2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
64 /* debug PC/ISA interrupts */
68 #define DPRINTF(fmt, ...) \
69 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
71 #define DPRINTF(fmt, ...)
74 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
75 #define ACPI_DATA_SIZE 0x10000
76 #define BIOS_CFG_IOPORT 0x510
77 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
78 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
79 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
80 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
81 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
83 #define E820_NR_ENTRIES 16
89 } QEMU_PACKED
__attribute((__aligned__(4)));
93 struct e820_entry entry
[E820_NR_ENTRIES
];
94 } QEMU_PACKED
__attribute((__aligned__(4)));
96 static struct e820_table e820_reserve
;
97 static struct e820_entry
*e820_table
;
98 static unsigned e820_entries
;
99 struct hpet_fw_config hpet_cfg
= {.count
= UINT8_MAX
};
101 void gsi_handler(void *opaque
, int n
, int level
)
103 GSIState
*s
= opaque
;
105 DPRINTF("pc: %s GSI %d\n", level
? "raising" : "lowering", n
);
106 if (n
< ISA_NUM_IRQS
) {
107 qemu_set_irq(s
->i8259_irq
[n
], level
);
109 qemu_set_irq(s
->ioapic_irq
[n
], level
);
112 static void ioport80_write(void *opaque
, hwaddr addr
, uint64_t data
,
117 static uint64_t ioport80_read(void *opaque
, hwaddr addr
, unsigned size
)
119 return 0xffffffffffffffffULL
;
122 /* MSDOS compatibility mode FPU exception support */
123 static qemu_irq ferr_irq
;
125 void pc_register_ferr_irq(qemu_irq irq
)
130 /* XXX: add IGNNE support */
131 void cpu_set_ferr(CPUX86State
*s
)
133 qemu_irq_raise(ferr_irq
);
136 static void ioportF0_write(void *opaque
, hwaddr addr
, uint64_t data
,
139 qemu_irq_lower(ferr_irq
);
142 static uint64_t ioportF0_read(void *opaque
, hwaddr addr
, unsigned size
)
144 return 0xffffffffffffffffULL
;
148 uint64_t cpu_get_tsc(CPUX86State
*env
)
150 return cpu_get_ticks();
155 static cpu_set_smm_t smm_set
;
156 static void *smm_arg
;
158 void cpu_smm_register(cpu_set_smm_t callback
, void *arg
)
160 assert(smm_set
== NULL
);
161 assert(smm_arg
== NULL
);
166 void cpu_smm_update(CPUX86State
*env
)
168 if (smm_set
&& smm_arg
&& CPU(x86_env_get_cpu(env
)) == first_cpu
) {
169 smm_set(!!(env
->hflags
& HF_SMM_MASK
), smm_arg
);
175 int cpu_get_pic_interrupt(CPUX86State
*env
)
177 X86CPU
*cpu
= x86_env_get_cpu(env
);
180 intno
= apic_get_interrupt(cpu
->apic_state
);
184 /* read the irq from the PIC */
185 if (!apic_accept_pic_intr(cpu
->apic_state
)) {
189 intno
= pic_read_irq(isa_pic
);
193 static void pic_irq_request(void *opaque
, int irq
, int level
)
195 CPUState
*cs
= first_cpu
;
196 X86CPU
*cpu
= X86_CPU(cs
);
198 DPRINTF("pic_irqs: %s irq %d\n", level
? "raise" : "lower", irq
);
199 if (cpu
->apic_state
) {
202 if (apic_accept_pic_intr(cpu
->apic_state
)) {
203 apic_deliver_pic_intr(cpu
->apic_state
, level
);
208 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
210 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
215 /* PC cmos mappings */
217 #define REG_EQUIPMENT_BYTE 0x14
219 static int cmos_get_fd_drive_type(FDriveType fd0
)
225 /* 1.44 Mb 3"5 drive */
229 /* 2.88 Mb 3"5 drive */
233 /* 1.2 Mb 5"5 drive */
236 case FDRIVE_DRV_NONE
:
244 static void cmos_init_hd(ISADevice
*s
, int type_ofs
, int info_ofs
,
245 int16_t cylinders
, int8_t heads
, int8_t sectors
)
247 rtc_set_memory(s
, type_ofs
, 47);
248 rtc_set_memory(s
, info_ofs
, cylinders
);
249 rtc_set_memory(s
, info_ofs
+ 1, cylinders
>> 8);
250 rtc_set_memory(s
, info_ofs
+ 2, heads
);
251 rtc_set_memory(s
, info_ofs
+ 3, 0xff);
252 rtc_set_memory(s
, info_ofs
+ 4, 0xff);
253 rtc_set_memory(s
, info_ofs
+ 5, 0xc0 | ((heads
> 8) << 3));
254 rtc_set_memory(s
, info_ofs
+ 6, cylinders
);
255 rtc_set_memory(s
, info_ofs
+ 7, cylinders
>> 8);
256 rtc_set_memory(s
, info_ofs
+ 8, sectors
);
259 /* convert boot_device letter to something recognizable by the bios */
260 static int boot_device2nibble(char boot_device
)
262 switch(boot_device
) {
265 return 0x01; /* floppy boot */
267 return 0x02; /* hard drive boot */
269 return 0x03; /* CD-ROM boot */
271 return 0x04; /* Network boot */
276 static int set_boot_dev(ISADevice
*s
, const char *boot_device
)
278 #define PC_MAX_BOOT_DEVICES 3
279 int nbds
, bds
[3] = { 0, };
282 nbds
= strlen(boot_device
);
283 if (nbds
> PC_MAX_BOOT_DEVICES
) {
284 error_report("Too many boot devices for PC");
287 for (i
= 0; i
< nbds
; i
++) {
288 bds
[i
] = boot_device2nibble(boot_device
[i
]);
290 error_report("Invalid boot device for PC: '%c'",
295 rtc_set_memory(s
, 0x3d, (bds
[1] << 4) | bds
[0]);
296 rtc_set_memory(s
, 0x38, (bds
[2] << 4) | (fd_bootchk
? 0x0 : 0x1));
300 static int pc_boot_set(void *opaque
, const char *boot_device
)
302 return set_boot_dev(opaque
, boot_device
);
305 typedef struct pc_cmos_init_late_arg
{
306 ISADevice
