Revert "exec.c: Fix breakpoint invalidation race"
[qemu/ar7.git] / include / exec / exec-all.h
blobbf8da2aa5ab601684f89fc499389a696ef344d76
1 /*
2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
29 /* Page tracking code uses ram addresses in system mode, and virtual
30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
31 type. */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
38 /* is_jmp field values */
39 #define DISAS_NEXT 0 /* next instruction can be analyzed */
40 #define DISAS_JUMP 1 /* only pc was modified dynamically */
41 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
44 #include "qemu/log.h"
46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
48 target_ulong *data);
50 void cpu_gen_init(void);
51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
55 TranslationBlock *tb_gen_code(CPUState *cpu,
56 target_ulong pc, target_ulong cs_base,
57 uint32_t flags,
58 int cflags);
60 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
61 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
62 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
64 #if !defined(CONFIG_USER_ONLY)
65 void cpu_reloading_memory_map(void);
66 /**
67 * cpu_address_space_init:
68 * @cpu: CPU to add this address space to
69 * @as: address space to add
70 * @asidx: integer index of this address space
72 * Add the specified address space to the CPU's cpu_ases list.
73 * The address space added with @asidx 0 is the one used for the
74 * convenience pointer cpu->as.
75 * The target-specific code which registers ASes is responsible
76 * for defining what semantics address space 0, 1, 2, etc have.
78 * Before the first call to this function, the caller must set
79 * cpu->num_ases to the total number of address spaces it needs
80 * to support.
82 * Note that with KVM only one address space is supported.
84 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
85 #endif
87 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
88 /* cputlb.c */
89 /**
90 * tlb_flush_page:
91 * @cpu: CPU whose TLB should be flushed
92 * @addr: virtual address of page to be flushed
94 * Flush one page from the TLB of the specified CPU, for all
95 * MMU indexes.
97 void tlb_flush_page(CPUState *cpu, target_ulong addr);
98 /**
99 * tlb_flush_page_all_cpus:
100 * @cpu: src CPU of the flush
101 * @addr: virtual address of page to be flushed
103 * Flush one page from the TLB of the specified CPU, for all
104 * MMU indexes.
106 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
108 * tlb_flush_page_all_cpus_synced:
109 * @cpu: src CPU of the flush
110 * @addr: virtual address of page to be flushed
112 * Flush one page from the TLB of the specified CPU, for all MMU
113 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
114 * is scheduled as safe work meaning all flushes will be complete once
115 * the source vCPUs safe work is complete. This will depend on when
116 * the guests translation ends the TB.
118 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
120 * tlb_flush:
121 * @cpu: CPU whose TLB should be flushed
123 * Flush the entire TLB for the specified CPU. Most CPU architectures
124 * allow the implementation to drop entries from the TLB at any time
125 * so this is generally safe. If more selective flushing is required
126 * use one of the other functions for efficiency.
128 void tlb_flush(CPUState *cpu);
130 * tlb_flush_all_cpus:
131 * @cpu: src CPU of the flush
133 void tlb_flush_all_cpus(CPUState *src_cpu);
135 * tlb_flush_all_cpus_synced:
136 * @cpu: src CPU of the flush
138 * Like tlb_flush_all_cpus except this except the source vCPUs work is
139 * scheduled as safe work meaning all flushes will be complete once
140 * the source vCPUs safe work is complete. This will depend on when
141 * the guests translation ends the TB.
143 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
145 * tlb_flush_page_by_mmuidx:
146 * @cpu: CPU whose TLB should be flushed
147 * @addr: virtual address of page to be flushed
148 * @idxmap: bitmap of MMU indexes to flush
150 * Flush one page from the TLB of the specified CPU, for the specified
151 * MMU indexes.
153 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
154 uint16_t idxmap);
156 * tlb_flush_page_by_mmuidx_all_cpus:
157 * @cpu: Originating CPU of the flush
158 * @addr: virtual address of page to be flushed
159 * @idxmap: bitmap of MMU indexes to flush
161 * Flush one page from the TLB of all CPUs, for the specified
162 * MMU indexes.
164 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
165 uint16_t idxmap);
167 * tlb_flush_page_by_mmuidx_all_cpus_synced:
168 * @cpu: Originating CPU of the flush
169 * @addr: virtual address of page to be flushed
170 * @idxmap: bitmap of MMU indexes to flush
172 * Flush one page from the TLB of all CPUs, for the specified MMU
173 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
174 * vCPUs work is scheduled as safe work meaning all flushes will be
175 * complete once the source vCPUs safe work is complete. This will
176 * depend on when the guests translation ends the TB.
178 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
179 uint16_t idxmap);
181 * tlb_flush_by_mmuidx:
182 * @cpu: CPU whose TLB should be flushed
183 * @wait: If true ensure synchronisation by exiting the cpu_loop
184 * @idxmap: bitmap of MMU indexes to flush
186 * Flush all entries from the TLB of the specified CPU, for the specified
187 * MMU indexes.
