dwc-hsotg (dwc2) USB host controller register definitions
[qemu/ar7.git] / exec.c
blob3d4c94a9dc3640c653eaf07954263941556432fb
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include "qemu.h"
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
69 #include "qemu/pmem.h"
71 #include "migration/vmstate.h"
73 #include "qemu/range.h"
74 #ifndef _WIN32
75 #include "qemu/mmap-alloc.h"
76 #endif
78 #include "monitor/monitor.h"
80 //#define DEBUG_SUBPAGE
82 #if !defined(CONFIG_USER_ONLY)
83 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
86 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
88 static MemoryRegion *system_memory;
89 static MemoryRegion *system_io;
91 AddressSpace address_space_io;
92 AddressSpace address_space_memory;
94 static MemoryRegion io_mem_unassigned;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
103 uintptr_t qemu_host_page_size;
104 intptr_t qemu_host_page_mask;
106 #if !defined(CONFIG_USER_ONLY)
107 /* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110 int use_icount;
112 typedef struct PhysPageEntry PhysPageEntry;
114 struct PhysPageEntry {
115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
116 uint32_t skip : 6;
117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
118 uint32_t ptr : 26;
121 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
123 /* Size of the L2 (and L3, etc) page tables. */
124 #define ADDR_SPACE_BITS 64
126 #define P_L2_BITS 9
127 #define P_L2_SIZE (1 << P_L2_BITS)
129 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
131 typedef PhysPageEntry Node[P_L2_SIZE];
133 typedef struct PhysPageMap {
134 struct rcu_head rcu;
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142 } PhysPageMap;
144 struct AddressSpaceDispatch {
145 MemoryRegionSection *mru_section;
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
149 PhysPageEntry phys_map;
150 PhysPageMap map;
153 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154 typedef struct subpage_t {
155 MemoryRegion iomem;
156 FlatView *fv;
157 hwaddr base;
158 uint16_t sub_section[];
159 } subpage_t;
161 #define PHYS_SECTION_UNASSIGNED 0
163 static void io_mem_init(void);
164 static void memory_map_init(void);
165 static void tcg_log_global_after_sync(MemoryListener *listener);
166 static void tcg_commit(MemoryListener *listener);
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
175 struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
182 struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
188 #endif
190 #if !defined(CONFIG_USER_ONLY)
192 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
194 static unsigned alloc_hint = 16;
195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
198 alloc_hint = map->nodes_nb_alloc;
202 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
204 unsigned i;
205 uint32_t ret;
206 PhysPageEntry e;
207 PhysPageEntry *p;
209 ret = map->nodes_nb++;
210 p = map->nodes[ret];
211 assert(ret != PHYS_MAP_NODE_NIL);
212 assert(ret != map->nodes_nb_alloc);
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
216 for (i = 0; i < P_L2_SIZE; ++i) {
217 memcpy(&p[i], &e, sizeof(e));
219 return ret;
222 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
223 hwaddr *index, uint64_t *nb, uint16_t leaf,
224 int level)
226 PhysPageEntry *p;
227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
230 lp->ptr = phys_map_node_alloc(map, level == 0);
232 p = map->nodes[lp->ptr];
233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
235 while (*nb && lp < &p[P_L2_SIZE]) {
236 if ((*index & (step - 1)) == 0 && *nb >= step) {
237 lp->skip = 0;
238 lp->ptr = leaf;
239 *index += step;
240 *nb -= step;
241 } else {
242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
244 ++lp;
248 static void phys_page_set(AddressSpaceDispatch *d,
249 hwaddr index, uint64_t nb,
250 uint16_t leaf)
252 /* Wildly overreserve - it doesn't matter much. */
253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
258 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
261 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
281 phys_page_compact(&p[i], nodes);
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
290 assert(valid_ptr < P_L2_SIZE);
292 /* Don't compress if it won't fit in the # of bits we have. */
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
295 return;
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
312 void address_space_dispatch_compact(AddressSpaceDispatch *d)
314 if (d->phys_map.skip) {
315 phys_page_compact(&d->phys_map, d->map.nodes);
319 static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
325 return int128_gethi(section->size) ||
326 range_covers_byte(section->offset_within_address_space,
327 int128_getlo(section->size), addr);
330 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
335 hwaddr index = addr >> TARGET_PAGE_BITS;
336 int i;
338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
340 return &sections[PHYS_SECTION_UNASSIGNED];
342 p = nodes[lp.ptr];
343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
346 if (section_covers_addr(&sections[lp.ptr], addr)) {
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
353 /* Called from RCU critical section */
354 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
355 hwaddr addr,
356 bool resolve_subpage)
358 MemoryRegionSection *section = atomic_read(&d->mru_section);
359 subpage_t *subpage;
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
363 section = phys_page_find(d, addr);
364 atomic_set(&d->mru_section, section);
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
370 return section;
373 /* Called from RCU critical section */
374 static MemoryRegionSection *
375 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
376 hwaddr *plen, bool resolve_subpage)
378 MemoryRegionSection *section;
379 MemoryRegion *mr;
380 Int128 diff;
382 section = address_space_lookup_region(d, addr, resolve_subpage);
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
389 mr = section->mr;
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
402 if (memory_region_is_ram(mr)) {
403 diff = int128_sub(section->size, int128_make64(addr));
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
406 return section;
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
426 * @attrs: transaction attributes
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
431 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
476 return *section;
478 unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
483 * flatview_do_translate - translate an address in FlatView
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
497 * @target_as: the address space targeted by the IOMMU
498 * @attrs: memory transaction attributes
500 * This function is called from RCU critical section
502 static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
507 bool is_write,
508 bool is_mmio,
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
512 MemoryRegionSection *section;
513 IOMMUMemoryRegion *iommu_mr;
514 hwaddr plen = (hwaddr)(-1);
516 if (!plen_out) {
517 plen_out = &plen;
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
529 target_as, attrs);
531 if (page_mask_out) {
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
536 return *section;
539 /* Called from RCU critical section */
540 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
541 bool is_write, MemTxAttrs attrs)
543 MemoryRegionSection section;
544 hwaddr xlat, page_mask;
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
563 return (IOMMUTLBEntry) {
564 .target_as = as,
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
572 iotlb_fail:
573 return (IOMMUTLBEntry) {0};
576 /* Called from RCU critical section */
577 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
581 MemoryRegion *mr;
582 MemoryRegionSection section;
583 AddressSpace *as = NULL;
585 /* This can be MMIO, so setup MMIO bit. */
586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
587 is_write, true, &as, attrs);
588 mr = section.mr;
590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
592 *plen = MIN(page, *plen);
595 return mr;
598 typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604 } TCGIOMMUNotifier;
606 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
610 if (!notifier->active) {
611 return;
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
622 static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
632 Error *err = NULL;
633 int i, ret;
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
660 HWADDR_MAX,
661 iommu_idx);
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
670 if (!notifier->active) {
671 notifier->active = true;
675 static void tcg_iommu_free_notifier_list(CPUState *cpu)
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
684 g_free(notifier);
686 g_array_free(cpu->iommu_notifiers, true);
689 /* Called from RCU critical section */
690 MemoryRegionSection *
691 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
695 MemoryRegionSection *section;
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
731 if (!*prot) {
732 goto translate_fail;
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
738 assert(!memory_region_is_iommu(section->mr));
739 *xlat = addr;
740 return section;
742 translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
745 #endif
747 #if !defined(CONFIG_USER_ONLY)
749 static int cpu_common_post_load(void *opaque, int version_id)
751 CPUState *cpu = opaque;
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
755 cpu->interrupt_request &= ~0x01;
756 tlb_flush(cpu);
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
763 tb_flush(cpu);
765 return 0;
768 static int cpu_common_pre_load(void *opaque)
770 CPUState *cpu = opaque;
772 cpu->exception_index = -1;
774 return 0;
777 static bool cpu_common_exception_index_needed(void *opaque)
779 CPUState *cpu = opaque;
781 return tcg_enabled() && cpu->exception_index != -1;
784 static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
788 .needed = cpu_common_exception_index_needed,
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
795 static bool cpu_common_crash_occurred_needed(void *opaque)
797 CPUState *cpu = opaque;
799 return cpu->crash_occurred;
802 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
813 const VMStateDescription vmstate_cpu_common = {
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
817 .pre_load = cpu_common_pre_load,
818 .post_load = cpu_common_post_load,
819 .fields = (VMStateField[]) {
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
822 VMSTATE_END_OF_LIST()
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
826 &vmstate_cpu_common_crash_occurred,
827 NULL
831 #endif
833 CPUState *qemu_get_cpu(int index)
835 CPUState *cpu;
837 CPU_FOREACH(cpu) {
838 if (cpu->cpu_index == index) {
839 return cpu;
843 return NULL;
846 #if !defined(CONFIG_USER_ONLY)
847 void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
850 CPUAddressSpace *newas;
851 AddressSpace *as = g_new0(AddressSpace, 1);
852 char *as_name;
854 assert(mr);
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
877 if (tcg_enabled()) {
878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
884 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
889 #endif
891 void cpu_exec_unrealizefn(CPUState *cpu)
893 CPUClass *cc = CPU_GET_CLASS(cpu);
895 cpu_list_remove(cpu);
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
903 #ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905 #endif
908 Property cpu_common_props[] = {
909 #ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918 #endif
919 DEFINE_PROP_END_OF_LIST(),
922 void cpu_exec_initfn(CPUState *cpu)
924 cpu->as = NULL;
925 cpu->num_ases = 0;
927 #ifndef CONFIG_USER_ONLY
928 cpu->thread_id = qemu_get_thread_id();
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
931 #endif
934 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
936 CPUClass *cc = CPU_GET_CLASS(cpu);
937 static bool tcg_target_initialized;
939 cpu_list_add(cpu);
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
943 cc->tcg_initialize();
945 tlb_init(cpu);
947 qemu_plugin_vcpu_init_hook(cpu);
949 #ifndef CONFIG_USER_ONLY
950 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
951 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
953 if (cc->vmsd != NULL) {
954 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
957 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
958 #endif
961 const char *parse_cpu_option(const char *cpu_option)
963 ObjectClass *oc;
964 CPUClass *cc;
965 gchar **model_pieces;
966 const char *cpu_type;
968 model_pieces = g_strsplit(cpu_option, ",", 2);
969 if (!model_pieces[0]) {
970 error_report("-cpu option cannot be empty");
971 exit(1);
974 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
975 if (oc == NULL) {
976 error_report("unable to find CPU model '%s'", model_pieces[0]);
977 g_strfreev(model_pieces);
978 exit(EXIT_FAILURE);
981 cpu_type = object_class_get_name(oc);
982 cc = CPU_CLASS(oc);
983 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
984 g_strfreev(model_pieces);
985 return cpu_type;
988 #if defined(CONFIG_USER_ONLY)
989 void tb_invalidate_phys_addr(target_ulong addr)
991 mmap_lock();
992 tb_invalidate_phys_page_range(addr, addr + 1);
993 mmap_unlock();
996 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
998 tb_invalidate_phys_addr(pc);
1000 #else
1001 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1003 ram_addr_t ram_addr;
1004 MemoryRegion *mr;
1005 hwaddr l = 1;
1007 if (!tcg_enabled()) {
1008 return;
1011 RCU_READ_LOCK_GUARD();
1012 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1013 if (!(memory_region_is_ram(mr)
1014 || memory_region_is_romd(mr))) {
1015 return;
1017 ram_addr = memory_region_get_ram_addr(mr) + addr;
1018 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1021 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1024 * There may not be a virtual to physical translation for the pc
1025 * right now, but there may exist cached TB for this pc.