*rtc_state
;
308 } pc_cmos_init_late_arg
;
310 static void pc_cmos_init_late(void *opaque
)
312 pc_cmos_init_late_arg
*arg
= opaque
;
313 ISADevice
*s
= arg
->rtc_state
;
315 int8_t heads
, sectors
;
320 if (ide_get_geometry(arg
->idebus
[0], 0,
321 &cylinders
, &heads
, §ors
) >= 0) {
322 cmos_init_hd(s
, 0x19, 0x1b, cylinders
, heads
, sectors
);
325 if (ide_get_geometry(arg
->idebus
[0], 1,
326 &cylinders
, &heads
, §ors
) >= 0) {
327 cmos_init_hd(s
, 0x1a, 0x24, cylinders
, heads
, sectors
);
330 rtc_set_memory(s
, 0x12, val
);
333 for (i
= 0; i
< 4; i
++) {
334 /* NOTE: ide_get_geometry() returns the physical
335 geometry. It is always such that: 1 <= sects <= 63, 1
336 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
337 geometry can be different if a translation is done. */
338 if (ide_get_geometry(arg
->idebus
[i
/ 2], i
% 2,
339 &cylinders
, &heads
, §ors
) >= 0) {
340 trans
= ide_get_bios_chs_trans(arg
->idebus
[i
/ 2], i
% 2) - 1;
341 assert((trans
& ~3) == 0);
342 val
|= trans
<< (i
* 2);
345 rtc_set_memory(s
, 0x39, val
);
347 qemu_unregister_reset(pc_cmos_init_late
, opaque
);
350 typedef struct RTCCPUHotplugArg
{
351 Notifier cpu_added_notifier
;
352 ISADevice
*rtc_state
;
355 static void rtc_notify_cpu_added(Notifier
*notifier
, void *data
)
357 RTCCPUHotplugArg
*arg
= container_of(notifier
, RTCCPUHotplugArg
,
359 ISADevice
*s
= arg
->rtc_state
;
361 /* increment the number of CPUs */
362 rtc_set_memory(s
, 0x5f, rtc_get_memory(s
, 0x5f) + 1);
365 void pc_cmos_init(ram_addr_t ram_size
, ram_addr_t above_4g_mem_size
,
366 const char *boot_device
,
367 ISADevice
*floppy
, BusState
*idebus0
, BusState
*idebus1
,
371 FDriveType fd_type
[2] = { FDRIVE_DRV_NONE
, FDRIVE_DRV_NONE
};
372 static pc_cmos_init_late_arg arg
;
373 static RTCCPUHotplugArg cpu_hotplug_cb
;
375 /* various important CMOS locations needed by PC/Bochs bios */
378 /* base memory (first MiB) */
379 val
= MIN(ram_size
/ 1024, 640);
380 rtc_set_memory(s
, 0x15, val
);
381 rtc_set_memory(s
, 0x16, val
>> 8);
382 /* extended memory (next 64MiB) */
383 if (ram_size
> 1024 * 1024) {
384 val
= (ram_size
- 1024 * 1024) / 1024;
390 rtc_set_memory(s
, 0x17, val
);
391 rtc_set_memory(s
, 0x18, val
>> 8);
392 rtc_set_memory(s
, 0x30, val
);
393 rtc_set_memory(s
, 0x31, val
>> 8);
394 /* memory between 16MiB and 4GiB */
395 if (ram_size
> 16 * 1024 * 1024) {
396 val
= (ram_size
- 16 * 1024 * 1024) / 65536;
402 rtc_set_memory(s
, 0x34, val
);
403 rtc_set_memory(s
, 0x35, val
>> 8);
404 /* memory above 4GiB */
405 val
= above_4g_mem_size
/ 65536;
406 rtc_set_memory(s
, 0x5b, val
);
407 rtc_set_memory(s
, 0x5c, val
>> 8);
408 rtc_set_memory(s
, 0x5d, val
>> 16);
410 /* set the number of CPU */
411 rtc_set_memory(s
, 0x5f, smp_cpus
- 1);
412 /* init CPU hotplug notifier */
413 cpu_hotplug_cb
.rtc_state
= s
;
414 cpu_hotplug_cb
.cpu_added_notifier
.notify
= rtc_notify_cpu_added
;
415 qemu_register_cpu_added_notifier(&cpu_hotplug_cb
.cpu_added_notifier
);
417 if (set_boot_dev(s
, boot_device
)) {
423 for (i
= 0; i
< 2; i
++) {
424 fd_type
[i
] = isa_fdc_get_drive_type(floppy
, i
);
427 val
= (cmos_get_fd_drive_type(fd_type
[0]) << 4) |
428 cmos_get_fd_drive_type(fd_type
[1]);
429 rtc_set_memory(s
, 0x10, val
);
433 if (fd_type
[0] < FDRIVE_DRV_NONE
) {
436 if (fd_type
[1] < FDRIVE_DRV_NONE
) {
443 val
|= 0x01; /* 1 drive, ready for boot */
446 val
|= 0x41; /* 2 drives, ready for boot */
449 val
|= 0x02; /* FPU is there */
450 val
|= 0x04; /* PS/2 mouse installed */
451 rtc_set_memory(s
, REG_EQUIPMENT_BYTE
, val
);
455 arg
.idebus
[0] = idebus0
;
456 arg
.idebus
[1] = idebus1
;
457 qemu_register_reset(pc_cmos_init_late
, &arg
);
460 #define TYPE_PORT92 "port92"
461 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
463 /* port 92 stuff: could be split off */
464 typedef struct Port92State
{
465 ISADevice parent_obj
;
472 static void port92_write(void *opaque
, hwaddr addr
, uint64_t val
,
475 Port92State
*s
= opaque
;
476 int oldval
= s
->outport
;
478 DPRINTF("port92: write 0x%02x\n", val
);
480 qemu_set_irq(*s
->a20_out
, (val
>> 1) & 1);
481 if ((val
& 1) && !(oldval
& 1)) {
482 qemu_system_reset_request();
486 static uint64_t port92_read(void *opaque
, hwaddr addr
,
489 Port92State
*s
= opaque
;
493 DPRINTF("port92: read 0x%02x\n", ret
);
497 static void port92_init(ISADevice
*dev
, qemu_irq
*a20_out
)
499 Port92State
*s
= PORT92(dev
);
501 s
->a20_out
= a20_out
;
504 static const VMStateDescription vmstate_port92_isa
= {
507 .minimum_version_id
= 1,
508 .fields
= (VMStateField
[]) {
509 VMSTATE_UINT8(outport
, Port92State
),
510 VMSTATE_END_OF_LIST()
514 static void port92_reset(DeviceState
*d
)
516 Port92State
*s
= PORT92(d
);
521 static const MemoryRegionOps port92_ops
= {
523 .write
= port92_write
,
525 .min_access_size
= 1,
526 .max_access_size
= 1,
528 .endianness
= DEVICE_LITTLE_ENDIAN
,
