2 * Copyright (C) 2010 Citrix Ltd.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
13 #include "hw/pci/pci.h"
14 #include "hw/i386/pc.h"
15 #include "hw/xen/xen_common.h"
16 #include "hw/xen/xen_backend.h"
17 #include "qmp-commands.h"
19 #include "sysemu/char.h"
20 #include "qemu/range.h"
21 #include "sysemu/xen-mapcache.h"
23 #include "exec/address-spaces.h"
25 #include <xen/hvm/ioreq.h>
26 #include <xen/hvm/params.h>
27 #include <xen/hvm/e820.h>
29 //#define DEBUG_XEN_HVM
32 #define DPRINTF(fmt, ...) \
33 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
35 #define DPRINTF(fmt, ...) \
39 static MemoryRegion ram_memory
, ram_640k
, ram_lo
, ram_hi
;
40 static MemoryRegion
*framebuffer
;
41 static bool xen_in_migration
;
43 /* Compatibility with older version */
45 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
46 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
47 * needs to be included before this block and hw/xen/xen_common.h needs to
48 * be included before xen/hvm/ioreq.h
50 #ifndef IOREQ_TYPE_VMWARE_PORT
51 #define IOREQ_TYPE_VMWARE_PORT 3
59 typedef struct vmware_regs vmware_regs_t
;
61 struct shared_vmport_iopage
{
62 struct vmware_regs vcpu_vmport_regs
[1];
64 typedef struct shared_vmport_iopage shared_vmport_iopage_t
;
67 #if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a
68 static inline uint32_t xen_vcpu_eport(shared_iopage_t
*shared_page
, int i
)
70 return shared_page
->vcpu_iodata
[i
].vp_eport
;
72 static inline ioreq_t
*xen_vcpu_ioreq(shared_iopage_t
*shared_page
, int vcpu
)
74 return &shared_page
->vcpu_iodata
[vcpu
].vp_ioreq
;
76 # define FMT_ioreq_size PRIx64
78 static inline uint32_t xen_vcpu_eport(shared_iopage_t
*shared_page
, int i
)
80 return shared_page
->vcpu_ioreq
[i
].vp_eport
;
82 static inline ioreq_t
*xen_vcpu_ioreq(shared_iopage_t
*shared_page
, int vcpu
)
84 return &shared_page
->vcpu_ioreq
[vcpu
];
86 # define FMT_ioreq_size "u"
89 #define BUFFER_IO_MAX_DELAY 100
90 /* Leave some slack so that hvmloader does not complain about lack of
91 * memory at boot time ("Could not allocate order=0 extent").
92 * Once hvmloader is modified to cope with that situation without
93 * printing warning messages, QEMU_SPARE_PAGES can be removed.
95 #define QEMU_SPARE_PAGES 16
97 typedef struct XenPhysmap
{
103 QLIST_ENTRY(XenPhysmap
) list
;
106 typedef struct XenIOState
{
108 shared_iopage_t
*shared_page
;
109 shared_vmport_iopage_t
*shared_vmport_page
;
110 buffered_iopage_t
*buffered_io_page
;
111 QEMUTimer
*buffered_io_timer
;
112 CPUState
**cpu_by_vcpu_id
;
113 /* the evtchn port for polling the notification, */
114 evtchn_port_t
*ioreq_local_port
;
115 /* evtchn local port for buffered io */
116 evtchn_port_t bufioreq_local_port
;
117 /* the evtchn fd for polling */
118 XenEvtchn xce_handle
;
119 /* which vcpu we are serving */
122 struct xs_handle
*xenstore
;
123 MemoryListener memory_listener
;
124 MemoryListener io_listener
;
125 DeviceListener device_listener
;
126 QLIST_HEAD(, XenPhysmap
) physmap
;
127 hwaddr free_phys_offset
;
128 const XenPhysmap
*log_for_dirtybit
;
135 /* Xen specific function for piix pci */
137 int xen_pci_slot_get_pirq(PCIDevice
*pci_dev
, int irq_num
)
139 return irq_num
+ ((pci_dev
->devfn
>> 3) << 2);
142 void xen_piix3_set_irq(void *opaque
, int irq_num
, int level
)
144 xc_hvm_set_pci_intx_level(xen_xc
, xen_domid
, 0, 0, irq_num
>> 2,
148 void xen_piix_pci_write_config_client(uint32_t address
, uint32_t val
, int len
)
152 /* Scan for updates to PCI link routes (0x60-0x63). */
153 for (i
= 0; i
< len
; i
++) {
154 uint8_t v
= (val
>> (8 * i
)) & 0xff;
159 if (((address
+ i
) >= 0x60) && ((address
+ i
) <= 0x63)) {
160 xc_hvm_set_pci_link_route(xen_xc
, xen_domid
, address
+ i
- 0x60, v
);
165 void xen_hvm_inject_msi(uint64_t addr
, uint32_t data
)
167 xen_xc_hvm_inject_msi(xen_xc
, xen_domid
, addr
, data
);
170 static void xen_suspend_notifier(Notifier
*notifier
, void *data
)
172 xc_set_hvm_param(xen_xc
, xen_domid
, HVM_PARAM_ACPI_S_STATE
, 3);
175 /* Xen Interrupt Controller */
177 static void xen_set_irq(void *opaque
, int irq
, int level
)
179 xc_hvm_set_isa_irq_level(xen_xc
, xen_domid
, irq
, level
);
182 qemu_irq
*xen_interrupt_controller_init(void)
184 return qemu_allocate_irqs(xen_set_irq
, NULL
, 16);
189 static void xen_ram_init(ram_addr_t
*below_4g_mem_size
,
190 ram_addr_t
*above_4g_mem_size
,
191 ram_addr_t ram_size
, MemoryRegion
**ram_memory_p
)
193 MemoryRegion
*sysmem
= get_system_memory();
194 ram_addr_t block_len
;
195 uint64_t user_lowmem
= object_property_get_int(qdev_get_machine(),
196 PC_MACHINE_MAX_RAM_BELOW_4G
,
199 /* Handle the machine opt max-ram-below-4g. It is basically doing
200 * min(xen limit, user limit).