1026 * Flush the whole TB cache to force re-translation of such TBs.
1027 * This is heavyweight, but we're debugging anyway.
1029 tb_flush(cpu);
1031 #endif
1033 #ifndef CONFIG_USER_ONLY
1034 /* Add a watchpoint. */
1035 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1036 int flags, CPUWatchpoint **watchpoint)
1038 CPUWatchpoint *wp;
1040 /* forbid ranges which are empty or run off the end of the address space */
1041 if (len == 0 || (addr + len - 1) < addr) {
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1044 return -EINVAL;
1046 wp = g_malloc(sizeof(*wp));
1048 wp->vaddr = addr;
1049 wp->len = len;
1050 wp->flags = flags;
1052 /* keep all GDB-injected watchpoints in front */
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055 } else {
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1059 tlb_flush_page(cpu, addr);
1061 if (watchpoint)
1062 *watchpoint = wp;
1063 return 0;
1066 /* Remove a specific watchpoint. */
1067 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags)
1070 CPUWatchpoint *wp;
1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1073 if (addr == wp->vaddr && len == wp->len
1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1075 cpu_watchpoint_remove_by_ref(cpu, wp);
1076 return 0;
1079 return -ENOENT;
1082 /* Remove a specific watchpoint by reference. */
1083 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1087 tlb_flush_page(cpu, watchpoint->vaddr);
1089 g_free(watchpoint);
1092 /* Remove all matching watchpoints. */
1093 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1095 CPUWatchpoint *wp, *next;
1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1104 /* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1109 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1120 return !(addr > wpend || wp->vaddr > addrend);
1123 /* Return flags for watchpoints that match addr + prot. */
1124 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1126 CPUWatchpoint *wp;
1127 int ret = 0;
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130 if (watchpoint_address_matches(wp, addr, len)) {
1131 ret |= wp->flags;
1134 return ret;
1136 #endif /* !CONFIG_USER_ONLY */
1138 /* Add a breakpoint. */
1139 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1140 CPUBreakpoint **breakpoint)
1142 CPUBreakpoint *bp;
1144 bp = g_malloc(sizeof(*bp));
1146 bp->pc = pc;
1147 bp->flags = flags;
1149 /* keep all GDB-injected breakpoints in front */
1150 if (flags & BP_GDB) {
1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1152 } else {
1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1156 breakpoint_invalidate(cpu, pc);
1158 if (breakpoint) {
1159 *breakpoint = bp;
1161 return 0;
1164 /* Remove a specific breakpoint. */
1165 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1167 CPUBreakpoint *bp;
1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1170 if (bp->pc == pc && bp->flags == flags) {
1171 cpu_breakpoint_remove_by_ref(cpu, bp);
1172 return 0;
1175 return -ENOENT;
1178 /* Remove a specific breakpoint by reference. */
1179 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1183 breakpoint_invalidate(cpu, breakpoint->pc);
1185 g_free(breakpoint);
1188 /* Remove all matching breakpoints. */
1189 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1191 CPUBreakpoint *bp, *next;
1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1200 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
1202 void cpu_single_step(CPUState *cpu, int enabled)
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
1207 kvm_update_guest_debug(cpu, 0);
1208 } else {
1209 /* must flush all the translated code to avoid inconsistencies */
1210 /* XXX: only flush what is necessary */
1211 tb_flush(cpu);
1216 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1218 va_list ap;
1219 va_list ap2;
1221 va_start(ap, fmt);
1222 va_copy(ap2, ap);
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1227 if (qemu_log_separate()) {
1228 FILE *logfile = qemu_log_lock();
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1231 qemu_log("\n");
1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1233 qemu_log_flush();
1234 qemu_log_unlock(logfile);
1235 qemu_log_close();
1237 va_end(ap2);
1238 va_end(ap);
1239 replay_finish();
1240 #if defined(CONFIG_USER_ONLY)
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
1245 act.sa_flags = 0;
1246 sigaction(SIGABRT, &act, NULL);
1248 #endif
1249 abort();
1252 #if !defined(CONFIG_USER_ONLY)
1253 /* Called from RCU critical section */
1254 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1256 RAMBlock *block;
1258 block = atomic_rcu_read(&ram_list.mru_block);
1259 if (block && addr - block->offset < block->max_length) {
1260 return block;
1262 RAMBLOCK_FOREACH(block) {
1263 if (addr - block->offset < block->max_length) {
1264 goto found;
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269 abort();
1271 found:
1272 /* It is safe to write mru_block outside the iothread lock. This
1273 * is what happens:
1275 * mru_block = xxx
1276 * rcu_read_unlock()
1277 * xxx removed from list
1278 * rcu_read_lock()
1279 * read mru_block
1280 * mru_block = NULL;
1281 * call_rcu(reclaim_ramblock, xxx);
1282 * rcu_read_unlock()
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1288 ram_list.mru_block = block;
1289 return block;
1292 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1294 CPUState *cpu;
1295 ram_addr_t start1;
1296 RAMBlock *block;
1297 ram_addr_t end;
1299 assert(tcg_enabled());
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
1303 RCU_READ_LOCK_GUARD();
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1307 CPU_FOREACH(cpu) {
1308 tlb_reset_dirty(cpu, start1, length);
1312 /* Note: start and end must be within the same ram block. */
1313 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314 ram_addr_t length,
1315 unsigned client)
1317 DirtyMemoryBlocks *blocks;
1318 unsigned long end, page, start_page;
1319 bool dirty = false;
1320 RAMBlock *ramblock;
1321 uint64_t mr_offset, mr_size;
1323 if (length == 0) {
1324 return false;
1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1328 start_page = start >> TARGET_PAGE_BITS;
1329 page = start_page;
1331 WITH_RCU_READ_LOCK_GUARD() {
1332 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1333 ramblock = qemu_get_ram_block(start);
1334 /* Range sanity check on the ramblock */
1335 assert(start >= ramblock->offset &&
1336 start + length <= ramblock->offset + ramblock->used_length);
1338 while (page < end) {
1339 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1341 unsigned long num = MIN(end - page,
1342 DIRTY_MEMORY_BLOCK_SIZE - offset);
1344 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1345 offset, num);
1346 page += num;
1349 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1350 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1351 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1354 if (dirty && tcg_enabled()) {
1355 tlb_reset_dirty_range_all(start, length);
1358 return dirty;
1361 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1362 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1364 DirtyMemoryBlocks *blocks;
1365 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1366 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1367 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1368 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1369 DirtyBitmapSnapshot *snap;
1370 unsigned long page, end, dest;
1372 snap = g_malloc0(sizeof(*snap) +
1373 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1374 snap->start = first;
1375 snap->end = last;
1377 page = first >> TARGET_PAGE_BITS;
1378 end = last >> TARGET_PAGE_BITS;
1379 dest = 0;
1381 WITH_RCU_READ_LOCK_GUARD() {
1382 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1384 while (page < end) {
1385 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1387 unsigned long num = MIN(end - page,
1388 DIRTY_MEMORY_BLOCK_SIZE - offset);
1390 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1391 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1392 offset >>= BITS_PER_LEVEL;
1394 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1395 blocks->blocks[idx] + offset,
1396 num);
1397 page += num;
1398 dest += num >> BITS_PER_LEVEL;
1402 if (tcg_enabled()) {
1403 tlb_reset_dirty_range_all(start, length);
1406 memory_region_clear_dirty_bitmap(mr, offset, length);
1408 return snap;
1411 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1412 ram_addr_t start,
1413 ram_addr_t length)
1415 unsigned long page, end;
1417 assert(start >= snap->start);
1418 assert(start + length <= snap->end);
1420 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1421 page = (start - snap->start) >> TARGET_PAGE_BITS;
1423 while (page < end) {
1424 if (test_bit(page, snap->dirty)) {
1425 return true;
1427 page++;
1429 return false;
1432 /* Called from RCU critical section */
1433 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1434 MemoryRegionSection *section)
1436 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1437 return section - d->map.sections;
1439 #endif /* defined(CONFIG_USER_ONLY) */
1441 #if !defined(CONFIG_USER_ONLY)
1443 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1444 uint16_t section);
1445 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1447 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1448 qemu_anon_ram_alloc;
1451 * Set a custom physical guest memory alloator.
1452 * Accelerators with unusual needs may need this. Hopefully, we can
1453 * get rid of it eventually.
1455 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1457 phys_mem_alloc = alloc;
1460 static uint16_t phys_section_add(PhysPageMap *map,
1461 MemoryRegionSection *section)
1463 /* The physical section number is ORed with a page-aligned
1464 * pointer to produce the iotlb entries. Thus it should
1465 * never overflow into the page-aligned value.
1467 assert(map->sections_nb < TARGET_PAGE_SIZE);
1469 if (map->sections_nb == map->sections_nb_alloc) {
1470 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1471 map->sections = g_renew(MemoryRegionSection, map->sections,
1472 map->sections_nb_alloc);
1474 map->sections[map->sections_nb] = *section;
1475 memory_region_ref(section->mr);
1476 return map->sections_nb++;
1479 static void phys_section_destroy(MemoryRegion *mr)
1481 bool have_sub_page = mr->subpage;
1483 memory_region_unref(mr);
1485 if (have_sub_page) {
1486 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1487 object_unref(OBJECT(&subpage->iomem));
1488 g_free(subpage);
1492 static void phys_sections_free(PhysPageMap *map)
1494 while (map->sections_nb > 0) {
1495 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1496 phys_section_destroy(section->mr);
1498 g_free(map->sections);
1499 g_free(map->nodes);
1502 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1504 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1505 subpage_t *subpage;
1506 hwaddr base = section->offset_within_address_space
1507 & TARGET_PAGE_MASK;
1508 MemoryRegionSection *existing = phys_page_find(d, base);
1509 MemoryRegionSection subsection = {
1510 .offset_within_address_space = base,
1511 .size = int128_make64(TARGET_PAGE_SIZE),
1513 hwaddr start, end;
1515 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1517 if (!(existing->mr->subpage)) {
1518 subpage = subpage_init(fv, base);
1519 subsection.fv = fv;
1520 subsection.mr = &subpage->iomem;
1521 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1522 phys_section_add(&d->map, &subsection));
1523 } else {
1524 subpage = container_of(existing->mr, subpage_t, iomem);
1526 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1527 end = start + int128_get64(section->size) - 1;
1528 subpage_register(subpage, start, end,
1529 phys_section_add(&d->map, section));
1533 static void register_multipage(FlatView *fv,
1534 MemoryRegionSection *section)
1536 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1537 hwaddr start_addr = section->offset_within_address_space;
1538 uint16_t section_index = phys_section_add(&d->map, section);
1539 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1540 TARGET_PAGE_BITS));
1542 assert(num_pages);
1543 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1547 * The range in *section* may look like this:
1549 * |s|PPPPPPP|s|
1551 * where s stands for subpage and P for page.