531 static void port92_initfn(Object
*obj
)
533 Port92State
*s
= PORT92(obj
);
535 memory_region_init_io(&s
->io
, OBJECT(s
), &port92_ops
, s
, "port92", 1);
540 static void port92_realizefn(DeviceState
*dev
, Error
**errp
)
542 ISADevice
*isadev
= ISA_DEVICE(dev
);
543 Port92State
*s
= PORT92(dev
);
545 isa_register_ioport(isadev
, &s
->io
, 0x92);
548 static void port92_class_initfn(ObjectClass
*klass
, void *data
)
550 DeviceClass
*dc
= DEVICE_CLASS(klass
);
552 dc
->realize
= port92_realizefn
;
553 dc
->reset
= port92_reset
;
554 dc
->vmsd
= &vmstate_port92_isa
;
556 * Reason: unlike ordinary ISA devices, this one needs additional
557 * wiring: its A20 output line needs to be wired up by
560 dc
->cannot_instantiate_with_device_add_yet
= true;
563 static const TypeInfo port92_info
= {
565 .parent
= TYPE_ISA_DEVICE
,
566 .instance_size
= sizeof(Port92State
),
567 .instance_init
= port92_initfn
,
568 .class_init
= port92_class_initfn
,
571 static void port92_register_types(void)
573 type_register_static(&port92_info
);
576 type_init(port92_register_types
)
578 static void handle_a20_line_change(void *opaque
, int irq
, int level
)
580 X86CPU
*cpu
= opaque
;
582 /* XXX: send to all CPUs ? */
583 /* XXX: add logic to handle multiple A20 line sources */
584 x86_cpu_set_a20(cpu
, level
);
587 int e820_add_entry(uint64_t address
, uint64_t length
, uint32_t type
)
589 int index
= le32_to_cpu(e820_reserve
.count
);
590 struct e820_entry
*entry
;
592 if (type
!= E820_RAM
) {
593 /* old FW_CFG_E820_TABLE entry -- reservations only */
594 if (index
>= E820_NR_ENTRIES
) {
597 entry
= &e820_reserve
.entry
[index
++];
599 entry
->address
= cpu_to_le64(address
);
600 entry
->length
= cpu_to_le64(length
);
601 entry
->type
= cpu_to_le32(type
);
603 e820_reserve
.count
= cpu_to_le32(index
);
606 /* new "etc/e820" file -- include ram too */
607 e820_table
= g_realloc(e820_table
,
608 sizeof(struct e820_entry
) * (e820_entries
+1));
609 e820_table
[e820_entries
].address
= cpu_to_le64(address
);
610 e820_table
[e820_entries
].length
= cpu_to_le64(length
);
611 e820_table
[e820_entries
].type
= cpu_to_le32(type
);
617 int e820_get_num_entries(void)
622 bool e820_get_entry(int idx
, uint32_t type
, uint64_t *address
, uint64_t *length
)
624 if (idx
< e820_entries
&& e820_table
[idx
].type
== cpu_to_le32(type
)) {
625 *address
= le64_to_cpu(e820_table
[idx
].address
);
626 *length
= le64_to_cpu(e820_table
[idx
].length
);
632 /* Calculates the limit to CPU APIC ID values
634 * This function returns the limit for the APIC ID value, so that all
635 * CPU APIC IDs are < pc_apic_id_limit().
637 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
639 static unsigned int pc_apic_id_limit(unsigned int max_cpus
)
641 return x86_cpu_apic_id_from_index(max_cpus
- 1) + 1;
644 static FWCfgState
*bochs_bios_init(void)
647 uint8_t *smbios_tables
, *smbios_anchor
;
648 size_t smbios_tables_len
, smbios_anchor_len
;
649 uint64_t *numa_fw_cfg
;
651 unsigned int apic_id_limit
= pc_apic_id_limit(max_cpus
);
653 fw_cfg
= fw_cfg_init(BIOS_CFG_IOPORT
, BIOS_CFG_IOPORT
+ 1, 0, 0);
654 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
656 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
657 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
658 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
659 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
662 * So, this means we must not use max_cpus, here, but the maximum possible
663 * APIC ID value, plus one.
665 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
666 * the APIC ID, not the "CPU index"
668 fw_cfg_add_i16(fw_cfg
, FW_CFG_MAX_CPUS
, (uint16_t)apic_id_limit
);
669 fw_cfg_add_i32(fw_cfg
, FW_CFG_ID
, 1);
670 fw_cfg_add_i64(fw_cfg
, FW_CFG_RAM_SIZE
, (uint64_t)ram_size
);
671 fw_cfg_add_bytes(fw_cfg
, FW_CFG_ACPI_TABLES
,
672 acpi_tables
, acpi_tables_len
);
673 fw_cfg_add_i32(fw_cfg
, FW_CFG_IRQ0_OVERRIDE
, kvm_allows_irq0_override());
675 smbios_tables
= smbios_get_table_legacy(&smbios_tables_len
);
677 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SMBIOS_ENTRIES
,
678 smbios_tables
, smbios_tables_len
);
681 smbios_get_tables(&smbios_tables
, &smbios_tables_len
,
682 &smbios_anchor
, &smbios_anchor_len
);
684 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
685 smbios_tables
, smbios_tables_len
);
686 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
687 smbios_anchor
, smbios_anchor_len
);
690 fw_cfg_add_bytes(fw_cfg
, FW_CFG_E820_TABLE
,
691 &e820_reserve
, sizeof(e820_reserve
));
692 fw_cfg_add_file(fw_cfg
, "etc/e820", e820_table
,
693 sizeof(struct e820_entry
) * e820_entries
);
695 fw_cfg_add_bytes(fw_cfg
, FW_CFG_HPET
, &hpet_cfg
, sizeof(hpet_cfg
));
696 /* allocate memory for the NUMA channel: one (64bit) word for the number
697 * of nodes, one word for each VCPU->node and one word for each node to
698 * hold the amount of memory.
