pc: propagate memory hotplug event to ACPI device
[qemu/ar7.git] / hw / i386 / pc.c
blob0bedd4695edba82424b8be3a254d529efd0ee93a
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/acpi/cpu_hotplug.h"
57 #include "hw/cpu/icc_bus.h"
58 #include "hw/boards.h"
59 #include "hw/pci/pci_host.h"
60 #include "acpi-build.h"
61 #include "hw/mem/pc-dimm.h"
62 #include "trace.h"
64 /* debug PC/ISA interrupts */
65 //#define DEBUG_IRQ
67 #ifdef DEBUG_IRQ
68 #define DPRINTF(fmt, ...) \
69 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
70 #else
71 #define DPRINTF(fmt, ...)
72 #endif
74 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
75 #define ACPI_DATA_SIZE 0x10000
76 #define BIOS_CFG_IOPORT 0x510
77 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
78 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
79 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
80 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
81 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
83 #define E820_NR_ENTRIES 16
85 struct e820_entry {
86 uint64_t address;
87 uint64_t length;
88 uint32_t type;
89 } QEMU_PACKED __attribute((__aligned__(4)));
91 struct e820_table {
92 uint32_t count;
93 struct e820_entry entry[E820_NR_ENTRIES];
94 } QEMU_PACKED __attribute((__aligned__(4)));
96 static struct e820_table e820_reserve;
97 static struct e820_entry *e820_table;
98 static unsigned e820_entries;
99 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
101 void gsi_handler(void *opaque, int n, int level)
103 GSIState *s = opaque;
105 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
106 if (n < ISA_NUM_IRQS) {
107 qemu_set_irq(s->i8259_irq[n], level);
109 qemu_set_irq(s->ioapic_irq[n], level);
112 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
113 unsigned size)
117 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
119 return 0xffffffffffffffffULL;
122 /* MSDOS compatibility mode FPU exception support */
123 static qemu_irq ferr_irq;
125 void pc_register_ferr_irq(qemu_irq irq)
127 ferr_irq = irq;
130 /* XXX: add IGNNE support */
131 void cpu_set_ferr(CPUX86State *s)
133 qemu_irq_raise(ferr_irq);
136 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
137 unsigned size)
139 qemu_irq_lower(ferr_irq);
142 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
144 return 0xffffffffffffffffULL;
147 /* TSC handling */
148 uint64_t cpu_get_tsc(CPUX86State *env)
150 return cpu_get_ticks();
153 /* SMM support */
155 static cpu_set_smm_t smm_set;
156 static void *smm_arg;
158 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
160 assert(smm_set == NULL);
161 assert(smm_arg == NULL);
162 smm_set = callback;
163 smm_arg = arg;
166 void cpu_smm_update(CPUX86State *env)
168 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
169 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
174 /* IRQ handling */
175 int cpu_get_pic_interrupt(CPUX86State *env)
177 X86CPU *cpu = x86_env_get_cpu(env);
178 int intno;
180 intno = apic_get_interrupt(cpu->apic_state);
181 if (intno >= 0) {
182 return intno;
184 /* read the irq from the PIC */
185 if (!apic_accept_pic_intr(cpu->apic_state)) {
186 return -1;
189 intno = pic_read_irq(isa_pic);
190 return intno;
193 static void pic_irq_request(void *opaque, int irq, int level)
195 CPUState *cs = first_cpu;
196 X86CPU *cpu = X86_CPU(cs);
198 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
199 if (cpu->apic_state) {
200 CPU_FOREACH(cs) {
201 cpu = X86_CPU(cs);
202 if (apic_accept_pic_intr(cpu->apic_state)) {
203 apic_deliver_pic_intr(cpu->apic_state, level);
206 } else {
207 if (level) {
208 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
209 } else {
210 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
215 /* PC cmos mappings */
217 #define REG_EQUIPMENT_BYTE 0x14
219 static int cmos_get_fd_drive_type(FDriveType fd0)
221 int val;
223 switch (fd0) {
224 case FDRIVE_DRV_144:
225 /* 1.44 Mb 3"5 drive */
226 val = 4;
227 break;
228 case FDRIVE_DRV_288:
229 /* 2.88 Mb 3"5 drive */
230 val = 5;
231 break;
232 case FDRIVE_DRV_120:
233 /* 1.2 Mb 5"5 drive */
234 val = 2;
235 break;
236 case FDRIVE_DRV_NONE:
237 default:
238 val = 0;
239 break;
241 return val;
244 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
245 int16_t cylinders, int8_t heads, int8_t sectors)
247 rtc_set_memory(s, type_ofs, 47);
248 rtc_set_memory(s, info_ofs, cylinders);
249 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
250 rtc_set_memory(s, info_ofs + 2, heads);
251 rtc_set_memory(s, info_ofs + 3, 0xff);
252 rtc_set_memory(s, info_ofs + 4, 0xff);
253 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
254 rtc_set_memory(s, info_ofs + 6, cylinders);
255 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
256 rtc_set_memory(s, info_ofs + 8, sectors);
259 /* convert boot_device letter to something recognizable by the bios */
260 static int boot_device2nibble(char boot_device)
262 switch(boot_device) {
263 case 'a':
264 case 'b':
265 return 0x01; /* floppy boot */