1553 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1555 MemoryRegionSection remain = *section;
1556 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1558 /* register first subpage */
1559 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1560 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1561 - remain.offset_within_address_space;
1563 MemoryRegionSection now = remain;
1564 now.size = int128_min(int128_make64(left), now.size);
1565 register_subpage(fv, &now);
1566 if (int128_eq(remain.size, now.size)) {
1567 return;
1569 remain.size = int128_sub(remain.size, now.size);
1570 remain.offset_within_address_space += int128_get64(now.size);
1571 remain.offset_within_region += int128_get64(now.size);
1574 /* register whole pages */
1575 if (int128_ge(remain.size, page_size)) {
1576 MemoryRegionSection now = remain;
1577 now.size = int128_and(now.size, int128_neg(page_size));
1578 register_multipage(fv, &now);
1579 if (int128_eq(remain.size, now.size)) {
1580 return;
1582 remain.size = int128_sub(remain.size, now.size);
1583 remain.offset_within_address_space += int128_get64(now.size);
1584 remain.offset_within_region += int128_get64(now.size);
1587 /* register last subpage */
1588 register_subpage(fv, &remain);
1591 void qemu_flush_coalesced_mmio_buffer(void)
1593 if (kvm_enabled())
1594 kvm_flush_coalesced_mmio_buffer();
1597 void qemu_mutex_lock_ramlist(void)
1599 qemu_mutex_lock(&ram_list.mutex);
1602 void qemu_mutex_unlock_ramlist(void)
1604 qemu_mutex_unlock(&ram_list.mutex);
1607 void ram_block_dump(Monitor *mon)
1609 RAMBlock *block;
1610 char *psize;
1612 RCU_READ_LOCK_GUARD();
1613 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1614 "Block Name", "PSize", "Offset", "Used", "Total");
1615 RAMBLOCK_FOREACH(block) {
1616 psize = size_to_str(block->page_size);
1617 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1618 " 0x%016" PRIx64 "\n", block->idstr, psize,
1619 (uint64_t)block->offset,
1620 (uint64_t)block->used_length,
1621 (uint64_t)block->max_length);
1622 g_free(psize);
1626 #ifdef __linux__
1628 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1629 * may or may not name the same files / on the same filesystem now as
1630 * when we actually open and map them. Iterate over the file
1631 * descriptors instead, and use qemu_fd_getpagesize().
1633 static int find_min_backend_pagesize(Object *obj, void *opaque)
1635 long *hpsize_min = opaque;
1637 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1638 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1639 long hpsize = host_memory_backend_pagesize(backend);
1641 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1642 *hpsize_min = hpsize;
1646 return 0;
1649 static int find_max_backend_pagesize(Object *obj, void *opaque)
1651 long *hpsize_max = opaque;
1653 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1654 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1655 long hpsize = host_memory_backend_pagesize(backend);
1657 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1658 *hpsize_max = hpsize;
1662 return 0;
1666 * TODO: We assume right now that all mapped host memory backends are
1667 * used as RAM, however some might be used for different purposes.
1669 long qemu_minrampagesize(void)
1671 long hpsize = LONG_MAX;
1672 Object *memdev_root = object_resolve_path("/objects", NULL);
1674 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1675 return hpsize;
1678 long qemu_maxrampagesize(void)
1680 long pagesize = 0;
1681 Object *memdev_root = object_resolve_path("/objects", NULL);
1683 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1684 return pagesize;
1686 #else
1687 long qemu_minrampagesize(void)
1689 return qemu_real_host_page_size;
1691 long qemu_maxrampagesize(void)
1693 return qemu_real_host_page_size;
1695 #endif
1697 #ifdef CONFIG_POSIX
1698 static int64_t get_file_size(int fd)
1700 int64_t size;
1701 #if defined(__linux__)
1702 struct stat st;
1704 if (fstat(fd, &st) < 0) {
1705 return -errno;
1708 /* Special handling for devdax character devices */
1709 if (S_ISCHR(st.st_mode)) {
1710 g_autofree char *subsystem_path = NULL;
1711 g_autofree char *subsystem = NULL;
1713 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1714 major(st.st_rdev), minor(st.st_rdev));
1715 subsystem = g_file_read_link(subsystem_path, NULL);
1717 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1718 g_autofree char *size_path = NULL;
1719 g_autofree char *size_str = NULL;
1721 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1722 major(st.st_rdev), minor(st.st_rdev));
1724 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1725 return g_ascii_strtoll(size_str, NULL, 0);
1729 #endif /* defined(__linux__) */
1731 /* st.st_size may be zero for special files yet lseek(2) works */
1732 size = lseek(fd, 0, SEEK_END);
1733 if (size < 0) {
1734 return -errno;
1736 return size;
1739 static int file_ram_open(const char *path,
1740 const char *region_name,
1741 bool *created,
1742 Error **errp)
1744 char *filename;
1745 char *sanitized_name;
1746 char *c;
1747 int fd = -1;
1749 *created = false;
1750 for (;;) {
1751 fd = open(path, O_RDWR);
1752 if (fd >= 0) {
1753 /* @path names an existing file, use it */
1754 break;
1756 if (errno == ENOENT) {
1757 /* @path names a file that doesn't exist, create it */
1758 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1759 if (fd >= 0) {
1760 *created = true;
1761 break;
1763 } else if (errno == EISDIR) {
1764 /* @path names a directory, create a file there */
1765 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1766 sanitized_name = g_strdup(region_name);
1767 for (c = sanitized_name; *c != '\0'; c++) {
1768 if (*c == '/') {
1769 *c = '_';
1773 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1774 sanitized_name);
1775 g_free(sanitized_name);
1777 fd = mkstemp(filename);
1778 if (fd >= 0) {
1779 unlink(filename);
1780 g_free(filename);
1781 break;
1783 g_free(filename);
1785 if (errno != EEXIST && errno != EINTR) {
1786 error_setg_errno(errp, errno,
1787 "can't open backing store %s for guest RAM",
1788 path);
1789 return -1;
1792 * Try again on EINTR and EEXIST. The latter happens when
1793 * something else creates the file between our two open().
1797 return fd;
1800 static void *file_ram_alloc(RAMBlock *block,
1801 ram_addr_t memory,
1802 int fd,
1803 bool truncate,
1804 Error **errp)
1806 void *area;
1808 block->page_size = qemu_fd_getpagesize(fd);
1809 if (block->mr->align % block->page_size) {
1810 error_setg(errp, "alignment 0x%" PRIx64
1811 " must be multiples of page size 0x%zx",
1812 block->mr->align, block->page_size);
1813 return NULL;
1814 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1815 error_setg(errp, "alignment 0x%" PRIx64
1816 " must be a power of two", block->mr->align);
1817 return NULL;
1819 block->mr->align = MAX(block->page_size, block->mr->align);
1820 #if defined(__s390x__)
1821 if (kvm_enabled()) {
1822 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1824 #endif
1826 if (memory < block->page_size) {
1827 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1828 "or larger than page size 0x%zx",
1829 memory, block->page_size);
1830 return NULL;
1833 memory = ROUND_UP(memory, block->page_size);
1836 * ftruncate is not supported by hugetlbfs in older
1837 * hosts, so don't bother bailing out on errors.
1838 * If anything goes wrong with it under other filesystems,
1839 * mmap will fail.
1841 * Do not truncate the non-empty backend file to avoid corrupting
1842 * the existing data in the file. Disabling shrinking is not
1843 * enough. For example, the current vNVDIMM implementation stores
1844 * the guest NVDIMM labels at the end of the backend file. If the
1845 * backend file is later extended, QEMU will not be able to find
1846 * those labels. Therefore, extending the non-empty backend file
1847 * is disabled as well.
1849 if (truncate && ftruncate(fd, memory)) {
1850 perror("ftruncate");
1853 area = qemu_ram_mmap(fd, memory, block->mr->align,
1854 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1855 if (area == MAP_FAILED) {
1856 error_setg_errno(errp, errno,
1857 "unable to map backing store for guest RAM");
1858 return NULL;
1861 block->fd = fd;
1862 return area;
1864 #endif
1866 /* Allocate space within the ram_addr_t space that governs the
1867 * dirty bitmaps.
1868 * Called with the ramlist lock held.
1870 static ram_addr_t find_ram_offset(ram_addr_t size)
1872 RAMBlock *block, *next_block;
1873 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1875 assert(size != 0); /* it would hand out same offset multiple times */
1877 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1878 return 0;
1881 RAMBLOCK_FOREACH(block) {
1882 ram_addr_t candidate, next = RAM_ADDR_MAX;
1884 /* Align blocks to start on a 'long' in the bitmap
1885 * which makes the bitmap sync'ing take the fast path.
1887 candidate = block->offset + block->max_length;
1888 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1890 /* Search for the closest following block
1891 * and find the gap.
1893 RAMBLOCK_FOREACH(next_block) {
1894 if (next_block->offset >= candidate) {
1895 next = MIN(next, next_block->offset);
1899 /* If it fits remember our place and remember the size
1900 * of gap, but keep going so that we might find a smaller
1901 * gap to fill so avoiding fragmentation.
