hw/misc/iotkit-sysinfo.c: Implement SSE-300 PID register values
[qemu/ar7.git] / hw / arm / armsse.c
blob67fa4ffe34ac564a5aa25e3908b731d70eb068ba
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
24 #include "hw/irq.h"
25 #include "hw/qdev-clock.h"
27 /* Format of the System Information block SYS_CONFIG register */
28 typedef enum SysConfigFormat {
29 IoTKitFormat,
30 SSE200Format,
31 } SysConfigFormat;
33 struct ARMSSEInfo {
34 const char *name;
35 uint32_t sse_version;
36 int sram_banks;
37 int num_cpus;
38 uint32_t sys_version;
39 uint32_t cpuwait_rst;
40 SysConfigFormat sys_config_format;
41 bool has_mhus;
42 bool has_ppus;
43 bool has_cachectrl;
44 bool has_cpusecctrl;
45 bool has_cpuid;
46 Property *props;
49 static Property iotkit_properties[] = {
50 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
51 MemoryRegion *),
52 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
53 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
54 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
55 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
56 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
57 DEFINE_PROP_END_OF_LIST()
60 static Property armsse_properties[] = {
61 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
62 MemoryRegion *),
63 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
64 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
65 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
66 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
67 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
68 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
69 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
70 DEFINE_PROP_END_OF_LIST()
73 static const ARMSSEInfo armsse_variants[] = {
75 .name = TYPE_IOTKIT,
76 .sse_version = ARMSSE_IOTKIT,
77 .sram_banks = 1,
78 .num_cpus = 1,
79 .sys_version = 0x41743,
80 .cpuwait_rst = 0,
81 .sys_config_format = IoTKitFormat,
82 .has_mhus = false,
83 .has_ppus = false,
84 .has_cachectrl = false,
85 .has_cpusecctrl = false,
86 .has_cpuid = false,
87 .props = iotkit_properties,
90 .name = TYPE_SSE200,
91 .sse_version = ARMSSE_SSE200,
92 .sram_banks = 4,
93 .num_cpus = 2,
94 .sys_version = 0x22041743,
95 .cpuwait_rst = 2,
96 .sys_config_format = SSE200Format,
97 .has_mhus = true,
98 .has_ppus = true,
99 .has_cachectrl = true,
100 .has_cpusecctrl = true,
101 .has_cpuid = true,
102 .props = armsse_properties,
106 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
108 /* Return the SYS_CONFIG value for this SSE */
109 uint32_t sys_config;
111 switch (info->sys_config_format) {
112 case IoTKitFormat:
113 sys_config = 0;
114 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
115 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
116 break;
117 case SSE200Format:
118 sys_config = 0;
119 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
120 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
121 sys_config = deposit32(sys_config, 24, 4, 2);
122 if (info->num_cpus > 1) {
123 sys_config = deposit32(sys_config, 10, 1, 1);
124 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
125 sys_config = deposit32(sys_config, 28, 4, 2);
127 break;
128 default:
129 g_assert_not_reached();
131 return sys_config;
134 /* Clock frequency in HZ of the 32KHz "slow clock" */
135 #define S32KCLK (32 * 1000)
137 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
138 static bool irq_is_common[32] = {
139 [0 ... 5] = true,
140 /* 6, 7: per-CPU MHU interrupts */
141 [8 ... 12] = true,
142 /* 13: per-CPU icache interrupt */
143 /* 14: reserved */
144 [15 ... 20] = true,
145 /* 21: reserved */
146 [22 ... 26] = true,
147 /* 27: reserved */
148 /* 28, 29: per-CPU CTI interrupts */
149 /* 30, 31: reserved */
153 * Create an alias region in @container of @size bytes starting at @base
154 * which mirrors the memory starting at @orig.