266 case 'c':
267 return 0x02; /* hard drive boot */
268 case 'd':
269 return 0x03; /* CD-ROM boot */
270 case 'n':
271 return 0x04; /* Network boot */
273 return 0;
276 static int set_boot_dev(ISADevice *s, const char *boot_device)
278 #define PC_MAX_BOOT_DEVICES 3
279 int nbds, bds[3] = { 0, };
280 int i;
282 nbds = strlen(boot_device);
283 if (nbds > PC_MAX_BOOT_DEVICES) {
284 error_report("Too many boot devices for PC");
285 return(1);
287 for (i = 0; i < nbds; i++) {
288 bds[i] = boot_device2nibble(boot_device[i]);
289 if (bds[i] == 0) {
290 error_report("Invalid boot device for PC: '%c'",
291 boot_device[i]);
292 return(1);
295 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
296 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
297 return(0);
300 static int pc_boot_set(void *opaque, const char *boot_device)
302 return set_boot_dev(opaque, boot_device);
305 typedef struct pc_cmos_init_late_arg {
306 ISADevice *rtc_state;
307 BusState *idebus[2];
308 } pc_cmos_init_late_arg;
310 static void pc_cmos_init_late(void *opaque)
312 pc_cmos_init_late_arg *arg = opaque;
313 ISADevice *s = arg->rtc_state;
314 int16_t cylinders;
315 int8_t heads, sectors;
316 int val;
317 int i, trans;
319 val = 0;
320 if (ide_get_geometry(arg->idebus[0], 0,
321 &cylinders, &heads, &sectors) >= 0) {
322 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
323 val |= 0xf0;
325 if (ide_get_geometry(arg->idebus[0], 1,
326 &cylinders, &heads, &sectors) >= 0) {
327 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
328 val |= 0x0f;
330 rtc_set_memory(s, 0x12, val);
332 val = 0;
333 for (i = 0; i < 4; i++) {
334 /* NOTE: ide_get_geometry() returns the physical
335 geometry. It is always such that: 1 <= sects <= 63, 1
336 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
337 geometry can be different if a translation is done. */
338 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
339 &cylinders, &heads, &sectors) >= 0) {
340 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
341 assert((trans & ~3) == 0);
342 val |= trans << (i * 2);
345 rtc_set_memory(s, 0x39, val);
347 qemu_unregister_reset(pc_cmos_init_late, opaque);
350 typedef struct RTCCPUHotplugArg {
351 Notifier cpu_added_notifier;
352 ISADevice *rtc_state;
353 } RTCCPUHotplugArg;
355 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
357 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
358 cpu_added_notifier);
359 ISADevice *s = arg->rtc_state;
361 /* increment the number of CPUs */
362 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
365 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
366 const char *boot_device,
367 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
368 ISADevice *s)
370 int val, nb, i;
371 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
372 static pc_cmos_init_late_arg arg;
373 static RTCCPUHotplugArg cpu_hotplug_cb;
375 /* various important CMOS locations needed by PC/Bochs bios */
377 /* memory size */
378 /* base memory (first MiB) */
379 val = MIN(ram_size / 1024, 640);
380 rtc_set_memory(s, 0x15, val);
381 rtc_set_memory(s, 0x16, val >> 8);
382 /* extended memory (next 64MiB) */
383 if (ram_size > 1024 * 1024) {
384 val = (ram_size - 1024 * 1024) / 1024;
385 } else {
386 val = 0;
388 if (val > 65535)
389 val = 65535;
390 rtc_set_memory(s, 0x17, val);
391 rtc_set_memory(s, 0x18, val >> 8);
392 rtc_set_memory(s, 0x30, val);
393 rtc_set_memory(s, 0x31, val >> 8);
394 /* memory between 16MiB and 4GiB */
395 if (ram_size > 16 * 1024 * 1024) {
396 val = (ram_size - 16 * 1024 * 1024) / 65536;
397 } else {
398 val = 0;
400 if (val > 65535)
401 val = 65535;
402 rtc_set_memory(s, 0x34, val);
403 rtc_set_memory(s, 0x35, val >> 8);
404 /* memory above 4GiB */
405 val = above_4g_mem_size / 65536;
406 rtc_set_memory(s, 0x5b, val);
407 rtc_set_memory(s, 0x5c, val >> 8);
408 rtc_set_memory(s, 0x5d, val >> 16);
410 /* set the number of CPU */
411 rtc_set_memory(s, 0x5f, smp_cpus - 1);
412 /* init CPU hotplug notifier */
413 cpu_hotplug_cb.rtc_state = s;
414 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
415 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
417 if (set_boot_dev(s, boot_device)) {
418 exit(1);
421 /* floppy type */
422 if (floppy) {
423 for (i = 0; i < 2; i++) {
424 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
427 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
428 cmos_get_fd_drive_type(fd_type[1]);
429 rtc_set_memory(s, 0x10, val);
431 val = 0;
432 nb = 0;
433 if (fd_type[0] < FDRIVE_DRV_NONE) {
434 nb++;
436 if (fd_type[1] < FDRIVE_DRV_NONE) {
437 nb++;
439 switch (nb) {
440 case 0:
441 break;
442 case 1:
443 val |= 0x01; /* 1 drive, ready for boot */
444 break;
445 case 2:
446 val |= 0x41; /* 2 drives, ready for boot */
447 break;
449 val |= 0x02; /* FPU is there */
450 val |= 0x04; /* PS/2 mouse installed */
451 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
453 /* hard drives */
454 arg.rtc_state = s;
455 arg.idebus[0] = idebus0;
456 arg.idebus[1] = idebus1;
