migration: Export qemu-file-channel.c functions in its own file
[qemu/ar7.git] / migration / postcopy-ram.c
blob63b850128e2f0750ac2af33532abfcac842a40a6
1 /*
2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "migration/migration.h"
23 #include "postcopy-ram.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/balloon.h"
26 #include "qemu/error-report.h"
27 #include "trace.h"
29 /* Arbitrary limit on size of each discard command,
30 * keeps them around ~200 bytes
32 #define MAX_DISCARDS_PER_COMMAND 12
34 struct PostcopyDiscardState {
35 const char *ramblock_name;
36 uint16_t cur_entry;
38 * Start and length of a discard range (bytes)
40 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
41 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
42 unsigned int nsentwords;
43 unsigned int nsentcmds;
46 /* Postcopy needs to detect accesses to pages that haven't yet been copied
47 * across, and efficiently map new pages in, the techniques for doing this
48 * are target OS specific.
50 #if defined(__linux__)
52 #include <poll.h>
53 #include <sys/ioctl.h>
54 #include <sys/syscall.h>
55 #include <asm/types.h> /* for __u64 */
56 #endif
58 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
59 #include <sys/eventfd.h>
60 #include <linux/userfaultfd.h>
62 static bool ufd_version_check(int ufd)
64 struct uffdio_api api_struct;
65 uint64_t ioctl_mask;
67 api_struct.api = UFFD_API;
68 api_struct.features = 0;
69 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
70 error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s",
71 strerror(errno));
72 return false;
75 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
76 (__u64)1 << _UFFDIO_UNREGISTER;
77 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
78 error_report("Missing userfault features: %" PRIx64,
79 (uint64_t)(~api_struct.ioctls & ioctl_mask));
80 return false;
83 if (getpagesize() != ram_pagesize_summary()) {
84 bool have_hp = false;
85 /* We've got a huge page */
86 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
87 have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS;
88 #endif
89 if (!have_hp) {
90 error_report("Userfault on this host does not support huge pages");
91 return false;
94 return true;
97 /* Callback from postcopy_ram_supported_by_host block iterator.
99 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
100 ram_addr_t offset, ram_addr_t length, void *opaque)
102 RAMBlock *rb = qemu_ram_block_by_name(block_name);
103 size_t pagesize = qemu_ram_pagesize(rb);
105 if (qemu_ram_is_shared(rb)) {
106 error_report("Postcopy on shared RAM (%s) is not yet supported",
107 block_name);
108 return 1;
111 if (length % pagesize) {
112 error_report("Postcopy requires RAM blocks to be a page size multiple,"
113 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
114 "page size of 0x%zx", block_name, length, pagesize);
115 return 1;
117 return 0;
121 * Note: This has the side effect of munlock'ing all of RAM, that's
122 * normally fine since if the postcopy succeeds it gets turned back on at the
123 * end.
125 bool postcopy_ram_supported_by_host(void)
127 long pagesize = getpagesize();
128 int ufd = -1;
129 bool ret = false; /* Error unless we change it */
130 void *testarea = NULL;
131 struct uffdio_register reg_struct;
132 struct uffdio_range range_struct;
133 uint64_t feature_mask;
135 if (qemu_target_page_size() > pagesize) {
136 error_report("Target page size bigger than host page size");
137 goto out;
140 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
141 if (ufd == -1) {
142 error_report("%s: userfaultfd not available: %s", __func__,
143 strerror(errno));
144 goto out;
147 /* Version and features check */
148 if (!ufd_version_check(ufd)) {
149 goto out;
152 /* We don't support postcopy with shared RAM yet */
153 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
154 goto out;
158 * userfault and mlock don't go together; we'll put it back later if
159 * it was enabled.
161 if (munlockall()) {
162 error_report("%s: munlockall: %s", __func__, strerror(errno));
163 return -1;
167 * We need to check that the ops we need are supported on anon memory
168 * To do that we need to register a chunk and see the flags that
169 * are returned.