1903 if (next - candidate >= size && next - candidate < mingap) {
1904 offset = candidate;
1905 mingap = next - candidate;
1908 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1911 if (offset == RAM_ADDR_MAX) {
1912 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1913 (uint64_t)size);
1914 abort();
1917 trace_find_ram_offset(size, offset);
1919 return offset;
1922 static unsigned long last_ram_page(void)
1924 RAMBlock *block;
1925 ram_addr_t last = 0;
1927 RCU_READ_LOCK_GUARD();
1928 RAMBLOCK_FOREACH(block) {
1929 last = MAX(last, block->offset + block->max_length);
1931 return last >> TARGET_PAGE_BITS;
1934 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1936 int ret;
1938 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1939 if (!machine_dump_guest_core(current_machine)) {
1940 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1941 if (ret) {
1942 perror("qemu_madvise");
1943 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1944 "but dump_guest_core=off specified\n");
1949 const char *qemu_ram_get_idstr(RAMBlock *rb)
1951 return rb->idstr;
1954 void *qemu_ram_get_host_addr(RAMBlock *rb)
1956 return rb->host;
1959 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1961 return rb->offset;
1964 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1966 return rb->used_length;
1969 bool qemu_ram_is_shared(RAMBlock *rb)
1971 return rb->flags & RAM_SHARED;
1974 /* Note: Only set at the start of postcopy */
1975 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1977 return rb->flags & RAM_UF_ZEROPAGE;
1980 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1982 rb->flags |= RAM_UF_ZEROPAGE;
1985 bool qemu_ram_is_migratable(RAMBlock *rb)
1987 return rb->flags & RAM_MIGRATABLE;
1990 void qemu_ram_set_migratable(RAMBlock *rb)
1992 rb->flags |= RAM_MIGRATABLE;
1995 void qemu_ram_unset_migratable(RAMBlock *rb)
1997 rb->flags &= ~RAM_MIGRATABLE;
2000 /* Called with iothread lock held. */
2001 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2003 RAMBlock *block;
2005 assert(new_block);
2006 assert(!new_block->idstr[0]);
2008 if (dev) {
2009 char *id = qdev_get_dev_path(dev);
2010 if (id) {
2011 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2012 g_free(id);
2015 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2017 RCU_READ_LOCK_GUARD();
2018 RAMBLOCK_FOREACH(block) {
2019 if (block != new_block &&
2020 !strcmp(block->idstr, new_block->idstr)) {
2021 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2022 new_block->idstr);
2023 abort();
2028 /* Called with iothread lock held. */
2029 void qemu_ram_unset_idstr(RAMBlock *block)
2031 /* FIXME: arch_init.c assumes that this is not called throughout
2032 * migration. Ignore the problem since hot-unplug during migration
2033 * does not work anyway.
2035 if (block) {
2036 memset(block->idstr, 0, sizeof(block->idstr));
2040 size_t qemu_ram_pagesize(RAMBlock *rb)
2042 return rb->page_size;
2045 /* Returns the largest size of page in use */
2046 size_t qemu_ram_pagesize_largest(void)
2048 RAMBlock *block;
2049 size_t largest = 0;
2051 RAMBLOCK_FOREACH(block) {
2052 largest = MAX(largest, qemu_ram_pagesize(block));
2055 return largest;
2058 static int memory_try_enable_merging(void *addr, size_t len)
2060 if (!machine_mem_merge(current_machine)) {
2061 /* disabled by the user */
2062 return 0;
2065 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2068 /* Only legal before guest might have detected the memory size: e.g. on
2069 * incoming migration, or right after reset.
2071 * As memory core doesn't know how is memory accessed, it is up to
2072 * resize callback to update device state and/or add assertions to detect
2073 * misuse, if necessary.
2075 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2077 const ram_addr_t unaligned_size = newsize;
2079 assert(block);
2081 newsize = HOST_PAGE_ALIGN(newsize);
2083 if (block->used_length == newsize) {
2085 * We don't have to resize the ram block (which only knows aligned
2086 * sizes), however, we have to notify if the unaligned size changed.
2088 if (unaligned_size != memory_region_size(block->mr)) {
2089 memory_region_set_size(block->mr, unaligned_size);
2090 if (block->resized) {
2091 block->resized(block->idstr, unaligned_size, block->host);
2094 return 0;
2097 if (!(block->flags & RAM_RESIZEABLE)) {
2098 error_setg_errno(errp, EINVAL,
2099 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2100 " in != 0x" RAM_ADDR_FMT, block->idstr,
2101 newsize, block->used_length);
2102 return -EINVAL;
2105 if (block->max_length < newsize) {
2106 error_setg_errno(errp, EINVAL,
2107 "Length too large: %s: 0x" RAM_ADDR_FMT
2108 " > 0x" RAM_ADDR_FMT, block->idstr,
2109 newsize, block->max_length);
2110 return -EINVAL;
2113 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2114 block->used_length = newsize;
2115 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2116 DIRTY_CLIENTS_ALL);
2117 memory_region_set_size(block->mr, unaligned_size);
2118 if (block->resized) {
2119 block->resized(block->idstr, unaligned_size, block->host);
2121 return 0;
2125 * Trigger sync on the given ram block for range [start, start + length]
2126 * with the backing store if one is available.
2127 * Otherwise no-op.
2128 * @Note: this is supposed to be a synchronous op.
2130 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2132 /* The requested range should fit in within the block range */
2133 g_assert((start + length) <= block->used_length);
2135 #ifdef CONFIG_LIBPMEM
2136 /* The lack of support for pmem should not block the sync */
2137 if (ramblock_is_pmem(block)) {
2138 void *addr = ramblock_ptr(block, start);
2139 pmem_persist(addr, length);
2140 return;
2142 #endif
2143 if (block->fd >= 0) {
2145 * Case there is no support for PMEM or the memory has not been
2146 * specified as persistent (or is not one) - use the msync.
2147 * Less optimal but still achieves the same goal
2149 void *addr = ramblock_ptr(block, start);
2150 if (qemu_msync(addr, length, block->fd)) {
2151 warn_report("%s: failed to sync memory range: start: "
2152 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2153 __func__, start, length);
2158 /* Called with ram_list.mutex held */
2159 static void dirty_memory_extend(ram_addr_t old_ram_size,
2160 ram_addr_t new_ram_size)
2162 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2163 DIRTY_MEMORY_BLOCK_SIZE);
2164 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2165 DIRTY_MEMORY_BLOCK_SIZE);
2166 int i;
2168 /* Only need to extend if block count increased */
2169 if (new_num_blocks <= old_num_blocks) {
2170 return;
2173 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2174 DirtyMemoryBlocks *old_blocks;
2175 DirtyMemoryBlocks *new_blocks;
2176 int j;
2178 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2179 new_blocks = g_malloc(sizeof(*new_blocks) +
2180 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2182 if (old_num_blocks) {
2183 memcpy(new_blocks->blocks, old_blocks->blocks,
2184 old_num_blocks * sizeof(old_blocks->blocks[0]));
2187 for (j = old_num_blocks; j < new_num_blocks; j++) {
2188 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2191 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2193 if (old_blocks) {
2194 g_free_rcu(old_blocks, rcu);
2199 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2201 RAMBlock *block;
2202 RAMBlock *last_block = NULL;
2203 ram_addr_t old_ram_size, new_ram_size;
2204 Error *err = NULL;
2206 old_ram_size = last_ram_page();
2208 qemu_mutex_lock_ramlist();
2209 new_block->offset = find_ram_offset(new_block->max_length);
2211 if (!new_block->host) {
2212 if (xen_enabled()) {
2213 xen_ram_alloc(new_block->offset, new_block->max_length,
2214 new_block->mr, &err);
2215 if (err) {
2216 error_propagate(errp, err);
2217 qemu_mutex_unlock_ramlist();
2218 return;
2220 } else {
2221 new_block->host = phys_mem_alloc(new_block->max_length,
2222 &new_block->mr->align, shared);
2223 if (!new_block->host) {
2224 error_setg_errno(errp, errno,
2225 "cannot set up guest memory '%s'",
2226 memory_region_name(new_block->mr));
2227 qemu_mutex_unlock_ramlist();
2228 return;
2230 memory_try_enable_merging(new_block->host, new_block->max_length);
2234 new_ram_size = MAX(old_ram_size,
2235 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2236 if (new_ram_size > old_ram_size) {
2237 dirty_memory_extend(old_ram_size, new_ram_size);
2239 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2240 * QLIST (which has an RCU-friendly variant) does not have insertion at
2241 * tail, so save the last element in last_block.
2243 RAMBLOCK_FOREACH(block) {
2244 last_block = block;
2245 if (block->max_length < new_block->max_length) {
2246 break;
2249 if (block) {
2250 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2251 } else if (last_block) {
2252 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2253 } else { /* list is empty */
2254 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2256 ram_list.mru_block = NULL;
2258 /* Write list before version */
2259 smp_wmb();
2260 ram_list.version++;
2261 qemu_mutex_unlock_ramlist();
2263 cpu_physical_memory_set_dirty_range(new_block->offset,
2264 new_block->used_length,
2265 DIRTY_CLIENTS_ALL);
2267 if (new_block->host) {
2268 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2269 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2271 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2272 * Configure it unless the machine is a qtest server, in which case
2273 * KVM is not used and it may be forked (eg for fuzzing purposes).
2275 if (!qtest_enabled()) {
2276 qemu_madvise(new_block->host, new_block->max_length,
2277 QEMU_MADV_DONTFORK);
2279 ram_block_notify_add(new_block->host, new_block->max_length);
2283 #ifdef CONFIG_POSIX
2284 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2285 uint32_t ram_flags, int fd,
2286 Error **errp)
2288 RAMBlock *new_block;
2289 Error *local_err = NULL;
2290 int64_t file_size;
2292 /* Just support these ram flags by now. */
2293 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2295 if (xen_enabled()) {
2296 error_setg(errp, "-mem-path not supported with Xen");
2297 return NULL;
2300 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2301 error_setg(errp,
2302 "host lacks kvm mmu notifiers, -mem-path unsupported");
2303 return NULL;
2306 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2308 * file_ram_alloc() needs to allocate just like
2309 * phys_mem_alloc, but we haven't bothered to provide
2310 * a hook there.
