_index
);
734 cur
= &dirty_gfns
[fetch
% ring_size
];
735 if (!dirty_gfn_is_dirtied(cur
)) {
738 kvm_dirty_ring_mark_page(s
, cur
->slot
>> 16, cur
->slot
& 0xffff,
740 dirty_gfn_set_collected(cur
);
741 trace_kvm_dirty_ring_page(cpu
->cpu_index
, fetch
, cur
->offset
);
745 cpu
->kvm_fetch_index
= fetch
;
750 /* Must be with slots_lock held */
751 static uint64_t kvm_dirty_ring_reap_locked(KVMState
*s
)
761 total
+= kvm_dirty_ring_reap_one(s
, cpu
);
765 ret
= kvm_vm_ioctl(s
, KVM_RESET_DIRTY_RINGS
);
766 assert(ret
== total
);
769 stamp
= get_clock() - stamp
;
772 trace_kvm_dirty_ring_reap(total
, stamp
/ 1000);
779 * Currently for simplicity, we must hold BQL before calling this. We can
780 * consider to drop the BQL if we're clear with all the race conditions.
782 static uint64_t kvm_dirty_ring_reap(KVMState
*s
)
787 * We need to lock all kvm slots for all address spaces here,
790 * (1) We need to mark dirty for dirty bitmaps in multiple slots
791 * and for tons of pages, so it's better to take the lock here
792 * once rather than once per page. And more importantly,
794 * (2) We must _NOT_ publish dirty bits to the other threads
795 * (e.g., the migration thread) via the kvm memory slot dirty
796 * bitmaps before correctly re-protect those dirtied pages.
797 * Otherwise we can have potential risk of data corruption if
798 * the page data is read in the other thread before we do
802 total
= kvm_dirty_ring_reap_locked(s
);
808 static void do_kvm_cpu_synchronize_kick(CPUState
*cpu
, run_on_cpu_data arg
)
810 /* No need to do anything */
814 * Kick all vcpus out in a synchronized way. When returned, we
815 * guarantee that every vcpu has been kicked and at least returned to
818 static void kvm_cpu_synchronize_kick_all(void)
823 run_on_cpu(cpu
, do_kvm_cpu_synchronize_kick
, RUN_ON_CPU_NULL
);
828 * Flush all the existing dirty pages to the KVM slot buffers. When
829 * this call returns, we guarantee that all the touched dirty pages
830 * before calling this function have been put into the per-kvmslot
833 * This function must be called with BQL held.
835 static void kvm_dirty_ring_flush(void)
837 trace_kvm_dirty_ring_flush(0);
839 * The function needs to be serialized. Since this function
840 * should always be with BQL held, serialization is guaranteed.
841 * However, let's be sure of it.
843 assert(qemu_mutex_iothread_locked());
845 * First make sure to flush the hardware buffers by kicking all
846 * vcpus out in a synchronous way.
848 kvm_cpu_synchronize_kick_all();
849 kvm_dirty_ring_reap(kvm_state
);
850 trace_kvm_dirty_ring_flush(1);
854 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
856 * This function will first try to fetch dirty bitmap from the kernel,
857 * and then updates qemu's dirty bitmap.
859 * NOTE: caller must be with kml->slots_lock held.
861 * @kml: the KVM memory listener object
862 * @section: the memory section to sync the dirty bitmap with
864 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
865 MemoryRegionSection
*section
)
867 KVMState
*s
= kvm_state
;
869 hwaddr start_addr
, size
;
872 size
= kvm_align_section(section
, &start_addr
);
874 slot_size
= MIN(kvm_max_slot_size
, size
);
875 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
877 /* We don't have a slot if we want to trap every access. */
880 if (kvm_slot_get_dirty_log(s
, mem
)) {
881 kvm_slot_sync_dirty_pages(mem
);
883 start_addr
+= slot_size
;
888 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
889 #define KVM_CLEAR_LOG_SHIFT 6
890 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
891 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
893 static int kvm_log_clear_one_slot(KVMSlot
*mem
, int as_id
, uint64_t start
,
896 KVMState
*s
= kvm_state
;
897 uint64_t end
, bmap_start
, start_delta
, bmap_npages
;
898 struct kvm_clear_dirty_log d
;
899 unsigned long *bmap_clear
= NULL
, psize
= qemu_real_host_page_size
;
903 * We need to extend either the start or the size or both to
904 * satisfy the KVM interface requirement. Firstly, do the start
905 * page alignment on 64 host pages
907 bmap_start
= start
& KVM_CLEAR_LOG_MASK
;
908 start_delta
= start
- bmap_start
;
912 * The kernel interface has restriction on the size too, that either:
914 * (1) the size is 64 host pages aligned (just like the start), or
915 * (2) the size fills up until the end of the KVM memslot.
917 bmap_npages
= DIV_ROUND_UP(size
+ start_delta
, KVM_CLEAR_LOG_ALIGN
)
918 << KVM_CLEAR_LOG_SHIFT
;
919 end
= mem
->memory_size
/ psize
;
920 if (bmap_npages
> end
- bmap_start
) {
921 bmap_npages
= end
- bmap_start
;
923 start_delta
/= psize
;
926 * Prepare the bitmap to clear dirty bits. Here we must guarantee
927 * that we won't clear any unknown dirty bits otherwise we might
928 * accidentally clear some set bits which are not yet synced from
929 * the kernel into QEMU's bitmap, then we'll lose track of the
930 * guest modifications upon those pages (which can directly lead
931 * to guest data loss or panic after migration).
933 * Layout of the KVMSlot.dirty_bmap:
935 * |<-------- bmap_npages -----------..>|
938 * |----------------|-------------|------------------|------------|
941 * start bmap_start (start) end
942 * of memslot of memslot
944 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
947 assert(bmap_start
% BITS_PER_LONG
== 0);
948 /* We should never do log_clear before log_sync */
949 assert(mem
->dirty_bmap
);
950 if (start_delta
|| bmap_npages
- size
/ psize
) {
951 /* Slow path - we need to manipulate a temp bitmap */
952 bmap_clear
= bitmap_new(bmap_npages
);
953 bitmap_copy_with_src_offset(bmap_clear
, mem
->dirty_bmap
,
954 bmap_start
, start_delta
+ size
/ psize
);
956 * We need to fill the holes at start because that was not
957 * specified by the caller and we extended the bitmap only for
960 bitmap_clear(bmap_clear
, 0, start_delta
);
961 d
.dirty_bitmap
= bmap_clear
;
964 * Fast path - both start and size align well with BITS_PER_LONG
965 * (or the end of memory slot)
967 d
.dirty_bitmap
= mem
->dirty_bmap
+ BIT_WORD(bmap_start
);
970 d
.first_page
= bmap_start
;
971 /* It should never overflow. If it happens, say something */
972 assert(bmap_npages
<= UINT32_MAX
);
973 d
.num_pages
= bmap_npages
;
974 d
.slot
= mem
->slot
| (as_id
<< 16);
976 ret
= kvm_vm_ioctl(s
, KVM_CLEAR_DIRTY_LOG
, &d
);
977 if (ret
< 0 && ret
!= -ENOENT
) {
978 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
979 "start=0x%"PRIx64
", size=0x%"PRIx32
", errno=%d",
980 __func__
, d
.slot
, (uint64_t)d
.first_page
,
981 (uint32_t)d
.num_pages
, ret
);
984 trace_kvm_clear_dirty_log(d
.slot
, d
.first_page
, d
.num_pages
);
988 * After we have updated the remote dirty bitmap, we update the
989 * cached bitmap as well for the memslot, then if another user
990 * clears the same region we know we shouldn't clear it again on
991 * the remote otherwise it's data loss as well.