171 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
172 MAP_ANONYMOUS, -1, 0);
173 if (testarea == MAP_FAILED) {
174 error_report("%s: Failed to map test area: %s", __func__,
175 strerror(errno));
176 goto out;
178 g_assert(((size_t)testarea & (pagesize-1)) == 0);
180 reg_struct.range.start = (uintptr_t)testarea;
181 reg_struct.range.len = pagesize;
182 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
184 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
185 error_report("%s userfault register: %s", __func__, strerror(errno));
186 goto out;
189 range_struct.start = (uintptr_t)testarea;
190 range_struct.len = pagesize;
191 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
192 error_report("%s userfault unregister: %s", __func__, strerror(errno));
193 goto out;
196 feature_mask = (__u64)1 << _UFFDIO_WAKE |
197 (__u64)1 << _UFFDIO_COPY |
198 (__u64)1 << _UFFDIO_ZEROPAGE;
199 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
200 error_report("Missing userfault map features: %" PRIx64,
201 (uint64_t)(~reg_struct.ioctls & feature_mask));
202 goto out;
205 /* Success! */
206 ret = true;
207 out:
208 if (testarea) {
209 munmap(testarea, pagesize);
211 if (ufd != -1) {
212 close(ufd);
214 return ret;
218 * Setup an area of RAM so that it *can* be used for postcopy later; this
219 * must be done right at the start prior to pre-copy.
220 * opaque should be the MIS.
222 static int init_range(const char *block_name, void *host_addr,
223 ram_addr_t offset, ram_addr_t length, void *opaque)
225 trace_postcopy_init_range(block_name, host_addr, offset, length);
228 * We need the whole of RAM to be truly empty for postcopy, so things
229 * like ROMs and any data tables built during init must be zero'd
230 * - we're going to get the copy from the source anyway.
231 * (Precopy will just overwrite this data, so doesn't need the discard)
233 if (ram_discard_range(block_name, 0, length)) {
234 return -1;
237 return 0;
241 * At the end of migration, undo the effects of init_range
242 * opaque should be the MIS.
244 static int cleanup_range(const char *block_name, void *host_addr,
245 ram_addr_t offset, ram_addr_t length, void *opaque)
247 MigrationIncomingState *mis = opaque;
248 struct uffdio_range range_struct;
249 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
252 * We turned off hugepage for the precopy stage with postcopy enabled
253 * we can turn it back on now.
255 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
258 * We can also turn off userfault now since we should have all the
259 * pages. It can be useful to leave it on to debug postcopy
260 * if you're not sure it's always getting every page.
262 range_struct.start = (uintptr_t)host_addr;
263 range_struct.len = length;
265 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
266 error_report("%s: userfault unregister %s", __func__, strerror(errno));
268 return -1;
271 return 0;
275 * Initialise postcopy-ram, setting the RAM to a state where we can go into
276 * postcopy later; must be called prior to any precopy.
277 * called from arch_init's similarly named ram_postcopy_incoming_init
279 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
281 if (qemu_ram_foreach_block(init_range, NULL)) {
282 return -1;
285 return 0;
289 * At the end of a migration where postcopy_ram_incoming_init was called.
291 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
293 trace_postcopy_ram_incoming_cleanup_entry();
295 if (mis->have_fault_thread) {
296 uint64_t tmp64;
298 if (qemu_ram_foreach_block(cleanup_range, mis)) {
299 return -1;
302 * Tell the fault_thread to exit, it's an eventfd that should
303 * currently be at 0, we're going to increment it to 1
305 tmp64 = 1;
306 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
307 trace_postcopy_ram_incoming_cleanup_join();
308 qemu_thread_join(&mis->fault_thread);
309 } else {
310 /* Not much we can do here, but may as well report it */
311 error_report("%s: incrementing userfault_quit_fd: %s", __func__,
312 strerror(errno));
314 trace_postcopy_ram_incoming_cleanup_closeuf();
315 close(mis->userfault_fd);
316 close(mis->userfault_quit_fd);
317 mis->have_fault_thread = false;
320 qemu_balloon_inhibit(false);
322 if (enable_mlock) {
323 if (os_mlock() < 0) {
324 error_report("mlock: %s", strerror(errno));
326 * It doesn't feel right to fail at this point, we have a valid
327 * VM state.