700 numa_fw_cfg
= g_new0(uint64_t, 1 + apic_id_limit
+ nb_numa_nodes
);
701 numa_fw_cfg
[0] = cpu_to_le64(nb_numa_nodes
);
702 for (i
= 0; i
< max_cpus
; i
++) {
703 unsigned int apic_id
= x86_cpu_apic_id_from_index(i
);
704 assert(apic_id
< apic_id_limit
);
705 for (j
= 0; j
< nb_numa_nodes
; j
++) {
706 if (test_bit(i
, node_cpumask
[j
])) {
707 numa_fw_cfg
[apic_id
+ 1] = cpu_to_le64(j
);
712 for (i
= 0; i
< nb_numa_nodes
; i
++) {
713 numa_fw_cfg
[apic_id_limit
+ 1 + i
] = cpu_to_le64(node_mem
[i
]);
715 fw_cfg_add_bytes(fw_cfg
, FW_CFG_NUMA
, numa_fw_cfg
,
716 (1 + apic_id_limit
+ nb_numa_nodes
) *
717 sizeof(*numa_fw_cfg
));
722 static long get_file_size(FILE *f
)
726 /* XXX: on Unix systems, using fstat() probably makes more sense */
729 fseek(f
, 0, SEEK_END
);
731 fseek(f
, where
, SEEK_SET
);
736 static void load_linux(FWCfgState
*fw_cfg
,
737 const char *kernel_filename
,
738 const char *initrd_filename
,
739 const char *kernel_cmdline
,
743 int setup_size
, kernel_size
, initrd_size
= 0, cmdline_size
;
745 uint8_t header
[8192], *setup
, *kernel
, *initrd_data
;
746 hwaddr real_addr
, prot_addr
, cmdline_addr
, initrd_addr
= 0;
750 /* Align to 16 bytes as a paranoia measure */
751 cmdline_size
= (strlen(kernel_cmdline
)+16) & ~15;
753 /* load the kernel header */
754 f
= fopen(kernel_filename
, "rb");
755 if (!f
|| !(kernel_size
= get_file_size(f
)) ||
756 fread(header
, 1, MIN(ARRAY_SIZE(header
), kernel_size
), f
) !=
757 MIN(ARRAY_SIZE(header
), kernel_size
)) {
758 fprintf(stderr
, "qemu: could not load kernel '%s': %s\n",
759 kernel_filename
, strerror(errno
));
763 /* kernel protocol version */
765 fprintf(stderr
, "header magic: %#x\n", ldl_p(header
+0x202));
767 if (ldl_p(header
+0x202) == 0x53726448) {
768 protocol
= lduw_p(header
+0x206);
770 /* This looks like a multiboot kernel. If it is, let's stop
771 treating it like a Linux kernel. */
772 if (load_multiboot(fw_cfg
, f
, kernel_filename
, initrd_filename
,
773 kernel_cmdline
, kernel_size
, header
)) {
779 if (protocol
< 0x200 || !(header
[0x211] & 0x01)) {
782 cmdline_addr
= 0x9a000 - cmdline_size
;
784 } else if (protocol
< 0x202) {
785 /* High but ancient kernel */
787 cmdline_addr
= 0x9a000 - cmdline_size
;
788 prot_addr
= 0x100000;
790 /* High and recent kernel */
792 cmdline_addr
= 0x20000;
793 prot_addr
= 0x100000;
798 "qemu: real_addr = 0x" TARGET_FMT_plx
"\n"
799 "qemu: cmdline_addr = 0x" TARGET_FMT_plx
"\n"
800 "qemu: prot_addr = 0x" TARGET_FMT_plx
"\n",
806 /* highest address for loading the initrd */
807 if (protocol
>= 0x203) {
808 initrd_max
= ldl_p(header
+0x22c);
810 initrd_max
= 0x37ffffff;
813 if (initrd_max
>= max_ram_size
-ACPI_DATA_SIZE
)
814 initrd_max
= max_ram_size
-ACPI_DATA_SIZE
-1;
816 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_ADDR
, cmdline_addr
);
817 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
, strlen(kernel_cmdline
)+1);
818 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
, kernel_cmdline
);
820 if (protocol
>= 0x202) {
821 stl_p(header
+0x228, cmdline_addr
);
823 stw_p(header
+0x20, 0xA33F);
824 stw_p(header
+0x22, cmdline_addr
-real_addr
);
827 /* handle vga= parameter */
828 vmode
= strstr(kernel_cmdline
, "vga=");
830 unsigned int video_mode
;
833 if (!strncmp(vmode
, "normal", 6)) {
835 } else if (!strncmp(vmode
, "ext", 3)) {
837 } else if (!strncmp(vmode
, "ask", 3)) {
840 video_mode
= strtol(vmode
, NULL
, 0);
842 stw_p(header
+0x1fa, video_mode
);
846 /* High nybble = B reserved for QEMU; low nybble is revision number.
847 If this code is substantially changed, you may want to consider
848 incrementing the revision. */
849 if (protocol
>= 0x200) {
850 header
[0x210] = 0xB0;
853 if (protocol
>= 0x201) {
854 header
[0x211] |= 0x80; /* CAN_USE_HEAP */
855 stw_p(header
+0x224, cmdline_addr
-real_addr
-0x200);
859 if (initrd_filename
) {
860 if (protocol
< 0x200) {
861 fprintf(stderr
, "qemu: linux kernel too old to load a ram disk\n");
865 initrd_size
= get_image_size(initrd_filename
);
866 if (initrd_size
< 0) {
867 fprintf(stderr
, "qemu: error reading initrd %s: %s\n",
868 initrd_filename
, strerror(errno
));
872 initrd_addr
= (initrd_max
-initrd_size
) & ~4095;
874 initrd_data
= g_malloc(initrd_size
);
875 load_image(initrd_filename
, initrd_data
);
877 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_ADDR
, initrd_addr
);
878 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_SIZE
, initrd_size
);
879 fw_cfg_add_bytes(fw_cfg
, FW_CFG_INITRD_DATA
, initrd_data
, initrd_size
);
881 stl_p(header
+0x218, initrd_addr
);
882 stl_p(header
+0x21c, initrd_size
);
885 /* load kernel and setup */
886 setup_size
= header
[0x1f1];
887 if (setup_size
== 0) {
890 setup_size
= (setup_size
+1)*512;
891 kernel_size
-= setup_size
;
893 setup
= g_malloc(setup_size
);