457 qemu_register_reset(pc_cmos_init_late, &arg);
460 #define TYPE_PORT92 "port92"
461 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
463 /* port 92 stuff: could be split off */
464 typedef struct Port92State {
465 ISADevice parent_obj;
467 MemoryRegion io;
468 uint8_t outport;
469 qemu_irq *a20_out;
470 } Port92State;
472 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
473 unsigned size)
475 Port92State *s = opaque;
476 int oldval = s->outport;
478 DPRINTF("port92: write 0x%02x\n", val);
479 s->outport = val;
480 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
481 if ((val & 1) && !(oldval & 1)) {
482 qemu_system_reset_request();
486 static uint64_t port92_read(void *opaque, hwaddr addr,
487 unsigned size)
489 Port92State *s = opaque;
490 uint32_t ret;
492 ret = s->outport;
493 DPRINTF("port92: read 0x%02x\n", ret);
494 return ret;
497 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
499 Port92State *s = PORT92(dev);
501 s->a20_out = a20_out;
504 static const VMStateDescription vmstate_port92_isa = {
505 .name = "port92",
506 .version_id = 1,
507 .minimum_version_id = 1,
508 .fields = (VMStateField[]) {
509 VMSTATE_UINT8(outport, Port92State),
510 VMSTATE_END_OF_LIST()
514 static void port92_reset(DeviceState *d)
516 Port92State *s = PORT92(d);
518 s->outport &= ~1;
521 static const MemoryRegionOps port92_ops = {
522 .read = port92_read,
523 .write = port92_write,
524 .impl = {
525 .min_access_size = 1,
526 .max_access_size = 1,
528 .endianness = DEVICE_LITTLE_ENDIAN,
531 static void port92_initfn(Object *obj)
533 Port92State *s = PORT92(obj);
535 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
537 s->outport = 0;
540 static void port92_realizefn(DeviceState *dev, Error **errp)
542 ISADevice *isadev = ISA_DEVICE(dev);
543 Port92State *s = PORT92(dev);
545 isa_register_ioport(isadev, &s->io, 0x92);
548 static void port92_class_initfn(ObjectClass *klass, void *data)
550 DeviceClass *dc = DEVICE_CLASS(klass);
552 dc->realize = port92_realizefn;
553 dc->reset = port92_reset;
554 dc->vmsd = &vmstate_port92_isa;
556 * Reason: unlike ordinary ISA devices, this one needs additional
557 * wiring: its A20 output line needs to be wired up by
558 * port92_init().
560 dc->cannot_instantiate_with_device_add_yet = true;
563 static const TypeInfo port92_info = {
564 .name = TYPE_PORT92,
565 .parent = TYPE_ISA_DEVICE,
566 .instance_size = sizeof(Port92State),
567 .instance_init = port92_initfn,
568 .class_init = port92_class_initfn,
571 static void port92_register_types(void)
573 type_register_static(&port92_info);
576 type_init(port92_register_types)
578 static void handle_a20_line_change(void *opaque, int irq, int level)
580 X86CPU *cpu = opaque;
582 /* XXX: send to all CPUs ? */
583 /* XXX: add logic to handle multiple A20 line sources */
584 x86_cpu_set_a20(cpu, level);
587 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
589 int index = le32_to_cpu(e820_reserve.count);
590 struct e820_entry *entry;
592 if (type != E820_RAM) {
593 /* old FW_CFG_E820_TABLE entry -- reservations only */
594 if (index >= E820_NR_ENTRIES) {
595 return -EBUSY;
597 entry = &e820_reserve.entry[index++];
599 entry->address = cpu_to_le64(address);
600 entry->length = cpu_to_le64(length);
601 entry->type = cpu_to_le32(type);
603 e820_reserve.count = cpu_to_le32(index);
606 /* new "etc/e820" file -- include ram too */
607 e820_table = g_realloc(e820_table,
608 sizeof(struct e820_entry) * (e820_entries+1));
609 e820_table[e820_entries].address = cpu_to_le64(address);
610 e820_table[e820_entries].length = cpu_to_le64(length);
611 e820_table[e820_entries].type = cpu_to_le32(type);
612 e820_entries++;
614 return e820_entries;
617 int e820_get_num_entries(void)
619 return e820_entries;
622 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
624 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
625 *address = le64_to_cpu(e820_table[idx].address);
626 *length = le64_to_cpu(e820_table[idx].length);
627 return true;
629 return false;
632 /* Calculates the limit to CPU APIC ID values
634 * This function returns the limit for the APIC ID value, so that all
635 * CPU APIC IDs are < pc_apic_id_limit().
637 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
639 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
641 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
644 static FWCfgState *bochs_bios_init(void)
646 FWCfgState *fw_cfg;
647 uint8_t *smbios_tables, *smbios_anchor;
648 size_t smbios_tables_len, smbios_anchor_len;
649 uint64_t *numa_fw_cfg;
650 int i, j;
651 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
653 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
654 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
656 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
657 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
658 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
659 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
660 * may see".