156 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
157 const char *name, hwaddr base, hwaddr size, hwaddr orig)
159 memory_region_init_alias(mr, NULL, name, container, orig, size);
160 /* The alias is even lower priority than unimplemented_device regions */
161 memory_region_add_subregion_overlap(container, base, mr, -1500);
164 static void irq_status_forwarder(void *opaque, int n, int level)
166 qemu_irq destirq = opaque;
168 qemu_set_irq(destirq, level);
171 static void nsccfg_handler(void *opaque, int n, int level)
173 ARMSSE *s = ARM_SSE(opaque);
175 s->nsccfg = level;
178 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
180 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
181 * system using the ARMSSE has a collection of control lines which
182 * are provided by the security controller and which we want to
183 * expose as control lines on the ARMSSE device itself, so the
184 * code using the ARMSSE can wire them up to the PPCs.
186 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
187 DeviceState *armssedev = DEVICE(s);
188 DeviceState *dev_secctl = DEVICE(&s->secctl);
189 DeviceState *dev_splitter = DEVICE(splitter);
190 char *name;
192 name = g_strdup_printf("%s_nonsec", ppcname);
193 qdev_pass_gpios(dev_secctl, armssedev, name);
194 g_free(name);
195 name = g_strdup_printf("%s_ap", ppcname);
196 qdev_pass_gpios(dev_secctl, armssedev, name);
197 g_free(name);
198 name = g_strdup_printf("%s_irq_enable", ppcname);
199 qdev_pass_gpios(dev_secctl, armssedev, name);
200 g_free(name);
201 name = g_strdup_printf("%s_irq_clear", ppcname);
202 qdev_pass_gpios(dev_secctl, armssedev, name);
203 g_free(name);
205 /* irq_status is a little more tricky, because we need to
206 * split it so we can send it both to the security controller
207 * and to our OR gate for the NVIC interrupt line.
208 * Connect up the splitter's outputs, and create a GPIO input
209 * which will pass the line state to the input splitter.
211 name = g_strdup_printf("%s_irq_status", ppcname);
212 qdev_connect_gpio_out(dev_splitter, 0,
213 qdev_get_gpio_in_named(dev_secctl,
214 name, 0));
215 qdev_connect_gpio_out(dev_splitter, 1,
216 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
217 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
218 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
219 s->irq_status_in[ppcnum], name, 1);
220 g_free(name);
223 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
225 /* Forward the 3rd output from the splitter device as a
226 * named GPIO output of the armsse object.
228 DeviceState *dev = DEVICE(s);
229 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
231 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
232 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
233 s->sec_resp_cfg, 1);
234 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
237 static void armsse_mainclk_update(void *opaque, ClockEvent event)
239 ARMSSE *s = ARM_SSE(opaque);
242 * Set system_clock_scale from our Clock input; this is what
243 * controls the tick rate of the CPU SysTick timer.
245 system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
248 static void armsse_init(Object *obj)
250 ARMSSE *s = ARM_SSE(obj);
251 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
252 const ARMSSEInfo *info = asc->info;
253 int i;
255 assert(info->sram_banks <= MAX_SRAM_BANKS);
256 assert(info->num_cpus <= SSE_MAX_CPUS);
258 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
259 armsse_mainclk_update, s, ClockUpdate);
260 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
262 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
264 for (i = 0; i < info->num_cpus; i++) {
266 * We put each CPU in its own cluster as they are logically
267 * distinct and may be configured differently.