2312 error_setg(errp,
2313 "-mem-path not supported with this accelerator");
2314 return NULL;
2317 size = HOST_PAGE_ALIGN(size);
2318 file_size = get_file_size(fd);
2319 if (file_size > 0 && file_size < size) {
2320 error_setg(errp, "backing store size 0x%" PRIx64
2321 " does not match 'size' option 0x" RAM_ADDR_FMT,
2322 file_size, size);
2323 return NULL;
2326 new_block = g_malloc0(sizeof(*new_block));
2327 new_block->mr = mr;
2328 new_block->used_length = size;
2329 new_block->max_length = size;
2330 new_block->flags = ram_flags;
2331 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2332 if (!new_block->host) {
2333 g_free(new_block);
2334 return NULL;
2337 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2338 if (local_err) {
2339 g_free(new_block);
2340 error_propagate(errp, local_err);
2341 return NULL;
2343 return new_block;
2348 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2349 uint32_t ram_flags, const char *mem_path,
2350 Error **errp)
2352 int fd;
2353 bool created;
2354 RAMBlock *block;
2356 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2357 if (fd < 0) {
2358 return NULL;
2361 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2362 if (!block) {
2363 if (created) {
2364 unlink(mem_path);
2366 close(fd);
2367 return NULL;
2370 return block;
2372 #endif
2374 static
2375 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2376 void (*resized)(const char*,
2377 uint64_t length,
2378 void *host),
2379 void *host, bool resizeable, bool share,
2380 MemoryRegion *mr, Error **errp)
2382 RAMBlock *new_block;
2383 Error *local_err = NULL;
2385 size = HOST_PAGE_ALIGN(size);
2386 max_size = HOST_PAGE_ALIGN(max_size);
2387 new_block = g_malloc0(sizeof(*new_block));
2388 new_block->mr = mr;
2389 new_block->resized = resized;
2390 new_block->used_length = size;
2391 new_block->max_length = max_size;
2392 assert(max_size >= size);
2393 new_block->fd = -1;
2394 new_block->page_size = qemu_real_host_page_size;
2395 new_block->host = host;
2396 if (host) {
2397 new_block->flags |= RAM_PREALLOC;
2399 if (resizeable) {
2400 new_block->flags |= RAM_RESIZEABLE;
2402 ram_block_add(new_block, &local_err, share);
2403 if (local_err) {
2404 g_free(new_block);
2405 error_propagate(errp, local_err);
2406 return NULL;
2408 return new_block;
2411 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2412 MemoryRegion *mr, Error **errp)
2414 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2415 false, mr, errp);
2418 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2419 MemoryRegion *mr, Error **errp)
2421 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2422 share, mr, errp);
2425 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2426 void (*resized)(const char*,
2427 uint64_t length,
2428 void *host),
2429 MemoryRegion *mr, Error **errp)
2431 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2432 false, mr, errp);
2435 static void reclaim_ramblock(RAMBlock *block)
2437 if (block->flags & RAM_PREALLOC) {
2439 } else if (xen_enabled()) {
2440 xen_invalidate_map_cache_entry(block->host);
2441 #ifndef _WIN32
2442 } else if (block->fd >= 0) {
2443 qemu_ram_munmap(block->fd, block->host, block->max_length);
2444 close(block->fd);
2445 #endif
2446 } else {
2447 qemu_anon_ram_free(block->host, block->max_length);
2449 g_free(block);
2452 void qemu_ram_free(RAMBlock *block)
2454 if (!block) {
2455 return;
2458 if (block->host) {
2459 ram_block_notify_remove(block->host, block->max_length);
2462 qemu_mutex_lock_ramlist();
2463 QLIST_REMOVE_RCU(block, next);
2464 ram_list.mru_block = NULL;
2465 /* Write list before version */
2466 smp_wmb();
2467 ram_list.version++;
2468 call_rcu(block, reclaim_ramblock, rcu);
2469 qemu_mutex_unlock_ramlist();
2472 #ifndef _WIN32
2473 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2475 RAMBlock *block;
2476 ram_addr_t offset;
2477 int flags;
2478 void *area, *vaddr;
2480 RAMBLOCK_FOREACH(block) {
2481 offset = addr - block->offset;
2482 if (offset < block->max_length) {
2483 vaddr = ramblock_ptr(block, offset);
2484 if (block->flags & RAM_PREALLOC) {
2486 } else if (xen_enabled()) {
2487 abort();
2488 } else {
2489 flags = MAP_FIXED;
2490 if (block->fd >= 0) {
2491 flags |= (block->flags & RAM_SHARED ?
2492 MAP_SHARED : MAP_PRIVATE);
2493 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2494 flags, block->fd, offset);
2495 } else {
2497 * Remap needs to match alloc. Accelerators that
2498 * set phys_mem_alloc never remap. If they did,
2499 * we'd need a remap hook here.
2501 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2503 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2504 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2505 flags, -1, 0);
2507 if (area != vaddr) {
2508 error_report("Could not remap addr: "
2509 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2510 length, addr);
2511 exit(1);
2513 memory_try_enable_merging(vaddr, length);
2514 qemu_ram_setup_dump(vaddr, length);
2519 #endif /* !_WIN32 */
2521 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2522 * This should not be used for general purpose DMA. Use address_space_map
2523 * or address_space_rw instead. For local memory (e.g. video ram) that the
2524 * device owns, use memory_region_get_ram_ptr.
2526 * Called within RCU critical section.
2528 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2530 RAMBlock *block = ram_block;
2532 if (block == NULL) {
2533 block = qemu_get_ram_block(addr);
2534 addr -= block->offset;
2537 if (xen_enabled() && block->host == NULL) {
2538 /* We need to check if the requested address is in the RAM
2539 * because we don't want to map the entire memory in QEMU.
2540 * In that case just map until the end of the page.
2542 if (block->offset == 0) {
2543 return xen_map_cache(addr, 0, 0, false);
2546 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2548 return ramblock_ptr(block, addr);
2551 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2552 * but takes a size argument.
2554 * Called within RCU critical section.
2556 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2557 hwaddr *size, bool lock)
2559 RAMBlock *block = ram_block;
2560 if (*size == 0) {
2561 return NULL;
2564 if (block == NULL) {
2565 block = qemu_get_ram_block(addr);
2566 addr -= block->offset;
2568 *size = MIN(*size, block->max_length - addr);
2570 if (xen_enabled() && block->host == NULL) {
2571 /* We need to check if the requested address is in the RAM
2572 * because we don't want to map the entire memory in QEMU.
2573 * In that case just map the requested area.
2575 if (block->offset == 0) {
2576 return xen_map_cache(addr, *size, lock, lock);
2579 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2582 return ramblock_ptr(block, addr);
2585 /* Return the offset of a hostpointer within a ramblock */
2586 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2588 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2589 assert((uintptr_t)host >= (uintptr_t)rb->host);
2590 assert(res < rb->max_length);
2592 return res;
2596 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2597 * in that RAMBlock.
2599 * ptr: Host pointer to look up
2600 * round_offset: If true round the result offset down to a page boundary
2601 * *ram_addr: set to result ram_addr
2602 * *offset: set to result offset within the RAMBlock
2604 * Returns: RAMBlock (or NULL if not found)
2606 * By the time this function returns, the returned pointer is not protected
2607 * by RCU anymore. If the caller is not within an RCU critical section and
2608 * does not hold the iothread lock, it must have other means of protecting the
2609 * pointer, such as a reference to the region that includes the incoming
2610 * ram_addr_t.
2612 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2613 ram_addr_t *offset)
2615 RAMBlock *block;
2616 uint8_t *host = ptr;
2618 if (xen_enabled()) {
2619 ram_addr_t ram_addr;
2620 RCU_READ_LOCK_GUARD();
2621 ram_addr = xen_ram_addr_from_mapcache(ptr);
2622 block = qemu_get_ram_block(ram_addr);
2623 if (block) {
2624 *offset = ram_addr - block->offset;
2626 return block;
2629 RCU_READ_LOCK_GUARD();
2630 block = atomic_rcu_read(&ram_list.mru_block);
2631 if (block && block->host && host - block->host < block->max_length) {
2632 goto found;
2635 RAMBLOCK_FOREACH(block) {
2636 /* This case append when the block is not mapped. */
2637 if (block->host == NULL) {
2638 continue;
2640 if (host - block->host < block->max_length) {
2641 goto found;
2645 return NULL;
2647 found:
2648 *offset = (host - block->host);
2649 if (round_offset) {
2650 *offset &= TARGET_PAGE_MASK;
2652 return block;
2656 * Finds the named RAMBlock
2658 * name: The name of RAMBlock to find
2660 * Returns: RAMBlock (or NULL if not found)
2662 RAMBlock *qemu_ram_block_by_name(const char *name)
2664 RAMBlock *block;
2666 RAMBLOCK_FOREACH(block) {
2667 if (!strcmp(name, block->idstr)) {
2668 return block;
2672 return NULL;
2675 /* Some of the softmmu routines need to translate from a host pointer
2676 (typically a TLB entry) back to a ram offset. */
2677 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2679 RAMBlock *block;
2680 ram_addr_t offset;
2682 block = qemu_ram_block_from_host(ptr, false, &offset);
2683 if (!block) {
2684 return RAM_ADDR_INVALID;
2687 return block->offset + offset;
2690 /* Generate a debug exception if a watchpoint has been hit. */
2691 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2692 MemTxAttrs attrs, int flags, uintptr_t ra)
2694 CPUClass *cc = CPU_GET_CLASS(cpu);
2695 CPUWatchpoint *wp;
2697 assert(tcg_enabled());
2698 if (cpu->watchpoint_hit) {
2700 * We re-entered the check after replacing the TB.
2701 * Now raise the debug interrupt so that it will
2702 * trigger after the current instruction.