662 * So, this means we must not use max_cpus, here, but the maximum possible
663 * APIC ID value, plus one.
665 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
666 * the APIC ID, not the "CPU index"
668 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
669 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
670 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
671 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
672 acpi_tables, acpi_tables_len);
673 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
675 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
676 if (smbios_tables) {
677 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
678 smbios_tables, smbios_tables_len);
681 smbios_get_tables(&smbios_tables, &smbios_tables_len,
682 &smbios_anchor, &smbios_anchor_len);
683 if (smbios_anchor) {
684 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
685 smbios_tables, smbios_tables_len);
686 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
687 smbios_anchor, smbios_anchor_len);
690 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
691 &e820_reserve, sizeof(e820_reserve));
692 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
693 sizeof(struct e820_entry) * e820_entries);
695 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
696 /* allocate memory for the NUMA channel: one (64bit) word for the number
697 * of nodes, one word for each VCPU->node and one word for each node to
698 * hold the amount of memory.
700 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
701 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
702 for (i = 0; i < max_cpus; i++) {
703 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
704 assert(apic_id < apic_id_limit);
705 for (j = 0; j < nb_numa_nodes; j++) {
706 if (test_bit(i, node_cpumask[j])) {
707 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
708 break;
712 for (i = 0; i < nb_numa_nodes; i++) {
713 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
715 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
716 (1 + apic_id_limit + nb_numa_nodes) *
717 sizeof(*numa_fw_cfg));
719 return fw_cfg;
722 static long get_file_size(FILE *f)
724 long where, size;
726 /* XXX: on Unix systems, using fstat() probably makes more sense */
728 where = ftell(f);
729 fseek(f, 0, SEEK_END);
730 size = ftell(f);
731 fseek(f, where, SEEK_SET);
733 return size;
736 static void load_linux(FWCfgState *fw_cfg,
737 const char *kernel_filename,
738 const char *initrd_filename,
739 const char *kernel_cmdline,
740 hwaddr max_ram_size)
742 uint16_t protocol;
743 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
744 uint32_t initrd_max;
745 uint8_t header[8192], *setup, *kernel, *initrd_data;
746 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
747 FILE *f;
748 char *vmode;
750 /* Align to 16 bytes as a paranoia measure */
751 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
753 /* load the kernel header */
754 f = fopen(kernel_filename, "rb");
755 if (!f || !(kernel_size = get_file_size(f)) ||
756 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
757 MIN(ARRAY_SIZE(header), kernel_size)) {
758 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
759 kernel_filename, strerror(errno));
760 exit(1);
763 /* kernel protocol version */
764 #if 0
765 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
766 #endif
767 if (ldl_p(header+0x202) == 0x53726448) {
768 protocol = lduw_p(header+0x206);
769 } else {
770 /* This looks like a multiboot kernel. If it is, let's stop
771 treating it like a Linux kernel. */
772 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
773 kernel_cmdline, kernel_size, header)) {
774 return;
776 protocol = 0;
779 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
780 /* Low kernel */
781 real_addr = 0x90000;
782 cmdline_addr = 0x9a000 - cmdline_size;
783 prot_addr = 0x10000;
784 } else if (protocol < 0x202) {
785 /* High but ancient kernel */
786 real_addr = 0x90000;
787 cmdline_addr = 0x9a000 - cmdline_size;
788 prot_addr = 0x100000;
789 } else {
790 /* High and recent kernel */
791 real_addr = 0x10000;
792 cmdline_addr = 0x20000;
793 prot_addr = 0x100000;
796 #if 0
797 fprintf(stderr,
798 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
799 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
800 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
801 real_addr,
802 cmdline_addr,
803 prot_addr);
804 #endif
806 /* highest address for loading the initrd */
807 if (protocol >= 0x203) {
808 initrd_max = ldl_p(header+0x22c);
809 } else {
810 initrd_max = 0x37ffffff;
813 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
814 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
816 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
817 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
818 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
820 if (protocol >= 0x202) {
821 stl_p(header+0x228, cmdline_addr);
822 } else {
823 stw_p(header+0x20, 0xA33F);
824 stw_p(header+0x22, cmdline_addr-real_addr);
827 /* handle vga= parameter */
828 vmode = strstr(kernel_cmdline, "vga=");
829 if (vmode) {
830 unsigned int video_mode;
831 /* skip "vga=" */
832 vmode += 4;
833 if (!strncmp(vmode, "normal", 6)) {
834 video_mode = 0xffff;
835 } else if (!strncmp(vmode, "ext", 3)) {
836 video_mode = 0xfffe;
837 } else if (!strncmp(vmode, "ask", 3)) {
838 video_mode = 0xfffd;
839 } else {
840 video_mode = strtol(vmode, NULL, 0);
842 stw_p(header+0x1fa, video_mode);
845 /* loader type */
846 /* High nybble = B reserved for QEMU; low nybble is revision number.