269 char *name;
271 name = g_strdup_printf("cluster%d", i);
272 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
273 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
274 g_free(name);
276 name = g_strdup_printf("armv7m%d", i);
277 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
278 TYPE_ARMV7M);
279 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
280 ARM_CPU_TYPE_NAME("cortex-m33"));
281 g_free(name);
282 name = g_strdup_printf("arm-sse-cpu-container%d", i);
283 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
284 g_free(name);
285 if (i > 0) {
286 name = g_strdup_printf("arm-sse-container-alias%d", i);
287 memory_region_init_alias(&s->container_alias[i - 1], obj,
288 name, &s->container, 0, UINT64_MAX);
289 g_free(name);
293 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
294 object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
295 object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
296 for (i = 0; i < info->sram_banks; i++) {
297 char *name = g_strdup_printf("mpc%d", i);
298 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
299 g_free(name);
301 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
302 TYPE_OR_IRQ);
304 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
305 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
306 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
308 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
309 g_free(name);
311 object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
312 object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
313 object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
314 TYPE_CMSDK_APB_TIMER);
315 object_initialize_child(obj, "dualtimer", &s->dualtimer,
316 TYPE_CMSDK_APB_DUALTIMER);
317 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
318 TYPE_CMSDK_APB_WATCHDOG);
319 object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
320 TYPE_CMSDK_APB_WATCHDOG);
321 object_initialize_child(obj, "swatchdog", &s->swatchdog,
322 TYPE_CMSDK_APB_WATCHDOG);
323 object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
324 TYPE_IOTKIT_SYSCTL);
325 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
326 TYPE_IOTKIT_SYSINFO);
327 if (info->has_mhus) {
328 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
329 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
331 if (info->has_ppus) {
332 for (i = 0; i < info->num_cpus; i++) {
333 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
334 int ppuidx = CPU0CORE_PPU + i;
336 object_initialize_child(obj, name, &s->ppu[ppuidx],
337 TYPE_UNIMPLEMENTED_DEVICE);
338 g_free(name);
340 object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
341 TYPE_UNIMPLEMENTED_DEVICE);
342 for (i = 0; i < info->sram_banks; i++) {
343 char *name = g_strdup_printf("RAM%d_PPU", i);
344 int ppuidx = RAM0_PPU + i;
346 object_initialize_child(obj, name, &s->ppu[ppuidx],
347 TYPE_UNIMPLEMENTED_DEVICE);
348 g_free(name);
351 if (info->has_cachectrl) {
352 for (i = 0; i < info->num_cpus; i++) {
353 char *name = g_strdup_printf("cachectrl%d", i);
355 object_initialize_child(obj, name, &s->cachectrl[i],
356 TYPE_UNIMPLEMENTED_DEVICE);
357 g_free(name);
360 if (info->has_cpusecctrl) {
361 for (i = 0; i < info->num_cpus; i++) {
362 char *name = g_strdup_printf("cpusecctrl%d", i);
364 object_initialize_child(obj, name, &s->cpusecctrl[i],
365 TYPE_UNIMPLEMENTED_DEVICE);
366 g_free(name);
369 if (info->has_cpuid) {
370 for (i = 0; i < info->num_cpus; i++) {
371 char *name = g_strdup_printf("cpuid%d", i);
373 object_initialize_child(obj, name, &s->cpuid[i],
374 TYPE_ARMSSE_CPUID);
375 g_free(name);
378 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
379 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
380 TYPE_OR_IRQ);
381 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
382 TYPE_SPLIT_IRQ);
383 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
384 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
385 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
387 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
388 g_free(name);
390 if (info->num_cpus > 1) {
391 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
392 if (irq_is_common[i]) {
393 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
394 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
396 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
397 g_free(name);
403 static void armsse_exp_irq(void *opaque, int n, int level)
405 qemu_irq *irqarray = opaque;
407 qemu_set_irq(irqarray[n], level);
410 static void armsse_mpcexp_status(void *opaque, int n, int level)
412 ARMSSE *s = ARM_SSE(opaque);
413 qemu_set_irq(s->mpcexp_status_in[n], level);
416 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
419 * Return a qemu_irq which can be used to signal IRQ n to
420 * all CPUs in the SSE.
