qemu-tool: do not depend on qemu-timer.c
[qemu/ar7.git] / main-loop.c
blobbaefe413d1018519dbaaaeba3e119e9dabe31cd2
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu-common.h"
26 #include "qemu-timer.h"
27 #include "slirp/slirp.h"
28 #include "main-loop.h"
30 #ifndef _WIN32
32 #include "compatfd.h"
34 static int io_thread_fd = -1;
36 void qemu_notify_event(void)
38 /* Write 8 bytes to be compatible with eventfd. */
39 static const uint64_t val = 1;
40 ssize_t ret;
42 if (io_thread_fd == -1) {
43 return;
45 do {
46 ret = write(io_thread_fd, &val, sizeof(val));
47 } while (ret < 0 && errno == EINTR);
49 /* EAGAIN is fine, a read must be pending. */
50 if (ret < 0 && errno != EAGAIN) {
51 fprintf(stderr, "qemu_notify_event: write() failed: %s\n",
52 strerror(errno));
53 exit(1);
57 static void qemu_event_read(void *opaque)
59 int fd = (intptr_t)opaque;
60 ssize_t len;
61 char buffer[512];
63 /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
64 do {
65 len = read(fd, buffer, sizeof(buffer));
66 } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
69 static int qemu_event_init(void)
71 int err;
72 int fds[2];
74 err = qemu_eventfd(fds);
75 if (err == -1) {
76 return -errno;
78 err = fcntl_setfl(fds[0], O_NONBLOCK);
79 if (err < 0) {
80 goto fail;
82 err = fcntl_setfl(fds[1], O_NONBLOCK);
83 if (err < 0) {
84 goto fail;
86 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
87 (void *)(intptr_t)fds[0]);
89 io_thread_fd = fds[1];
90 return 0;
92 fail:
93 close(fds[0]);
94 close(fds[1]);
95 return err;
98 /* If we have signalfd, we mask out the signals we want to handle and then
99 * use signalfd to listen for them. We rely on whatever the current signal
100 * handler is to dispatch the signals when we receive them.
102 static void sigfd_handler(void *opaque)
104 int fd = (intptr_t)opaque;
105 struct qemu_signalfd_siginfo info;
106 struct sigaction action;
107 ssize_t len;
109 while (1) {
110 do {
111 len = read(fd, &info, sizeof(info));
112 } while (len == -1 && errno == EINTR);
114 if (len == -1 && errno == EAGAIN) {
115 break;
118 if (len != sizeof(info)) {
119 printf("read from sigfd returned %zd: %m\n", len);
120 return;
123 sigaction(info.ssi_signo, NULL, &action);
124 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
125 action.sa_sigaction(info.ssi_signo,
126 (siginfo_t *)&info, NULL);
127 } else if (action.sa_handler) {
128 action.sa_handler(info.ssi_signo);
133 static int qemu_signal_init(void)
135 int sigfd;
136 sigset_t set;
139 * SIG_IPI must be blocked in the main thread and must not be caught
140 * by sigwait() in the signal thread. Otherwise, the cpu thread will
141 * not catch it reliably.