189 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
191 * tlb_flush_by_mmuidx_all_cpus:
192 * @cpu: Originating CPU of the flush
193 * @idxmap: bitmap of MMU indexes to flush
195 * Flush all entries from all TLBs of all CPUs, for the specified
196 * MMU indexes.
198 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
200 * tlb_flush_by_mmuidx_all_cpus_synced:
201 * @cpu: Originating CPU of the flush
202 * @idxmap: bitmap of MMU indexes to flush
204 * Flush all entries from all TLBs of all CPUs, for the specified
205 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
206 * vCPUs work is scheduled as safe work meaning all flushes will be
207 * complete once the source vCPUs safe work is complete. This will
208 * depend on when the guests translation ends the TB.
210 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
212 * tlb_set_page_with_attrs:
213 * @cpu: CPU to add this TLB entry for
214 * @vaddr: virtual address of page to add entry for
215 * @paddr: physical address of the page
216 * @attrs: memory transaction attributes
217 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
218 * @mmu_idx: MMU index to insert TLB entry for
219 * @size: size of the page in bytes
221 * Add an entry to this CPU's TLB (a mapping from virtual address
222 * @vaddr to physical address @paddr) with the specified memory
223 * transaction attributes. This is generally called by the target CPU
224 * specific code after it has been called through the tlb_fill()
225 * entry point and performed a successful page table walk to find
226 * the physical address and attributes for the virtual address
227 * which provoked the TLB miss.
229 * At most one entry for a given virtual address is permitted. Only a
230 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
231 * used by tlb_flush_page.
233 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
234 hwaddr paddr, MemTxAttrs attrs,
235 int prot, int mmu_idx, target_ulong size);
236 /* tlb_set_page:
238 * This function is equivalent to calling tlb_set_page_with_attrs()
239 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
240 * as a convenience for CPUs which don't use memory transaction attributes.
242 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
243 hwaddr paddr, int prot,
244 int mmu_idx, target_ulong size);
245 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
246 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
247 uintptr_t retaddr);
248 #else
249 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
252 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
255 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
256 target_ulong addr)
259 static inline void tlb_flush(CPUState *cpu)
262 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
265 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
268 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
269 target_ulong addr, uint16_t idxmap)
273 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
276 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
277 target_ulong addr,
278 uint16_t idxmap)
281 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
282 target_ulong addr,
283 uint16_t idxmap)
286 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
289 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
290 uint16_t idxmap)
293 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
296 #endif
298 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
300 /* Estimated block size for TB allocation. */
301 /* ??? The following is based on a 2015 survey of x86_64 host output.
302 Better would seem to be some sort of dynamically sized TB array,
303 adapting to the block sizes actually being produced. */
304 #if defined(CONFIG_SOFTMMU)
305 #define CODE_GEN_AVG_BLOCK_SIZE 400
306 #else
307 #define CODE_GEN_AVG_BLOCK_SIZE 150
308 #endif
310 #if defined(_ARCH_PPC) \
311 || defined(__x86_64__) || defined(__i386__) \
312 || defined(__sparc__) || defined(__aarch64__) \
313 || defined(__s390x__) || defined(__mips__) \
314 || defined(CONFIG_TCG_INTERPRETER)
315 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
316 #define USE_DIRECT_JUMP
317 #endif
319 struct TranslationBlock {
320 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
321 target_ulong cs_base; /* CS base for this block */
322 uint32_t flags; /* flags defining in which context the code was generated */
323 uint16_t size; /* size of target code for this block (1 <=
324 size <= TARGET_PAGE_SIZE) */
325 uint16_t icount;
326 uint32_t cflags; /* compile flags */
327 #define CF_COUNT_MASK 0x7fff
328 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
329 #define CF_NOCACHE 0x10000 /* To be freed after execution */
330 #define CF_USE_ICOUNT 0x20000
331 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
333 uint16_t invalid;
335 void *tc_ptr; /* pointer to the translated code */
336 uint8_t *tc_search; /* pointer to search data */
337 /* original tb when cflags has CF_NOCACHE */
338 struct TranslationBlock *orig_tb;
339 /* first and second physical page containing code. The lower bit
340 of the pointer tells the index in page_next[] */
341 struct TranslationBlock *page_next[2];
342 tb_page_addr_t page_addr[2];
344 /* The following data are used to directly call another TB from
345 * the code of this one. This can be done either by emitting direct or
346 * indirect native jump instructions. These jumps are reset so that the TB
347 * just continue its execution. The TB can be linked to another one by
348 * setting one of the jump targets (or patching the jump instruction). Only
349 * two of such jumps are supported.
351 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
352 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
353 #ifdef USE_DIRECT_JUMP
354 uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
355 #else
356 uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
357 #endif
358 /* Each TB has an assosiated circular list of TBs jumping to this one.