202 if (HVM_BELOW_4G_RAM_END
<= user_lowmem
) {
203 user_lowmem
= HVM_BELOW_4G_RAM_END
;
206 if (ram_size
>= user_lowmem
) {
207 *above_4g_mem_size
= ram_size
- user_lowmem
;
208 *below_4g_mem_size
= user_lowmem
;
210 *above_4g_mem_size
= 0;
211 *below_4g_mem_size
= ram_size
;
213 if (!*above_4g_mem_size
) {
214 block_len
= ram_size
;
217 * Xen does not allocate the memory continuously, it keeps a
218 * hole of the size computed above or passed in.
220 block_len
= (1ULL << 32) + *above_4g_mem_size
;
222 memory_region_init_ram(&ram_memory
, NULL
, "xen.ram", block_len
,
224 *ram_memory_p
= &ram_memory
;
225 vmstate_register_ram_global(&ram_memory
);
227 memory_region_init_alias(&ram_640k
, NULL
, "xen.ram.640k",
228 &ram_memory
, 0, 0xa0000);
229 memory_region_add_subregion(sysmem
, 0, &ram_640k
);
230 /* Skip of the VGA IO memory space, it will be registered later by the VGA
233 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
234 * the Options ROM, so it is registered here as RAM.
236 memory_region_init_alias(&ram_lo
, NULL
, "xen.ram.lo",
237 &ram_memory
, 0xc0000,
238 *below_4g_mem_size
- 0xc0000);
239 memory_region_add_subregion(sysmem
, 0xc0000, &ram_lo
);
240 if (*above_4g_mem_size
> 0) {
241 memory_region_init_alias(&ram_hi
, NULL
, "xen.ram.hi",
242 &ram_memory
, 0x100000000ULL
,
244 memory_region_add_subregion(sysmem
, 0x100000000ULL
, &ram_hi
);
248 void xen_ram_alloc(ram_addr_t ram_addr
, ram_addr_t size
, MemoryRegion
*mr
)
250 unsigned long nr_pfn
;
253 xc_domaininfo_t info
;
254 unsigned long free_pages
;
256 if (runstate_check(RUN_STATE_INMIGRATE
)) {
257 /* RAM already populated in Xen */
258 fprintf(stderr
, "%s: do not alloc "RAM_ADDR_FMT
259 " bytes of ram at "RAM_ADDR_FMT
" when runstate is INMIGRATE\n",
260 __func__
, size
, ram_addr
);
264 if (mr
== &ram_memory
) {
268 trace_xen_ram_alloc(ram_addr
, size
);
270 nr_pfn
= size
>> TARGET_PAGE_BITS
;
271 pfn_list
= g_malloc(sizeof (*pfn_list
) * nr_pfn
);
273 for (i
= 0; i
< nr_pfn
; i
++) {
274 pfn_list
[i
] = (ram_addr
>> TARGET_PAGE_BITS
) + i
;
277 if ((xc_domain_getinfolist(xen_xc
, xen_domid
, 1, &info
) != 1) ||
278 (info
.domain
!= xen_domid
)) {
279 hw_error("xc_domain_getinfolist failed");
281 free_pages
= info
.max_pages
- info
.tot_pages
;
282 if (free_pages
> QEMU_SPARE_PAGES
) {
283 free_pages
-= QEMU_SPARE_PAGES
;
287 if ((free_pages
< nr_pfn
) &&
288 (xc_domain_setmaxmem(xen_xc
, xen_domid
,
289 ((info
.max_pages
+ nr_pfn
- free_pages
)
290 << (XC_PAGE_SHIFT
- 10))) < 0)) {
291 hw_error("xc_domain_setmaxmem failed");
293 if (xc_domain_populate_physmap_exact(xen_xc
, xen_domid
, nr_pfn
, 0, 0, pfn_list
)) {
294 hw_error("xen: failed to populate ram at " RAM_ADDR_FMT
, ram_addr
);
300 static XenPhysmap
*get_physmapping(XenIOState
*state
,
301 hwaddr start_addr
, ram_addr_t size
)
303 XenPhysmap
*physmap
= NULL
;
305 start_addr
&= TARGET_PAGE_MASK
;
307 QLIST_FOREACH(physmap
, &state
->physmap
, list
) {
308 if (range_covers_byte(physmap
->start_addr
, physmap
->size
, start_addr
)) {
315 static hwaddr
xen_phys_offset_to_gaddr(hwaddr start_addr
,
316 ram_addr_t size
, void *opaque
)
318 hwaddr addr
= start_addr
& TARGET_PAGE_MASK
;
319 XenIOState
*xen_io_state
= opaque
;
320 XenPhysmap
*physmap
= NULL
;
322 QLIST_FOREACH(physmap
, &xen_io_state
->physmap
, list
) {
323 if (range_covers_byte(physmap
->phys_offset
, physmap
->size
, addr
)) {
324 return physmap
->start_addr
;
331 #if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340
332 static int xen_add_to_physmap(XenIOState
*state
,
336 hwaddr offset_within_region
)
340 XenPhysmap
*physmap
= NULL
;
341 hwaddr pfn
, start_gpfn
;
342 hwaddr phys_offset
= memory_region_get_ram_addr(mr
);
343 char path
[80], value
[17];
346 if (get_physmapping(state
, start_addr
, size
)) {
353 /* Xen can only handle a single dirty log region for now and we want
354 * the linear framebuffer to be that region.