143 sigemptyset(&set);
144 sigaddset(&set, SIG_IPI);
145 sigaddset(&set, SIGIO);
146 sigaddset(&set, SIGALRM);
147 sigaddset(&set, SIGBUS);
148 pthread_sigmask(SIG_BLOCK, &set, NULL);
150 sigdelset(&set, SIG_IPI);
151 sigfd = qemu_signalfd(&set);
152 if (sigfd == -1) {
153 fprintf(stderr, "failed to create signalfd\n");
154 return -errno;
157 fcntl_setfl(sigfd, O_NONBLOCK);
159 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
160 (void *)(intptr_t)sigfd);
162 return 0;
165 #else /* _WIN32 */
167 static HANDLE qemu_event_handle = NULL;
169 static void dummy_event_handler(void *opaque)
173 static int qemu_event_init(void)
175 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
176 if (!qemu_event_handle) {
177 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
178 return -1;
180 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
181 return 0;
184 void qemu_notify_event(void)
186 if (!qemu_event_handle) {
187 return;
189 if (!SetEvent(qemu_event_handle)) {
190 fprintf(stderr, "qemu_notify_event: SetEvent failed: %ld\n",
191 GetLastError());
192 exit(1);
196 static int qemu_signal_init(void)
198 return 0;
200 #endif
202 int qemu_init_main_loop(void)
204 int ret;
206 init_clocks();
207 init_timer_alarm();
209 qemu_mutex_lock_iothread();
210 ret = qemu_signal_init();
211 if (ret) {
212 return ret;
215 /* Note eventfd must be drained before signalfd handlers run */
216 ret = qemu_event_init();
217 if (ret) {
218 return ret;
221 return 0;
224 static fd_set rfds, wfds, xfds;
225 static int nfds;
226 static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
227 static int n_poll_fds;
228 static int max_priority;
230 #ifndef _WIN32
231 static void glib_select_fill(int *max_fd, fd_set *rfds, fd_set *wfds,
232 fd_set *xfds, uint32_t *cur_timeout)
234 GMainContext *context = g_main_context_default();
235 int i;
236 int timeout = 0;
238 g_main_context_prepare(context, &max_priority);
240 n_poll_fds = g_main_context_query(context, max_priority, &timeout,
241 poll_fds, ARRAY_SIZE(poll_fds));
242 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
244 for (i = 0; i < n_poll_fds; i++) {
245 GPollFD *p = &poll_fds[i];
247 if ((p->events & G_IO_IN)) {
248 FD_SET(p->fd, rfds);
249 *max_fd = MAX(*max_fd, p->fd);
251 if ((p->events & G_IO_OUT)) {
252 FD_SET(p->fd, wfds);
253 *max_fd = MAX(*max_fd, p->fd);
255 if ((p->events & G_IO_ERR)) {
256 FD_SET(p->fd, xfds);
257 *max_fd = MAX(*max_fd, p->fd);
261 if (timeout >= 0 && timeout < *cur_timeout) {
262 *cur_timeout = timeout;
266 static void glib_select_poll(fd_set *rfds, fd_set *wfds, fd_set *xfds,
267 bool err)
269 GMainContext *context = g_main_context_default();
271 if (!err) {
272 int i;
274 for (i = 0; i < n_poll_fds; i++) {
275 GPollFD *p = &poll_fds[i];
277 if ((p->events & G_IO_IN) && FD_ISSET(p->fd, rfds)) {
278 p->revents |= G_IO_IN;
280 if ((p->events & G_IO_OUT) && FD_ISSET(p->fd, wfds)) {
281 p->revents |= G_IO_OUT;
283 if ((p->events & G_IO_ERR) && FD_ISSET(p->fd, xfds)) {
284 p->revents |= G_IO_ERR;
289 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
290 g_main_context_dispatch(context);
294 static int os_host_main_loop_wait(uint32_t timeout)
296 struct timeval tv, *tvarg = NULL;
297 int ret;
299 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);
301 if (timeout < UINT32_MAX) {
302 tvarg = &tv;
303 tv.tv_sec = timeout / 1000;
304 tv.tv_usec = (timeout % 1000) * 1000;
307 if (timeout > 0) {
308 qemu_mutex_unlock_iothread();
311 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);
313 if (timeout > 0) {
314 qemu_mutex_lock_iothread();
317 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
318 return ret;
320 #else
321 /***********************************************************/
322 /* Polling handling */
324 typedef struct PollingEntry {
325 PollingFunc *func;
326 void *opaque;
327 struct PollingEntry *next;
328 } PollingEntry;
330 static PollingEntry *first_polling_entry;
332 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
334 PollingEntry **ppe, *pe;
335 pe = g_malloc0(sizeof(PollingEntry));
336 pe->func = func;
337 pe->opaque = opaque;
