hvf: Make hvf_get_segments() / hvf_put_segments() local
[qemu/ar7.git] / hw / intc / arm_gicv3_redist.c
blob412a04f59cf227c048b4e521cb3f136cfa993282
1 /*
2 * ARM GICv3 emulation: Redistributor
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited.
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
19 /* Return a 32-bit mask which should be applied for this set of 32
20 * interrupts; each bit is 1 if access is permitted by the
21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22 * not affect config register accesses, unlike GICD_NSACR.)
24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26 return cs->gicr_igroupr0;
28 return 0xFFFFFFFFU;
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
33 /* Return the 2 bit NSACR.NS_access field for this SGI */
34 assert(irq < 16);
35 return extract32(cs->gicr_nsacr, irq * 2, 2);
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39 uint32_t *reg, uint32_t val)
41 /* Helper routine to implement writing to a "set-bitmap" register */
42 val &= mask_group(cs, attrs);
43 *reg |= val;
44 gicv3_redist_update(cs);
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48 uint32_t *reg, uint32_t val)
50 /* Helper routine to implement writing to a "clear-bitmap" register */
51 val &= mask_group(cs, attrs);
52 *reg &= ~val;
53 gicv3_redist_update(cs);
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57 uint32_t reg)
59 reg &= mask_group(cs, attrs);
60 return reg;
63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
64 int irq)
66 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
67 * honouring security state (these are RAZ/WI for Group 0 or Secure
68 * Group 1 interrupts).
70 uint32_t prio;
72 prio = cs->gicr_ipriorityr[irq];
74 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
75 if (!(cs->gicr_igroupr0 & (1U << irq))) {
76 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
77 return 0;
79 /* NS view of the interrupt priority */
80 prio = (prio << 1) & 0xff;
82 return prio;
85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
86 uint8_t value)
88 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
89 * honouring security state (these are RAZ/WI for Group 0 or Secure
90 * Group 1 interrupts).
92 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
93 if (!(cs->gicr_igroupr0 & (1U << irq))) {
94 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
95 return;
97 /* NS view of the interrupt priority */
98 value = 0x80 | (value >> 1);
100 cs->gicr_ipriorityr[irq] = value;
103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
104 uint64_t *data, MemTxAttrs attrs)
106 switch (offset) {
107 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
108 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
109 return MEMTX_OK;
110 default:
111 return MEMTX_ERROR;
115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
116 uint64_t value, MemTxAttrs attrs)
118 switch (offset) {
119 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
120 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
121 gicv3_redist_update(cs);
122 return MEMTX_OK;
123 default:
124 return MEMTX_ERROR;
128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
129 uint64_t *data, MemTxAttrs attrs)
131 switch (offset) {
132 case GICR_CTLR:
133 *data = cs->gicr_ctlr;
134 return MEMTX_OK;
135 case GICR_IIDR:
136 *data = gicv3_iidr();
137 return MEMTX_OK;
138 case GICR_TYPER:
139 *data = extract64(cs->gicr_typer, 0, 32);
140 return MEMTX_OK;
141 case GICR_TYPER + 4:
142 *data = extract64(cs->gicr_typer, 32, 32);
143 return MEMTX_OK;
144 case GICR_STATUSR:
145 /* RAZ/WI for us (this is an optional register and our implementation
146 * does not track RO/WO/reserved violations to report them to the guest)
148 *data = 0;
149 return MEMTX_OK;
150 case GICR_WAKER:
151 *data = cs->gicr_waker;
152 return MEMTX_OK;
153 case GICR_PROPBASER:
154 *data = extract64(cs->gicr_propbaser, 0, 32);
155 return MEMTX_OK;
156 case GICR_PROPBASER + 4:
157 *data = extract64(cs->gicr_propbaser, 32, 32);
158 return MEMTX_OK;
159 case GICR_PENDBASER:
160 *data = extract64(cs->gicr_pendbaser, 0, 32);
161 return MEMTX_OK;
162 case GICR_PENDBASER + 4:
163 *data = extract64(cs->gicr_pendbaser, 32, 32);
164 return MEMTX_OK;
165 case GICR_IGROUPR0:
166 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
167 *data = 0;
168 return MEMTX_OK;
170 *data = cs->gicr_igroupr0;
171 return MEMTX_OK;
172 case GICR_ISENABLER0:
173 case GICR_ICENABLER0:
174 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
175 return MEMTX_OK;
176 case GICR_ISPENDR0:
177 case GICR_ICPENDR0:
179 /* The pending register reads as the logical OR of the pending
180 * latch and the input line level for level-triggered interrupts.