847 If this code is substantially changed, you may want to consider
848 incrementing the revision. */
849 if (protocol >= 0x200) {
850 header[0x210] = 0xB0;
852 /* heap */
853 if (protocol >= 0x201) {
854 header[0x211] |= 0x80; /* CAN_USE_HEAP */
855 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
858 /* load initrd */
859 if (initrd_filename) {
860 if (protocol < 0x200) {
861 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
862 exit(1);
865 initrd_size = get_image_size(initrd_filename);
866 if (initrd_size < 0) {
867 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
868 initrd_filename, strerror(errno));
869 exit(1);
872 initrd_addr = (initrd_max-initrd_size) & ~4095;
874 initrd_data = g_malloc(initrd_size);
875 load_image(initrd_filename, initrd_data);
877 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
878 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
879 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
881 stl_p(header+0x218, initrd_addr);
882 stl_p(header+0x21c, initrd_size);
885 /* load kernel and setup */
886 setup_size = header[0x1f1];
887 if (setup_size == 0) {
888 setup_size = 4;
890 setup_size = (setup_size+1)*512;
891 kernel_size -= setup_size;
893 setup = g_malloc(setup_size);
894 kernel = g_malloc(kernel_size);
895 fseek(f, 0, SEEK_SET);
896 if (fread(setup, 1, setup_size, f) != setup_size) {
897 fprintf(stderr, "fread() failed\n");
898 exit(1);
900 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
901 fprintf(stderr, "fread() failed\n");
902 exit(1);
904 fclose(f);
905 memcpy(setup, header, MIN(sizeof(header), setup_size));
907 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
908 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
909 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
911 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
912 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
913 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
915 option_rom[nb_option_roms].name = "linuxboot.bin";
916 option_rom[nb_option_roms].bootindex = 0;
917 nb_option_roms++;
920 #define NE2000_NB_MAX 6
922 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
923 0x280, 0x380 };
924 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
926 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
928 static int nb_ne2k = 0;
930 if (nb_ne2k == NE2000_NB_MAX)
931 return;
932 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
933 ne2000_irq[nb_ne2k], nd);
934 nb_ne2k++;
937 DeviceState *cpu_get_current_apic(void)
939 if (current_cpu) {
940 X86CPU *cpu = X86_CPU(current_cpu);
941 return cpu->apic_state;
942 } else {
943 return NULL;
947 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
949 X86CPU *cpu = opaque;
951 if (level) {
952 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
956 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
957 DeviceState *icc_bridge, Error **errp)
959 X86CPU *cpu;
960 Error *local_err = NULL;
962 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
963 if (local_err != NULL) {
964 error_propagate(errp, local_err);
965 return NULL;
968 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
969 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
971 if (local_err) {
972 error_propagate(errp, local_err);
973 object_unref(OBJECT(cpu));
974 cpu = NULL;
976 return cpu;
979 static const char *current_cpu_model;
981 void pc_hot_add_cpu(const int64_t id, Error **errp)
983 DeviceState *icc_bridge;
984 int64_t apic_id = x86_cpu_apic_id_from_index(id);
986 if (id < 0) {
987 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
988 return;
991 if (cpu_exists(apic_id)) {
992 error_setg(errp, "Unable to add CPU: %" PRIi64
993 ", it already exists", id);
994 return;
997 if (id >= max_cpus) {
998 error_setg(errp, "Unable to add CPU: %" PRIi64
999 ", max allowed: %d", id, max_cpus - 1);
1000 return;
1003 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1004 error_setg(errp, "Unable to add CPU: %" PRIi64
1005 ", resulting APIC ID (%" PRIi64 ") is too large",
1006 id, apic_id);
1007 return;
1010 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1011 TYPE_ICC_BRIDGE, NULL));
1012 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1015 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1017 int i;
1018 X86CPU *cpu = NULL;
1019 Error *error = NULL;
1020 unsigned long apic_id_limit;
1022 /* init CPUs */
1023 if (cpu_model == NULL) {
1024 #ifdef TARGET_X86_64
1025 cpu_model = "qemu64";
1026 #else
1027 cpu_model = "qemu32";
1028 #endif
1030 current_cpu_model = cpu_model;
1032 apic_id_limit = pc_apic_id_limit(max_cpus);
1033 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1034 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1035 apic_id_limit - 1);
1036 exit(1);
1039 for (i = 0; i < smp_cpus; i++) {
1040 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1041 icc_bridge, &error);
1042 if (error) {
1043 error_report("%s", error_get_pretty(error));
1044 error_free(error);
1045 exit(1);
1049 /* map APIC MMIO area if CPU has APIC */
1050 if (cpu && cpu->apic_state) {
1051 /* XXX: what if the base changes? */
1052 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1053 APIC_DEFAULT_ADDRESS, 0x1000);
1056 /* tell smbios about cpuid version and features */
1057 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1060 /* pci-info ROM file. Little endian format */
1061 typedef struct PcRomPciInfo {
1062 uint64_t w32_min;
1063 uint64_t w32_max;
1064 uint64_t w64_min;
1065 uint64_t w64_max;
1066 } PcRomPciInfo;
1068 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1070 PcRomPciInfo *info;
1071 Object *pci_info;
1072 bool ambiguous = false;
1074 if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1075 return;
1077 pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
1078 g_assert(!ambiguous);
1079 if (!pci_info) {
1080 return;
1083 info = g_malloc(sizeof *info);
1084 info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
1085 PCI_HOST_PROP_PCI_HOLE_START, NULL));
1086 info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
1087 PCI_HOST_PROP_PCI_HOLE_END, NULL));
1088 info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
1089 PCI_HOST_PROP_PCI_HOLE64_START, NULL));
1090 info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
1091 PCI_HOST_PROP_PCI_HOLE64_END, NULL));
1092 /* Pass PCI hole info to guest via a side channel.