338 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
339 *ppe = pe;
340 return 0;
343 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
345 PollingEntry **ppe, *pe;
346 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
347 pe = *ppe;
348 if (pe->func == func && pe->opaque == opaque) {
349 *ppe = pe->next;
350 g_free(pe);
351 break;
356 /***********************************************************/
357 /* Wait objects support */
358 typedef struct WaitObjects {
359 int num;
360 int revents[MAXIMUM_WAIT_OBJECTS + 1];
361 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
362 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
363 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
364 } WaitObjects;
366 static WaitObjects wait_objects = {0};
368 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
370 WaitObjects *w = &wait_objects;
371 if (w->num >= MAXIMUM_WAIT_OBJECTS) {
372 return -1;
374 w->events[w->num] = handle;
375 w->func[w->num] = func;
376 w->opaque[w->num] = opaque;
377 w->revents[w->num] = 0;
378 w->num++;
379 return 0;
382 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
384 int i, found;
385 WaitObjects *w = &wait_objects;
387 found = 0;
388 for (i = 0; i < w->num; i++) {
389 if (w->events[i] == handle) {
390 found = 1;
392 if (found) {
393 w->events[i] = w->events[i + 1];
394 w->func[i] = w->func[i + 1];
395 w->opaque[i] = w->opaque[i + 1];
396 w->revents[i] = w->revents[i + 1];
399 if (found) {
400 w->num--;
404 void qemu_fd_register(int fd)
406 WSAEventSelect(fd, qemu_event_handle, FD_READ | FD_ACCEPT | FD_CLOSE |
407 FD_CONNECT | FD_WRITE | FD_OOB);
410 static int os_host_main_loop_wait(uint32_t timeout)
412 GMainContext *context = g_main_context_default();
413 int ret, i;
414 PollingEntry *pe;
415 WaitObjects *w = &wait_objects;
416 gint poll_timeout;
417 static struct timeval tv0;
419 /* XXX: need to suppress polling by better using win32 events */
420 ret = 0;
421 for (pe = first_polling_entry; pe != NULL; pe = pe->next) {
422 ret |= pe->func(pe->opaque);
424 if (ret != 0) {
425 return ret;
428 if (nfds >= 0) {
429 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0);
430 if (ret != 0) {
431 timeout = 0;
435 g_main_context_prepare(context, &max_priority);
436 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout,
437 poll_fds, ARRAY_SIZE(poll_fds));
438 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
440 for (i = 0; i < w->num; i++) {
441 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i];
442 poll_fds[n_poll_fds + i].events = G_IO_IN;
445 if (poll_timeout < 0 || timeout < poll_timeout) {
446 poll_timeout = timeout;
449 qemu_mutex_unlock_iothread();
450 ret = g_poll(poll_fds, n_poll_fds + w->num, poll_timeout);
451 qemu_mutex_lock_iothread();
452 if (ret > 0) {
453 for (i = 0; i < w->num; i++) {
454 w->revents[i] = poll_fds[n_poll_fds + i].revents;
456 for (i = 0; i < w->num; i++) {
457 if (w->revents[i] && w->func[i]) {
458 w->func[i](w->opaque[i]);
463 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
464 g_main_context_dispatch(context);
467 /* If an edge-triggered socket event occurred, select will return a
468 * positive result on the next iteration. We do not need to do anything
469 * here.
472 return ret;
474 #endif
476 int main_loop_wait(int nonblocking)
478 int ret;
479 uint32_t timeout = UINT32_MAX;
481 if (nonblocking) {
482 timeout = 0;
483 } else {
484 qemu_bh_update_timeout(&timeout);
487 /* poll any events */
488 /* XXX: separate device handlers from system ones */
489 nfds = -1;
490 FD_ZERO(&rfds);
491 FD_ZERO(&wfds);
492 FD_ZERO(&xfds);
494 #ifdef CONFIG_SLIRP
495 slirp_update_timeout(&timeout);
496 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
497 #endif
498 qemu_iohandler_fill(&nfds, &rfds, &wfds, &xfds);
499 ret = os_host_main_loop_wait(timeout);
500 qemu_iohandler_poll(&rfds, &wfds, &xfds, ret);
501 #ifdef CONFIG_SLIRP
502 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
503 #endif
505 qemu_run_all_timers();
507 /* Check bottom-halves last in case any of the earlier events triggered
508 them. */
509 qemu_bh_poll();
511 return ret;