894 kernel
= g_malloc(kernel_size
);
895 fseek(f
, 0, SEEK_SET
);
896 if (fread(setup
, 1, setup_size
, f
) != setup_size
) {
897 fprintf(stderr
, "fread() failed\n");
900 if (fread(kernel
, 1, kernel_size
, f
) != kernel_size
) {
901 fprintf(stderr
, "fread() failed\n");
905 memcpy(setup
, header
, MIN(sizeof(header
), setup_size
));
907 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ADDR
, prot_addr
);
908 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_SIZE
, kernel_size
);
909 fw_cfg_add_bytes(fw_cfg
, FW_CFG_KERNEL_DATA
, kernel
, kernel_size
);
911 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_ADDR
, real_addr
);
912 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_SIZE
, setup_size
);
913 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SETUP_DATA
, setup
, setup_size
);
915 option_rom
[nb_option_roms
].name
= "linuxboot.bin";
916 option_rom
[nb_option_roms
].bootindex
= 0;
920 #define NE2000_NB_MAX 6
922 static const int ne2000_io
[NE2000_NB_MAX
] = { 0x300, 0x320, 0x340, 0x360,
924 static const int ne2000_irq
[NE2000_NB_MAX
] = { 9, 10, 11, 3, 4, 5 };
926 void pc_init_ne2k_isa(ISABus
*bus
, NICInfo
*nd
)
928 static int nb_ne2k
= 0;
930 if (nb_ne2k
== NE2000_NB_MAX
)
932 isa_ne2000_init(bus
, ne2000_io
[nb_ne2k
],
933 ne2000_irq
[nb_ne2k
], nd
);
937 DeviceState
*cpu_get_current_apic(void)
940 X86CPU
*cpu
= X86_CPU(current_cpu
);
941 return cpu
->apic_state
;
947 void pc_acpi_smi_interrupt(void *opaque
, int irq
, int level
)
949 X86CPU
*cpu
= opaque
;
952 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
956 static X86CPU
*pc_new_cpu(const char *cpu_model
, int64_t apic_id
,
957 DeviceState
*icc_bridge
, Error
**errp
)
960 Error
*local_err
= NULL
;
962 cpu
= cpu_x86_create(cpu_model
, icc_bridge
, &local_err
);
963 if (local_err
!= NULL
) {
964 error_propagate(errp
, local_err
);
968 object_property_set_int(OBJECT(cpu
), apic_id
, "apic-id", &local_err
);
969 object_property_set_bool(OBJECT(cpu
), true, "realized", &local_err
);
972 error_propagate(errp
, local_err
);
973 object_unref(OBJECT(cpu
));
979 static const char *current_cpu_model
;
981 void pc_hot_add_cpu(const int64_t id
, Error
**errp
)
983 DeviceState
*icc_bridge
;
984 int64_t apic_id
= x86_cpu_apic_id_from_index(id
);
987 error_setg(errp
, "Invalid CPU id: %" PRIi64
, id
);
991 if (cpu_exists(apic_id
)) {
992 error_setg(errp
, "Unable to add CPU: %" PRIi64
993 ", it already exists", id
);
997 if (id
>= max_cpus
) {
998 error_setg(errp
, "Unable to add CPU: %" PRIi64
999 ", max allowed: %d", id
, max_cpus
- 1);
1003 if (apic_id
>= ACPI_CPU_HOTPLUG_ID_LIMIT
) {
1004 error_setg(errp
, "Unable to add CPU: %" PRIi64
1005 ", resulting APIC ID (%" PRIi64
") is too large",
1010 icc_bridge
= DEVICE(object_resolve_path_type("icc-bridge",
1011 TYPE_ICC_BRIDGE
, NULL
));
1012 pc_new_cpu(current_cpu_model
, apic_id
, icc_bridge
, errp
);
1015 void pc_cpus_init(const char *cpu_model
, DeviceState
*icc_bridge
)
1019 Error
*error
= NULL
;
1020 unsigned long apic_id_limit
;
1023 if (cpu_model
== NULL
) {
1024 #ifdef TARGET_X86_64
1025 cpu_model
= "qemu64";
1027 cpu_model
= "qemu32";
1030 current_cpu_model
= cpu_model
;
1032 apic_id_limit
= pc_apic_id_limit(max_cpus
);
1033 if (apic_id_limit
> ACPI_CPU_HOTPLUG_ID_LIMIT
) {
1034 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1039 for (i
= 0; i
< smp_cpus
; i
++) {
1040 cpu
= pc_new_cpu(cpu_model
, x86_cpu_apic_id_from_index(i
),
1041 icc_bridge
, &error
);
1043 error_report("%s", error_get_pretty(error
));
1049 /* map APIC MMIO area if CPU has APIC */
1050 if (cpu
&& cpu
->apic_state
) {
1051 /* XXX: what if the base changes? */
1052 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge
), 0,
1053 APIC_DEFAULT_ADDRESS
, 0x1000);
1056 /* tell smbios about cpuid version and features */
1057 smbios_set_cpuid(cpu
->env
.cpuid_version
, cpu
->env
.features
[FEAT_1_EDX
]);
1060 /* pci-info ROM file. Little endian format */
1061 typedef struct PcRomPciInfo
{
1068 static void pc_fw_cfg_guest_info(PcGuestInfo
*guest_info
)
1072 bool ambiguous
= false;
1074 if (!guest_info
->has_pci_info
|| !guest_info
->fw_cfg
) {
1077 pci_info
= object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE
, &ambiguous
);
1078 g_assert(!ambiguous
);
1083 info
= g_malloc(sizeof *info
);
1084 info
->w32_min
= cpu_to_le64(object_property_get_int(pci_info
,
1085 PCI_HOST_PROP_PCI_HOLE_START
, NULL
));
1086 info
->w32_max
= cpu_to_le64(object_property_get_int(pci_info
,
1087 PCI_HOST_PROP_PCI_HOLE_END
, NULL
));
1088 info
->w64_min
= cpu_to_le64(object_property_get_int(pci_info
,
1089 PCI_HOST_PROP_PCI_HOLE64_START
, NULL
));
1090 info
->w64_max
= cpu_to_le64(object_property_get_int(pci_info
,
1091 PCI_HOST_PROP_PCI_HOLE64_END
, NULL
));
1092 /* Pass PCI hole info to guest via a side channel.