422 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
423 const ARMSSEInfo *info = asc->info;
425 assert(irq_is_common[irqno]);
427 if (info->num_cpus == 1) {
428 /* Only one CPU -- just connect directly to it */
429 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
430 } else {
431 /* Connect to the splitter which feeds all CPUs */
432 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
436 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
438 /* Map a PPU unimplemented device stub */
439 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
441 qdev_prop_set_string(dev, "name", name);
442 qdev_prop_set_uint64(dev, "size", 0x1000);
443 sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
444 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
447 static void armsse_realize(DeviceState *dev, Error **errp)
449 ARMSSE *s = ARM_SSE(dev);
450 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
451 const ARMSSEInfo *info = asc->info;
452 int i;
453 MemoryRegion *mr;
454 Error *err = NULL;
455 SysBusDevice *sbd_apb_ppc0;
456 SysBusDevice *sbd_secctl;
457 DeviceState *dev_apb_ppc0;
458 DeviceState *dev_apb_ppc1;
459 DeviceState *dev_secctl;
460 DeviceState *dev_splitter;
461 uint32_t addr_width_max;
463 if (!s->board_memory) {
464 error_setg(errp, "memory property was not set");
465 return;
468 if (!clock_has_source(s->mainclk)) {
469 error_setg(errp, "MAINCLK clock was not connected");
471 if (!clock_has_source(s->s32kclk)) {
472 error_setg(errp, "S32KCLK clock was not connected");
475 assert(info->num_cpus <= SSE_MAX_CPUS);
477 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
478 assert(is_power_of_2(info->sram_banks));
479 addr_width_max = 24 - ctz32(info->sram_banks);
480 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
481 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
482 addr_width_max);
483 return;
486 /* Handling of which devices should be available only to secure
487 * code is usually done differently for M profile than for A profile.
488 * Instead of putting some devices only into the secure address space,
489 * devices exist in both address spaces but with hard-wired security
490 * permissions that will cause the CPU to fault for non-secure accesses.
492 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
493 * which specifies hard-wired security permissions for different
494 * areas of the physical address space. For the ARMSSE IDAU, the
495 * top 4 bits of the physical address are the IDAU region ID, and
496 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
497 * region, otherwise it is an S region.
499 * The various devices and RAMs are generally all mapped twice,
500 * once into a region that the IDAU defines as secure and once
501 * into a non-secure region. They sit behind either a Memory
502 * Protection Controller (for RAM) or a Peripheral Protection
503 * Controller (for devices), which allow a more fine grained
504 * configuration of whether non-secure accesses are permitted.
506 * (The other place that guest software can configure security
507 * permissions is in the architected SAU (Security Attribution
508 * Unit), which is entirely inside the CPU. The IDAU can upgrade
509 * the security attributes for a region to more restrictive than
510 * the SAU specifies, but cannot downgrade them.)
512 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
513 * 0x20000000..0x2007ffff 32KB FPGA block RAM
514 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
515 * 0x40000000..0x4000ffff base peripheral region 1
516 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
517 * 0x40020000..0x4002ffff system control element peripherals
518 * 0x40080000..0x400fffff base peripheral region 2
519 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
522 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
524 for (i = 0; i < info->num_cpus; i++) {
525 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
526 Object *cpuobj = OBJECT(&s->armv7m[i]);
527 int j;
528 char *gpioname;
530 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
532 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
533 * registers in the IoT Kit System Control Register block. In QEMU
534 * we set the initial value here, and also the reset value of the
535 * sysctl register, from this object's QOM init-svtor property.
536 * If the guest changes the INITSVTOR* registers at runtime then the
537 * code in iotkit-sysctl.c will update the CPU init-svtor property
538 * (which will then take effect on the next CPU warm-reset).
540 * Note that typically a board using the SSE-200 will have a system
541 * control processor whose boot firmware initializes the INITSVTOR*
542 * registers before powering up the CPUs. QEMU doesn't emulate
543 * the control processor, so instead we behave in the way that the
544 * firmware does: the initial value should be set by the board code
545 * (using the init-svtor property on the ARMSSE object) to match
546 * whatever its firmware does.
548 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
550 * CPUs start powered down if the corresponding bit in the CPUWAIT
551 * register is 1. In real hardware the CPUWAIT register reset value is
552 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
553 * CPUWAIT1_RST parameters), but since all the boards we care about
554 * start CPU0 and leave CPU1 powered off, we hard-code that in
555 * info->cpuwait_rst for now. We can add QOM properties for this
556 * later if necessary.