332 postcopy_state_set(POSTCOPY_INCOMING_END);
333 migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0);
335 if (mis->postcopy_tmp_page) {
336 munmap(mis->postcopy_tmp_page, mis->largest_page_size);
337 mis->postcopy_tmp_page = NULL;
339 if (mis->postcopy_tmp_zero_page) {
340 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
341 mis->postcopy_tmp_zero_page = NULL;
343 trace_postcopy_ram_incoming_cleanup_exit();
344 return 0;
348 * Disable huge pages on an area
350 static int nhp_range(const char *block_name, void *host_addr,
351 ram_addr_t offset, ram_addr_t length, void *opaque)
353 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
356 * Before we do discards we need to ensure those discards really
357 * do delete areas of the page, even if THP thinks a hugepage would
358 * be a good idea, so force hugepages off.
360 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
362 return 0;
366 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
367 * however leaving it until after precopy means that most of the precopy
368 * data is still THPd
370 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
372 if (qemu_ram_foreach_block(nhp_range, mis)) {
373 return -1;
376 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
378 return 0;
382 * Mark the given area of RAM as requiring notification to unwritten areas
383 * Used as a callback on qemu_ram_foreach_block.
384 * host_addr: Base of area to mark
385 * offset: Offset in the whole ram arena
386 * length: Length of the section
387 * opaque: MigrationIncomingState pointer
388 * Returns 0 on success
390 static int ram_block_enable_notify(const char *block_name, void *host_addr,
391 ram_addr_t offset, ram_addr_t length,
392 void *opaque)
394 MigrationIncomingState *mis = opaque;
395 struct uffdio_register reg_struct;
397 reg_struct.range.start = (uintptr_t)host_addr;
398 reg_struct.range.len = length;
399 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
401 /* Now tell our userfault_fd that it's responsible for this area */
402 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
403 error_report("%s userfault register: %s", __func__, strerror(errno));
404 return -1;
406 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
407 error_report("%s userfault: Region doesn't support COPY", __func__);
408 return -1;
411 return 0;
415 * Handle faults detected by the USERFAULT markings
417 static void *postcopy_ram_fault_thread(void *opaque)
419 MigrationIncomingState *mis = opaque;
420 struct uffd_msg msg;
421 int ret;
422 RAMBlock *rb = NULL;
423 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
425 trace_postcopy_ram_fault_thread_entry();
426 qemu_sem_post(&mis->fault_thread_sem);
428 while (true) {
429 ram_addr_t rb_offset;
430 struct pollfd pfd[2];
433 * We're mainly waiting for the kernel to give us a faulting HVA,
434 * however we can be told to quit via userfault_quit_fd which is
435 * an eventfd
437 pfd[0].fd = mis->userfault_fd;
438 pfd[0].events = POLLIN;
439 pfd[0].revents = 0;
440 pfd[1].fd = mis->userfault_quit_fd;
441 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
442 pfd[1].revents = 0;
444 if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
445 error_report("%s: userfault poll: %s", __func__, strerror(errno));
446 break;
449 if (pfd[1].revents) {
450 trace_postcopy_ram_fault_thread_quit();
451 break;
454 ret = read(mis->userfault_fd, &msg, sizeof(msg));
455 if (ret != sizeof(msg)) {
456 if (errno == EAGAIN) {
458 * if a wake up happens on the other thread just after
459 * the poll, there is nothing to read.