182 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
183 *data = gicr_read_bitmap_reg(cs, attrs, val);
184 return MEMTX_OK;
186 case GICR_ISACTIVER0:
187 case GICR_ICACTIVER0:
188 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
189 return MEMTX_OK;
190 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
192 int i, irq = offset - GICR_IPRIORITYR;
193 uint32_t value = 0;
195 for (i = irq + 3; i >= irq; i--) {
196 value <<= 8;
197 value |= gicr_read_ipriorityr(cs, attrs, i);
199 *data = value;
200 return MEMTX_OK;
202 case GICR_ICFGR0:
203 case GICR_ICFGR1:
205 /* Our edge_trigger bitmap is one bit per irq; take the correct
206 * half of it, and spread it out into the odd bits.
208 uint32_t value;
210 value = cs->edge_trigger & mask_group(cs, attrs);
211 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
212 value = half_shuffle32(value) << 1;
213 *data = value;
214 return MEMTX_OK;
216 case GICR_IGRPMODR0:
217 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
218 /* RAZ/WI if security disabled, or if
219 * security enabled and this is an NS access
221 *data = 0;
222 return MEMTX_OK;
224 *data = cs->gicr_igrpmodr0;
225 return MEMTX_OK;
226 case GICR_NSACR:
227 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
228 /* RAZ/WI if security disabled, or if
229 * security enabled and this is an NS access
231 *data = 0;
232 return MEMTX_OK;
234 *data = cs->gicr_nsacr;
235 return MEMTX_OK;
236 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
237 *data = gicv3_idreg(offset - GICR_IDREGS);
238 return MEMTX_OK;
239 default:
240 return MEMTX_ERROR;
244 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
245 uint64_t value, MemTxAttrs attrs)
247 switch (offset) {
248 case GICR_CTLR:
249 /* For our implementation, GICR_TYPER.DPGS is 0 and so all
250 * the DPG bits are RAZ/WI. We don't do anything asynchronously,
251 * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
252 * implement LPIs) so Enable_LPIs is programmable.
254 if (cs->gicr_typer & GICR_TYPER_PLPIS) {
255 if (value & GICR_CTLR_ENABLE_LPIS) {
256 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
257 /* Check for any pending interr in pending table */
258 gicv3_redist_update_lpi(cs);
259 } else {
260 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
261 /* cs->hppi might have been an LPI; recalculate */
262 gicv3_redist_update(cs);
265 return MEMTX_OK;
266 case GICR_STATUSR:
267 /* RAZ/WI for our implementation */
268 return MEMTX_OK;
269 case GICR_WAKER:
270 /* Only the ProcessorSleep bit is writeable. When the guest sets
271 * it it requests that we transition the channel between the
272 * redistributor and the cpu interface to quiescent, and that
273 * we set the ChildrenAsleep bit once the inteface has reached the
274 * quiescent state.
275 * Setting the ProcessorSleep to 0 reverses the quiescing, and
276 * ChildrenAsleep is cleared once the transition is complete.
277 * Since our interface is not asynchronous, we complete these
278 * transitions instantaneously, so we set ChildrenAsleep to the
279 * same value as ProcessorSleep here.
281 value &= GICR_WAKER_ProcessorSleep;
282 if (value & GICR_WAKER_ProcessorSleep) {
283 value |= GICR_WAKER_ChildrenAsleep;
285 cs->gicr_waker = value;
286 return MEMTX_OK;
287 case GICR_PROPBASER:
288 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
289 return MEMTX_OK;
290 case GICR_PROPBASER + 4:
291 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
292 return MEMTX_OK;
293 case GICR_PENDBASER:
294 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
295 return MEMTX_OK;
296 case GICR_PENDBASER + 4:
297 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
298 return MEMTX_OK;
299 case GICR_IGROUPR0:
300 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
301 return MEMTX_OK;
303 cs->gicr_igroupr0 = value;
304 gicv3_redist_update(cs);
305 return MEMTX_OK;
306 case GICR_ISENABLER0:
307 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
308 return MEMTX_OK;
309 case GICR_ICENABLER0:
310 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
311 return MEMTX_OK;
312 case GICR_ISPENDR0:
313 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
314 return MEMTX_OK;
315 case GICR_ICPENDR0:
316 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
317 return MEMTX_OK;
318 case GICR_ISACTIVER0:
319 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
320 return MEMTX_OK;
321 case GICR_ICACTIVER0:
322 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
323 return MEMTX_OK;
324 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
326 int i, irq = offset - GICR_IPRIORITYR;
328 for (i = irq; i < irq + 4; i++, value >>= 8) {
329 gicr_write_ipriorityr(cs, attrs, i, value);
331 gicv3_redist_update(cs);
332 return MEMTX_OK;
334 case GICR_ICFGR0:
335 /* Register is all RAZ/WI or RAO/WI bits */
336 return MEMTX_OK;
337 case GICR_ICFGR1:
339 uint32_t mask;
341 /* Since our edge_trigger bitmap is one bit per irq, our input
342 * 32-bits will compress down into 16 bits which we need
343 * to write into the bitmap.