359 * jmp_list_first points to the first TB jumping to this one.
360 * jmp_list_next is used to point to the next TB in a list.
361 * Since each TB can have two jumps, it can participate in two lists.
362 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
363 * TranslationBlock structure, but the two least significant bits of
364 * them are used to encode which data field of the pointed TB should
365 * be used to traverse the list further from that TB:
366 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
367 * In other words, 0/1 tells which jump is used in the pointed TB,
368 * and 2 means that this is a pointer back to the target TB of this list.
370 uintptr_t jmp_list_next[2];
371 uintptr_t jmp_list_first;
374 void tb_free(TranslationBlock *tb);
375 void tb_flush(CPUState *cpu);
376 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
377 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
378 target_ulong cs_base, uint32_t flags);
380 #if defined(USE_DIRECT_JUMP)
382 #if defined(CONFIG_TCG_INTERPRETER)
383 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
385 /* patch the branch destination */
386 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
387 /* no need to flush icache explicitly */
389 #elif defined(_ARCH_PPC)
390 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
391 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
392 #elif defined(__i386__) || defined(__x86_64__)
393 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
395 /* patch the branch destination */
396 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
397 /* no need to flush icache explicitly */
399 #elif defined(__s390x__)
400 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
402 /* patch the branch destination */
403 intptr_t disp = addr - (jmp_addr - 2);
404 atomic_set((int32_t *)jmp_addr, disp / 2);
405 /* no need to flush icache explicitly */
407 #elif defined(__aarch64__)
408 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
409 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
410 #elif defined(__sparc__) || defined(__mips__)
411 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
412 #else
413 #error tb_set_jmp_target1 is missing
414 #endif
416 static inline void tb_set_jmp_target(TranslationBlock *tb,
417 int n, uintptr_t addr)
419 uint16_t offset = tb->jmp_insn_offset[n];
420 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
423 #else
425 /* set the jump target */
426 static inline void tb_set_jmp_target(TranslationBlock *tb,
427 int n, uintptr_t addr)
429 tb->jmp_target_addr[n] = addr;
432 #endif
434 /* Called with tb_lock held. */
435 static inline void tb_add_jump(TranslationBlock *tb, int n,
436 TranslationBlock *tb_next)
438 assert(n < ARRAY_SIZE(tb->jmp_list_next));
439 if (tb->jmp_list_next[n]) {
440 /* Another thread has already done this while we were
441 * outside of the lock; nothing to do in this case */
442 return;
444 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
445 "Linking TBs %p [" TARGET_FMT_lx
446 "] index %d -> %p [" TARGET_FMT_lx "]\n",
447 tb->tc_ptr, tb->pc, n,
448 tb_next->tc_ptr, tb_next->pc);
450 /* patch the native jump address */
451 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
453 /* add in TB jmp circular list */
454 tb->jmp_list_next[n] = tb_next->jmp_list_first;
455 tb_next->jmp_list_first = (uintptr_t)tb | n;
458 /* GETPC is the true target of the return instruction that we'll execute. */
459 #if defined(CONFIG_TCG_INTERPRETER)
460 extern uintptr_t tci_tb_ptr;
461 # define GETPC() tci_tb_ptr
462 #else
463 # define GETPC() \
464 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
465 #endif
467 /* The true return address will often point to a host insn that is part of
468 the next translated guest insn. Adjust the address backward to point to
469 the middle of the call insn. Subtracting one would do the job except for
470 several compressed mode architectures (arm, mips) which set the low bit
471 to indicate the compressed mode; subtracting two works around that. It
472 is also the case that there are no host isas that contain a call insn
473 smaller than 4 bytes, so we don't worry about special-casing this. */
474 #define GETPC_ADJ 2
476 void tb_lock(void);
477 void tb_unlock(void);
478 void tb_lock_reset(void);
480 #if !defined(CONFIG_USER_ONLY)
482 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
483 hwaddr index, MemTxAttrs attrs);
485 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
486 int mmu_idx, uintptr_t retaddr);
488 #endif
490 #if defined(CONFIG_USER_ONLY)
491 void mmap_lock(void);
492 void mmap_unlock(void);
493 bool have_mmap_lock(void);
495 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
497 return addr;
499 #else
500 static inline void mmap_lock(void) {}
501 static inline void mmap_unlock(void) {}
503 /* cputlb.c */
504 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
506 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
507 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
509 /* exec.c */
510 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
512 MemoryRegionSection *
513 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
514 hwaddr *xlat, hwaddr *plen);
515 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
516 MemoryRegionSection *section,
517 target_ulong vaddr,
518 hwaddr paddr, hwaddr xlat,
519 int prot,
520 target_ulong *address);
521 bool memory_region_is_unassigned(MemoryRegion *mr);
523 #endif
525 /* vl.c */
526 extern int singlestep;
528 #endif