558 if (extract32(info->cpuwait_rst, i, 1)) {
559 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
560 errp)) {
561 return;
564 if (!s->cpu_fpu[i]) {
565 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
566 return;
569 if (!s->cpu_dsp[i]) {
570 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
571 return;
575 if (i > 0) {
576 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
577 &s->container_alias[i - 1], -1);
578 } else {
579 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
580 &s->container, -1);
582 object_property_set_link(cpuobj, "memory",
583 OBJECT(&s->cpu_container[i]), &error_abort);
584 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
585 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
586 return;
589 * The cluster must be realized after the armv7m container, as
590 * the container's CPU object is only created on realize, and the
591 * CPU must exist and have been parented into the cluster before
592 * the cluster is realized.
594 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
595 return;
598 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
599 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
600 for (j = 0; j < s->exp_numirq; j++) {
601 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
603 if (i == 0) {
604 gpioname = g_strdup("EXP_IRQ");
605 } else {
606 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
608 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
609 s->exp_irqs[i],
610 gpioname, s->exp_numirq);
611 g_free(gpioname);
614 /* Wire up the splitters that connect common IRQs to all CPUs */
615 if (info->num_cpus > 1) {
616 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
617 if (irq_is_common[i]) {
618 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
619 DeviceState *devs = DEVICE(splitter);
620 int cpunum;
622 if (!object_property_set_int(splitter, "num-lines",
623 info->num_cpus, errp)) {
624 return;
626 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
627 return;
629 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
630 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
632 qdev_connect_gpio_out(devs, cpunum,
633 qdev_get_gpio_in(cpudev, i));
639 /* Set up the big aliases first */
640 make_alias(s, &s->alias1, &s->container, "alias 1",
641 0x10000000, 0x10000000, 0x00000000);
642 make_alias(s, &s->alias2, &s->container,
643 "alias 2", 0x30000000, 0x10000000, 0x20000000);
644 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
645 * a few extra devices that only appear there (generally the
646 * control interfaces for the protection controllers).
647 * We implement this by mapping those devices over the top of this
648 * alias MR at a higher priority. Some of the devices in this range
649 * are per-CPU, so we must put this alias in the per-cpu containers.
651 for (i = 0; i < info->num_cpus; i++) {
652 make_alias(s, &s->alias3[i], &s->cpu_container[i],
653 "alias 3", 0x50000000, 0x10000000, 0x40000000);
656 /* Security controller */
657 object_property_set_int(OBJECT(&s->secctl), "sse-version",
658 info->sse_version, &error_abort);
659 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
660 return;
662 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
663 dev_secctl = DEVICE(&s->secctl);
664 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
665 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
667 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
668 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
670 /* The sec_resp_cfg output from the security controller must be split into
671 * multiple lines, one for each of the PPCs within the ARMSSE and one
672 * that will be an output from the ARMSSE to the system.
674 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
675 "num-lines", 3, errp)) {
676 return;
678 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
679 return;
681 dev_splitter = DEVICE(&s->sec_resp_splitter);
682 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
683 qdev_get_gpio_in(dev_splitter, 0));
685 /* Each SRAM bank lives behind its own Memory Protection Controller */
686 for (i = 0; i < info->sram_banks; i++) {
687 char *ramname = g_strdup_printf("armsse.sram%d", i);
688 SysBusDevice *sbd_mpc;
689 uint32_t sram_bank_size = 1 << s->sram_addr_width;
691 memory_region_init_ram(&s->sram[i], NULL, ramname,
692 sram_bank_size, &err);
693 g_free(ramname);
694 if (err) {
695 error_propagate(errp, err);
696 return;
698 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
699 OBJECT(&s->sram[i]), &error_abort);
700 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
701 return;
703 /* Map the upstream end of the MPC into the right place... */
704 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
705 memory_region_add_subregion(&s->container,
706 0x20000000 + i * sram_bank_size,
707 sysbus_mmio_get_region(sbd_mpc, 1));
708 /* ...and its register interface */
709 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
710 sysbus_mmio_get_region(sbd_mpc, 0));
713 /* We must OR together lines from the MPC splitters to go to the NVIC */
714 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
715 IOTS_NUM_EXP_MPC + info->sram_banks,
716 errp)) {
717 return;
719 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
720 return;
722 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
723 armsse_get_common_irq_in(s, 9));
725 /* Devices behind APB PPC0:
726 * 0x40000000: timer0
727 * 0x40001000: timer1
728 * 0x40002000: dual timer
729 * 0x40003000: MHU0 (SSE-200 only)
730 * 0x40004000: MHU1 (SSE-200 only)
731 * We must configure and realize each downstream device and connect
732 * it to the appropriate PPC port; then we can realize the PPC and
733 * map its upstream ends to the right place in the container.