355 * Avoid tracking any regions that is not videoram and avoid tracking
356 * the legacy vga region. */
357 if (mr
== framebuffer
&& start_addr
> 0xbffff) {
363 DPRINTF("mapping vram to %"HWADDR_PRIx
" - %"HWADDR_PRIx
"\n",
364 start_addr
, start_addr
+ size
);
366 pfn
= phys_offset
>> TARGET_PAGE_BITS
;
367 start_gpfn
= start_addr
>> TARGET_PAGE_BITS
;
368 for (i
= 0; i
< size
>> TARGET_PAGE_BITS
; i
++) {
369 unsigned long idx
= pfn
+ i
;
370 xen_pfn_t gpfn
= start_gpfn
+ i
;
372 rc
= xc_domain_add_to_physmap(xen_xc
, xen_domid
, XENMAPSPACE_gmfn
, idx
, gpfn
);
374 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn
" to PFN %"
375 PRI_xen_pfn
" failed: %d\n", idx
, gpfn
, rc
);
380 mr_name
= memory_region_name(mr
);
382 physmap
= g_malloc(sizeof (XenPhysmap
));
384 physmap
->start_addr
= start_addr
;
385 physmap
->size
= size
;
386 physmap
->name
= mr_name
;
387 physmap
->phys_offset
= phys_offset
;
389 QLIST_INSERT_HEAD(&state
->physmap
, physmap
, list
);
391 xc_domain_pin_memory_cacheattr(xen_xc
, xen_domid
,
392 start_addr
>> TARGET_PAGE_BITS
,
393 (start_addr
+ size
- 1) >> TARGET_PAGE_BITS
,
394 XEN_DOMCTL_MEM_CACHEATTR_WB
);
396 snprintf(path
, sizeof(path
),
397 "/local/domain/0/device-model/%d/physmap/%"PRIx64
"/start_addr",
398 xen_domid
, (uint64_t)phys_offset
);
399 snprintf(value
, sizeof(value
), "%"PRIx64
, (uint64_t)start_addr
);
400 if (!xs_write(state
->xenstore
, 0, path
, value
, strlen(value
))) {
403 snprintf(path
, sizeof(path
),
404 "/local/domain/0/device-model/%d/physmap/%"PRIx64
"/size",
405 xen_domid
, (uint64_t)phys_offset
);
406 snprintf(value
, sizeof(value
), "%"PRIx64
, (uint64_t)size
);
407 if (!xs_write(state
->xenstore
, 0, path
, value
, strlen(value
))) {
411 snprintf(path
, sizeof(path
),
412 "/local/domain/0/device-model/%d/physmap/%"PRIx64
"/name",
413 xen_domid
, (uint64_t)phys_offset
);
414 if (!xs_write(state
->xenstore
, 0, path
, mr_name
, strlen(mr_name
))) {
422 static int xen_remove_from_physmap(XenIOState
*state
,
428 XenPhysmap
*physmap
= NULL
;
429 hwaddr phys_offset
= 0;
431 physmap
= get_physmapping(state
, start_addr
, size
);
432 if (physmap
== NULL
) {
436 phys_offset
= physmap
->phys_offset
;
437 size
= physmap
->size
;
439 DPRINTF("unmapping vram to %"HWADDR_PRIx
" - %"HWADDR_PRIx
", at "
440 "%"HWADDR_PRIx
"\n", start_addr
, start_addr
+ size
, phys_offset
);
442 size
>>= TARGET_PAGE_BITS
;
443 start_addr
>>= TARGET_PAGE_BITS
;
444 phys_offset
>>= TARGET_PAGE_BITS
;
445 for (i
= 0; i
< size
; i
++) {
446 xen_pfn_t idx
= start_addr
+ i
;
447 xen_pfn_t gpfn
= phys_offset
+ i
;
449 rc
= xc_domain_add_to_physmap(xen_xc
, xen_domid
, XENMAPSPACE_gmfn
, idx
, gpfn
);
451 fprintf(stderr
, "add_to_physmap MFN %"PRI_xen_pfn
" to PFN %"
452 PRI_xen_pfn
" failed: %d\n", idx
, gpfn
, rc
);
457 QLIST_REMOVE(physmap
, list
);
458 if (state
->log_for_dirtybit
== physmap
) {
459 state
->log_for_dirtybit
= NULL
;
467 static int xen_add_to_physmap(XenIOState
*state
,
471 hwaddr offset_within_region
)
476 static int xen_remove_from_physmap(XenIOState
*state
,
484 static void xen_set_memory(struct MemoryListener
*listener
,
485 MemoryRegionSection
*section
,
488 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
489 hwaddr start_addr
= section
->offset_within_address_space
;
490 ram_addr_t size
= int128_get64(section
->size
);
491 bool log_dirty
= memory_region_is_logging(section
->mr
, DIRTY_MEMORY_VGA
);
492 hvmmem_type_t mem_type
;
494 if (section
->mr
== &ram_memory
) {
498 xen_map_memory_section(xen_xc
, xen_domid
, state
->ioservid
,
501 xen_unmap_memory_section(xen_xc
, xen_domid
, state
->ioservid
,
506 if (!memory_region_is_ram(section
->mr
)) {
510 if (log_dirty
!= add
) {
514 trace_xen_client_set_memory(start_addr
, size
, log_dirty
);
516 start_addr
&= TARGET_PAGE_MASK
;
517 size
= TARGET_PAGE_ALIGN(size
);
520 if (!memory_region_is_rom(section
->mr
)) {
521 xen_add_to_physmap(state
, start_addr
, size
,
522 section
->mr
, section
->offset_within_region
);
524 mem_type
= HVMMEM_ram_ro
;
525 if (xc_hvm_set_mem_type(xen_xc
, xen_domid
, mem_type
,
526 start_addr
>> TARGET_PAGE_BITS
,
527 size
>> TARGET_PAGE_BITS
)) {
528 DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx
"\n",