2704 qemu_mutex_lock_iothread();
2705 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2706 qemu_mutex_unlock_iothread();
2707 return;
2710 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2711 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2712 if (watchpoint_address_matches(wp, addr, len)
2713 && (wp->flags & flags)) {
2714 if (flags == BP_MEM_READ) {
2715 wp->flags |= BP_WATCHPOINT_HIT_READ;
2716 } else {
2717 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2719 wp->hitaddr = MAX(addr, wp->vaddr);
2720 wp->hitattrs = attrs;
2721 if (!cpu->watchpoint_hit) {
2722 if (wp->flags & BP_CPU &&
2723 !cc->debug_check_watchpoint(cpu, wp)) {
2724 wp->flags &= ~BP_WATCHPOINT_HIT;
2725 continue;
2727 cpu->watchpoint_hit = wp;
2729 mmap_lock();
2730 tb_check_watchpoint(cpu, ra);
2731 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2732 cpu->exception_index = EXCP_DEBUG;
2733 mmap_unlock();
2734 cpu_loop_exit_restore(cpu, ra);
2735 } else {
2736 /* Force execution of one insn next time. */
2737 cpu->cflags_next_tb = 1 | curr_cflags();
2738 mmap_unlock();
2739 if (ra) {
2740 cpu_restore_state(cpu, ra, true);
2742 cpu_loop_exit_noexc(cpu);
2745 } else {
2746 wp->flags &= ~BP_WATCHPOINT_HIT;
2751 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2752 MemTxAttrs attrs, void *buf, hwaddr len);
2753 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2754 const void *buf, hwaddr len);
2755 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2756 bool is_write, MemTxAttrs attrs);
2758 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2759 unsigned len, MemTxAttrs attrs)
2761 subpage_t *subpage = opaque;
2762 uint8_t buf[8];
2763 MemTxResult res;
2765 #if defined(DEBUG_SUBPAGE)
2766 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2767 subpage, len, addr);
2768 #endif
2769 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2770 if (res) {
2771 return res;
2773 *data = ldn_p(buf, len);
2774 return MEMTX_OK;
2777 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2778 uint64_t value, unsigned len, MemTxAttrs attrs)
2780 subpage_t *subpage = opaque;
2781 uint8_t buf[8];
2783 #if defined(DEBUG_SUBPAGE)
2784 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2785 " value %"PRIx64"\n",
2786 __func__, subpage, len, addr, value);
2787 #endif
2788 stn_p(buf, len, value);
2789 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2792 static bool subpage_accepts(void *opaque, hwaddr addr,
2793 unsigned len, bool is_write,
2794 MemTxAttrs attrs)
2796 subpage_t *subpage = opaque;
2797 #if defined(DEBUG_SUBPAGE)
2798 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2799 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2800 #endif
2802 return flatview_access_valid(subpage->fv, addr + subpage->base,
2803 len, is_write, attrs);
2806 static const MemoryRegionOps subpage_ops = {
2807 .read_with_attrs = subpage_read,
2808 .write_with_attrs = subpage_write,
2809 .impl.min_access_size = 1,
2810 .impl.max_access_size = 8,
2811 .valid.min_access_size = 1,
2812 .valid.max_access_size = 8,
2813 .valid.accepts = subpage_accepts,
2814 .endianness = DEVICE_NATIVE_ENDIAN,
2817 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2818 uint16_t section)
2820 int idx, eidx;
2822 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2823 return -1;
2824 idx = SUBPAGE_IDX(start);
2825 eidx = SUBPAGE_IDX(end);
2826 #if defined(DEBUG_SUBPAGE)
2827 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2828 __func__, mmio, start, end, idx, eidx, section);
2829 #endif
2830 for (; idx <= eidx; idx++) {
2831 mmio->sub_section[idx] = section;
2834 return 0;
2837 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2839 subpage_t *mmio;
2841 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2842 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2843 mmio->fv = fv;
2844 mmio->base = base;
2845 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2846 NULL, TARGET_PAGE_SIZE);
2847 mmio->iomem.subpage = true;
2848 #if defined(DEBUG_SUBPAGE)
2849 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2850 mmio, base, TARGET_PAGE_SIZE);
2851 #endif
2853 return mmio;
2856 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2858 assert(fv);
2859 MemoryRegionSection section = {
2860 .fv = fv,
2861 .mr = mr,
2862 .offset_within_address_space = 0,
2863 .offset_within_region = 0,
2864 .size = int128_2_64(),
2867 return phys_section_add(map, &section);
2870 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2871 hwaddr index, MemTxAttrs attrs)
2873 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2874 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2875 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2876 MemoryRegionSection *sections = d->map.sections;
2878 return &sections[index & ~TARGET_PAGE_MASK];
2881 static void io_mem_init(void)
2883 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2884 NULL, UINT64_MAX);
2887 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2889 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2890 uint16_t n;
2892 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2893 assert(n == PHYS_SECTION_UNASSIGNED);
2895 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2897 return d;
2900 void address_space_dispatch_free(AddressSpaceDispatch *d)
2902 phys_sections_free(&d->map);
2903 g_free(d);
2906 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2910 static void tcg_log_global_after_sync(MemoryListener *listener)
2912 CPUAddressSpace *cpuas;
2914 /* Wait for the CPU to end the current TB. This avoids the following
2915 * incorrect race:
2917 * vCPU migration
2918 * ---------------------- -------------------------
2919 * TLB check -> slow path
2920 * notdirty_mem_write
2921 * write to RAM
2922 * mark dirty
2923 * clear dirty flag
2924 * TLB check -> fast path
2925 * read memory
2926 * write to RAM
2928 * by pushing the migration thread's memory read after the vCPU thread has
2929 * written the memory.
2931 if (replay_mode == REPLAY_MODE_NONE) {
2933 * VGA can make calls to this function while updating the screen.
2934 * In record/replay mode this causes a deadlock, because
2935 * run_on_cpu waits for rr mutex. Therefore no races are possible
2936 * in this case and no need for making run_on_cpu when
2937 * record/replay is not enabled.
2939 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2940 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2944 static void tcg_commit(MemoryListener *listener)
2946 CPUAddressSpace *cpuas;
2947 AddressSpaceDispatch *d;
2949 assert(tcg_enabled());
2950 /* since each CPU stores ram addresses in its TLB cache, we must
2951 reset the modified entries */
2952 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2953 cpu_reloading_memory_map();
2954 /* The CPU and TLB are protected by the iothread lock.
2955 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2956 * may have split the RCU critical section.
2958 d = address_space_to_dispatch(cpuas->as);
2959 atomic_rcu_set(&cpuas->memory_dispatch, d);
2960 tlb_flush(cpuas->cpu);
2963 static void memory_map_init(void)
2965 system_memory = g_malloc(sizeof(*system_memory));
2967 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2968 address_space_init(&address_space_memory, system_memory, "memory");
2970 system_io = g_malloc(sizeof(*system_io));
2971 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2972 65536);
2973 address_space_init(&address_space_io, system_io, "I/O");
2976 MemoryRegion *get_system_memory(void)
2978 return system_memory;
2981 MemoryRegion *get_system_io(void)
2983 return system_io;
2986 #endif /* !defined(CONFIG_USER_ONLY) */
2988 /* physical memory access (slow version, mainly for debug) */
2989 #if defined(CONFIG_USER_ONLY)
2990 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2991 void *ptr, target_ulong len, bool is_write)
2993 int flags;
2994 target_ulong l, page;
2995 void * p;
2996 uint8_t *buf = ptr;
2998 while (len > 0) {
2999 page = addr & TARGET_PAGE_MASK;
3000 l = (page + TARGET_PAGE_SIZE) - addr;
3001 if (l > len)
3002 l = len;
3003 flags = page_get_flags(page);
3004 if (!(flags & PAGE_VALID))
3005 return -1;
3006 if (is_write) {
3007 if (!(flags & PAGE_WRITE))
3008 return -1;
3009 /* XXX: this code should not depend on lock_user */
3010 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3011 return -1;
3012 memcpy(p, buf, l);
3013 unlock_user(p, addr, l);
3014 } else {
3015 if (!(flags & PAGE_READ))
3016 return -1;
3017 /* XXX: this code should not depend on lock_user */
3018 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3019 return -1;
3020 memcpy(buf, p, l);
3021 unlock_user(p, addr, 0);
3023 len -= l;
3024 buf += l;
3025 addr += l;
3027 return 0;
3030 #else
3032 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3033 hwaddr length)
3035 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3036 addr += memory_region_get_ram_addr(mr);
3038 /* No early return if dirty_log_mask is or becomes 0, because
3039 * cpu_physical_memory_set_dirty_range will still call
3040 * xen_modified_memory.
3042 if (dirty_log_mask) {
3043 dirty_log_mask =
3044 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3046 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3047 assert(tcg_enabled());
3048 tb_invalidate_phys_range(addr, addr + length);
3049 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3051 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3054 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3057 * In principle this function would work on other memory region types too,
3058 * but the ROM device use case is the only one where this operation is
3059 * necessary. Other memory regions should use the
3060 * address_space_read/write() APIs.
3062 assert(memory_region_is_romd(mr));
3064 invalidate_and_set_dirty(mr, addr, size);
3067 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3069 unsigned access_size_max = mr->ops->valid.max_access_size;
3071 /* Regions are assumed to support 1-4 byte accesses unless
3072 otherwise specified. */
3073 if (access_size_max == 0) {
3074 access_size_max = 4;
3077 /* Bound the maximum access by the alignment of the address. */
3078 if (!mr->ops->impl.unaligned) {
3079 unsigned align_size_max = addr & -addr;
3080 if (align_size_max != 0 && align_size_max < access_size_max) {
3081 access_size_max = align_size_max;
3085 /* Don't attempt accesses larger than the maximum. */
3086 if (l > access_size_max) {
3087 l = access_size_max;
3089 l = pow2floor(l);
3091 return l;
3094 static bool prepare_mmio_access(MemoryRegion *mr)
3096 bool unlocked = !qemu_mutex_iothread_locked();
3097 bool release_lock = false;
3099 if (unlocked && mr->global_locking) {
3100 qemu_mutex_lock_iothread();
3101 unlocked = false;
3102 release_lock = true;
3104 if (mr->flush_coalesced_mmio) {
3105 if (unlocked) {
3106 qemu_mutex_lock_iothread();
3108 qemu_flush_coalesced_mmio_buffer();
3109 if (unlocked) {
3110 qemu_mutex_unlock_iothread();
3114 return release_lock;
3117 /* Called within RCU critical section. */
3118 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3119 MemTxAttrs attrs,
3120 const void *ptr,
3121 hwaddr len, hwaddr addr1,
3122 hwaddr l, MemoryRegion *mr)
3124 uint8_t *ram_ptr;
3125 uint64_t val;
3126 MemTxResult result = MEMTX_OK;
3127 bool release_lock = false;
3128 const uint8_t *buf = ptr;
3130 for (;;) {
3131 if (!memory_access_is_direct(mr, true)) {
3132 release_lock |= prepare_mmio_access(mr);
3133 l = memory_access_size(mr, l, addr1);
3134 /* XXX: could force current_cpu to NULL to avoid
3135 potential bugs */
3136 val = ldn_he_p(buf, l);
3137 result |= memory_region_dispatch_write(mr, addr1, val,
3138 size_memop(l), attrs);
3139 } else {
3140 /* RAM case */
3141 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3142 memcpy(ram_ptr, buf, l);
3143 invalidate_and_set_dirty(mr, addr1, l);
3146 if (release_lock) {
3147 qemu_mutex_unlock_iothread();
3148 release_lock = false;
3151 len -= l;
3152 buf += l;
3153 addr += l;
3155 if (!len) {
3156 break;
3159 l = len;
3160 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3163 return result;
3166 /* Called from RCU critical section. */
3167 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3168 const void *buf, hwaddr len)
3170 hwaddr l;
3171 hwaddr addr1;
3172 MemoryRegion *mr;
3173 MemTxResult result = MEMTX_OK;
3175 l = len;
3176 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3177 result = flatview_write_continue(fv, addr, attrs, buf, len,
3178 addr1, l, mr);
3180 return result;
3183 /* Called within RCU critical section. */
3184 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3185 MemTxAttrs attrs, void *ptr,
3186 hwaddr len, hwaddr addr1, hwaddr l,
3187 MemoryRegion *mr)
3189 uint8_t *ram_ptr;
3190 uint64_t val;
3191 MemTxResult result = MEMTX_OK;
3192 bool release_lock = false;
3193 uint8_t *buf = ptr;
3195 for (;;) {
3196 if (!memory_access_is_direct(mr, false)) {
3197 /* I/O case */
3198 release_lock |= prepare_mmio_access(mr);
3199 l = memory_access_size(mr, l, addr1);
3200 result |= memory_region_dispatch_read(mr, addr1, &val,
3201 size_memop(l), attrs);
3202 stn_he_p(buf, l, val);
3203 } else {
3204 /* RAM case */
3205 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3206 memcpy(buf, ram_ptr, l);
3209 if (release_lock) {
3210 qemu_mutex_unlock_iothread();
3211 release_lock = false;
3214 len -= l;
3215 buf += l;
3216 addr += l;
3218 if (!len) {
3219 break;
3222 l = len;
3223 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3226 return result;
3229 /* Called from RCU critical section. */
3230 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3231 MemTxAttrs attrs, void *buf, hwaddr len)
3233 hwaddr l;
3234 hwaddr addr1;
3235 MemoryRegion *mr;
3237 l = len;
3238 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3239 return flatview_read_continue(fv, addr, attrs, buf, len,
3240 addr1, l, mr);
3243 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3244 MemTxAttrs attrs, void *buf, hwaddr len)
3246 MemTxResult result = MEMTX_OK;
3247 FlatView *fv;
3249 if (len > 0) {
3250 RCU_READ_LOCK_GUARD();
3251 fv = address_space_to_flatview(as);
3252 result = flatview_read(fv, addr, attrs, buf, len);
3255 return result;
3258 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3259 MemTxAttrs attrs,
3260 const void *buf, hwaddr len)
3262 MemTxResult result = MEMTX_OK;
3263 FlatView *fv;
3265 if (len > 0) {
3266 RCU_READ_LOCK_GUARD();
3267 fv = address_space_to_flatview(as);
3268 result = flatview_write(fv, addr, attrs, buf, len);
3271 return result;
3274 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3275 void *buf, hwaddr len, bool is_write)
3277 if (is_write) {
3278 return address_space_write(as, addr, attrs, buf, len);
3279 } else {
3280 return address_space_read_full(as, addr, attrs, buf, len);
3284 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3285 hwaddr len, bool is_write)
3287 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3288 buf, len, is_write);
3291 enum write_rom_type {
3292 WRITE_DATA,
3293 FLUSH_CACHE,
3296 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3297 hwaddr addr,
3298 MemTxAttrs attrs,
3299 const void *ptr,
3300 hwaddr len,
3301 enum write_rom_type type)
3303 hwaddr l;
3304 uint8_t *ram_ptr;
3305 hwaddr addr1;
3306 MemoryRegion *mr;
3307 const uint8_t *buf = ptr;
3309 RCU_READ_LOCK_GUARD();
3310 while (len > 0) {
3311 l = len;
3312 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3314 if (!(memory_region_is_ram(mr) ||
3315 memory_region_is_romd(mr))) {
3316 l = memory_access_size(mr, l, addr1);
3317 } else {
3318 /* ROM/RAM case */
3319 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3320 switch (type) {
3321 case WRITE_DATA:
3322 memcpy(ram_ptr, buf, l);
3323 invalidate_and_set_dirty(mr, addr1, l);
3324 break;
3325 case FLUSH_CACHE:
3326 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
3327 break;
3330 len -= l;
3331 buf += l;
3332 addr += l;
3334 return MEMTX_OK;
3337 /* used for ROM loading : can write in RAM and ROM */
3338 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3339 MemTxAttrs attrs,
3340 const void *buf, hwaddr len)
3342 return address_space_write_rom_internal(as, addr, attrs,
3343 buf, len, WRITE_DATA);
3346 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3349 * This function should do the same thing as an icache flush that was
3350 * triggered from within the guest. For TCG we are always cache coherent,
3351 * so there is no need to flush anything. For KVM / Xen we need to flush
3352 * the host's instruction cache at least.