1093 * Required so guest PCI enumeration does the right thing. */
1094 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1097 typedef struct PcGuestInfoState {
1098 PcGuestInfo info;
1099 Notifier machine_done;
1100 } PcGuestInfoState;
1102 static
1103 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1105 PcGuestInfoState *guest_info_state = container_of(notifier,
1106 PcGuestInfoState,
1107 machine_done);
1108 pc_fw_cfg_guest_info(&guest_info_state->info);
1109 acpi_setup(&guest_info_state->info);
1112 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1113 ram_addr_t above_4g_mem_size)
1115 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1116 PcGuestInfo *guest_info = &guest_info_state->info;
1117 int i, j;
1119 guest_info->ram_size_below_4g = below_4g_mem_size;
1120 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1121 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1122 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1123 guest_info->numa_nodes = nb_numa_nodes;
1124 guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
1125 sizeof *guest_info->node_mem);
1126 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1127 sizeof *guest_info->node_cpu);
1129 for (i = 0; i < max_cpus; i++) {
1130 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1131 assert(apic_id < guest_info->apic_id_limit);
1132 for (j = 0; j < nb_numa_nodes; j++) {
1133 if (test_bit(i, node_cpumask[j])) {
1134 guest_info->node_cpu[apic_id] = j;
1135 break;
1140 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1141 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1142 return guest_info;
1145 /* setup pci memory address space mapping into system address space */
1146 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1147 MemoryRegion *pci_address_space)
1149 /* Set to lower priority than RAM */
1150 memory_region_add_subregion_overlap(system_memory, 0x0,
1151 pci_address_space, -1);
1154 void pc_acpi_init(const char *default_dsdt)
1156 char *filename;
1158 if (acpi_tables != NULL) {
1159 /* manually set via -acpitable, leave it alone */
1160 return;
1163 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1164 if (filename == NULL) {
1165 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1166 } else {
1167 char *arg;
1168 QemuOpts *opts;
1169 Error *err = NULL;
1171 arg = g_strdup_printf("file=%s", filename);
1173 /* creates a deep copy of "arg" */
1174 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1175 g_assert(opts != NULL);
1177 acpi_table_add_builtin(opts, &err);
1178 if (err) {
1179 error_report("WARNING: failed to load %s: %s", filename,
1180 error_get_pretty(err));
1181 error_free(err);
1183 g_free(arg);
1184 g_free(filename);
1188 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1189 const char *kernel_filename,
1190 const char *kernel_cmdline,
1191 const char *initrd_filename,
1192 ram_addr_t below_4g_mem_size,
1193 ram_addr_t above_4g_mem_size,
1194 MemoryRegion *rom_memory,
1195 MemoryRegion **ram_memory,
1196 PcGuestInfo *guest_info)
1198 int linux_boot, i;
1199 MemoryRegion *ram, *option_rom_mr;
1200 MemoryRegion *ram_below_4g, *ram_above_4g;
1201 FWCfgState *fw_cfg;
1202 ram_addr_t ram_size = below_4g_mem_size + above_4g_mem_size;
1203 MachineState *machine = MACHINE(qdev_get_machine());
1204 PCMachineState *pcms = PC_MACHINE(machine);
1206 linux_boot = (kernel_filename != NULL);
1208 /* Allocate RAM. We allocate it as a single memory region and use
1209 * aliases to address portions of it, mostly for backwards compatibility
1210 * with older qemus that used qemu_ram_alloc().