735 qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
736 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
737 return;
739 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
740 armsse_get_common_irq_in(s, 3));
741 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
742 object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
743 &error_abort);
745 qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
746 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
747 return;
749 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
750 armsse_get_common_irq_in(s, 4));
751 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
752 object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
753 &error_abort);
755 qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
756 if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
757 return;
759 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
760 armsse_get_common_irq_in(s, 5));
761 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
762 object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
763 &error_abort);
765 if (info->has_mhus) {
767 * An SSE-200 with only one CPU should have only one MHU created,
768 * with the region where the second MHU usually is being RAZ/WI.
769 * We don't implement that SSE-200 config; if we want to support
770 * it then this code needs to be enhanced to handle creating the
771 * RAZ/WI region instead of the second MHU.
773 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
775 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
776 char *port;
777 int cpunum;
778 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
780 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
781 return;
783 port = g_strdup_printf("port[%d]", i + 3);
784 mr = sysbus_mmio_get_region(mhu_sbd, 0);
785 object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
786 &error_abort);
787 g_free(port);
790 * Each MHU has an irq line for each CPU:
791 * MHU 0 irq line 0 -> CPU 0 IRQ 6
792 * MHU 0 irq line 1 -> CPU 1 IRQ 6
793 * MHU 1 irq line 0 -> CPU 0 IRQ 7
794 * MHU 1 irq line 1 -> CPU 1 IRQ 7
796 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
797 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
799 sysbus_connect_irq(mhu_sbd, cpunum,
800 qdev_get_gpio_in(cpudev, 6 + i));
805 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
806 return;
809 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
810 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
812 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
813 memory_region_add_subregion(&s->container, 0x40000000, mr);
814 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
815 memory_region_add_subregion(&s->container, 0x40001000, mr);
816 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
817 memory_region_add_subregion(&s->container, 0x40002000, mr);
818 if (info->has_mhus) {
819 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
820 memory_region_add_subregion(&s->container, 0x40003000, mr);
821 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
822 memory_region_add_subregion(&s->container, 0x40004000, mr);
824 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
825 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
826 qdev_get_gpio_in_named(dev_apb_ppc0,
827 "cfg_nonsec", i));
828 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
829 qdev_get_gpio_in_named(dev_apb_ppc0,
830 "cfg_ap", i));
832 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
833 qdev_get_gpio_in_named(dev_apb_ppc0,
834 "irq_enable", 0));
835 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
836 qdev_get_gpio_in_named(dev_apb_ppc0,
837 "irq_clear", 0));
838 qdev_connect_gpio_out(dev_splitter, 0,
839 qdev_get_gpio_in_named(dev_apb_ppc0,
840 "cfg_sec_resp", 0));
842 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
843 * ones) are sent individually to the security controller, and also
844 * ORed together to give a single combined PPC interrupt to the NVIC.