533 if (xen_remove_from_physmap(state
, start_addr
, size
) < 0) {
534 DPRINTF("physmapping does not exist at "TARGET_FMT_plx
"\n", start_addr
);
539 static void xen_region_add(MemoryListener
*listener
,
540 MemoryRegionSection
*section
)
542 memory_region_ref(section
->mr
);
543 xen_set_memory(listener
, section
, true);
546 static void xen_region_del(MemoryListener
*listener
,
547 MemoryRegionSection
*section
)
549 xen_set_memory(listener
, section
, false);
550 memory_region_unref(section
->mr
);
553 static void xen_io_add(MemoryListener
*listener
,
554 MemoryRegionSection
*section
)
556 XenIOState
*state
= container_of(listener
, XenIOState
, io_listener
);
558 memory_region_ref(section
->mr
);
560 xen_map_io_section(xen_xc
, xen_domid
, state
->ioservid
, section
);
563 static void xen_io_del(MemoryListener
*listener
,
564 MemoryRegionSection
*section
)
566 XenIOState
*state
= container_of(listener
, XenIOState
, io_listener
);
568 xen_unmap_io_section(xen_xc
, xen_domid
, state
->ioservid
, section
);
570 memory_region_unref(section
->mr
);
573 static void xen_device_realize(DeviceListener
*listener
,
576 XenIOState
*state
= container_of(listener
, XenIOState
, device_listener
);
578 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
579 PCIDevice
*pci_dev
= PCI_DEVICE(dev
);
581 xen_map_pcidev(xen_xc
, xen_domid
, state
->ioservid
, pci_dev
);
585 static void xen_device_unrealize(DeviceListener
*listener
,
588 XenIOState
*state
= container_of(listener
, XenIOState
, device_listener
);
590 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
591 PCIDevice
*pci_dev
= PCI_DEVICE(dev
);
593 xen_unmap_pcidev(xen_xc
, xen_domid
, state
->ioservid
, pci_dev
);
597 static void xen_sync_dirty_bitmap(XenIOState
*state
,
601 hwaddr npages
= size
>> TARGET_PAGE_BITS
;
602 const int width
= sizeof(unsigned long) * 8;
603 unsigned long bitmap
[(npages
+ width
- 1) / width
];
605 const XenPhysmap
*physmap
= NULL
;
607 physmap
= get_physmapping(state
, start_addr
, size
);
608 if (physmap
== NULL
) {
613 if (state
->log_for_dirtybit
== NULL
) {
614 state
->log_for_dirtybit
= physmap
;
615 } else if (state
->log_for_dirtybit
!= physmap
) {
616 /* Only one range for dirty bitmap can be tracked. */
620 rc
= xc_hvm_track_dirty_vram(xen_xc
, xen_domid
,
621 start_addr
>> TARGET_PAGE_BITS
, npages
,
625 #define ENODATA ENOENT
627 if (errno
== ENODATA
) {
628 memory_region_set_dirty(framebuffer
, 0, size
);
629 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
630 ", 0x" TARGET_FMT_plx
"): %s\n",
631 start_addr
, start_addr
+ size
, strerror(errno
));
636 for (i
= 0; i
< ARRAY_SIZE(bitmap
); i
++) {
637 unsigned long map
= bitmap
[i
];
641 memory_region_set_dirty(framebuffer
,
642 (i
* width
+ j
) * TARGET_PAGE_SIZE
,
648 static void xen_log_start(MemoryListener
*listener
,
649 MemoryRegionSection
*section
,
652 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
654 if (new & ~old
& (1 << DIRTY_MEMORY_VGA
)) {
655 xen_sync_dirty_bitmap(state
, section
->offset_within_address_space
,
656 int128_get64(section
->size
));
660 static void xen_log_stop(MemoryListener
*listener
, MemoryRegionSection
*section
,
663 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
665 if (old
& ~new & (1 << DIRTY_MEMORY_VGA
)) {
666 state
->log_for_dirtybit
= NULL
;
667 /* Disable dirty bit tracking */
668 xc_hvm_track_dirty_vram(xen_xc
, xen_domid
, 0, 0, NULL
);
672 static void xen_log_sync(MemoryListener
*listener
, MemoryRegionSection
*section
)
674 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
676 xen_sync_dirty_bitmap(state
, section
->offset_within_address_space
,
677 int128_get64(section
->size
));
680 static void xen_log_global_start(MemoryListener
*listener
)
683 xen_in_migration
= true;
687 static void xen_log_global_stop(MemoryListener
*listener
)
689 xen_in_migration
= false;
692 static MemoryListener xen_memory_listener
= {
693 .region_add
= xen_region_add
,
694 .region_del
= xen_region_del
,
695 .log_start
= xen_log_start
,
696 .log_stop
= xen_log_stop
,
697 .log_sync
= xen_log_sync
,
698 .log_global_start
= xen_log_global_start
,
699 .log_global_stop
= xen_log_global_stop
,
703 static MemoryListener xen_io_listener
= {
704 .region_add
= xen_io_add
,
705 .region_del