1093 * Required so guest PCI enumeration does the right thing. */
1094 fw_cfg_add_file(guest_info
->fw_cfg
, "etc/pci-info", info
, sizeof *info
);
1097 typedef struct PcGuestInfoState
{
1099 Notifier machine_done
;
1103 void pc_guest_info_machine_done(Notifier
*notifier
, void *data
)
1105 PcGuestInfoState
*guest_info_state
= container_of(notifier
,
1108 pc_fw_cfg_guest_info(&guest_info_state
->info
);
1109 acpi_setup(&guest_info_state
->info
);
1112 PcGuestInfo
*pc_guest_info_init(ram_addr_t below_4g_mem_size
,
1113 ram_addr_t above_4g_mem_size
)
1115 PcGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
1116 PcGuestInfo
*guest_info
= &guest_info_state
->info
;
1119 guest_info
->ram_size_below_4g
= below_4g_mem_size
;
1120 guest_info
->ram_size
= below_4g_mem_size
+ above_4g_mem_size
;
1121 guest_info
->apic_id_limit
= pc_apic_id_limit(max_cpus
);
1122 guest_info
->apic_xrupt_override
= kvm_allows_irq0_override();
1123 guest_info
->numa_nodes
= nb_numa_nodes
;
1124 guest_info
->node_mem
= g_memdup(node_mem
, guest_info
->numa_nodes
*
1125 sizeof *guest_info
->node_mem
);
1126 guest_info
->node_cpu
= g_malloc0(guest_info
->apic_id_limit
*
1127 sizeof *guest_info
->node_cpu
);
1129 for (i
= 0; i
< max_cpus
; i
++) {
1130 unsigned int apic_id
= x86_cpu_apic_id_from_index(i
);
1131 assert(apic_id
< guest_info
->apic_id_limit
);
1132 for (j
= 0; j
< nb_numa_nodes
; j
++) {
1133 if (test_bit(i
, node_cpumask
[j
])) {
1134 guest_info
->node_cpu
[apic_id
] = j
;
1140 guest_info_state
->machine_done
.notify
= pc_guest_info_machine_done
;
1141 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1145 /* setup pci memory address space mapping into system address space */
1146 void pc_pci_as_mapping_init(Object
*owner
, MemoryRegion
*system_memory
,
1147 MemoryRegion
*pci_address_space
)
1149 /* Set to lower priority than RAM */
1150 memory_region_add_subregion_overlap(system_memory
, 0x0,
1151 pci_address_space
, -1);
1154 void pc_acpi_init(const char *default_dsdt
)
1158 if (acpi_tables
!= NULL
) {
1159 /* manually set via -acpitable, leave it alone */
1163 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, default_dsdt
);
1164 if (filename
== NULL
) {
1165 fprintf(stderr
, "WARNING: failed to find %s\n", default_dsdt
);
1171 arg
= g_strdup_printf("file=%s", filename
);
1173 /* creates a deep copy of "arg" */
1174 opts
= qemu_opts_parse(qemu_find_opts("acpi"), arg
, 0);
1175 g_assert(opts
!= NULL
);
1177 acpi_table_add_builtin(opts
, &err
);
1179 error_report("WARNING: failed to load %s: %s", filename
,
1180 error_get_pretty(err
));
1188 FWCfgState
*pc_memory_init(MemoryRegion
*system_memory
,
1189 const char *kernel_filename
,
1190 const char *kernel_cmdline
,
1191 const char *initrd_filename
,
1192 ram_addr_t below_4g_mem_size
,
1193 ram_addr_t above_4g_mem_size
,
1194 MemoryRegion
*rom_memory
,
1195 MemoryRegion
**ram_memory
,
1196 PcGuestInfo
*guest_info
)
1199 MemoryRegion
*ram
, *option_rom_mr
;
1200 MemoryRegion
*ram_below_4g
, *ram_above_4g
;
1202 ram_addr_t ram_size
= below_4g_mem_size
+ above_4g_mem_size
;
1203 MachineState
*machine
= MACHINE(qdev_get_machine());
1204 PCMachineState
*pcms
= PC_MACHINE(machine
);
1206 linux_boot
= (kernel_filename
!= NULL
);
1208 /* Allocate RAM. We allocate it as a single memory region and use
1209 * aliases to address portions of it, mostly for backwards compatibility
1210 * with older qemus that used qemu_ram_alloc().
1212 ram
= g_malloc(sizeof(*ram
));
1213 memory_region_init_ram(ram
, NULL
, "pc.ram", ram_size
);
1214 vmstate_register_ram_global(ram
);
1216 ram_below_4g
= g_malloc(sizeof(*ram_below_4g
));
1217 memory_region_init_alias(ram_below_4g
, NULL
, "ram-below-4g", ram
,
1218 0, below_4g_mem_size
);
1219 memory_region_add_subregion(system_memory
, 0, ram_below_4g
);
1220 e820_add_entry(0, below_4g_mem_size
, E820_RAM
);
1221 if (above_4g_mem_size
> 0) {
1222 ram_above_4g
= g_malloc(sizeof(*ram_above_4g
));
1223 memory_region_init_alias(ram_above_4g
, NULL
, "ram-above-4g", ram
,
1224 below_4g_mem_size
, above_4g_mem_size
);
1225 memory_region_add_subregion(system_memory
, 0x100000000ULL
,
1227 e820_add_entry(0x100000000ULL
, above_4g_mem_size
, E820_RAM
);
1230 if (!guest_info
->has_reserved_memory
&&
1231 (machine
->ram_slots
||
1232 (machine
->maxram_size
> ram_size
))) {
1233 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1235 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1240 /* initialize hotplug memory address space */
1241 if (guest_info
->has_reserved_memory
&&
1242 (ram_size
< machine
->maxram_size
)) {
1243 ram_addr_t hotplug_mem_size
=
1244 machine
->maxram_size
- ram_size
;
1246 if (machine
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1247 error_report("unsupported amount of memory slots: %"PRIu64
,
1248 machine
->ram_slots
);
1252 pcms
->hotplug_memory_base
=
1253 ROUND_UP(0x100000000ULL
+ above_4g_mem_size
, 1ULL << 30);
1255 if ((pcms
->hotplug_memory_base
+ hotplug_mem_size
) <
1257 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT
,
1258 machine
->maxram_size
);
1262 memory_region_init(&pcms
->hotplug_memory
, OBJECT(pcms
),
1263 "hotplug-memory", hotplug_mem_size
);