993 bitmap_clear(mem
->dirty_bmap
, bmap_start
+ start_delta
,
995 /* This handles the NULL case well */
1002 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1004 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1005 * protection in the host kernel because in that case this operation
1006 * will be done within log_sync().
1008 * @kml: the kvm memory listener
1009 * @section: the memory range to clear dirty bitmap
1011 static int kvm_physical_log_clear(KVMMemoryListener
*kml
,
1012 MemoryRegionSection
*section
)
1014 KVMState
*s
= kvm_state
;
1015 uint64_t start
, size
, offset
, count
;
1019 if (!s
->manual_dirty_log_protect
) {
1020 /* No need to do explicit clear */
1024 start
= section
->offset_within_address_space
;
1025 size
= int128_get64(section
->size
);
1028 /* Nothing more we can do... */
1034 for (i
= 0; i
< s
->nr_slots
; i
++) {
1035 mem
= &kml
->slots
[i
];
1036 /* Discard slots that are empty or do not overlap the section */
1037 if (!mem
->memory_size
||
1038 mem
->start_addr
> start
+ size
- 1 ||
1039 start
> mem
->start_addr
+ mem
->memory_size
- 1) {
1043 if (start
>= mem
->start_addr
) {
1044 /* The slot starts before section or is aligned to it. */
1045 offset
= start
- mem
->start_addr
;
1046 count
= MIN(mem
->memory_size
- offset
, size
);
1048 /* The slot starts after section. */
1050 count
= MIN(mem
->memory_size
, size
- (mem
->start_addr
- start
));
1052 ret
= kvm_log_clear_one_slot(mem
, kml
->as_id
, offset
, count
);
1063 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
1064 MemoryRegionSection
*secion
,
1065 hwaddr start
, hwaddr size
)
1067 KVMState
*s
= kvm_state
;
1069 if (s
->coalesced_mmio
) {
1070 struct kvm_coalesced_mmio_zone zone
;
1076 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
1080 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
1081 MemoryRegionSection
*secion
,
1082 hwaddr start
, hwaddr size
)
1084 KVMState
*s
= kvm_state
;
1086 if (s
->coalesced_mmio
) {
1087 struct kvm_coalesced_mmio_zone zone
;
1093 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
1097 static void kvm_coalesce_pio_add(MemoryListener
*listener
,
1098 MemoryRegionSection
*section
,
1099 hwaddr start
, hwaddr size
)
1101 KVMState
*s
= kvm_state
;
1103 if (s
->coalesced_pio
) {
1104 struct kvm_coalesced_mmio_zone zone
;
1110 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
1114 static void kvm_coalesce_pio_del(MemoryListener
*listener
,
1115 MemoryRegionSection
*section
,
1116 hwaddr start
, hwaddr size
)
1118 KVMState
*s
= kvm_state
;
1120 if (s
->coalesced_pio
) {
1121 struct kvm_coalesced_mmio_zone zone
;
1127 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
1131 static MemoryListener kvm_coalesced_pio_listener
= {
1132 .coalesced_io_add
= kvm_coalesce_pio_add
,
1133 .coalesced_io_del
= kvm_coalesce_pio_del
,
1136 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
1140 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
1148 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
1152 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
1154 /* VM wide version not implemented, use global one instead */
1155 ret
= kvm_check_extension(s
, extension
);
1161 typedef struct HWPoisonPage
{
1162 ram_addr_t ram_addr
;
1163 QLIST_ENTRY(HWPoisonPage
) list
;
1166 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
1167 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
1169 static void kvm_unpoison_all(void *param
)
1171 HWPoisonPage
*page
, *next_page
;
1173 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
1174 QLIST_REMOVE(page
, list
);
1175 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
1180 void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
1184 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
1185 if (page
->ram_addr
== ram_addr
) {
1189 page
= g_new(HWPoisonPage
, 1);
1190 page
->ram_addr
= ram_addr
;
1191 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
1194 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
1196 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
1197 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
1198 * endianness, but the memory core hands them in target endianness.
1199 * For example, PPC is always treated as big-endian even if running
1200 * on KVM and on PPC64LE. Correct here.
1214 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
1215 bool assign
, uint32_t size
, bool datamatch
)
1218 struct kvm_ioeventfd iofd
= {
1219 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1226 trace_kvm_set_ioeventfd_mmio(fd
, (uint64_t)addr
, val
, assign
, size
,
1228 if (!kvm_enabled()) {
1233 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1236 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1239 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1248 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
1249 bool assign
, uint32_t size
, bool datamatch
)
1251 struct kvm_ioeventfd kick
= {
1252 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1254 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
1259 trace_kvm_set_ioeventfd_pio(fd
, addr
, val
, assign
, size
, datamatch
);
1260 if (!kvm_enabled()) {
1264 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1267 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1269 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1277 static int kvm_check_many_ioeventfds(void)
1279 /* Userspace can use ioeventfd for io notification. This requires a host
1280 * that supports eventfd(2) and an I/O thread; since eventfd does not
1281 * support SIGIO it cannot interrupt the vcpu.
1283 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1284 * can avoid creating too many ioeventfds.
1286 #if defined(CONFIG_EVENTFD)
1289 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
1290 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
1291 if (ioeventfds
[i
] < 0) {
1294 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
1296 close(ioeventfds
[i
]);
1301 /* Decide whether many devices are supported or not */
1302 ret
= i
== ARRAY_SIZE(ioeventfds
);
1305 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
1306 close(ioeventfds
[i
]);
1314 static const KVMCapabilityInfo
*
1315 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
1317 while (list
->name
) {
1318 if (!kvm_check_extension(s
, list
->value
)) {
1326 void kvm_set_max_memslot_size(hwaddr max_slot_size
)
1329 ROUND_UP(max_slot_size
, qemu_real_host_page_size
) == max_slot_size
1331 kvm_max_slot_size
= max_slot_size
;
1334 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
1335 MemoryRegionSection
*section
, bool add
)
1339 MemoryRegion
*mr
= section
->mr
;
1340 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
1341 hwaddr start_addr
, size
, slot_size
, mr_offset
;
1342 ram_addr_t ram_start_offset
;
1345 if (!memory_region_is_ram(mr
)) {
1346 if (writeable
|| !kvm_readonly_mem_allowed
) {
1348 } else if (!mr
->romd_mode
) {
1349 /* If the memory device is not in romd_mode, then we actually want
1350 * to remove the kvm memory slot so all accesses will trap. */
1355 size
= kvm_align_section(section
, &start_addr
);
1360 /* The offset of the kvmslot within the memory region */
1361 mr_offset
= section
->offset_within_region
+ start_addr
-
1362 section
->offset_within_address_space
;
1364 /* use aligned delta to align the ram address and offset */
1365 ram
= memory_region_get_ram_ptr(mr
) + mr_offset
;
1366 ram_start_offset
= memory_region_get_ram_addr(mr
) + mr_offset
;
1372 slot_size
= MIN(kvm_max_slot_size
, size
);
1373 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
1377 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1379 * NOTE: We should be aware of the fact that here we're only
1380 * doing a best effort to sync dirty bits. No matter whether
1381 * we're using dirty log or dirty ring, we ignored two facts:
1383 * (1) dirty bits can reside in hardware buffers (PML)
1385 * (2) after we collected dirty bits here, pages can be dirtied
1386 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1389 * Not easy. Let's cross the fingers until it's fixed.