= xen_io_del
,
709 static DeviceListener xen_device_listener
= {
710 .realize
= xen_device_realize
,
711 .unrealize
= xen_device_unrealize
,
714 /* get the ioreq packets from share mem */
715 static ioreq_t
*cpu_get_ioreq_from_shared_memory(XenIOState
*state
, int vcpu
)
717 ioreq_t
*req
= xen_vcpu_ioreq(state
->shared_page
, vcpu
);
719 if (req
->state
!= STATE_IOREQ_READY
) {
720 DPRINTF("I/O request not ready: "
721 "%x, ptr: %x, port: %"PRIx64
", "
722 "data: %"PRIx64
", count: %" FMT_ioreq_size
", size: %" FMT_ioreq_size
"\n",
723 req
->state
, req
->data_is_ptr
, req
->addr
,
724 req
->data
, req
->count
, req
->size
);
728 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
730 req
->state
= STATE_IOREQ_INPROCESS
;
734 /* use poll to get the port notification */
735 /* ioreq_vec--out,the */
736 /* retval--the number of ioreq packet */
737 static ioreq_t
*cpu_get_ioreq(XenIOState
*state
)
742 port
= xc_evtchn_pending(state
->xce_handle
);
743 if (port
== state
->bufioreq_local_port
) {
744 timer_mod(state
->buffered_io_timer
,
745 BUFFER_IO_MAX_DELAY
+ qemu_clock_get_ms(QEMU_CLOCK_REALTIME
));
750 for (i
= 0; i
< max_cpus
; i
++) {
751 if (state
->ioreq_local_port
[i
] == port
) {
757 hw_error("Fatal error while trying to get io event!\n");
760 /* unmask the wanted port again */
761 xc_evtchn_unmask(state
->xce_handle
, port
);
763 /* get the io packet from shared memory */
764 state
->send_vcpu
= i
;
765 return cpu_get_ioreq_from_shared_memory(state
, i
);
768 /* read error or read nothing */
772 static uint32_t do_inp(pio_addr_t addr
, unsigned long size
)
776 return cpu_inb(addr
);
778 return cpu_inw(addr
);
780 return cpu_inl(addr
);
782 hw_error("inp: bad size: %04"FMT_pioaddr
" %lx", addr
, size
);
786 static void do_outp(pio_addr_t addr
,
787 unsigned long size
, uint32_t val
)
791 return cpu_outb(addr
, val
);
793 return cpu_outw(addr
, val
);
795 return cpu_outl(addr
, val
);
797 hw_error("outp: bad size: %04"FMT_pioaddr
" %lx", addr
, size
);
802 * Helper functions which read/write an object from/to physical guest
803 * memory, as part of the implementation of an ioreq.
806 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
807 * val, req->size, 0/1)
808 * except without the integer overflow problems.
810 static void rw_phys_req_item(hwaddr addr
,
811 ioreq_t
*req
, uint32_t i
, void *val
, int rw
)
813 /* Do everything unsigned so overflow just results in a truncated result
814 * and accesses to undesired parts of guest memory, which is up
816 hwaddr offset
= (hwaddr
)req
->size
* i
;
822 cpu_physical_memory_rw(addr
, val
, req
->size
, rw
);
825 static inline void read_phys_req_item(hwaddr addr
,
826 ioreq_t
*req
, uint32_t i
, void *val
)
828 rw_phys_req_item(addr
, req
, i
, val
, 0);
830 static inline void write_phys_req_item(hwaddr addr
,
831 ioreq_t
*req
, uint32_t i
, void *val
)
833 rw_phys_req_item(addr
, req
, i
, val
, 1);
837 static void cpu_ioreq_pio(ioreq_t
*req
)
841 if (req
->dir
== IOREQ_READ
) {
842 if (!req
->data_is_ptr
) {
843 req
->data
= do_inp(req
->addr
, req
->size
);
847 for (i
= 0; i
< req
->count
; i
++) {
848 tmp
= do_inp(req
->addr
, req
->size
);
849 write_phys_req_item(req
->data
, req
, i
, &tmp
);
852 } else if (req
->dir
== IOREQ_WRITE
) {
853 if (!req
->data_is_ptr
) {
854 do_outp(req
->addr
, req
->size
, req
->data
);
856 for (i
= 0; i
< req
->count
; i
++) {
859 read_phys_req_item(req
->data
, req
, i
, &tmp
);
860 do_outp(req
->addr
, req
->size
, tmp
);
866 static void cpu_ioreq_move(ioreq_t
*req
)
870 if (!req
->data_is_ptr
) {
871 if (req
->dir
== IOREQ_READ
) {
872 for (i
= 0; i
< req
->count
; i
++) {
873 read_phys_req_item(req
->addr
, req
, i
, &req
->data
);
875 } else if (req
->dir
== IOREQ_WRITE
) {
876 for (i
= 0; i
< req
->count
; i
++) {
877 write_phys_req_item(req
->addr
, req
, i
, &req
->data
);
883 if (req
->dir
== IOREQ_READ
) {
884 for (i
= 0; i
< req
->count
; i
++) {
885 read_phys_req_item(req
->addr
, req
, i
, &tmp
);
886 write_phys_req_item(req
->data
, req
, i
, &tmp
);
888 } else if (req
->dir
== IOREQ_WRITE
) {
889 for (i
= 0; i
< req
->count
; i
++) {
890 read_phys_req_item(req
->data
, req
, i
, &tmp
);
891 write_phys_req_item(req
->addr
, req
, i
, &tmp
);