846 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
847 "num-lines", NUM_PPCS, errp)) {
848 return;
850 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
851 return;
853 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
854 armsse_get_common_irq_in(s, 10));
857 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
858 * private per-CPU region (all these devices are SSE-200 only):
859 * 0x50010000: L1 icache control registers
860 * 0x50011000: CPUSECCTRL (CPU local security control registers)
861 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
863 if (info->has_cachectrl) {
864 for (i = 0; i < info->num_cpus; i++) {
865 char *name = g_strdup_printf("cachectrl%d", i);
866 MemoryRegion *mr;
868 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
869 g_free(name);
870 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
871 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
872 return;
875 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
876 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
879 if (info->has_cpusecctrl) {
880 for (i = 0; i < info->num_cpus; i++) {
881 char *name = g_strdup_printf("CPUSECCTRL%d", i);
882 MemoryRegion *mr;
884 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
885 g_free(name);
886 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
887 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
888 return;
891 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
892 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
895 if (info->has_cpuid) {
896 for (i = 0; i < info->num_cpus; i++) {
897 MemoryRegion *mr;
899 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
900 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
901 return;
904 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
905 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
909 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
910 /* Devices behind APB PPC1:
911 * 0x4002f000: S32K timer
913 qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
914 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
915 return;
917 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
918 armsse_get_common_irq_in(s, 2));
919 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
920 object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
921 &error_abort);
923 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
924 return;
926 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
927 memory_region_add_subregion(&s->container, 0x4002f000, mr);
929 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
930 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
931 qdev_get_gpio_in_named(dev_apb_ppc1,
932 "cfg_nonsec", 0));
933 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
934 qdev_get_gpio_in_named(dev_apb_ppc1,
935 "cfg_ap", 0));
936 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
937 qdev_get_gpio_in_named(dev_apb_ppc1,
938 "irq_enable", 0));
939 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
940 qdev_get_gpio_in_named(dev_apb_ppc1,
941 "irq_clear", 0));
942 qdev_connect_gpio_out(dev_splitter, 1,
943 qdev_get_gpio_in_named(dev_apb_ppc1,
944 "cfg_sec_resp", 0));
946 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
947 info->sys_version, errp)) {
948 return;
950 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
951 armsse_sys_config_value(s, info), errp)) {
952 return;
954 object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
955 info->sse_version, &error_abort);
956 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
957 return;
959 /* System information registers */
960 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
961 /* System control registers */
962 object_property_set_int(OBJECT(&s->sysctl), "sse-version",
963 info->sse_version, &error_abort);
964 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
965 info->cpuwait_rst, &error_abort);
966 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
967 s->init_svtor, &error_abort);
968 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
969 s->init_svtor, &error_abort);
970 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
971 return;
973 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
975 if (info->has_ppus) {
976 /* CPUnCORE_PPU for each CPU */
977 for (i = 0; i < info->num_cpus; i++) {
978 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
980 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
982 * We don't support CPU debug so don't create the
983 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
985 g_free(name);
987 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
989 for (i = 0; i < info->sram_banks; i++) {
990 char *name = g_strdup_printf("RAM%d_PPU", i);
992 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
993 g_free(name);
997 /* This OR gate wires together outputs from the secure watchdogs to NMI */
998 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
999 errp)) {
1000 return;
1002 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1003 return;
1005 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1006 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1008 qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
1009 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
1010 return;
1012 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1013 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1014 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1016 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1018 qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1019 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1020 return;
1022 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1023 armsse_get_common_irq_in(s, 1));
1024 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1026 qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1027 if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1028 return;
1030 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1031 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1032 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1034 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1035 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1037 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1038 return;
1040 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1041 return;
1045 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1046 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1048 armsse_forward_ppc(s, ppcname, i);
1049 g_free(ppcname);
1052 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1053 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1055 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1056 g_free(ppcname);
1059 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1060 /* Wire up IRQ splitter for internal PPCs */
1061 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1062 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1063 i - NUM_EXTERNAL_PPCS);
1064 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1066 qdev_connect_gpio_out(devs, 0,
1067 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1068 qdev_connect_gpio_out(devs, 1,
1069 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1070 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1071 qdev_get_gpio_in(devs, 0));
1072 g_free(gpioname);
1075 /* Wire up the splitters for the MPC IRQs */
1076 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1077 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1078 DeviceState *dev_splitter = DEVICE(splitter);
1080 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1081 errp)) {
1082 return;
1084 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1085 return;
1088 if (i < IOTS_NUM_EXP_MPC) {
1089 /* Splitter input is from GPIO input line */
1090 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1091 qdev_connect_gpio_out(dev_splitter, 0,
1092 qdev_get_gpio_in_named(dev_secctl,
1093 "mpcexp_status", i));
1094 } else {
1095 /* Splitter input is from our own MPC */
1096 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1097 "irq", 0,
1098 qdev_get_gpio_in(dev_splitter, 0));
1099 qdev_connect_gpio_out(dev_splitter, 0,
1100 qdev_get_gpio_in_named(dev_secctl,
1101 "mpc_status",
1102 i - IOTS_NUM_EXP_MPC));
1105 qdev_connect_gpio_out(dev_splitter, 1,
1106 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1108 /* Create GPIO inputs which will pass the line state for our
1109 * mpcexp_irq inputs to the correct splitter devices.