1391 if (kvm_state
->kvm_dirty_ring_size
) {
1392 kvm_dirty_ring_reap_locked(kvm_state
);
1394 kvm_slot_get_dirty_log(kvm_state
, mem
);
1396 kvm_slot_sync_dirty_pages(mem
);
1399 /* unregister the slot */
1400 g_free(mem
->dirty_bmap
);
1401 mem
->dirty_bmap
= NULL
;
1402 mem
->memory_size
= 0;
1404 err
= kvm_set_user_memory_region(kml
, mem
, false);
1406 fprintf(stderr
, "%s: error unregistering slot: %s\n",
1407 __func__
, strerror(-err
));
1410 start_addr
+= slot_size
;
1416 /* register the new slot */
1418 slot_size
= MIN(kvm_max_slot_size
, size
);
1419 mem
= kvm_alloc_slot(kml
);
1420 mem
->as_id
= kml
->as_id
;
1421 mem
->memory_size
= slot_size
;
1422 mem
->start_addr
= start_addr
;
1423 mem
->ram_start_offset
= ram_start_offset
;
1425 mem
->flags
= kvm_mem_flags(mr
);
1426 kvm_slot_init_dirty_bitmap(mem
);
1427 err
= kvm_set_user_memory_region(kml
, mem
, true);
1429 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
1433 start_addr
+= slot_size
;
1434 ram_start_offset
+= slot_size
;
1443 static void *kvm_dirty_ring_reaper_thread(void *data
)
1446 struct KVMDirtyRingReaper
*r
= &s
->reaper
;
1448 rcu_register_thread();
1450 trace_kvm_dirty_ring_reaper("init");
1453 r
->reaper_state
= KVM_DIRTY_RING_REAPER_WAIT
;
1454 trace_kvm_dirty_ring_reaper("wait");
1456 * TODO: provide a smarter timeout rather than a constant?
1460 trace_kvm_dirty_ring_reaper("wakeup");
1461 r
->reaper_state
= KVM_DIRTY_RING_REAPER_REAPING
;
1463 qemu_mutex_lock_iothread();
1464 kvm_dirty_ring_reap(s
);
1465 qemu_mutex_unlock_iothread();
1467 r
->reaper_iteration
++;
1470 trace_kvm_dirty_ring_reaper("exit");
1472 rcu_unregister_thread();
1477 static int kvm_dirty_ring_reaper_init(KVMState
*s
)
1479 struct KVMDirtyRingReaper
*r
= &s
->reaper
;
1481 qemu_thread_create(&r
->reaper_thr
, "kvm-reaper",
1482 kvm_dirty_ring_reaper_thread
,
1483 s
, QEMU_THREAD_JOINABLE
);
1488 static void kvm_region_add(MemoryListener
*listener
,
1489 MemoryRegionSection
*section
)
1491 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1493 memory_region_ref(section
->mr
);
1494 kvm_set_phys_mem(kml
, section
, true);
1497 static void kvm_region_del(MemoryListener
*listener
,
1498 MemoryRegionSection
*section
)
1500 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1502 kvm_set_phys_mem(kml
, section
, false);
1503 memory_region_unref(section
->mr
);
1506 static void kvm_log_sync(MemoryListener
*listener
,
1507 MemoryRegionSection
*section
)
1509 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1512 kvm_physical_sync_dirty_bitmap(kml
, section
);
1516 static void kvm_log_sync_global(MemoryListener
*l
)
1518 KVMMemoryListener
*kml
= container_of(l
, KVMMemoryListener
, listener
);
1519 KVMState
*s
= kvm_state
;
1523 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1524 kvm_dirty_ring_flush();
1527 * TODO: make this faster when nr_slots is big while there are
1528 * only a few used slots (small VMs).
1531 for (i
= 0; i
< s
->nr_slots
; i
++) {
1532 mem
= &kml
->slots
[i
];
1533 if (mem
->memory_size
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1534 kvm_slot_sync_dirty_pages(mem
);
1536 * This is not needed by KVM_GET_DIRTY_LOG because the
1537 * ioctl will unconditionally overwrite the whole region.
1538 * However kvm dirty ring has no such side effect.
1540 kvm_slot_reset_dirty_pages(mem
);
1546 static void kvm_log_clear(MemoryListener
*listener
,
1547 MemoryRegionSection
*section
)
1549 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1552 r
= kvm_physical_log_clear(kml
, section
);
1554 error_report_once("%s: kvm log clear failed: mr=%s "
1555 "offset=%"HWADDR_PRIx
" size=%"PRIx64
, __func__
,
1556 section
->mr
->name
, section
->offset_within_region
,
1557 int128_get64(section
->size
));
1562 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
1563 MemoryRegionSection
*section
,
1564 bool match_data
, uint64_t data
,
1567 int fd
= event_notifier_get_fd(e
);
1570 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1571 data
, true, int128_get64(section
->size
),
1574 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1575 __func__
, strerror(-r
), -r
);
1580 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
1581 MemoryRegionSection
*section
,
1582 bool match_data
, uint64_t data
,
1585 int fd
= event_notifier_get_fd(e
);
1588 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1589 data
, false, int128_get64(section
->size
),
1592 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1593 __func__
, strerror(-r
), -r
);
1598 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
1599 MemoryRegionSection
*section
,
1600 bool match_data
, uint64_t data
,
1603 int fd
= event_notifier_get_fd(e
);
1606 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1607 data
, true, int128_get64(section
->size
),
1610 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1611 __func__
, strerror(-r
), -r
);
1616 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
1617 MemoryRegionSection
*section
,
1618 bool match_data
, uint64_t data
,
1622 int fd
= event_notifier_get_fd(e
);
1625 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1626 data
, false, int128_get64(section
->size
),
1629 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1630 __func__
, strerror(-r
), -r
);
1635 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
1636 AddressSpace
*as
, int as_id
)
1640 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1643 for (i
= 0; i
< s
->nr_slots
; i
++) {
1644 kml
->slots
[i
].slot
= i
;
1647 kml
->listener
.region_add
= kvm_region_add
;
1648 kml
->listener
.region_del
= kvm_region_del
;
1649 kml
->listener
.log_start
= kvm_log_start
;
1650 kml
->listener
.log_stop
= kvm_log_stop
;
1651 kml
->listener
.priority
= 10;
1653 if (s
->kvm_dirty_ring_size
) {
1654 kml
->listener
.log_sync_global
= kvm_log_sync_global
;
1656 kml
->listener
.log_sync
= kvm_log_sync
;
1657 kml
->listener
.log_clear
= kvm_log_clear
;
1660 memory_listener_register(&kml
->listener
, as
);
1662 for (i
= 0; i
< s
->nr_as
; ++i
) {
1671 static MemoryListener kvm_io_listener
= {
1672 .eventfd_add
= kvm_io_ioeventfd_add
,
1673 .eventfd_del
= kvm_io_ioeventfd_del
,
1677 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
1679 struct kvm_irq_level event
;
1682 assert(kvm_async_interrupts_enabled());
1684 event
.level
= level
;
1686 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1688 perror("kvm_set_irq");
1692 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1695 #ifdef KVM_CAP_IRQ_ROUTING
1696 typedef struct KVMMSIRoute
{
1697 struct kvm_irq_routing_entry kroute
;
1698 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1701 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1703 set_bit(gsi
, s
->used_gsi_bitmap
);
1706 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1708 clear_bit(gsi
, s
->used_gsi_bitmap
);
1711 void kvm_init_irq_routing(KVMState
*s
)
1715 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1716 if (gsi_count
> 0) {
1717 /* Round up so we can search ints using ffs */
1718 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1719 s
->gsi_count
= gsi_count
;
1722 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1723 s
->nr_allocated_irq_routes
= 0;
1725 if (!kvm_direct_msi_allowed
) {
1726 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1727 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1731 kvm_arch_init_irq_routing(s
);
1734 void kvm_irqchip_commit_routes(KVMState
*s
)