897 static void regs_to_cpu(vmware_regs_t
*vmport_regs
, ioreq_t
*req
)
902 cpu
= X86_CPU(current_cpu
);
904 env
->regs
[R_EAX
] = req
->data
;
905 env
->regs
[R_EBX
] = vmport_regs
->ebx
;
906 env
->regs
[R_ECX
] = vmport_regs
->ecx
;
907 env
->regs
[R_EDX
] = vmport_regs
->edx
;
908 env
->regs
[R_ESI
] = vmport_regs
->esi
;
909 env
->regs
[R_EDI
] = vmport_regs
->edi
;
912 static void regs_from_cpu(vmware_regs_t
*vmport_regs
)
914 X86CPU
*cpu
= X86_CPU(current_cpu
);
915 CPUX86State
*env
= &cpu
->env
;
917 vmport_regs
->ebx
= env
->regs
[R_EBX
];
918 vmport_regs
->ecx
= env
->regs
[R_ECX
];
919 vmport_regs
->edx
= env
->regs
[R_EDX
];
920 vmport_regs
->esi
= env
->regs
[R_ESI
];
921 vmport_regs
->edi
= env
->regs
[R_EDI
];
924 static void handle_vmport_ioreq(XenIOState
*state
, ioreq_t
*req
)
926 vmware_regs_t
*vmport_regs
;
928 assert(state
->shared_vmport_page
);
930 &state
->shared_vmport_page
->vcpu_vmport_regs
[state
->send_vcpu
];
931 QEMU_BUILD_BUG_ON(sizeof(*req
) < sizeof(*vmport_regs
));
933 current_cpu
= state
->cpu_by_vcpu_id
[state
->send_vcpu
];
934 regs_to_cpu(vmport_regs
, req
);
936 regs_from_cpu(vmport_regs
);
940 static void handle_ioreq(XenIOState
*state
, ioreq_t
*req
)
942 if (!req
->data_is_ptr
&& (req
->dir
== IOREQ_WRITE
) &&
943 (req
->size
< sizeof (target_ulong
))) {
944 req
->data
&= ((target_ulong
) 1 << (8 * req
->size
)) - 1;
951 case IOREQ_TYPE_COPY
:
954 case IOREQ_TYPE_VMWARE_PORT
:
955 handle_vmport_ioreq(state
, req
);
957 case IOREQ_TYPE_TIMEOFFSET
:
959 case IOREQ_TYPE_INVALIDATE
:
960 xen_invalidate_map_cache();
962 case IOREQ_TYPE_PCI_CONFIG
: {
963 uint32_t sbdf
= req
->addr
>> 32;
966 /* Fake a write to port 0xCF8 so that
967 * the config space access will target the
968 * correct device model.
971 ((req
->addr
& 0x0f00) << 16) |
972 ((sbdf
& 0xffff) << 8) |
974 do_outp(0xcf8, 4, val
);
976 /* Now issue the config space access via
979 req
->addr
= 0xcfc | (req
->addr
& 0x03);
984 hw_error("Invalid ioreq type 0x%x\n", req
->type
);
988 static int handle_buffered_iopage(XenIOState
*state
)
990 buf_ioreq_t
*buf_req
= NULL
;
994 if (!state
->buffered_io_page
) {
998 memset(&req
, 0x00, sizeof(req
));
1000 while (state
->buffered_io_page
->read_pointer
!= state
->buffered_io_page
->write_pointer
) {
1001 buf_req
= &state
->buffered_io_page
->buf_ioreq
[
1002 state
->buffered_io_page
->read_pointer
% IOREQ_BUFFER_SLOT_NUM
];
1003 req
.size
= 1UL << buf_req
->size
;
1005 req
.addr
= buf_req
->addr
;
1006 req
.data
= buf_req
->data
;
1007 req
.state
= STATE_IOREQ_READY
;
1008 req
.dir
= buf_req
->dir
;
1010 req
.type
= buf_req
->type
;
1011 req
.data_is_ptr
= 0;
1012 qw
= (req
.size
== 8);
1014 buf_req
= &state
->buffered_io_page
->buf_ioreq
[
1015 (state
->buffered_io_page
->read_pointer
+ 1) % IOREQ_BUFFER_SLOT_NUM
];
1016 req
.data
|= ((uint64_t)buf_req
->data
) << 32;
1019 handle_ioreq(state
, &req
);
1022 state
->buffered_io_page
->read_pointer
+= qw
? 2 : 1;
1028 static void handle_buffered_io(void *opaque
)
1030 XenIOState
*state
= opaque
;
1032 if (handle_buffered_iopage(state
)) {
1033 timer_mod(state
->buffered_io_timer
,
1034 BUFFER_IO_MAX_DELAY
+ qemu_clock_get_ms(QEMU_CLOCK_REALTIME
));
1036 timer_del(state
->buffered_io_timer
);
1037 xc_evtchn_unmask(state
->xce_handle
, state
->bufioreq_local_port
);
1041 static void cpu_handle_ioreq(void *opaque
)
1043 XenIOState
*state
= opaque
;
1044 ioreq_t
*req
= cpu_get_ioreq(state
);
1046 handle_buffered_iopage(state
);
1048 handle_ioreq(state
, req
);
1050 if (req
->state
!= STATE_IOREQ_INPROCESS
) {
1051 fprintf(stderr
, "Badness in I/O request ... not in service?!: "
1052 "%x, ptr: %x, port: %"PRIx64
", "
1053 "data: %"PRIx64
", count: %" FMT_ioreq_size
1054 ", size: %" FMT_ioreq_size
1055 ", type: %"FMT_ioreq_size
"\n",
1056 req
->state
, req
->data_is_ptr
, req
->addr
,
1057 req
->data
, req
->count
, req
->size
, req
->type
);
1058 destroy_hvm_domain(false);
1062 xen_wmb(); /* Update ioreq contents /then/ update state. */
1065 * We do this before we send the response so that the tools
1066 * have the opportunity to pick up on the reset before the
1067 * guest resumes and does a hlt with interrupts disabled which
1068 * causes Xen to powerdown the domain.