3354 if (tcg_enabled()) {
3355 return;
3358 address_space_write_rom_internal(&address_space_memory,
3359 start, MEMTXATTRS_UNSPECIFIED,
3360 NULL, len, FLUSH_CACHE);
3363 typedef struct {
3364 MemoryRegion *mr;
3365 void *buffer;
3366 hwaddr addr;
3367 hwaddr len;
3368 bool in_use;
3369 } BounceBuffer;
3371 static BounceBuffer bounce;
3373 typedef struct MapClient {
3374 QEMUBH *bh;
3375 QLIST_ENTRY(MapClient) link;
3376 } MapClient;
3378 QemuMutex map_client_list_lock;
3379 static QLIST_HEAD(, MapClient) map_client_list
3380 = QLIST_HEAD_INITIALIZER(map_client_list);
3382 static void cpu_unregister_map_client_do(MapClient *client)
3384 QLIST_REMOVE(client, link);
3385 g_free(client);
3388 static void cpu_notify_map_clients_locked(void)
3390 MapClient *client;
3392 while (!QLIST_EMPTY(&map_client_list)) {
3393 client = QLIST_FIRST(&map_client_list);
3394 qemu_bh_schedule(client->bh);
3395 cpu_unregister_map_client_do(client);
3399 void cpu_register_map_client(QEMUBH *bh)
3401 MapClient *client = g_malloc(sizeof(*client));
3403 qemu_mutex_lock(&map_client_list_lock);
3404 client->bh = bh;
3405 QLIST_INSERT_HEAD(&map_client_list, client, link);
3406 if (!atomic_read(&bounce.in_use)) {
3407 cpu_notify_map_clients_locked();
3409 qemu_mutex_unlock(&map_client_list_lock);
3412 void cpu_exec_init_all(void)
3414 qemu_mutex_init(&ram_list.mutex);
3415 /* The data structures we set up here depend on knowing the page size,
3416 * so no more changes can be made after this point.
3417 * In an ideal world, nothing we did before we had finished the
3418 * machine setup would care about the target page size, and we could
3419 * do this much later, rather than requiring board models to state
3420 * up front what their requirements are.
3422 finalize_target_page_bits();
3423 io_mem_init();
3424 memory_map_init();
3425 qemu_mutex_init(&map_client_list_lock);
3428 void cpu_unregister_map_client(QEMUBH *bh)
3430 MapClient *client;
3432 qemu_mutex_lock(&map_client_list_lock);
3433 QLIST_FOREACH(client, &map_client_list, link) {
3434 if (client->bh == bh) {
3435 cpu_unregister_map_client_do(client);
3436 break;
3439 qemu_mutex_unlock(&map_client_list_lock);
3442 static void cpu_notify_map_clients(void)
3444 qemu_mutex_lock(&map_client_list_lock);
3445 cpu_notify_map_clients_locked();
3446 qemu_mutex_unlock(&map_client_list_lock);
3449 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3450 bool is_write, MemTxAttrs attrs)
3452 MemoryRegion *mr;
3453 hwaddr l, xlat;
3455 while (len > 0) {
3456 l = len;
3457 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3458 if (!memory_access_is_direct(mr, is_write)) {
3459 l = memory_access_size(mr, l, addr);
3460 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3461 return false;
3465 len -= l;
3466 addr += l;
3468 return true;
3471 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3472 hwaddr len, bool is_write,
3473 MemTxAttrs attrs)
3475 FlatView *fv;
3476 bool result;
3478 RCU_READ_LOCK_GUARD();
3479 fv = address_space_to_flatview(as);
3480 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3481 return result;
3484 static hwaddr
3485 flatview_extend_translation(FlatView *fv, hwaddr addr,
3486 hwaddr target_len,
3487 MemoryRegion *mr, hwaddr base, hwaddr len,
3488 bool is_write, MemTxAttrs attrs)
3490 hwaddr done = 0;
3491 hwaddr xlat;
3492 MemoryRegion *this_mr;
3494 for (;;) {
3495 target_len -= len;
3496 addr += len;
3497 done += len;
3498 if (target_len == 0) {
3499 return done;
3502 len = target_len;
3503 this_mr = flatview_translate(fv, addr, &xlat,
3504 &len, is_write, attrs);
3505 if (this_mr != mr || xlat != base + done) {
3506 return done;
3511 /* Map a physical memory region into a host virtual address.
3512 * May map a subset of the requested range, given by and returned in *plen.
3513 * May return NULL if resources needed to perform the mapping are exhausted.
3514 * Use only for reads OR writes - not for read-modify-write operations.
3515 * Use cpu_register_map_client() to know when retrying the map operation is
3516 * likely to succeed.
3518 void *address_space_map(AddressSpace *as,
3519 hwaddr addr,
3520 hwaddr *plen,
3521 bool is_write,
3522 MemTxAttrs attrs)
3524 hwaddr len = *plen;
3525 hwaddr l, xlat;
3526 MemoryRegion *mr;
3527 void *ptr;
3528 FlatView *fv;
3530 if (len == 0) {
3531 return NULL;
3534 l = len;
3535 RCU_READ_LOCK_GUARD();
3536 fv = address_space_to_flatview(as);
3537 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3539 if (!memory_access_is_direct(mr, is_write)) {
3540 if (atomic_xchg(&bounce.in_use, true)) {
3541 return NULL;
3543 /* Avoid unbounded allocations */
3544 l = MIN(l, TARGET_PAGE_SIZE);
3545 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3546 bounce.addr = addr;
3547 bounce.len = l;
3549 memory_region_ref(mr);
3550 bounce.mr = mr;
3551 if (!is_write) {
3552 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3553 bounce.buffer, l);
3556 *plen = l;
3557 return bounce.buffer;
3561 memory_region_ref(mr);
3562 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3563 l, is_write, attrs);
3564 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3566 return ptr;
3569 /* Unmaps a memory region previously mapped by address_space_map().
3570 * Will also mark the memory as dirty if is_write is true. access_len gives
3571 * the amount of memory that was actually read or written by the caller.
3573 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3574 bool is_write, hwaddr access_len)
3576 if (buffer != bounce.buffer) {
3577 MemoryRegion *mr;
3578 ram_addr_t addr1;
3580 mr = memory_region_from_host(buffer, &addr1);
3581 assert(mr != NULL);
3582 if (is_write) {
3583 invalidate_and_set_dirty(mr, addr1, access_len);
3585 if (xen_enabled()) {
3586 xen_invalidate_map_cache_entry(buffer);
3588 memory_region_unref(mr);
3589 return;
3591 if (is_write) {
3592 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3593 bounce.buffer, access_len);
3595 qemu_vfree(bounce.buffer);
3596 bounce.buffer = NULL;
3597 memory_region_unref(bounce.mr);
3598 atomic_mb_set(&bounce.in_use, false);
3599 cpu_notify_map_clients();
3602 void *cpu_physical_memory_map(hwaddr addr,
3603 hwaddr *plen,
3604 bool is_write)
3606 return address_space_map(&address_space_memory, addr, plen, is_write,
3607 MEMTXATTRS_UNSPECIFIED);
3610 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3611 bool is_write, hwaddr access_len)
3613 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3616 #define ARG1_DECL AddressSpace *as
3617 #define ARG1 as
3618 #define SUFFIX
3619 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3620 #define RCU_READ_LOCK(...) rcu_read_lock()
3621 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3622 #include "memory_ldst.inc.c"
3624 int64_t address_space_cache_init(MemoryRegionCache *cache,
3625 AddressSpace *as,
3626 hwaddr addr,
3627 hwaddr len,
3628 bool is_write)
3630 AddressSpaceDispatch *d;
3631 hwaddr l;
3632 MemoryRegion *mr;
3634 assert(len > 0);
3636 l = len;
3637 cache->fv = address_space_get_flatview(as);
3638 d = flatview_to_dispatch(cache->fv);
3639 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3641 mr = cache->mrs.mr;
3642 memory_region_ref(mr);
3643 if (memory_access_is_direct(mr, is_write)) {
3644 /* We don't care about the memory attributes here as we're only
3645 * doing this if we found actual RAM, which behaves the same
3646 * regardless of attributes; so UNSPECIFIED is fine.