1738 if (kvm_gsi_direct_mapping()) {
1742 if (!kvm_gsi_routing_enabled()) {
1746 s
->irq_routes
->flags
= 0;
1747 trace_kvm_irqchip_commit_routes();
1748 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1752 static void kvm_add_routing_entry(KVMState
*s
,
1753 struct kvm_irq_routing_entry
*entry
)
1755 struct kvm_irq_routing_entry
*new;
1758 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1759 n
= s
->nr_allocated_irq_routes
* 2;
1763 size
= sizeof(struct kvm_irq_routing
);
1764 size
+= n
* sizeof(*new);
1765 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1766 s
->nr_allocated_irq_routes
= n
;
1768 n
= s
->irq_routes
->nr
++;
1769 new = &s
->irq_routes
->entries
[n
];
1773 set_gsi(s
, entry
->gsi
);
1776 static int kvm_update_routing_entry(KVMState
*s
,
1777 struct kvm_irq_routing_entry
*new_entry
)
1779 struct kvm_irq_routing_entry
*entry
;
1782 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1783 entry
= &s
->irq_routes
->entries
[n
];
1784 if (entry
->gsi
!= new_entry
->gsi
) {
1788 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1792 *entry
= *new_entry
;
1800 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1802 struct kvm_irq_routing_entry e
= {};
1804 assert(pin
< s
->gsi_count
);
1807 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1809 e
.u
.irqchip
.irqchip
= irqchip
;
1810 e
.u
.irqchip
.pin
= pin
;
1811 kvm_add_routing_entry(s
, &e
);
1814 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1816 struct kvm_irq_routing_entry
*e
;
1819 if (kvm_gsi_direct_mapping()) {
1823 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1824 e
= &s
->irq_routes
->entries
[i
];
1825 if (e
->gsi
== virq
) {
1826 s
->irq_routes
->nr
--;
1827 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1831 kvm_arch_release_virq_post(virq
);
1832 trace_kvm_irqchip_release_virq(virq
);
1835 void kvm_irqchip_add_change_notifier(Notifier
*n
)
1837 notifier_list_add(&kvm_irqchip_change_notifiers
, n
);
1840 void kvm_irqchip_remove_change_notifier(Notifier
*n
)
1845 void kvm_irqchip_change_notify(void)
1847 notifier_list_notify(&kvm_irqchip_change_notifiers
, NULL
);
1850 static unsigned int kvm_hash_msi(uint32_t data
)
1852 /* This is optimized for IA32 MSI layout. However, no other arch shall
1853 * repeat the mistake of not providing a direct MSI injection API. */
1857 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1859 KVMMSIRoute
*route
, *next
;
1862 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1863 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1864 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1865 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1871 static int kvm_irqchip_get_virq(KVMState
*s
)
1876 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1877 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1878 * number can succeed even though a new route entry cannot be added.
1879 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1881 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1882 kvm_flush_dynamic_msi_routes(s
);
1885 /* Return the lowest unused GSI in the bitmap */
1886 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1887 if (next_virq
>= s
->gsi_count
) {
1894 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1896 unsigned int hash
= kvm_hash_msi(msg
.data
);
1899 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1900 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1901 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1902 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1909 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1914 if (kvm_direct_msi_allowed
) {
1915 msi
.address_lo
= (uint32_t)msg
.address
;
1916 msi
.address_hi
= msg
.address
>> 32;
1917 msi
.data
= le32_to_cpu(msg
.data
);
1919 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1921 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1924 route
= kvm_lookup_msi_route(s
, msg
);
1928 virq
= kvm_irqchip_get_virq(s
);
1933 route
= g_malloc0(sizeof(KVMMSIRoute
));
1934 route
->kroute
.gsi
= virq
;
1935 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1936 route
->kroute
.flags
= 0;
1937 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1938 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1939 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1941 kvm_add_routing_entry(s
, &route
->kroute
);
1942 kvm_irqchip_commit_routes(s
);
1944 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1948 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1950 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1953 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1955 struct kvm_irq_routing_entry kroute
= {};
1957 MSIMessage msg
= {0, 0};
1959 if (pci_available
&& dev
) {
1960 msg
= pci_get_msi_message(dev
, vector
);
1963 if (kvm_gsi_direct_mapping()) {
1964 return kvm_arch_msi_data_to_gsi(msg
.data
);
1967 if (!kvm_gsi_routing_enabled()) {
1971 virq
= kvm_irqchip_get_virq(s
);
1977 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1979 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1980 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1981 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1982 if (pci_available
&& kvm_msi_devid_required()) {
1983 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1984 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1986 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1987 kvm_irqchip_release_virq(s
, virq
);
1991 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
1994 kvm_add_routing_entry(s
, &kroute
);
1995 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1996 kvm_irqchip_commit_routes(s
);
2001 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
2004 struct kvm_irq_routing_entry kroute
= {};
2006 if (kvm_gsi_direct_mapping()) {
2010 if (!kvm_irqchip_in_kernel()) {
2015 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
2017 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
2018 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
2019 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
2020 if (pci_available
&& kvm_msi_devid_required()) {
2021 kroute
.flags
= KVM_MSI_VALID_DEVID
;
2022 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
2024 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
2028 trace_kvm_irqchip_update_msi_route(virq
);
2030 return kvm_update_routing_entry(s
, &kroute
);
2033 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
2034 EventNotifier
*resample
, int virq
,
2037 int fd
= event_notifier_get_fd(event
);
2038 int rfd
= resample
? event_notifier_get_fd(resample
) : -1;
2040 struct kvm_irqfd irqfd
= {
2043 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
2048 if (kvm_irqchip_is_split()) {
2050 * When the slow irqchip (e.g. IOAPIC) is in the
2051 * userspace, KVM kernel resamplefd will not work because
2052 * the EOI of the interrupt will be delivered to userspace
2053 * instead, so the KVM kernel resamplefd kick will be
2054 * skipped. The userspace here mimics what the kernel
2055 * provides with resamplefd, remember the resamplefd and
2056 * kick it when we receive EOI of this IRQ.
2058 * This is hackery because IOAPIC is mostly bypassed
2059 * (except EOI broadcasts) when irqfd is used. However
2060 * this can bring much performance back for split irqchip
2061 * with INTx IRQs (for VFIO, this gives 93% perf of the
2062 * full fast path, which is 46% perf boost comparing to
2063 * the INTx slow path).