1111 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1112 IOTS_NUM_EXP_MPC);
1114 armsse_forward_sec_resp_cfg(s);
1116 /* Forward the MSC related signals */
1117 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1118 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1119 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1120 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1121 armsse_get_common_irq_in(s, 11));
1124 * Expose our container region to the board model; this corresponds
1125 * to the AHB Slave Expansion ports which allow bus master devices
1126 * (eg DMA controllers) in the board model to make transactions into
1127 * devices in the ARMSSE.
1129 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1131 /* Set initial system_clock_scale from MAINCLK */
1132 armsse_mainclk_update(s, ClockUpdate);
1135 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1136 int *iregion, bool *exempt, bool *ns, bool *nsc)
1139 * For ARMSSE systems the IDAU responses are simple logical functions
1140 * of the address bits. The NSC attribute is guest-adjustable via the
1141 * NSCCFG register in the security controller.
1143 ARMSSE *s = ARM_SSE(ii);
1144 int region = extract32(address, 28, 4);
1146 *ns = !(region & 1);
1147 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1148 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1149 *exempt = (address & 0xeff00000) == 0xe0000000;
1150 *iregion = region;
1153 static const VMStateDescription armsse_vmstate = {
1154 .name = "iotkit",
1155 .version_id = 2,
1156 .minimum_version_id = 2,
1157 .fields = (VMStateField[]) {
1158 VMSTATE_CLOCK(mainclk, ARMSSE),
1159 VMSTATE_CLOCK(s32kclk, ARMSSE),
1160 VMSTATE_UINT32(nsccfg, ARMSSE),
1161 VMSTATE_END_OF_LIST()
1165 static void armsse_reset(DeviceState *dev)
1167 ARMSSE *s = ARM_SSE(dev);
1169 s->nsccfg = 0;
1172 static void armsse_class_init(ObjectClass *klass, void *data)
1174 DeviceClass *dc = DEVICE_CLASS(klass);
1175 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1176 ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1177 const ARMSSEInfo *info = data;
1179 dc->realize = armsse_realize;
1180 dc->vmsd = &armsse_vmstate;
1181 device_class_set_props(dc, info->props);
1182 dc->reset = armsse_reset;
1183 iic->check = armsse_idau_check;
1184 asc->info = info;
1187 static const TypeInfo armsse_info = {
1188 .name = TYPE_ARM_SSE,
1189 .parent = TYPE_SYS_BUS_DEVICE,
1190 .instance_size = sizeof(ARMSSE),
1191 .class_size = sizeof(ARMSSEClass),
1192 .instance_init = armsse_init,
1193 .abstract = true,
1194 .interfaces = (InterfaceInfo[]) {
1195 { TYPE_IDAU_INTERFACE },
1200 static void armsse_register_types(void)
1202 int i;
1204 type_register_static(&armsse_info);
1206 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1207 TypeInfo ti = {
1208 .name = armsse_variants[i].name,
1209 .parent = TYPE_ARM_SSE,
1210 .class_init = armsse_class_init,
1211 .class_data = (void *)&armsse_variants[i],
1213 type_register(&ti);
1217 type_init(armsse_register_types);