1264 memory_region_add_subregion(system_memory
, pcms
->hotplug_memory_base
,
1265 &pcms
->hotplug_memory
);
1268 /* Initialize PC system firmware */
1269 pc_system_firmware_init(rom_memory
, guest_info
->isapc_ram_fw
);
1271 option_rom_mr
= g_malloc(sizeof(*option_rom_mr
));
1272 memory_region_init_ram(option_rom_mr
, NULL
, "pc.rom", PC_ROM_SIZE
);
1273 vmstate_register_ram_global(option_rom_mr
);
1274 memory_region_add_subregion_overlap(rom_memory
,
1279 fw_cfg
= bochs_bios_init();
1282 if (guest_info
->has_reserved_memory
&& pcms
->hotplug_memory_base
) {
1283 uint64_t *val
= g_malloc(sizeof(*val
));
1284 *val
= cpu_to_le64(ROUND_UP(pcms
->hotplug_memory_base
, 0x1ULL
<< 30));
1285 fw_cfg_add_file(fw_cfg
, "etc/reserved-memory-end", val
, sizeof(*val
));
1289 load_linux(fw_cfg
, kernel_filename
, initrd_filename
, kernel_cmdline
, below_4g_mem_size
);
1292 for (i
= 0; i
< nb_option_roms
; i
++) {
1293 rom_add_option(option_rom
[i
].name
, option_rom
[i
].bootindex
);
1295 guest_info
->fw_cfg
= fw_cfg
;
1299 qemu_irq
*pc_allocate_cpu_irq(void)
1301 return qemu_allocate_irqs(pic_irq_request
, NULL
, 1);
1304 DeviceState
*pc_vga_init(ISABus
*isa_bus
, PCIBus
*pci_bus
)
1306 DeviceState
*dev
= NULL
;
1309 PCIDevice
*pcidev
= pci_vga_init(pci_bus
);
1310 dev
= pcidev
? &pcidev
->qdev
: NULL
;
1311 } else if (isa_bus
) {
1312 ISADevice
*isadev
= isa_vga_init(isa_bus
);
1313 dev
= isadev
? DEVICE(isadev
) : NULL
;
1318 static void cpu_request_exit(void *opaque
, int irq
, int level
)
1320 CPUState
*cpu
= current_cpu
;
1327 static const MemoryRegionOps ioport80_io_ops
= {
1328 .write
= ioport80_write
,
1329 .read
= ioport80_read
,
1330 .endianness
= DEVICE_NATIVE_ENDIAN
,
1332 .min_access_size
= 1,
1333 .max_access_size
= 1,
1337 static const MemoryRegionOps ioportF0_io_ops
= {
1338 .write
= ioportF0_write
,
1339 .read
= ioportF0_read
,
1340 .endianness
= DEVICE_NATIVE_ENDIAN
,
1342 .min_access_size
= 1,
1343 .max_access_size
= 1,
1347 void pc_basic_device_init(ISABus
*isa_bus
, qemu_irq
*gsi
,
1348 ISADevice
**rtc_state
,
1354 DriveInfo
*fd
[MAX_FD
];
1355 DeviceState
*hpet
= NULL
;
1356 int pit_isa_irq
= 0;
1357 qemu_irq pit_alt_irq
= NULL
;
1358 qemu_irq rtc_irq
= NULL
;
1360 ISADevice
*i8042
, *port92
, *vmmouse
, *pit
= NULL
;
1361 qemu_irq
*cpu_exit_irq
;
1362 MemoryRegion
*ioport80_io
= g_new(MemoryRegion
, 1);
1363 MemoryRegion
*ioportF0_io
= g_new(MemoryRegion
, 1);
1365 memory_region_init_io(ioport80_io
, NULL
, &ioport80_io_ops
, NULL
, "ioport80", 1);
1366 memory_region_add_subregion(isa_bus
->address_space_io
, 0x80, ioport80_io
);
1368 memory_region_init_io(ioportF0_io
, NULL
, &ioportF0_io_ops
, NULL
, "ioportF0", 1);
1369 memory_region_add_subregion(isa_bus
->address_space_io
, 0xf0, ioportF0_io
);
1372 * Check if an HPET shall be created.
1374 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1375 * when the HPET wants to take over. Thus we have to disable the latter.
1377 if (!no_hpet
&& (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1378 /* In order to set property, here not using sysbus_try_create_simple */
1379 hpet
= qdev_try_create(NULL
, TYPE_HPET
);
1381 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1382 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1385 uint8_t compat
= object_property_get_int(OBJECT(hpet
),
1388 qdev_prop_set_uint32(hpet
, HPET_INTCAP
, hpet_irqs
);
1390 qdev_init_nofail(hpet
);
1391 sysbus_mmio_map(SYS_BUS_DEVICE(hpet
), 0, HPET_BASE
);
1393 for (i
= 0; i
< GSI_NUM_PINS
; i
++) {
1394 sysbus_connect_irq(SYS_BUS_DEVICE(hpet
), i
, gsi
[i
]);
1397 pit_alt_irq
= qdev_get_gpio_in(hpet
, HPET_LEGACY_PIT_INT
);
1398 rtc_irq
= qdev_get_gpio_in(hpet
, HPET_LEGACY_RTC_INT
);
1401 *rtc_state
= rtc_init(isa_bus
, 2000, rtc_irq
);
1403 qemu_register_boot_set(pc_boot_set
, *rtc_state
);
1405 if (!xen_enabled()) {
1406 if (kvm_irqchip_in_kernel()) {
1407 pit
= kvm_pit_init(isa_bus
, 0x40);
1409 pit
= pit_init(isa_bus
, 0x40, pit_isa_irq
, pit_alt_irq
);
1412 /* connect PIT to output control line of the HPET */
1413 qdev_connect_gpio_out(hpet
, 0, qdev_get_gpio_in(DEVICE(pit
), 0));
1415 pcspk_init(isa_bus
, pit
);
1418 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
1419 if (serial_hds
[i
]) {
1420 serial_isa_init(isa_bus
, i
, serial_hds
[i
]);
1424 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
1425 if (parallel_hds
[i
]) {
1426 parallel_init(isa_bus
, i
, parallel_hds
[i
]);
1430 a20_line
= qemu_allocate_irqs(handle_a20_line_change
, first_cpu
, 2);
1431 i8042
= isa_create_simple(isa_bus
, "i8042");
1432 i8042_setup_a20_line(i8042
, &a20_line
[0]);
1434 vmport_init(isa_bus
);
1435 vmmouse
= isa_try_create(isa_bus
, "vmmouse");
1440 DeviceState
*dev
= DEVICE(vmmouse
);
1441 qdev_prop_set_ptr(dev
, "ps2_mouse", i8042
);
1442 qdev_init_nofail(dev
);
1444 port92
= isa_create_simple(isa_bus
, "port92");
1445 port92_init(port92
, &a20_line
[1]);
1447 cpu_exit_irq
= qemu_allocate_irqs(cpu_request_exit
, NULL
, 1);
1448 DMA_init(0, cpu_exit_irq
);
1450 for(i
= 0; i
< MAX_FD
; i
++) {
1451 fd
[i
] = drive_get(IF_FLOPPY
, 0, i
);
1453 *floppy
= fdctrl_init_isa(isa_bus
, fd
);
1456 void pc_nic_init(ISABus
*isa_bus
, PCIBus
*pci_bus
)
1460 for (i