2065 kvm_resample_fd_insert(virq
, resample
);
2067 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
2068 irqfd
.resamplefd
= rfd
;
2070 } else if (!assign
) {
2071 if (kvm_irqchip_is_split()) {
2072 kvm_resample_fd_remove(virq
);
2076 if (!kvm_irqfds_enabled()) {
2080 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
2083 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
2085 struct kvm_irq_routing_entry kroute
= {};
2088 if (!kvm_gsi_routing_enabled()) {
2092 virq
= kvm_irqchip_get_virq(s
);
2098 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2100 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
2101 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
2102 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
2103 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
2104 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
2106 kvm_add_routing_entry(s
, &kroute
);
2111 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
2113 struct kvm_irq_routing_entry kroute
= {};
2116 if (!kvm_gsi_routing_enabled()) {
2119 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
2122 virq
= kvm_irqchip_get_virq(s
);
2128 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
2130 kroute
.u
.hv_sint
.vcpu
= vcpu
;
2131 kroute
.u
.hv_sint
.sint
= sint
;
2133 kvm_add_routing_entry(s
, &kroute
);
2134 kvm_irqchip_commit_routes(s
);
2139 #else /* !KVM_CAP_IRQ_ROUTING */
2141 void kvm_init_irq_routing(KVMState
*s
)
2145 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
2149 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
2154 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
2159 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
2164 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
2169 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
2170 EventNotifier
*resample
, int virq
,
2176 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
2180 #endif /* !KVM_CAP_IRQ_ROUTING */
2182 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
2183 EventNotifier
*rn
, int virq
)
2185 return kvm_irqchip_assign_irqfd(s
, n
, rn
, virq
, true);
2188 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
2191 return kvm_irqchip_assign_irqfd(s
, n
, NULL
, virq
, false);
2194 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
2195 EventNotifier
*rn
, qemu_irq irq
)
2198 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
2203 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
2206 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
2210 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
2215 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
2218 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
2220 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
2223 static void kvm_irqchip_create(KVMState
*s
)
2227 assert(s
->kernel_irqchip_split
!= ON_OFF_AUTO_AUTO
);
2228 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
2230 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
2231 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
2233 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
2240 /* First probe and see if there's a arch-specific hook to create the
2241 * in-kernel irqchip for us */
2242 ret
= kvm_arch_irqchip_create(s
);
2244 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_ON
) {
2245 perror("Split IRQ chip mode not supported.");
2248 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
2252 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
2256 kvm_kernel_irqchip
= true;
2257 /* If we have an in-kernel IRQ chip then we must have asynchronous
2258 * interrupt delivery (though the reverse is not necessarily true)
2260 kvm_async_interrupts_allowed
= true;
2261 kvm_halt_in_kernel_allowed
= true;
2263 kvm_init_irq_routing(s
);
2265 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2268 /* Find number of supported CPUs using the recommended
2269 * procedure from the kernel API documentation to cope with
2270 * older kernels that may be missing capabilities.
2272 static int kvm_recommended_vcpus(KVMState
*s
)
2274 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
2275 return (ret
) ? ret
: 4;
2278 static int kvm_max_vcpus(KVMState
*s
)
2280 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
2281 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
2284 static int kvm_max_vcpu_id(KVMState
*s
)
2286 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
2287 return (ret
) ? ret
: kvm_max_vcpus(s
);
2290 bool kvm_vcpu_id_is_valid(int vcpu_id
)
2292 KVMState
*s
= KVM_STATE(current_accel());
2293 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
2296 static int kvm_init(MachineState
*ms
)
2298 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2299 static const char upgrade_note
[] =
2300 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2301 "(see http://sourceforge.net/projects/kvm).\n";
2306 { "SMP", ms
->smp
.cpus
},
2307 { "hotpluggable", ms
->smp
.max_cpus
},
2310 int soft_vcpus_limit
, hard_vcpus_limit
;
2312 const KVMCapabilityInfo
*missing_cap
;
2315 uint64_t dirty_log_manual_caps
;
2317 qemu_mutex_init(&kml_slots_lock
);
2319 s
= KVM_STATE(ms
->accelerator
);
2322 * On systems where the kernel can support different base page
2323 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2324 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2325 * page size for the system though.
2327 assert(TARGET_PAGE_SIZE
<= qemu_real_host_page_size
);
2331 #ifdef KVM_CAP_SET_GUEST_DEBUG
2332 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
2334 QLIST_INIT(&s
->kvm_parked_vcpus
);
2335 s
->fd
= qemu_open_old("/dev/kvm", O_RDWR
);
2337 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
2342 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
2343 if (ret
< KVM_API_VERSION
) {
2347 fprintf(stderr
, "kvm version too old\n");
2351 if (ret
> KVM_API_VERSION
) {
2353 fprintf(stderr
, "kvm version not supported\n");
2357 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
2358 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2360 /* If unspecified, use the default value */
2365 s
->nr_as
= kvm_check_extension(s
, KVM_CAP_MULTI_ADDRESS_SPACE
);
2366 if (s
->nr_as
<= 1) {
2369 s
->as
= g_new0(struct KVMAs
, s
->nr_as
);
2371 if (object_property_find(OBJECT(current_machine
), "kvm-type")) {
2372 g_autofree
char *kvm_type
= object_property_get_str(OBJECT(current_machine
),
2375 type
= mc
->kvm_type(ms
, kvm_type
);
2376 } else if (mc
->kvm_type
) {
2377 type
= mc
->kvm_type(ms
, NULL
);
2381 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
2382 } while (ret
== -EINTR
);
2385 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
2389 if (ret
== -EINVAL
) {
2391 "Host kernel setup problem detected. Please verify:\n");
2392 fprintf(stderr
, "- for kernels supporting the switch_amode or"
2393 " user_mode parameters, whether\n");
2395 " user space is running in primary address space\n");
2397 "- for kernels supporting the vm.allocate_pgste sysctl, "
2398 "whether it is enabled\n");
2406 /* check the vcpu limits */
2407 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
2408 hard_vcpus_limit
= kvm_max_vcpus(s
);
2411 if (nc
->num
> soft_vcpus_limit
) {
2412 warn_report("Number of %s cpus requested (%d) exceeds "
2413 "the recommended cpus supported by KVM (%d)",
2414 nc
->name
, nc
->num
, soft_vcpus_limit
);
2416 if (nc
->num
> hard_vcpus_limit
) {
2417 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
2418 "the maximum cpus supported by KVM (%d)\n",
2419 nc
->name
, nc
->num
, hard_vcpus_limit
);
2426 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
2429 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
2433 fprintf(stderr
, "kvm does not support %s\n%s",
2434 missing_cap
->name
, upgrade_note
);
2438 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
2439 s
->coalesced_pio
= s
->coalesced_mmio
&&
2440 kvm_check_extension(s
, KVM_CAP_COALESCED_PIO
);
2443 * Enable KVM dirty ring if supported, otherwise fall back to
2444 * dirty logging mode
2446 if (s
->kvm_dirty_ring_size
> 0) {
2447 uint64_t ring_bytes
;
2449 ring_bytes
= s
->kvm_dirty_ring_size
* sizeof(struct kvm_dirty_gfn
);
2451 /* Read the max supported pages */
2452 ret
= kvm_vm_check_extension(s
, KVM_CAP_DIRTY_LOG_RING
);
2454 if (ring_bytes
> ret
) {
2455 error_report("KVM dirty ring size %" PRIu32
" too big "
2456 "(maximum is %ld). Please use a smaller value.",
2457 s
->kvm_dirty_ring_size
,
2458 (long)ret
/ sizeof(struct kvm_dirty_gfn
));
2463 ret
= kvm_vm_enable_cap(s
, KVM_CAP_DIRTY_LOG_RING
, 0, ring_bytes
);
2465 error_report("Enabling of KVM dirty ring failed: %s. "
2466 "Suggested mininum value is 1024.", strerror(-ret
));
2470 s
->kvm_dirty_ring_bytes
= ring_bytes
;
2472 warn_report("KVM dirty ring not available, using bitmap method");
2473 s
->kvm_dirty_ring_size
= 0;
2478 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2479 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2480 * page is wr-protected initially, which is against how kvm dirty ring is
2481 * usage - kvm dirty ring requires all pages are wr-protected at the very
2482 * beginning. Enabling this feature for dirty ring causes data corruption.