345 value = half_unshuffle32(value >> 1) << 16;
346 mask = mask_group(cs, attrs) & 0xffff0000U;
348 cs->edge_trigger &= ~mask;
349 cs->edge_trigger |= (value & mask);
351 gicv3_redist_update(cs);
352 return MEMTX_OK;
354 case GICR_IGRPMODR0:
355 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
356 /* RAZ/WI if security disabled, or if
357 * security enabled and this is an NS access
359 return MEMTX_OK;
361 cs->gicr_igrpmodr0 = value;
362 gicv3_redist_update(cs);
363 return MEMTX_OK;
364 case GICR_NSACR:
365 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
366 /* RAZ/WI if security disabled, or if
367 * security enabled and this is an NS access
369 return MEMTX_OK;
371 cs->gicr_nsacr = value;
372 /* no update required as this only affects access permission checks */
373 return MEMTX_OK;
374 case GICR_IIDR:
375 case GICR_TYPER:
376 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
377 /* RO registers, ignore the write */
378 qemu_log_mask(LOG_GUEST_ERROR,
379 "%s: invalid guest write to RO register at offset "
380 TARGET_FMT_plx "\n", __func__, offset);
381 return MEMTX_OK;
382 default:
383 return MEMTX_ERROR;
387 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
388 uint64_t *data, MemTxAttrs attrs)
390 switch (offset) {
391 case GICR_TYPER:
392 *data = cs->gicr_typer;
393 return MEMTX_OK;
394 case GICR_PROPBASER:
395 *data = cs->gicr_propbaser;
396 return MEMTX_OK;
397 case GICR_PENDBASER:
398 *data = cs->gicr_pendbaser;
399 return MEMTX_OK;
400 default:
401 return MEMTX_ERROR;
405 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
406 uint64_t value, MemTxAttrs attrs)
408 switch (offset) {
409 case GICR_PROPBASER:
410 cs->gicr_propbaser = value;
411 return MEMTX_OK;
412 case GICR_PENDBASER:
413 cs->gicr_pendbaser = value;
414 return MEMTX_OK;
415 case GICR_TYPER:
416 /* RO register, ignore the write */
417 qemu_log_mask(LOG_GUEST_ERROR,
418 "%s: invalid guest write to RO register at offset "
419 TARGET_FMT_plx "\n", __func__, offset);
420 return MEMTX_OK;
421 default:
422 return MEMTX_ERROR;
426 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
427 unsigned size, MemTxAttrs attrs)
429 GICv3RedistRegion *region = opaque;
430 GICv3State *s = region->gic;
431 GICv3CPUState *cs;
432 MemTxResult r;
433 int cpuidx;
435 assert((offset & (size - 1)) == 0);
438 * There are (for GICv3) two 64K redistributor pages per CPU.
439 * In some cases the redistributor pages for all CPUs are not
440 * contiguous (eg on the virt board they are split into two
441 * parts if there are too many CPUs to all fit in the same place
442 * in the memory map); if so then the GIC has multiple MemoryRegions
443 * for the redistributors.
445 cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
446 offset %= GICV3_REDIST_SIZE;
448 cs = &s->cpu[cpuidx];
450 switch (size) {
451 case 1:
452 r = gicr_readb(cs, offset, data, attrs);
453 break;
454 case 4:
455 r = gicr_readl(cs, offset, data, attrs);
456 break;
457 case 8:
458 r = gicr_readll(cs, offset, data, attrs);
459 break;
460 default:
461 r = MEMTX_ERROR;
462 break;
465 if (r != MEMTX_OK) {
466 qemu_log_mask(LOG_GUEST_ERROR,
467 "%s: invalid guest read at offset " TARGET_FMT_plx
468 " size %u\n", __func__, offset, size);
469 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
470 size, attrs.secure);
471 /* The spec requires that reserved registers are RAZ/WI;
472 * so use MEMTX_ERROR returns from leaf functions as a way to
473 * trigger the guest-error logging but don't return it to
474 * the caller, or we'll cause a spurious guest data abort.