1070 if (runstate_is_running()) {
1071 if (qemu_shutdown_requested_get()) {
1072 destroy_hvm_domain(false);
1074 if (qemu_reset_requested_get()) {
1075 qemu_system_reset(VMRESET_REPORT
);
1076 destroy_hvm_domain(true);
1080 req
->state
= STATE_IORESP_READY
;
1081 xc_evtchn_notify(state
->xce_handle
, state
->ioreq_local_port
[state
->send_vcpu
]);
1085 static void xen_main_loop_prepare(XenIOState
*state
)
1089 if (state
->xce_handle
!= XC_HANDLER_INITIAL_VALUE
) {
1090 evtchn_fd
= xc_evtchn_fd(state
->xce_handle
);
1093 state
->buffered_io_timer
= timer_new_ms(QEMU_CLOCK_REALTIME
, handle_buffered_io
,
1096 if (evtchn_fd
!= -1) {
1097 CPUState
*cpu_state
;
1099 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__
);
1100 CPU_FOREACH(cpu_state
) {
1101 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1102 __func__
, cpu_state
->cpu_index
, cpu_state
);
1103 state
->cpu_by_vcpu_id
[cpu_state
->cpu_index
] = cpu_state
;
1105 qemu_set_fd_handler(evtchn_fd
, cpu_handle_ioreq
, NULL
, state
);
1110 static void xen_hvm_change_state_handler(void *opaque
, int running
,
1113 XenIOState
*state
= opaque
;
1116 xen_main_loop_prepare(state
);
1119 xen_set_ioreq_server_state(xen_xc
, xen_domid
,
1121 (rstate
== RUN_STATE_RUNNING
));
1124 static void xen_exit_notifier(Notifier
*n
, void *data
)
1126 XenIOState
*state
= container_of(n
, XenIOState
, exit
);
1128 xc_evtchn_close(state
->xce_handle
);
1129 xs_daemon_close(state
->xenstore
);
1132 static void xen_read_physmap(XenIOState
*state
)
1134 XenPhysmap
*physmap
= NULL
;
1135 unsigned int len
, num
, i
;
1136 char path
[80], *value
= NULL
;
1137 char **entries
= NULL
;
1139 snprintf(path
, sizeof(path
),
1140 "/local/domain/0/device-model/%d/physmap", xen_domid
);
1141 entries
= xs_directory(state
->xenstore
, 0, path
, &num
);
1142 if (entries
== NULL
)
1145 for (i
= 0; i
< num
; i
++) {
1146 physmap
= g_malloc(sizeof (XenPhysmap
));
1147 physmap
->phys_offset
= strtoull(entries
[i
], NULL
, 16);
1148 snprintf(path
, sizeof(path
),
1149 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1150 xen_domid
, entries
[i
]);
1151 value
= xs_read(state
->xenstore
, 0, path
, &len
);
1152 if (value
== NULL
) {
1156 physmap
->start_addr
= strtoull(value
, NULL
, 16);
1159 snprintf(path
, sizeof(path
),
1160 "/local/domain/0/device-model/%d/physmap/%s/size",
1161 xen_domid
, entries
[i
]);
1162 value
= xs_read(state
->xenstore
, 0, path
, &len
);
1163 if (value
== NULL
) {
1167 physmap
->size
= strtoull(value
, NULL
, 16);
1170 snprintf(path
, sizeof(path
),
1171 "/local/domain/0/device-model/%d/physmap/%s/name",
1172 xen_domid
, entries
[i
]);
1173 physmap
->name
= xs_read(state
->xenstore
, 0, path
, &len
);
1175 QLIST_INSERT_HEAD(&state
->physmap
, physmap
, list
);
1180 static void xen_wakeup_notifier(Notifier
*notifier
, void *data
)
1182 xc_set_hvm_param(xen_xc
, xen_domid
, HVM_PARAM_ACPI_S_STATE
, 0);
1185 /* return 0 means OK, or -1 means critical issue -- will exit(1) */
1186 int xen_hvm_init(ram_addr_t
*below_4g_mem_size
, ram_addr_t
*above_4g_mem_size
,
1187 MemoryRegion
**ram_memory
)
1190 xen_pfn_t ioreq_pfn
;
1191 xen_pfn_t bufioreq_pfn
;
1192 evtchn_port_t bufioreq_evtchn
;
1195 state
= g_malloc0(sizeof (XenIOState
));
1197 state
->xce_handle
= xen_xc_evtchn_open(NULL
, 0);
1198 if (state
->xce_handle
== XC_HANDLER_INITIAL_VALUE
) {
1199 perror("xen: event channel open");
1203 state
->xenstore
= xs_daemon_open();
1204 if (state
->xenstore
== NULL
) {
1205 perror("xen: xenstore open");
1209 rc
= xen_create_ioreq_server(xen_xc
, xen_domid
, &state
->ioservid
);
1211 perror("xen: ioreq server create");
1215 state
->exit
.notify
= xen_exit_notifier
;
1216 qemu_add_exit_notifier(&state
->exit
);
1218 state
->suspend
.notify
= xen_suspend_notifier
;
1219 qemu_register_suspend_notifier(&state
->suspend
);
1221 state
->wakeup
.notify
= xen_wakeup_notifier
;
1222 qemu_register_wakeup_notifier(&state
->wakeup
);
1224 rc
= xen_get_ioreq_server_info(xen_xc
, xen_domid
, state
->ioservid
,
1225 &ioreq_pfn
, &bufioreq_pfn
,
1228 hw_error("failed to get ioreq server info: error %d handle=" XC_INTERFACE_FMT
,
1232 DPRINTF("shared page at pfn %lx\n", ioreq_pfn
);
1233 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn
);
1234 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn
);
1236 state
->shared_page
= xc_map_foreign_range(xen_xc