2484 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2485 * we may expect a higher stall time when starting the migration. In the
2486 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2487 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2490 if (!s
->kvm_dirty_ring_size
) {
2491 dirty_log_manual_caps
=
2492 kvm_check_extension(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
);
2493 dirty_log_manual_caps
&= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
|
2494 KVM_DIRTY_LOG_INITIALLY_SET
);
2495 s
->manual_dirty_log_protect
= dirty_log_manual_caps
;
2496 if (dirty_log_manual_caps
) {
2497 ret
= kvm_vm_enable_cap(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
, 0,
2498 dirty_log_manual_caps
);
2500 warn_report("Trying to enable capability %"PRIu64
" of "
2501 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2502 "Falling back to the legacy mode. ",
2503 dirty_log_manual_caps
);
2504 s
->manual_dirty_log_protect
= 0;
2509 #ifdef KVM_CAP_VCPU_EVENTS
2510 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
2513 s
->robust_singlestep
=
2514 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
2516 #ifdef KVM_CAP_DEBUGREGS
2517 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
2520 s
->max_nested_state_len
= kvm_check_extension(s
, KVM_CAP_NESTED_STATE
);
2522 #ifdef KVM_CAP_IRQ_ROUTING
2523 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
2526 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
2528 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
2529 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
2530 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
2533 kvm_readonly_mem_allowed
=
2534 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
2536 kvm_eventfds_allowed
=
2537 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
2539 kvm_irqfds_allowed
=
2540 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
2542 kvm_resamplefds_allowed
=
2543 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
2545 kvm_vm_attributes_allowed
=
2546 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
2548 kvm_ioeventfd_any_length_allowed
=
2549 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
2553 ret
= kvm_arch_init(ms
, s
);
2558 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_AUTO
) {
2559 s
->kernel_irqchip_split
= mc
->default_kernel_irqchip_split
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
2562 qemu_register_reset(kvm_unpoison_all
, NULL
);
2564 if (s
->kernel_irqchip_allowed
) {
2565 kvm_irqchip_create(s
);
2568 if (kvm_eventfds_allowed
) {
2569 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
2570 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
2572 s
->memory_listener
.listener
.coalesced_io_add
= kvm_coalesce_mmio_region
;
2573 s
->memory_listener
.listener
.coalesced_io_del
= kvm_uncoalesce_mmio_region
;
2575 kvm_memory_listener_register(s
, &s
->memory_listener
,
2576 &address_space_memory
, 0);
2577 if (kvm_eventfds_allowed
) {
2578 memory_listener_register(&kvm_io_listener
,
2581 memory_listener_register(&kvm_coalesced_pio_listener
,
2584 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
2586 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2588 ret
= ram_block_discard_disable(true);
2592 if (s
->kvm_dirty_ring_size
) {
2593 ret
= kvm_dirty_ring_reaper_init(s
);
2609 g_free(s
->memory_listener
.slots
);
2614 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
2616 s
->sigmask_len
= sigmask_len
;
2619 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
2620 int size
, uint32_t count
)
2623 uint8_t *ptr
= data
;
2625 for (i
= 0; i
< count
; i
++) {
2626 address_space_rw(&address_space_io
, port
, attrs
,
2628 direction
== KVM_EXIT_IO_OUT
);
2633 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
2635 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
2636 run
->internal
.suberror
);
2638 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
2641 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
2642 fprintf(stderr
, "extra data[%d]: 0x%016"PRIx64
"\n",
2643 i
, (uint64_t)run
->internal
.data
[i
]);
2646 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
2647 fprintf(stderr
, "emulation failure\n");
2648 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
2649 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2650 return EXCP_INTERRUPT
;
2653 /* FIXME: Should trigger a qmp message to let management know
2654 * something went wrong.
2659 void kvm_flush_coalesced_mmio_buffer(void)
2661 KVMState
*s
= kvm_state
;
2663 if (s
->coalesced_flush_in_progress
) {
2667 s
->coalesced_flush_in_progress
= true;
2669 if (s
->coalesced_mmio_ring
) {
2670 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
2671 while (ring
->first
!= ring
->last
) {
2672 struct kvm_coalesced_mmio
*ent
;
2674 ent
= &ring
->coalesced_mmio
[ring
->first
];
2676 if (ent
->pio
== 1) {
2677 address_space_write(&address_space_io
, ent
->phys_addr
,
2678 MEMTXATTRS_UNSPECIFIED
, ent
->data
,
2681 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
2684 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
2688 s
->coalesced_flush_in_progress
= false;
2691 bool kvm_cpu_check_are_resettable(void)
2693 return kvm_arch_cpu_check_are_resettable();
2696 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
2698 if (!cpu
->vcpu_dirty
) {
2699 kvm_arch_get_registers(cpu
);
2700 cpu
->vcpu_dirty
= true;
2704 void kvm_cpu_synchronize_state(CPUState
*cpu
)
2706 if (!cpu
->vcpu_dirty
) {
2707 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
2711 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
2713 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
2714 cpu
->vcpu_dirty
= false;
2717 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
2719 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
2722 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
2724 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
2725 cpu
->vcpu_dirty
= false;
2728 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
2730 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
2733 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
2735 cpu
->vcpu_dirty
= true;
2738 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
2740 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
2743 #ifdef KVM_HAVE_MCE_INJECTION
2744 static __thread
void *pending_sigbus_addr
;
2745 static __thread
int pending_sigbus_code
;
2746 static __thread
bool have_sigbus_pending
;
2749 static void kvm_cpu_kick(CPUState
*cpu
)
2751 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
2754 static void kvm_cpu_kick_self(void)
2756 if (kvm_immediate_exit
) {
2757 kvm_cpu_kick(current_cpu
);
2759 qemu_cpu_kick_self();
2763 static void kvm_eat_signals(CPUState
*cpu
)
2765 struct timespec ts
= { 0, 0 };
2771 if (kvm_immediate_exit
) {
2772 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
2773 /* Write kvm_run->immediate_exit before the cpu->exit_request
2774 * write in kvm_cpu_exec.
2780 sigemptyset(&waitset
);
2781 sigaddset(&waitset
, SIG_IPI
);
2784 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
2785 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
2786 perror("sigtimedwait");
2790 r
= sigpending(&chkset
);
2792 perror("sigpending");
2795 } while (sigismember(&chkset
, SIG_IPI
));
2798 int kvm_cpu_exec(CPUState
*cpu
)
2800 struct kvm_run
*run
= cpu
->kvm_run
;
2803 DPRINTF("kvm_cpu_exec()\n");
2805 if (kvm_arch_process_async_events(cpu
)) {
2806 qatomic_set(&cpu
->exit_request
, 0);
2810 qemu_mutex_unlock_iothread();
2811 cpu_exec_start(cpu
);
2816 if (cpu
->vcpu_dirty
) {
2817 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
2818 cpu
->vcpu_dirty
= false;
2821 kvm_arch_pre_run(cpu
, run
);
2822 if (qatomic_read(&cpu
->exit_request
)) {
2823 DPRINTF("interrupt exit requested\n");
2825 * KVM requires us to reenter the kernel after IO exits to complete
2826 * instruction emulation. This self-signal will ensure that we
2829 kvm_cpu_kick_self();
2832 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2833 * Matching barrier in kvm_eat_signals.