= 0; i
< nb_nics
; i
++) {
1461 NICInfo
*nd
= &nd_table
[i
];
1463 if (!pci_bus
|| (nd
->model
&& strcmp(nd
->model
, "ne2k_isa") == 0)) {
1464 pc_init_ne2k_isa(isa_bus
, nd
);
1466 pci_nic_init_nofail(nd
, pci_bus
, "e1000", NULL
);
1471 void pc_pci_device_init(PCIBus
*pci_bus
)
1476 max_bus
= drive_get_max_bus(IF_SCSI
);
1477 for (bus
= 0; bus
<= max_bus
; bus
++) {
1478 pci_create_simple(pci_bus
, -1, "lsi53c895a");
1482 void ioapic_init_gsi(GSIState
*gsi_state
, const char *parent_name
)
1488 if (kvm_irqchip_in_kernel()) {
1489 dev
= qdev_create(NULL
, "kvm-ioapic");
1491 dev
= qdev_create(NULL
, "ioapic");
1494 object_property_add_child(object_resolve_path(parent_name
, NULL
),
1495 "ioapic", OBJECT(dev
), NULL
);
1497 qdev_init_nofail(dev
);
1498 d
= SYS_BUS_DEVICE(dev
);
1499 sysbus_mmio_map(d
, 0, IO_APIC_DEFAULT_ADDRESS
);
1501 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
1502 gsi_state
->ioapic_irq
[i
] = qdev_get_gpio_in(dev
, i
);
1506 static void pc_generic_machine_class_init(ObjectClass
*oc
, void *data
)
1508 MachineClass
*mc
= MACHINE_CLASS(oc
);
1509 QEMUMachine
*qm
= data
;
1511 mc
->name
= qm
->name
;
1512 mc
->alias
= qm
->alias
;
1513 mc
->desc
= qm
->desc
;
1514 mc
->init
= qm
->init
;
1515 mc
->reset
= qm
->reset
;
1516 mc
->hot_add_cpu
= qm
->hot_add_cpu
;
1517 mc
->kvm_type
= qm
->kvm_type
;
1518 mc
->block_default_type
= qm
->block_default_type
;
1519 mc
->max_cpus
= qm
->max_cpus
;
1520 mc
->no_serial
= qm
->no_serial
;
1521 mc
->no_parallel
= qm
->no_parallel
;
1522 mc
->use_virtcon
= qm
->use_virtcon
;
1523 mc
->use_sclp
= qm
->use_sclp
;
1524 mc
->no_floppy
= qm
->no_floppy
;
1525 mc
->no_cdrom
= qm
->no_cdrom
;
1526 mc
->no_sdcard
= qm
->no_sdcard
;
1527 mc
->is_default
= qm
->is_default
;
1528 mc
->default_machine_opts
= qm
->default_machine_opts
;
1529 mc
->default_boot_order
= qm
->default_boot_order
;
1530 mc
->compat_props
= qm
->compat_props
;
1531 mc
->hw_version
= qm
->hw_version
;
1534 void qemu_register_pc_machine(QEMUMachine
*m
)
1536 char *name
= g_strconcat(m
->name
, TYPE_MACHINE_SUFFIX
, NULL
);
1539 .parent
= TYPE_PC_MACHINE
,
1540 .class_init
= pc_generic_machine_class_init
,
1541 .class_data
= (void *)m
,
1548 static void pc_dimm_plug(HotplugHandler
*hotplug_dev
,
1549 DeviceState
*dev
, Error
**errp
)
1552 HotplugHandlerClass
*hhc
;
1553 Error
*local_err
= NULL
;
1554 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
1555 MachineState
*machine
= MACHINE(hotplug_dev
);
1556 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
1557 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
1558 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
1559 uint64_t addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
1565 addr
= pc_dimm_get_free_addr(pcms
->hotplug_memory_base
,
1566 memory_region_size(&pcms
->hotplug_memory
),
1567 !addr
? NULL
: &addr
,
1568 memory_region_size(mr
), &local_err
);
1573 object_property_set_int(OBJECT(dev
), addr
, PC_DIMM_ADDR_PROP
, &local_err
);
1577 trace_mhp_pc_dimm_assigned_address(addr
);
1579 slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
, &local_err
);
1584 slot
= pc_dimm_get_free_slot(slot
== PC_DIMM_UNASSIGNED_SLOT
? NULL
: &slot
,
1585 machine
->ram_slots
, &local_err
);
1589 object_property_set_int(OBJECT(dev
), slot
, PC_DIMM_SLOT_PROP
, &local_err
);
1593 trace_mhp_pc_dimm_assigned_slot(slot
);
1595 if (!pcms
->acpi_dev
) {
1596 error_setg(&local_err
,
1597 "memory hotplug is not enabled: missing acpi device");
1601 memory_region_add_subregion(&pcms
->hotplug_memory
,
1602 addr
- pcms
->hotplug_memory_base
, mr
);
1603 vmstate_register_ram(mr
, dev
);
1605 hhc
= HOTPLUG_HANDLER_GET_CLASS(pcms
->acpi_dev
);
1606 hhc
->plug(HOTPLUG_HANDLER(pcms
->acpi_dev
), dev
, &local_err
);
1608 error_propagate(errp
, local_err
);
1611 static void pc_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
1612 DeviceState
*dev
, Error
**errp
)
1614 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
1615 pc_dimm_plug(hotplug_dev
, dev
, errp
);
1619 static HotplugHandler
*pc_get_hotpug_handler(MachineState
*machine
,
1622 PCMachineClass
*pcmc
= PC_MACHINE_GET_CLASS(machine
);
1624 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
1625 return HOTPLUG_HANDLER(machine
);
1628 return pcmc
->get_hotplug_handler
?
1629 pcmc
->get_hotplug_handler(machine
, dev
) : NULL
;
1632 static void pc_machine_class_init(ObjectClass
*oc
, void *data
)
1634 MachineClass
*mc
= MACHINE_CLASS(oc
);
1635 PCMachineClass
*pcmc
= PC_MACHINE_CLASS(oc
);
1636 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
1638 pcmc
->get_hotplug_handler
= mc
->get_hotplug_handler
;
1639 mc
->get_hotplug_handler
= pc_get_hotpug_handler
;
1640 hc
->plug
= pc_machine_device_plug_cb
;
1643 static const TypeInfo pc_machine_info
= {
1644 .name
= TYPE_PC_MACHINE
,
1645 .parent
= TYPE_MACHINE
,
1647 .instance_size
= sizeof(PCMachineState
),
1648 .class_size
= sizeof(PCMachineClass
),
1649 .class_init
= pc_machine_class_init
,
1650 .interfaces
= (InterfaceInfo
[]) {
1651 { TYPE_HOTPLUG_HANDLER
},
1656 static void pc_machine_register_types(void)
1658 type_register_static(&pc_machine_info
);
1661 type_init(pc_machine_register_types
)