461 continue;
463 if (ret < 0) {
464 error_report("%s: Failed to read full userfault message: %s",
465 __func__, strerror(errno));
466 break;
467 } else {
468 error_report("%s: Read %d bytes from userfaultfd expected %zd",
469 __func__, ret, sizeof(msg));
470 break; /* Lost alignment, don't know what we'd read next */
473 if (msg.event != UFFD_EVENT_PAGEFAULT) {
474 error_report("%s: Read unexpected event %ud from userfaultfd",
475 __func__, msg.event);
476 continue; /* It's not a page fault, shouldn't happen */
479 rb = qemu_ram_block_from_host(
480 (void *)(uintptr_t)msg.arg.pagefault.address,
481 true, &rb_offset);
482 if (!rb) {
483 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
484 PRIx64, (uint64_t)msg.arg.pagefault.address);
485 break;
488 rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
489 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
490 qemu_ram_get_idstr(rb),
491 rb_offset);
494 * Send the request to the source - we want to request one
495 * of our host page sizes (which is >= TPS)
497 if (rb != last_rb) {
498 last_rb = rb;
499 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
500 rb_offset, qemu_ram_pagesize(rb));
501 } else {
502 /* Save some space */
503 migrate_send_rp_req_pages(mis, NULL,
504 rb_offset, qemu_ram_pagesize(rb));
507 trace_postcopy_ram_fault_thread_exit();
508 return NULL;
511 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
513 /* Open the fd for the kernel to give us userfaults */
514 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
515 if (mis->userfault_fd == -1) {
516 error_report("%s: Failed to open userfault fd: %s", __func__,
517 strerror(errno));
518 return -1;
522 * Although the host check already tested the API, we need to
523 * do the check again as an ABI handshake on the new fd.
525 if (!ufd_version_check(mis->userfault_fd)) {
526 return -1;
529 /* Now an eventfd we use to tell the fault-thread to quit */
530 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
531 if (mis->userfault_quit_fd == -1) {
532 error_report("%s: Opening userfault_quit_fd: %s", __func__,
533 strerror(errno));
534 close(mis->userfault_fd);
535 return -1;
538 qemu_sem_init(&mis->fault_thread_sem, 0);
539 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
540 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
541 qemu_sem_wait(&mis->fault_thread_sem);
542 qemu_sem_destroy(&mis->fault_thread_sem);
543 mis->have_fault_thread = true;
545 /* Mark so that we get notified of accesses to unwritten areas */
546 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
547 return -1;
551 * Ballooning can mark pages as absent while we're postcopying
552 * that would cause false userfaults.
554 qemu_balloon_inhibit(true);
556 trace_postcopy_ram_enable_notify();
558 return 0;
562 * Place a host page (from) at (host) atomically
563 * returns 0 on success
565 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
566 size_t pagesize)
568 struct uffdio_copy copy_struct;
570 copy_struct.dst = (uint64_t)(uintptr_t)host;
571 copy_struct.src = (uint64_t)(uintptr_t)from;
572 copy_struct.len = pagesize;
573 copy_struct.mode = 0;
575 /* copy also acks to the kernel waking the stalled thread up
576 * TODO: We can inhibit that ack and only do it if it was requested
577 * which would be slightly cheaper, but we'd have to be careful
578 * of the order of updating our page state.
580 if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
581 int e = errno;
582 error_report("%s: %s copy host: %p from: %p (size: %zd)",
583 __func__, strerror(e), host, from, pagesize);
585 return -e;
588 trace_postcopy_place_page(host);
589 return 0;
593 * Place a zero page at (host) atomically
594 * returns 0 on success
596 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
597 size_t pagesize)
599 trace_postcopy_place_page_zero(host);
601 if (pagesize == getpagesize()) {
602 struct uffdio_zeropage zero_struct;
603 zero_struct.range.start = (uint64_t)(uintptr_t)host;
604 zero_struct.range.len = getpagesize();
605 zero_struct.mode = 0;
607 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
608 int e = errno;
609 error_report("%s: %s zero host: %p",
610 __func__, strerror(e), host);
612 return -e;
614 } else {
615 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
616 if (!mis->postcopy_tmp_zero_page) {
617 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
618 PROT_READ | PROT_WRITE,
619 MAP_PRIVATE | MAP_ANONYMOUS,
620 -1, 0);
621 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
622 int e = errno;
623 mis->postcopy_tmp_zero_page = NULL;
624 error_report("%s: %s mapping large zero page",
625 __func__, strerror(e));
626 return -e;
628 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
630 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
631 pagesize);
634 return 0;
638 * Returns a target page of memory that can be mapped at a later point in time
639 * using postcopy_place_page
640 * The same address is used repeatedly, postcopy_place_page just takes the
641 * backing page away.