2837 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
2839 attrs
= kvm_arch_post_run(cpu
, run
);
2841 #ifdef KVM_HAVE_MCE_INJECTION
2842 if (unlikely(have_sigbus_pending
)) {
2843 qemu_mutex_lock_iothread();
2844 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
2845 pending_sigbus_addr
);
2846 have_sigbus_pending
= false;
2847 qemu_mutex_unlock_iothread();
2852 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
2853 DPRINTF("io window exit\n");
2854 kvm_eat_signals(cpu
);
2855 ret
= EXCP_INTERRUPT
;
2858 fprintf(stderr
, "error: kvm run failed %s\n",
2859 strerror(-run_ret
));
2861 if (run_ret
== -EBUSY
) {
2863 "This is probably because your SMT is enabled.\n"
2864 "VCPU can only run on primary threads with all "
2865 "secondary threads offline.\n");
2872 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
2873 switch (run
->exit_reason
) {
2875 DPRINTF("handle_io\n");
2876 /* Called outside BQL */
2877 kvm_handle_io(run
->io
.port
, attrs
,
2878 (uint8_t *)run
+ run
->io
.data_offset
,
2885 DPRINTF("handle_mmio\n");
2886 /* Called outside BQL */
2887 address_space_rw(&address_space_memory
,
2888 run
->mmio
.phys_addr
, attrs
,
2891 run
->mmio
.is_write
);
2894 case KVM_EXIT_IRQ_WINDOW_OPEN
:
2895 DPRINTF("irq_window_open\n");
2896 ret
= EXCP_INTERRUPT
;
2898 case KVM_EXIT_SHUTDOWN
:
2899 DPRINTF("shutdown\n");
2900 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2901 ret
= EXCP_INTERRUPT
;
2903 case KVM_EXIT_UNKNOWN
:
2904 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
2905 (uint64_t)run
->hw
.hardware_exit_reason
);
2908 case KVM_EXIT_INTERNAL_ERROR
:
2909 ret
= kvm_handle_internal_error(cpu
, run
);
2911 case KVM_EXIT_DIRTY_RING_FULL
:
2913 * We shouldn't continue if the dirty ring of this vcpu is
2914 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2916 trace_kvm_dirty_ring_full(cpu
->cpu_index
);
2917 qemu_mutex_lock_iothread();
2918 kvm_dirty_ring_reap(kvm_state
);
2919 qemu_mutex_unlock_iothread();
2922 case KVM_EXIT_SYSTEM_EVENT
:
2923 switch (run
->system_event
.type
) {
2924 case KVM_SYSTEM_EVENT_SHUTDOWN
:
2925 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
2926 ret
= EXCP_INTERRUPT
;
2928 case KVM_SYSTEM_EVENT_RESET
:
2929 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2930 ret
= EXCP_INTERRUPT
;
2932 case KVM_SYSTEM_EVENT_CRASH
:
2933 kvm_cpu_synchronize_state(cpu
);
2934 qemu_mutex_lock_iothread();
2935 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
2936 qemu_mutex_unlock_iothread();
2940 DPRINTF("kvm_arch_handle_exit\n");
2941 ret
= kvm_arch_handle_exit(cpu
, run
);
2946 DPRINTF("kvm_arch_handle_exit\n");
2947 ret
= kvm_arch_handle_exit(cpu
, run
);
2953 qemu_mutex_lock_iothread();
2956 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2957 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2960 qatomic_set(&cpu
->exit_request
, 0);
2964 int kvm_ioctl(KVMState
*s
, int type
, ...)
2971 arg
= va_arg(ap
, void *);
2974 trace_kvm_ioctl(type
, arg
);
2975 ret
= ioctl(s
->fd
, type
, arg
);
2982 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2989 arg
= va_arg(ap
, void *);
2992 trace_kvm_vm_ioctl(type
, arg
);
2993 ret
= ioctl(s
->vmfd
, type
, arg
);
3000 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
3007 arg
= va_arg(ap
, void *);
3010 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
3011 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
3018 int kvm_device_ioctl(int fd
, int type
, ...)
3025 arg
= va_arg(ap
, void *);
3028 trace_kvm_device_ioctl(fd
, type
, arg
);
3029 ret
= ioctl(fd
, type
, arg
);
3036 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
3039 struct kvm_device_attr attribute
= {
3044 if (!kvm_vm_attributes_allowed
) {
3048 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
3049 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3053 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
3055 struct kvm_device_attr attribute
= {
3061 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
3064 int kvm_device_access(int fd
, int group
, uint64_t attr
,
3065 void *val
, bool write
, Error
**errp
)
3067 struct kvm_device_attr kvmattr
;
3071 kvmattr
.group
= group
;
3072 kvmattr
.attr
= attr
;
3073 kvmattr
.addr
= (uintptr_t)val
;
3075 err
= kvm_device_ioctl(fd
,
3076 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
3079 error_setg_errno(errp
, -err
,
3080 "KVM_%s_DEVICE_ATTR failed: Group %d "
3081 "attr 0x%016" PRIx64
,
3082 write
? "SET" : "GET", group
, attr
);
3087 bool kvm_has_sync_mmu(void)
3089 return kvm_state
->sync_mmu
;
3092 int kvm_has_vcpu_events(void)
3094 return kvm_state
->vcpu_events
;
3097 int kvm_has_robust_singlestep(void)
3099 return kvm_state
->robust_singlestep
;
3102 int kvm_has_debugregs(void)
3104 return kvm_state
->debugregs
;
3107 int kvm_max_nested_state_length(void)
3109 return kvm_state
->max_nested_state_len
;
3112 int kvm_has_many_ioeventfds(void)
3114 if (!kvm_enabled()) {
3117 return kvm_state
->many_ioeventfds
;
3120 int kvm_has_gsi_routing(void)
3122 #ifdef KVM_CAP_IRQ_ROUTING
3123 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
3129 int kvm_has_intx_set_mask(void)
3131 return kvm_state
->intx_set_mask
;
3134 bool kvm_arm_supports_user_irq(void)
3136 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
3139 #ifdef KVM_CAP_SET_GUEST_DEBUG
3140 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
3143 struct kvm_sw_breakpoint
*bp
;
3145 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
3153 int kvm_sw_breakpoints_active(CPUState
*cpu
)
3155 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
3158 struct kvm_set_guest_debug_data
{
3159 struct kvm_guest_debug dbg
;
3163 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
3165 struct kvm_set_guest_debug_data
*dbg_data
=
3166 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
3168 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
3172 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
3174 struct kvm_set_guest_debug_data data
;
3176 data
.dbg
.control
= reinject_trap
;
3178 if (cpu
->singlestep_enabled
) {
3179 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
3181 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
3183 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
3184 RUN_ON_CPU_HOST_PTR(&data
));
3188 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
3189 target_ulong len
, int type
)
3191 struct kvm_sw_breakpoint
*bp
;
3194 if (type
== GDB_BREAKPOINT_SW
) {
3195 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
3201 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
3204 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
3210 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
3212 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
3219 err
= kvm_update_guest_debug(cpu
, 0);
3227 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
3228 target_ulong len
, int type
)
3230 struct kvm_sw_breakpoint
*bp
;
3233 if (type
== GDB_BREAKPOINT_SW
) {
3234 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
3239 if (bp
->use_count
> 1) {
3244 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
3249 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
3252 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
3259 err
= kvm_update_guest_debug(cpu
, 0);
3267 void kvm_remove_all_breakpoints(CPUState
*cpu
)
3269 struct kvm_sw_breakpoint
*bp
, *next
;
3270 KVMState
*s
= cpu
->kvm_state
;
3273 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
3274 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
3275 /* Try harder to find a CPU that currently sees the breakpoint. */
3276 CPU_FOREACH(tmpcpu
) {
3277 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
3282 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
3285 kvm_arch_remove_all_hw_breakpoints();
3288 kvm_update_guest_debug(cpu
, 0);
3292 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3294 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
3299 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
3300 target_ulong len
, int type
)
3305 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
3306 target_ulong len
, int type
)
3311 void kvm_remove_all_breakpoints(CPUState
*cpu
)
3314 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3316 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
3318 KVMState
*s
= kvm_state
;
3319 struct kvm_signal_mask
*sigmask
;
3322 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
3324 sigmask
->len
= s
->sigmask_len
;
3325 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
3326 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
3332 static void kvm_ipi_signal(int sig
)
3335 assert(kvm_immediate_exit
);
3336 kvm_cpu_kick(current_cpu
);
3340 void kvm_init_cpu_signals(CPUState
*cpu
)
3344 struct sigaction sigact
;
3346 memset(&sigact
, 0, sizeof(sigact
));
3347 sigact
.sa_handler
= kvm_ipi_signal
;
3348 sigaction(SIG_IPI
, &sigact
, NULL
);
3350 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
3351 #if defined KVM_HAVE_MCE_INJECTION
3352 sigdelset(&set
, SIGBUS
);
3353 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
3355 sigdelset(&set
, SIG_IPI
);
3356 if (kvm_immediate_exit
) {
3357 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
3359 r
= kvm_set_signal_mask(cpu
, &set
);
3362 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
3367 /* Called asynchronously in VCPU thread. */
3368 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
3370 #ifdef KVM_HAVE_MCE_INJECTION
3371 if (have_sigbus_pending
) {
3374 have_sigbus_pending
= true;
3375 pending_sigbus_addr
= addr
;
3376 pending_sigbus_code
= code
;
3377 qatomic_set(&cpu
->exit_request
, 1);
3384 /* Called synchronously (via signalfd) in main thread. */
3385 int kvm_on_sigbus(int code
, void *addr
)
3387 #ifdef KVM_HAVE_MCE_INJECTION
3388 /* Action required MCE kills the process if SIGBUS is blocked. Because
3389 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3390 * we can only get action optional here.