3648 l = flatview_extend_translation(cache->fv, addr, len, mr,
3649 cache->xlat, l, is_write,
3650 MEMTXATTRS_UNSPECIFIED);
3651 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3652 } else {
3653 cache->ptr = NULL;
3656 cache->len = l;
3657 cache->is_write = is_write;
3658 return l;
3661 void address_space_cache_invalidate(MemoryRegionCache *cache,
3662 hwaddr addr,
3663 hwaddr access_len)
3665 assert(cache->is_write);
3666 if (likely(cache->ptr)) {
3667 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3671 void address_space_cache_destroy(MemoryRegionCache *cache)
3673 if (!cache->mrs.mr) {
3674 return;
3677 if (xen_enabled()) {
3678 xen_invalidate_map_cache_entry(cache->ptr);
3680 memory_region_unref(cache->mrs.mr);
3681 flatview_unref(cache->fv);
3682 cache->mrs.mr = NULL;
3683 cache->fv = NULL;
3686 /* Called from RCU critical section. This function has the same
3687 * semantics as address_space_translate, but it only works on a
3688 * predefined range of a MemoryRegion that was mapped with
3689 * address_space_cache_init.
3691 static inline MemoryRegion *address_space_translate_cached(
3692 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3693 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3695 MemoryRegionSection section;
3696 MemoryRegion *mr;
3697 IOMMUMemoryRegion *iommu_mr;
3698 AddressSpace *target_as;
3700 assert(!cache->ptr);
3701 *xlat = addr + cache->xlat;
3703 mr = cache->mrs.mr;
3704 iommu_mr = memory_region_get_iommu(mr);
3705 if (!iommu_mr) {
3706 /* MMIO region. */
3707 return mr;
3710 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3711 NULL, is_write, true,
3712 &target_as, attrs);
3713 return section.mr;
3716 /* Called from RCU critical section. address_space_read_cached uses this
3717 * out of line function when the target is an MMIO or IOMMU region.
3719 void
3720 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3721 void *buf, hwaddr len)
3723 hwaddr addr1, l;
3724 MemoryRegion *mr;
3726 l = len;
3727 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3728 MEMTXATTRS_UNSPECIFIED);
3729 flatview_read_continue(cache->fv,
3730 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3731 addr1, l, mr);
3734 /* Called from RCU critical section. address_space_write_cached uses this
3735 * out of line function when the target is an MMIO or IOMMU region.
3737 void
3738 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3739 const void *buf, hwaddr len)
3741 hwaddr addr1, l;
3742 MemoryRegion *mr;
3744 l = len;
3745 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3746 MEMTXATTRS_UNSPECIFIED);
3747 flatview_write_continue(cache->fv,
3748 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3749 addr1, l, mr);
3752 #define ARG1_DECL MemoryRegionCache *cache
3753 #define ARG1 cache
3754 #define SUFFIX _cached_slow
3755 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3756 #define RCU_READ_LOCK() ((void)0)
3757 #define RCU_READ_UNLOCK() ((void)0)
3758 #include "memory_ldst.inc.c"
3760 /* virtual memory access for debug (includes writing to ROM) */
3761 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3762 void *ptr, target_ulong len, bool is_write)
3764 hwaddr phys_addr;
3765 target_ulong l, page;
3766 uint8_t *buf = ptr;
3768 cpu_synchronize_state(cpu);
3769 while (len > 0) {
3770 int asidx;
3771 MemTxAttrs attrs;
3773 page = addr & TARGET_PAGE_MASK;
3774 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3775 asidx = cpu_asidx_from_attrs(cpu, attrs);
3776 /* if no physical page mapped, return an error */
3777 if (phys_addr == -1)
3778 return -1;
3779 l = (page + TARGET_PAGE_SIZE) - addr;
3780 if (l > len)
3781 l = len;
3782 phys_addr += (addr & ~TARGET_PAGE_MASK);
3783 if (is_write) {
3784 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3785 attrs, buf, l);
3786 } else {
3787 address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3790 len -= l;
3791 buf += l;
3792 addr += l;
3794 return 0;
3798 * Allows code that needs to deal with migration bitmaps etc to still be built
3799 * target independent.
3801 size_t qemu_target_page_size(void)
3803 return TARGET_PAGE_SIZE;
3806 int qemu_target_page_bits(void)
3808 return TARGET_PAGE_BITS;
3811 int qemu_target_page_bits_min(void)
3813 return TARGET_PAGE_BITS_MIN;
3815 #endif
3817 bool target_words_bigendian(void)
3819 #if defined(TARGET_WORDS_BIGENDIAN)
3820 return true;
3821 #else
3822 return false;
3823 #endif
3826 #ifndef CONFIG_USER_ONLY
3827 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3829 MemoryRegion*mr;
3830 hwaddr l = 1;
3831 bool res;
3833 RCU_READ_LOCK_GUARD();
3834 mr = address_space_translate(&address_space_memory,
3835 phys_addr, &phys_addr, &l, false,
3836 MEMTXATTRS_UNSPECIFIED);
3838 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3839 return res;
3842 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3844 RAMBlock *block;
3845 int ret = 0;
3847 RCU_READ_LOCK_GUARD();
3848 RAMBLOCK_FOREACH(block) {
3849 ret = func(block, opaque);
3850 if (ret) {
3851 break;
3854 return ret;
3858 * Unmap pages of memory from start to start+length such that
3859 * they a) read as 0, b) Trigger whatever fault mechanism
3860 * the OS provides for postcopy.
3861 * The pages must be unmapped by the end of the function.
3862 * Returns: 0 on success, none-0 on failure
3865 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3867 int ret = -1;
3869 uint8_t *host_startaddr = rb->host + start;
3871 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3872 error_report("ram_block_discard_range: Unaligned start address: %p",
3873 host_startaddr);
3874 goto err;
3877 if ((start + length) <= rb->used_length) {
3878 bool need_madvise, need_fallocate;
3879 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3880 error_report("ram_block_discard_range: Unaligned length: %zx",
3881 length);
3882 goto err;
3885 errno = ENOTSUP; /* If we are missing MADVISE etc */
3887 /* The logic here is messy;
3888 * madvise DONTNEED fails for hugepages
3889 * fallocate works on hugepages and shmem
3891 need_madvise = (rb->page_size == qemu_host_page_size);
3892 need_fallocate = rb->fd != -1;
3893 if (need_fallocate) {
3894 /* For a file, this causes the area of the file to be zero'd
3895 * if read, and for hugetlbfs also causes it to be unmapped
3896 * so a userfault will trigger.
3898 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3899 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3900 start, length);
3901 if (ret) {
3902 ret = -errno;
3903 error_report("ram_block_discard_range: Failed to fallocate "
3904 "%s:%" PRIx64 " +%zx (%d)",
3905 rb->idstr, start, length, ret);
3906 goto err;
3908 #else
3909 ret = -ENOSYS;
3910 error_report("ram_block_discard_range: fallocate not available/file"
3911 "%s:%" PRIx64 " +%zx (%d)",
3912 rb->idstr, start, length, ret);
3913 goto err;
3914 #endif
3916 if (need_madvise) {
3917 /* For normal RAM this causes it to be unmapped,
3918 * for shared memory it causes the local mapping to disappear
3919 * and to fall back on the file contents (which we just
3920 * fallocate'd away).
3922 #if defined(CONFIG_MADVISE)
3923 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3924 if (ret) {
3925 ret = -errno;
3926 error_report("ram_block_discard_range: Failed to discard range "
3927 "%s:%" PRIx64 " +%zx (%d)",
3928 rb->idstr, start, length, ret);
3929 goto err;
3931 #else
3932 ret = -ENOSYS;
3933 error_report("ram_block_discard_range: MADVISE not available"
3934 "%s:%" PRIx64 " +%zx (%d)",
3935 rb->idstr, start, length, ret);
3936 goto err;
3937 #endif
3939 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3940 need_madvise, need_fallocate, ret);
3941 } else {
3942 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3943 "/%zx/" RAM_ADDR_FMT")",
3944 rb->idstr, start, length, rb->used_length);
3947 err:
3948 return ret;
3951 bool ramblock_is_pmem(RAMBlock *rb)
3953 return rb->flags & RAM_PMEM;
3956 #endif
3958 void page_size_init(void)
3960 /* NOTE: we can always suppose that qemu_host_page_size >=
3961 TARGET_PAGE_SIZE */
3962 if (qemu_host_page_size == 0) {
3963 qemu_host_page_size = qemu_real_host_page_size;
3965 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3966 qemu_host_page_size = TARGET_PAGE_SIZE;
3968 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3971 #if !defined(CONFIG_USER_ONLY)
3973 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3975 if (start == end - 1) {
3976 qemu_printf("\t%3d ", start);
3977 } else {
3978 qemu_printf("\t%3d..%-3d ", start, end - 1);
3980 qemu_printf(" skip=%d ", skip);
3981 if (ptr == PHYS_MAP_NODE_NIL) {
3982 qemu_printf(" ptr=NIL");
3983 } else if (!skip) {
3984 qemu_printf(" ptr=#%d", ptr);
3985 } else {
3986 qemu_printf(" ptr=[%d]", ptr);
3988 qemu_printf("\n");
3991 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3992 int128_sub((size), int128_one())) : 0)
3994 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3996 int i;
3998 qemu_printf(" Dispatch\n");
3999 qemu_printf(" Physical sections\n");
4001 for (i = 0; i < d->map.sections_nb; ++i) {
4002 MemoryRegionSection *s = d->map.sections + i;
4003 const char *names[] = { " [unassigned]", " [not dirty]",
4004 " [ROM]", " [watch]" };
4006 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4007 " %s%s%s%s%s",
4009 s->offset_within_address_space,
4010 s->offset_within_address_space + MR_SIZE(s->mr->size),
4011 s->mr->name ? s->mr->name : "(noname)",
4012 i < ARRAY_SIZE(names) ? names[i] : "",
4013 s->mr == root ? " [ROOT]" : "",
4014 s == d->mru_section ? " [MRU]" : "",
4015 s->mr->is_iommu ? " [iommu]" : "");
4017 if (s->mr->alias) {
4018 qemu_printf(" alias=%s", s->mr->alias->name ?
4019 s->mr->alias->name : "noname");
4021 qemu_printf("\n");
4024 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4025 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4026 for (i = 0; i < d->map.nodes_nb; ++i) {
4027 int j, jprev;
4028 PhysPageEntry prev;
4029 Node *n = d->map.nodes + i;
4031 qemu_printf(" [%d]\n", i);
4033 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4034 PhysPageEntry *pe = *n + j;
4036 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4037 continue;
4040 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4042 jprev = j;
4043 prev = *pe;
4046 if (jprev != ARRAY_SIZE(*n)) {
4047 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4052 #endif