1212 ram = g_malloc(sizeof(*ram));
1213 memory_region_init_ram(ram, NULL, "pc.ram", ram_size);
1214 vmstate_register_ram_global(ram);
1215 *ram_memory = ram;
1216 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1217 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1218 0, below_4g_mem_size);
1219 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1220 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1221 if (above_4g_mem_size > 0) {
1222 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1223 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1224 below_4g_mem_size, above_4g_mem_size);
1225 memory_region_add_subregion(system_memory, 0x100000000ULL,
1226 ram_above_4g);
1227 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1230 if (!guest_info->has_reserved_memory &&
1231 (machine->ram_slots ||
1232 (machine->maxram_size > ram_size))) {
1233 MachineClass *mc = MACHINE_GET_CLASS(machine);
1235 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1236 mc->name);
1237 exit(EXIT_FAILURE);
1240 /* initialize hotplug memory address space */
1241 if (guest_info->has_reserved_memory &&
1242 (ram_size < machine->maxram_size)) {
1243 ram_addr_t hotplug_mem_size =
1244 machine->maxram_size - ram_size;
1246 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1247 error_report("unsupported amount of memory slots: %"PRIu64,
1248 machine->ram_slots);
1249 exit(EXIT_FAILURE);
1252 pcms->hotplug_memory_base =
1253 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1255 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1256 hotplug_mem_size) {
1257 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1258 machine->maxram_size);
1259 exit(EXIT_FAILURE);
1262 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1263 "hotplug-memory", hotplug_mem_size);
1264 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1265 &pcms->hotplug_memory);
1268 /* Initialize PC system firmware */
1269 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1271 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1272 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1273 vmstate_register_ram_global(option_rom_mr);
1274 memory_region_add_subregion_overlap(rom_memory,
1275 PC_ROM_MIN_VGA,
1276 option_rom_mr,
1279 fw_cfg = bochs_bios_init();
1280 rom_set_fw(fw_cfg);
1282 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1283 uint64_t *val = g_malloc(sizeof(*val));
1284 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1285 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1288 if (linux_boot) {
1289 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1292 for (i = 0; i < nb_option_roms; i++) {
1293 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1295 guest_info->fw_cfg = fw_cfg;
1296 return fw_cfg;
1299 qemu_irq *pc_allocate_cpu_irq(void)
1301 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1304 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1306 DeviceState *dev = NULL;
1308 if (pci_bus) {
1309 PCIDevice *pcidev = pci_vga_init(pci_bus);
1310 dev = pcidev ? &pcidev->qdev : NULL;
1311 } else if (isa_bus) {
1312 ISADevice *isadev = isa_vga_init(isa_bus);
1313 dev = isadev ? DEVICE(isadev) : NULL;
1315 return dev;
1318 static void cpu_request_exit(void *opaque, int irq, int level)
1320 CPUState *cpu = current_cpu;
1322 if (cpu && level) {
1323 cpu_exit(cpu);
1327 static const MemoryRegionOps ioport80_io_ops = {
1328 .write = ioport80_write,
1329 .read = ioport80_read,
1330 .endianness = DEVICE_NATIVE_ENDIAN,
1331 .impl = {
1332 .min_access_size = 1,
1333 .max_access_size = 1,
1337 static const MemoryRegionOps ioportF0_io_ops = {
1338 .write = ioportF0_write,
1339 .read = ioportF0_read,
1340 .endianness = DEVICE_NATIVE_ENDIAN,
1341 .impl = {
1342 .min_access_size = 1,
1343 .max_access_size = 1,
1347 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1348 ISADevice **rtc_state,
1349 ISADevice **floppy,
1350 bool no_vmport,
1351 uint32 hpet_irqs)
1353 int i;
1354 DriveInfo *fd[MAX_FD];
1355 DeviceState *hpet = NULL;
1356 int pit_isa_irq = 0;
1357 qemu_irq pit_alt_irq = NULL;
1358 qemu_irq rtc_irq = NULL;
1359 qemu_irq *a20_line;
1360 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1361 qemu_irq *cpu_exit_irq;
1362 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1363 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1365 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1366 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1368 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1369 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1372 * Check if an HPET shall be created.
1374 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1375 * when the HPET wants to take over. Thus we have to disable the latter.
1377 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1378 /* In order to set property, here not using sysbus_try_create_simple */
1379 hpet = qdev_try_create(NULL, TYPE_HPET);
1380 if (hpet) {
1381 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1382 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1383 * IRQ8 and IRQ2.
1385 uint8_t compat = object_property_get_int(OBJECT(hpet),
1386 HPET_INTCAP, NULL);
1387 if (!compat) {
1388 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1390 qdev_init_nofail(hpet);
1391 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1393 for (i = 0; i < GSI_NUM_PINS; i++) {
1394 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1396 pit_isa_irq = -1;
1397 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1398 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1401 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1403 qemu_register_boot_set(pc_boot_set, *rtc_state);
1405 if (!xen_enabled()) {
1406 if (kvm_irqchip_in_kernel()) {
1407 pit = kvm_pit_init(isa_bus, 0x40);
1408 } else {
1409 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1411 if (hpet) {
1412 /* connect PIT to output control line of the HPET */
1413 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1415 pcspk_init(isa_bus, pit);
1418 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1419 if (serial_hds[i]) {
1420 serial_isa_init(isa_bus, i, serial_hds[i]);
1424 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1425 if (parallel_hds[i]) {