3392 assert(code
!= BUS_MCEERR_AR
);
3393 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
3400 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
3403 struct kvm_create_device create_dev
;
3405 create_dev
.type
= type
;
3407 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
3409 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
3413 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
3418 return test
? 0 : create_dev
.fd
;
3421 bool kvm_device_supported(int vmfd
, uint64_t type
)
3423 struct kvm_create_device create_dev
= {
3426 .flags
= KVM_CREATE_DEVICE_TEST
,
3429 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
3433 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
3436 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
3438 struct kvm_one_reg reg
;
3442 reg
.addr
= (uintptr_t) source
;
3443 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
3445 trace_kvm_failed_reg_set(id
, strerror(-r
));
3450 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
3452 struct kvm_one_reg reg
;
3456 reg
.addr
= (uintptr_t) target
;
3457 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
3459 trace_kvm_failed_reg_get(id
, strerror(-r
));
3464 static bool kvm_accel_has_memory(MachineState
*ms
, AddressSpace
*as
,
3465 hwaddr start_addr
, hwaddr size
)
3467 KVMState
*kvm
= KVM_STATE(ms
->accelerator
);
3470 for (i
= 0; i
< kvm
->nr_as
; ++i
) {
3471 if (kvm
->as
[i
].as
== as
&& kvm
->as
[i
].ml
) {
3472 size
= MIN(kvm_max_slot_size
, size
);
3473 return NULL
!= kvm_lookup_matching_slot(kvm
->as
[i
].ml
,
3481 static void kvm_get_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3482 const char *name
, void *opaque
,
3485 KVMState
*s
= KVM_STATE(obj
);
3486 int64_t value
= s
->kvm_shadow_mem
;
3488 visit_type_int(v
, name
, &value
, errp
);
3491 static void kvm_set_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3492 const char *name
, void *opaque
,
3495 KVMState
*s
= KVM_STATE(obj
);
3499 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3503 if (!visit_type_int(v
, name
, &value
, errp
)) {
3507 s
->kvm_shadow_mem
= value
;
3510 static void kvm_set_kernel_irqchip(Object
*obj
, Visitor
*v
,
3511 const char *name
, void *opaque
,
3514 KVMState
*s
= KVM_STATE(obj
);
3518 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3522 if (!visit_type_OnOffSplit(v
, name
, &mode
, errp
)) {
3526 case ON_OFF_SPLIT_ON
:
3527 s
->kernel_irqchip_allowed
= true;
3528 s
->kernel_irqchip_required
= true;
3529 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3531 case ON_OFF_SPLIT_OFF
:
3532 s
->kernel_irqchip_allowed
= false;
3533 s
->kernel_irqchip_required
= false;
3534 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3536 case ON_OFF_SPLIT_SPLIT
:
3537 s
->kernel_irqchip_allowed
= true;
3538 s
->kernel_irqchip_required
= true;
3539 s
->kernel_irqchip_split
= ON_OFF_AUTO_ON
;
3542 /* The value was checked in visit_type_OnOffSplit() above. If
3543 * we get here, then something is wrong in QEMU.
3549 bool kvm_kernel_irqchip_allowed(void)
3551 return kvm_state
->kernel_irqchip_allowed
;
3554 bool kvm_kernel_irqchip_required(void)
3556 return kvm_state
->kernel_irqchip_required
;
3559 bool kvm_kernel_irqchip_split(void)
3561 return kvm_state
->kernel_irqchip_split
== ON_OFF_AUTO_ON
;
3564 static void kvm_get_dirty_ring_size(Object
*obj
, Visitor
*v
,
3565 const char *name
, void *opaque
,
3568 KVMState
*s
= KVM_STATE(obj
);
3569 uint32_t value
= s
->kvm_dirty_ring_size
;
3571 visit_type_uint32(v
, name
, &value
, errp
);
3574 static void kvm_set_dirty_ring_size(Object
*obj
, Visitor
*v
,
3575 const char *name
, void *opaque
,
3578 KVMState
*s
= KVM_STATE(obj
);
3579 Error
*error
= NULL
;
3583 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3587 visit_type_uint32(v
, name
, &value
, &error
);
3589 error_propagate(errp
, error
);
3592 if (value
& (value
- 1)) {
3593 error_setg(errp
, "dirty-ring-size must be a power of two.");
3597 s
->kvm_dirty_ring_size
= value
;
3600 static void kvm_accel_instance_init(Object
*obj
)
3602 KVMState
*s
= KVM_STATE(obj
);
3606 s
->kvm_shadow_mem
= -1;
3607 s
->kernel_irqchip_allowed
= true;
3608 s
->kernel_irqchip_split
= ON_OFF_AUTO_AUTO
;
3609 /* KVM dirty ring is by default off */
3610 s
->kvm_dirty_ring_size
= 0;
3613 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
3615 AccelClass
*ac
= ACCEL_CLASS(oc
);
3617 ac
->init_machine
= kvm_init
;
3618 ac
->has_memory
= kvm_accel_has_memory
;
3619 ac
->allowed
= &kvm_allowed
;
3621 object_class_property_add(oc
, "kernel-irqchip", "on|off|split",
3622 NULL
, kvm_set_kernel_irqchip
,
3624 object_class_property_set_description(oc
, "kernel-irqchip",
3625 "Configure KVM in-kernel irqchip");
3627 object_class_property_add(oc
, "kvm-shadow-mem", "int",
3628 kvm_get_kvm_shadow_mem
, kvm_set_kvm_shadow_mem
,
3630 object_class_property_set_description(oc
, "kvm-shadow-mem",
3631 "KVM shadow MMU size");
3633 object_class_property_add(oc
, "dirty-ring-size", "uint32",
3634 kvm_get_dirty_ring_size
, kvm_set_dirty_ring_size
,
3636 object_class_property_set_description(oc
, "dirty-ring-size",
3637 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3640 static const TypeInfo kvm_accel_type
= {
3641 .name
= TYPE_KVM_ACCEL
,
3642 .parent
= TYPE_ACCEL
,
3643 .instance_init
= kvm_accel_instance_init
,
3644 .class_init
= kvm_accel_class_init
,
3645 .instance_size
= sizeof(KVMState
),
3648 static void kvm_type_init(void)
3650 type_register_static(&kvm_accel_type
);
3653 type_init(kvm_type_init
);