, xen_domid
, XC_PAGE_SIZE
,
1237 PROT_READ
|PROT_WRITE
, ioreq_pfn
);
1238 if (state
->shared_page
== NULL
) {
1239 hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT
,
1243 rc
= xen_get_vmport_regs_pfn(xen_xc
, xen_domid
, &ioreq_pfn
);
1245 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn
);
1246 state
->shared_vmport_page
=
1247 xc_map_foreign_range(xen_xc
, xen_domid
, XC_PAGE_SIZE
,
1248 PROT_READ
|PROT_WRITE
, ioreq_pfn
);
1249 if (state
->shared_vmport_page
== NULL
) {
1250 hw_error("map shared vmport IO page returned error %d handle="
1251 XC_INTERFACE_FMT
, errno
, xen_xc
);
1253 } else if (rc
!= -ENOSYS
) {
1254 hw_error("get vmport regs pfn returned error %d, rc=%d", errno
, rc
);
1257 state
->buffered_io_page
= xc_map_foreign_range(xen_xc
, xen_domid
,
1259 PROT_READ
|PROT_WRITE
,
1261 if (state
->buffered_io_page
== NULL
) {
1262 hw_error("map buffered IO page returned error %d", errno
);
1265 /* Note: cpus is empty at this point in init */
1266 state
->cpu_by_vcpu_id
= g_malloc0(max_cpus
* sizeof(CPUState
*));
1268 rc
= xen_set_ioreq_server_state(xen_xc
, xen_domid
, state
->ioservid
, true);
1270 hw_error("failed to enable ioreq server info: error %d handle=" XC_INTERFACE_FMT
,
1274 state
->ioreq_local_port
= g_malloc0(max_cpus
* sizeof (evtchn_port_t
));
1276 /* FIXME: how about if we overflow the page here? */
1277 for (i
= 0; i
< max_cpus
; i
++) {
1278 rc
= xc_evtchn_bind_interdomain(state
->xce_handle
, xen_domid
,
1279 xen_vcpu_eport(state
->shared_page
, i
));
1281 fprintf(stderr
, "shared evtchn %d bind error %d\n", i
, errno
);
1284 state
->ioreq_local_port
[i
] = rc
;
1287 rc
= xc_evtchn_bind_interdomain(state
->xce_handle
, xen_domid
,
1290 fprintf(stderr
, "buffered evtchn bind error %d\n", errno
);
1293 state
->bufioreq_local_port
= rc
;
1295 /* Init RAM management */
1296 xen_map_cache_init(xen_phys_offset_to_gaddr
, state
);
1297 xen_ram_init(below_4g_mem_size
, above_4g_mem_size
, ram_size
, ram_memory
);
1299 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler
, state
);
1301 state
->memory_listener
= xen_memory_listener
;
1302 QLIST_INIT(&state
->physmap
);
1303 memory_listener_register(&state
->memory_listener
, &address_space_memory
);
1304 state
->log_for_dirtybit
= NULL
;
1306 state
->io_listener
= xen_io_listener
;
1307 memory_listener_register(&state
->io_listener
, &address_space_io
);
1309 state
->device_listener
= xen_device_listener
;
1310 device_listener_register(&state
->device_listener
);
1312 /* Initialize backend core & drivers */
1313 if (xen_be_init() != 0) {
1314 fprintf(stderr
, "%s: xen backend core setup failed\n", __FUNCTION__
);
1317 xen_be_register("console", &xen_console_ops
);
1318 xen_be_register("vkbd", &xen_kbdmouse_ops
);
1319 xen_be_register("qdisk", &xen_blkdev_ops
);
1320 xen_read_physmap(state
);
1325 void destroy_hvm_domain(bool reboot
)
1330 xc_handle
= xen_xc_interface_open(0, 0, 0);
1331 if (xc_handle
== XC_HANDLER_INITIAL_VALUE
) {
1332 fprintf(stderr
, "Cannot acquire xenctrl handle\n");
1334 sts
= xc_domain_shutdown(xc_handle
, xen_domid
,
1335 reboot
? SHUTDOWN_reboot
: SHUTDOWN_poweroff
);
1337 fprintf(stderr
, "xc_domain_shutdown failed to issue %s, "
1338 "sts %d, %s\n", reboot
? "reboot" : "poweroff",
1339 sts
, strerror(errno
));
1341 fprintf(stderr
, "Issued domain %d %s\n", xen_domid
,
1342 reboot
? "reboot" : "poweroff");
1344 xc_interface_close(xc_handle
);
1348 void xen_register_framebuffer(MemoryRegion
*mr
)
1353 void xen_shutdown_fatal_error(const char *fmt
, ...)
1358 vfprintf(stderr
, fmt
, ap
);
1360 fprintf(stderr
, "Will destroy the domain.\n");
1361 /* destroy the domain */
1362 qemu_system_shutdown_request();
1365 void xen_modified_memory(ram_addr_t start
, ram_addr_t length
)
1367 if (unlikely(xen_in_migration
)) {
1369 ram_addr_t start_pfn
, nb_pages
;
1372 length
= TARGET_PAGE_SIZE
;
1374 start_pfn
= start
>> TARGET_PAGE_BITS
;
1375 nb_pages
= ((start
+ length
+ TARGET_PAGE_SIZE
- 1) >> TARGET_PAGE_BITS
)
1377 rc
= xc_hvm_modified_memory(xen_xc
, xen_domid
, start_pfn
, nb_pages
);
1380 "%s failed for "RAM_ADDR_FMT
" ("RAM_ADDR_FMT
"): %i, %s\n",
1381 __func__
, start
, nb_pages
, rc
, strerror(-rc
));
1386 void qmp_xen_set_global_dirty_log(bool enable
, Error
**errp
)
1389 memory_global_dirty_log_start();
1391 memory_global_dirty_log_stop();