476 r = MEMTX_OK;
477 *data = 0;
478 } else {
479 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
480 size, attrs.secure);
482 return r;
485 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
486 unsigned size, MemTxAttrs attrs)
488 GICv3RedistRegion *region = opaque;
489 GICv3State *s = region->gic;
490 GICv3CPUState *cs;
491 MemTxResult r;
492 int cpuidx;
494 assert((offset & (size - 1)) == 0);
497 * There are (for GICv3) two 64K redistributor pages per CPU.
498 * In some cases the redistributor pages for all CPUs are not
499 * contiguous (eg on the virt board they are split into two
500 * parts if there are too many CPUs to all fit in the same place
501 * in the memory map); if so then the GIC has multiple MemoryRegions
502 * for the redistributors.
504 cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
505 offset %= GICV3_REDIST_SIZE;
507 cs = &s->cpu[cpuidx];
509 switch (size) {
510 case 1:
511 r = gicr_writeb(cs, offset, data, attrs);
512 break;
513 case 4:
514 r = gicr_writel(cs, offset, data, attrs);
515 break;
516 case 8:
517 r = gicr_writell(cs, offset, data, attrs);
518 break;
519 default:
520 r = MEMTX_ERROR;
521 break;
524 if (r != MEMTX_OK) {
525 qemu_log_mask(LOG_GUEST_ERROR,
526 "%s: invalid guest write at offset " TARGET_FMT_plx
527 " size %u\n", __func__, offset, size);
528 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
529 size, attrs.secure);
530 /* The spec requires that reserved registers are RAZ/WI;
531 * so use MEMTX_ERROR returns from leaf functions as a way to
532 * trigger the guest-error logging but don't return it to
533 * the caller, or we'll cause a spurious guest data abort.
535 r = MEMTX_OK;
536 } else {
537 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
538 size, attrs.secure);
540 return r;
543 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
545 AddressSpace *as = &cs->gic->dma_as;
546 uint64_t lpict_baddr;
547 uint8_t lpite;
548 uint8_t prio;
550 lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
552 address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) *
553 sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite,
554 sizeof(lpite));
556 if (!(lpite & LPI_CTE_ENABLED)) {
557 return;
560 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
561 prio = lpite & LPI_PRIORITY_MASK;
562 } else {
563 prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
566 if ((prio < cs->hpplpi.prio) ||
567 ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) {
568 cs->hpplpi.irq = irq;
569 cs->hpplpi.prio = prio;
570 /* LPIs are always non-secure Grp1 interrupts */
571 cs->hpplpi.grp = GICV3_G1NS;
575 void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
578 * This function scans the LPI pending table and for each pending
579 * LPI, reads the corresponding entry from LPI configuration table
580 * to extract the priority info and determine if the current LPI
581 * priority is lower than the last computed high priority lpi interrupt.
582 * If yes, replace current LPI as the new high priority lpi interrupt.
584 AddressSpace *as = &cs->gic->dma_as;
585 uint64_t lpipt_baddr;
586 uint32_t pendt_size = 0;
587 uint8_t pend;
588 int i, bit;
589 uint64_t idbits;
591 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
592 GICD_TYPER_IDBITS);
594 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
595 return;
598 cs->hpplpi.prio = 0xff;
600 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
602 /* Determine the highest priority pending interrupt among LPIs */
603 pendt_size = (1ULL << (idbits + 1));
605 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
606 address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend,
607 sizeof(pend));
609 while (pend) {
610 bit = ctz32(pend);
611 gicv3_redist_check_lpi_priority(cs, i * 8 + bit);
612 pend &= ~(1 << bit);
617 void gicv3_redist_update_lpi(GICv3CPUState *cs)
619 gicv3_redist_update_lpi_only(cs);
620 gicv3_redist_update(cs);
623 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
626 * This function updates the pending bit in lpi pending table for
627 * the irq being activated or deactivated.