1426 parallel_init(isa_bus, i, parallel_hds[i]);
1430 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1431 i8042 = isa_create_simple(isa_bus, "i8042");
1432 i8042_setup_a20_line(i8042, &a20_line[0]);
1433 if (!no_vmport) {
1434 vmport_init(isa_bus);
1435 vmmouse = isa_try_create(isa_bus, "vmmouse");
1436 } else {
1437 vmmouse = NULL;
1439 if (vmmouse) {
1440 DeviceState *dev = DEVICE(vmmouse);
1441 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1442 qdev_init_nofail(dev);
1444 port92 = isa_create_simple(isa_bus, "port92");
1445 port92_init(port92, &a20_line[1]);
1447 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1448 DMA_init(0, cpu_exit_irq);
1450 for(i = 0; i < MAX_FD; i++) {
1451 fd[i] = drive_get(IF_FLOPPY, 0, i);
1453 *floppy = fdctrl_init_isa(isa_bus, fd);
1456 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1458 int i;
1460 for (i = 0; i < nb_nics; i++) {
1461 NICInfo *nd = &nd_table[i];
1463 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1464 pc_init_ne2k_isa(isa_bus, nd);
1465 } else {
1466 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1471 void pc_pci_device_init(PCIBus *pci_bus)
1473 int max_bus;
1474 int bus;
1476 max_bus = drive_get_max_bus(IF_SCSI);
1477 for (bus = 0; bus <= max_bus; bus++) {
1478 pci_create_simple(pci_bus, -1, "lsi53c895a");
1482 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1484 DeviceState *dev;
1485 SysBusDevice *d;
1486 unsigned int i;
1488 if (kvm_irqchip_in_kernel()) {
1489 dev = qdev_create(NULL, "kvm-ioapic");
1490 } else {
1491 dev = qdev_create(NULL, "ioapic");
1493 if (parent_name) {
1494 object_property_add_child(object_resolve_path(parent_name, NULL),
1495 "ioapic", OBJECT(dev), NULL);
1497 qdev_init_nofail(dev);
1498 d = SYS_BUS_DEVICE(dev);
1499 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1501 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1502 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1506 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1508 MachineClass *mc = MACHINE_CLASS(oc);
1509 QEMUMachine *qm = data;
1511 mc->name = qm->name;
1512 mc->alias = qm->alias;
1513 mc->desc = qm->desc;
1514 mc->init = qm->init;
1515 mc->reset = qm->reset;
1516 mc->hot_add_cpu = qm->hot_add_cpu;
1517 mc->kvm_type = qm->kvm_type;
1518 mc->block_default_type = qm->block_default_type;
1519 mc->max_cpus = qm->max_cpus;
1520 mc->no_serial = qm->no_serial;
1521 mc->no_parallel = qm->no_parallel;
1522 mc->use_virtcon = qm->use_virtcon;
1523 mc->use_sclp = qm->use_sclp;
1524 mc->no_floppy = qm->no_floppy;
1525 mc->no_cdrom = qm->no_cdrom;
1526 mc->no_sdcard = qm->no_sdcard;
1527 mc->is_default = qm->is_default;
1528 mc->default_machine_opts = qm->default_machine_opts;
1529 mc->default_boot_order = qm->default_boot_order;
1530 mc->compat_props = qm->compat_props;
1531 mc->hw_version = qm->hw_version;
1534 void qemu_register_pc_machine(QEMUMachine *m)
1536 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1537 TypeInfo ti = {
1538 .name = name,
1539 .parent = TYPE_PC_MACHINE,
1540 .class_init = pc_generic_machine_class_init,
1541 .class_data = (void *)m,
1544 type_register(&ti);
1545 g_free(name);
1548 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1549 DeviceState *dev, Error **errp)
1551 int slot;
1552 HotplugHandlerClass *hhc;
1553 Error *local_err = NULL;
1554 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1555 MachineState *machine = MACHINE(hotplug_dev);
1556 PCDIMMDevice *dimm = PC_DIMM(dev);
1557 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1558 MemoryRegion *mr = ddc->get_memory_region(dimm);
1559 uint64_t addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
1560 &local_err);
1561 if (local_err) {
1562 goto out;
1565 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1566 memory_region_size(&pcms->hotplug_memory),
1567 !addr ? NULL : &addr,
1568 memory_region_size(mr), &local_err);
1569 if (local_err) {
1570 goto out;
1573 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1574 if (local_err) {
1575 goto out;
1577 trace_mhp_pc_dimm_assigned_address(addr);
1579 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1580 if (local_err) {
1581 goto out;
1584 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1585 machine->ram_slots, &local_err);
1586 if (local_err) {
1587 goto out;
1589 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1590 if (local_err) {
1591 goto out;
1593 trace_mhp_pc_dimm_assigned_slot(slot);
1595 if (!pcms->acpi_dev) {
1596 error_setg(&local_err,
1597 "memory hotplug is not enabled: missing acpi device");
1598 goto out;
1601 memory_region_add_subregion(&pcms->hotplug_memory,
1602 addr - pcms->hotplug_memory_base, mr);
1603 vmstate_register_ram(mr, dev);
1605 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1606 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1607 out:
1608 error_propagate(errp, local_err);
1611 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1612 DeviceState *dev, Error **errp)
1614 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1615 pc_dimm_plug(hotplug_dev, dev, errp);
1619 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1620 DeviceState *dev)
1622 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1624 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1625 return HOTPLUG_HANDLER(machine);
1628 return pcmc->get_hotplug_handler ?
1629 pcmc->get_hotplug_handler(machine, dev) : NULL;
1632 static void pc_machine_class_init(ObjectClass *oc, void *data)
1634 MachineClass *mc = MACHINE_CLASS(oc);
1635 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1636 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1638 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1639 mc->get_hotplug_handler = pc_get_hotpug_handler;
1640 hc->plug = pc_machine_device_plug_cb;
1643 static const TypeInfo pc_machine_info = {
1644 .name = TYPE_PC_MACHINE,
1645 .parent = TYPE_MACHINE,
1646 .abstract = true,
1647 .instance_size = sizeof(PCMachineState),
1648 .class_size = sizeof(PCMachineClass),
1649 .class_init = pc_machine_class_init,
1650 .interfaces = (InterfaceInfo[]) {
1651 { TYPE_HOTPLUG_HANDLER },
1656 static void pc_machine_register_types(void)
1658 type_register_static(&pc_machine_info);
1661 type_init(pc_machine_register_types)