642 * Returns: Pointer to allocated page
645 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
647 if (!mis->postcopy_tmp_page) {
648 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
649 PROT_READ | PROT_WRITE, MAP_PRIVATE |
650 MAP_ANONYMOUS, -1, 0);
651 if (mis->postcopy_tmp_page == MAP_FAILED) {
652 mis->postcopy_tmp_page = NULL;
653 error_report("%s: %s", __func__, strerror(errno));
654 return NULL;
658 return mis->postcopy_tmp_page;
661 #else
662 /* No target OS support, stubs just fail */
663 bool postcopy_ram_supported_by_host(void)
665 error_report("%s: No OS support", __func__);
666 return false;
669 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
671 error_report("postcopy_ram_incoming_init: No OS support");
672 return -1;
675 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
677 assert(0);
678 return -1;
681 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
683 assert(0);
684 return -1;
687 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
689 assert(0);
690 return -1;
693 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
694 size_t pagesize)
696 assert(0);
697 return -1;
700 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
701 size_t pagesize)
703 assert(0);
704 return -1;
707 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
709 assert(0);
710 return NULL;
713 #endif
715 /* ------------------------------------------------------------------------- */
718 * postcopy_discard_send_init: Called at the start of each RAMBlock before
719 * asking to discard individual ranges.
721 * @ms: The current migration state.
722 * @offset: the bitmap offset of the named RAMBlock in the migration
723 * bitmap.
724 * @name: RAMBlock that discards will operate on.
726 * returns: a new PDS.
728 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
729 const char *name)
731 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
733 if (res) {
734 res->ramblock_name = name;
737 return res;
741 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
742 * discard. May send a discard message, may just leave it queued to
743 * be sent later.
745 * @ms: Current migration state.
746 * @pds: Structure initialised by postcopy_discard_send_init().
747 * @start,@length: a range of pages in the migration bitmap in the
748 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
750 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
751 unsigned long start, unsigned long length)
753 size_t tp_size = qemu_target_page_size();
754 /* Convert to byte offsets within the RAM block */
755 pds->start_list[pds->cur_entry] = start * tp_size;
756 pds->length_list[pds->cur_entry] = length * tp_size;
757 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
758 pds->cur_entry++;
759 pds->nsentwords++;
761 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
762 /* Full set, ship it! */
763 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
764 pds->ramblock_name,
765 pds->cur_entry,
766 pds->start_list,
767 pds->length_list);
768 pds->nsentcmds++;
769 pds->cur_entry = 0;
774 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
775 * bitmap code. Sends any outstanding discard messages, frees the PDS
777 * @ms: Current migration state.
778 * @pds: Structure initialised by postcopy_discard_send_init().
780 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
782 /* Anything unsent? */
783 if (pds->cur_entry) {
784 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
785 pds->ramblock_name,
786 pds->cur_entry,
787 pds->start_list,
788 pds->length_list);
789 pds->nsentcmds++;
792 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
793 pds->nsentcmds);
795 g_free(pds);
799 * Current state of incoming postcopy; note this is not part of
800 * MigrationIncomingState since it's state is used during cleanup
801 * at the end as MIS is being freed.
803 static PostcopyState incoming_postcopy_state;
805 PostcopyState postcopy_state_get(void)
807 return atomic_mb_read(&incoming_postcopy_state);
810 /* Set the state and return the old state */
811 PostcopyState postcopy_state_set(PostcopyState new_state)
813 return atomic_xchg(&incoming_postcopy_state, new_state);