629 AddressSpace *as = &cs->gic->dma_as;
630 uint64_t lpipt_baddr;
631 bool ispend = false;
632 uint8_t pend;
635 * get the bit value corresponding to this irq in the
636 * lpi pending table
638 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
640 address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
641 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
643 ispend = extract32(pend, irq % 8, 1);
645 /* no change in the value of pending bit, return */
646 if (ispend == level) {
647 return;
649 pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
651 address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
652 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
655 * check if this LPI is better than the current hpplpi, if yes
656 * just set hpplpi.prio and .irq without doing a full rescan
658 if (level) {
659 gicv3_redist_check_lpi_priority(cs, irq);
660 gicv3_redist_update(cs);
661 } else {
662 if (irq == cs->hpplpi.irq) {
663 gicv3_redist_update_lpi(cs);
668 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
670 uint64_t idbits;
672 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
673 GICD_TYPER_IDBITS);
675 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
676 (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
677 return;
680 /* set/clear the pending bit for this irq */
681 gicv3_redist_lpi_pending(cs, irq, level);
684 void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq)
687 * Move the specified LPI's pending state from the source redistributor
688 * to the destination.
690 * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
691 * we choose to NOP. If LPIs are disabled on source there's nothing
692 * to be transferred anyway.
694 AddressSpace *as = &src->gic->dma_as;
695 uint64_t idbits;
696 uint32_t pendt_size;
697 uint64_t src_baddr;
698 uint8_t src_pend;
700 if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
701 !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
702 return;
705 idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
706 GICD_TYPER_IDBITS);
707 idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
708 idbits);
710 pendt_size = 1ULL << (idbits + 1);
711 if ((irq / 8) >= pendt_size) {
712 return;
715 src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
717 address_space_read(as, src_baddr + (irq / 8),
718 MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend));
719 if (!extract32(src_pend, irq % 8, 1)) {
720 /* Not pending on source, nothing to do */
721 return;
723 src_pend &= ~(1 << (irq % 8));
724 address_space_write(as, src_baddr + (irq / 8),
725 MEMTXATTRS_UNSPECIFIED, &src_pend, sizeof(src_pend));
726 if (irq == src->hpplpi.irq) {
728 * We just made this LPI not-pending so only need to update
729 * if it was previously the highest priority pending LPI
731 gicv3_redist_update_lpi(src);
733 /* Mark it pending on the destination */
734 gicv3_redist_lpi_pending(dest, irq, 1);
737 void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest)
740 * We must move all pending LPIs from the source redistributor
741 * to the destination. That is, for every pending LPI X on
742 * src, we must set it not-pending on src and pending on dest.
743 * LPIs that are already pending on dest are not cleared.
745 * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
746 * we choose to NOP. If LPIs are disabled on source there's nothing
747 * to be transferred anyway.
749 AddressSpace *as = &src->gic->dma_as;
750 uint64_t idbits;
751 uint32_t pendt_size;
752 uint64_t src_baddr, dest_baddr;
753 int i;
755 if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
756 !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
757 return;
760 idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
761 GICD_TYPER_IDBITS);
762 idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
763 idbits);
765 pendt_size = 1ULL << (idbits + 1);
766 src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
767 dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
769 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
770 uint8_t src_pend, dest_pend;
772 address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
773 &src_pend, sizeof(src_pend));
774 if (!src_pend) {
775 continue;
777 address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
778 &dest_pend, sizeof(dest_pend));
779 dest_pend |= src_pend;
780 src_pend = 0;
781 address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
782 &src_pend, sizeof(src_pend));
783 address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
784 &dest_pend, sizeof(dest_pend));
787 gicv3_redist_update_lpi(src);
788 gicv3_redist_update_lpi(dest);
791 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
793 /* Update redistributor state for a change in an external PPI input line */
794 if (level == extract32(cs->level, irq, 1)) {
795 return;
798 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
800 cs->level = deposit32(cs->level, irq, 1, level);
802 if (level) {
803 /* 0->1 edges latch the pending bit for edge-triggered interrupts */
804 if (extract32(cs->edge_trigger, irq, 1)) {
805 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
809 gicv3_redist_update(cs);
812 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
814 /* Update redistributor state for a generated SGI */
815 int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
817 /* If we are asked for a Secure Group 1 SGI and it's actually
818 * configured as Secure Group 0 this is OK (subject to the usual
819 * NSACR checks).
821 if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
822 grp = GICV3_G0;
825 if (grp != irqgrp) {
826 return;
829 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
830 /* If security is enabled we must test the NSACR bits */
831 int nsaccess = gicr_ns_access(cs, irq);
833 if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
834 (irqgrp == GICV3_G1 && nsaccess < 2)) {
835 return;
839 /* OK, we can accept the SGI */
840 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
841 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
842 gicv3_redist_update(cs);