osdep: Work around MinGW assert
[qemu/ar7.git] / exec.c
blobbb6170dbffe18aaae1709a50a9d14e5322f870f6
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90 #endif
92 #ifdef TARGET_PAGE_BITS_VARY
93 int target_page_bits;
94 bool target_page_bits_decided;
95 #endif
97 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98 /* current CPU in the current thread. It is only valid inside
99 cpu_exec() */
100 __thread CPUState *current_cpu;
101 /* 0 = Do not count executed instructions.
102 1 = Precise instruction counting.
103 2 = Adaptive rate instruction counting. */
104 int use_icount;
106 uintptr_t qemu_host_page_size;
107 intptr_t qemu_host_page_mask;
109 bool set_preferred_target_page_bits(int bits)
111 /* The target page size is the lowest common denominator for all
112 * the CPUs in the system, so we can only make it smaller, never
113 * larger. And we can't make it smaller once we've committed to
114 * a particular size.
116 #ifdef TARGET_PAGE_BITS_VARY
117 assert(bits >= TARGET_PAGE_BITS_MIN);
118 if (target_page_bits == 0 || target_page_bits > bits) {
119 if (target_page_bits_decided) {
120 return false;
122 target_page_bits = bits;
124 #endif
125 return true;
128 #if !defined(CONFIG_USER_ONLY)
130 static void finalize_target_page_bits(void)
132 #ifdef TARGET_PAGE_BITS_VARY
133 if (target_page_bits == 0) {
134 target_page_bits = TARGET_PAGE_BITS_MIN;
136 target_page_bits_decided = true;
137 #endif
140 typedef struct PhysPageEntry PhysPageEntry;
142 struct PhysPageEntry {
143 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
144 uint32_t skip : 6;
145 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
146 uint32_t ptr : 26;
149 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151 /* Size of the L2 (and L3, etc) page tables. */
152 #define ADDR_SPACE_BITS 64
154 #define P_L2_BITS 9
155 #define P_L2_SIZE (1 << P_L2_BITS)
157 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159 typedef PhysPageEntry Node[P_L2_SIZE];
161 typedef struct PhysPageMap {
162 struct rcu_head rcu;
164 unsigned sections_nb;
165 unsigned sections_nb_alloc;
166 unsigned nodes_nb;
167 unsigned nodes_nb_alloc;
168 Node *nodes;
169 MemoryRegionSection *sections;
170 } PhysPageMap;
172 struct AddressSpaceDispatch {
173 MemoryRegionSection *mru_section;
174 /* This is a multi-level map on the physical address space.
175 * The bottom level has pointers to MemoryRegionSections.
177 PhysPageEntry phys_map;
178 PhysPageMap map;
181 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
182 typedef struct subpage_t {
183 MemoryRegion iomem;
184 FlatView *fv;
185 hwaddr base;
186 uint16_t sub_section[];
187 } subpage_t;
189 #define PHYS_SECTION_UNASSIGNED 0
190 #define PHYS_SECTION_NOTDIRTY 1
191 #define PHYS_SECTION_ROM 2
192 #define PHYS_SECTION_WATCH 3
194 static void io_mem_init(void);
195 static void memory_map_init(void);
196 static void tcg_commit(MemoryListener *listener);
198 static MemoryRegion io_mem_watch;
201 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
202 * @cpu: the CPU whose AddressSpace this is
203 * @as: the AddressSpace itself
204 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
205 * @tcg_as_listener: listener for tracking changes to the AddressSpace
207 struct CPUAddressSpace {
208 CPUState *cpu;
209 AddressSpace *as;
210 struct AddressSpaceDispatch *memory_dispatch;
211 MemoryListener tcg_as_listener;
214 struct DirtyBitmapSnapshot {
215 ram_addr_t start;
216 ram_addr_t end;
217 unsigned long dirty[];
220 #endif
222 #if !defined(CONFIG_USER_ONLY)
224 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
226 static unsigned alloc_hint = 16;
227 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
228 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
230 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
231 alloc_hint = map->nodes_nb_alloc;
235 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
237 unsigned i;
238 uint32_t ret;
239 PhysPageEntry e;
240 PhysPageEntry *p;
242 ret = map->nodes_nb++;
243 p = map->nodes[ret];
244 assert(ret != PHYS_MAP_NODE_NIL);
245 assert(ret != map->nodes_nb_alloc);
247 e.skip = leaf ? 0 : 1;
248 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
249 for (i = 0; i < P_L2_SIZE; ++i) {
250 memcpy(&p[i], &e, sizeof(e));
252 return ret;
255 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
256 hwaddr *index, hwaddr *nb, uint16_t leaf,
257 int level)
259 PhysPageEntry *p;
260 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
262 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
263 lp->ptr = phys_map_node_alloc(map, level == 0);
265 p = map->nodes[lp->ptr];
266 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
268 while (*nb && lp < &p[P_L2_SIZE]) {
269 if ((*index & (step - 1)) == 0 && *nb >= step) {
270 lp->skip = 0;
271 lp->ptr = leaf;
272 *index += step;
273 *nb -= step;
274 } else {
275 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
277 ++lp;
281 static void phys_page_set(AddressSpaceDispatch *d,
282 hwaddr index, hwaddr nb,
283 uint16_t leaf)
285 /* Wildly overreserve - it doesn't matter much. */
286 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
288 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
291 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
292 * and update our entry so we can skip it and go directly to the destination.
294 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
296 unsigned valid_ptr = P_L2_SIZE;
297 int valid = 0;
298 PhysPageEntry *p;
299 int i;
301 if (lp->ptr == PHYS_MAP_NODE_NIL) {
302 return;
305 p = nodes[lp->ptr];
306 for (i = 0; i < P_L2_SIZE; i++) {
307 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
308 continue;
311 valid_ptr = i;
312 valid++;
313 if (p[i].skip) {
314 phys_page_compact(&p[i], nodes);
318 /* We can only compress if there's only one child. */
319 if (valid != 1) {
320 return;
323 assert(valid_ptr < P_L2_SIZE);
325 /* Don't compress if it won't fit in the # of bits we have. */
326 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
327 return;
330 lp->ptr = p[valid_ptr].ptr;
331 if (!p[valid_ptr].skip) {
332 /* If our only child is a leaf, make this a leaf. */
333 /* By design, we should have made this node a leaf to begin with so we
334 * should never reach here.
335 * But since it's so simple to handle this, let's do it just in case we
336 * change this rule.
338 lp->skip = 0;
339 } else {
340 lp->skip += p[valid_ptr].skip;
344 void address_space_dispatch_compact(AddressSpaceDispatch *d)
346 if (d->phys_map.skip) {
347 phys_page_compact(&d->phys_map, d->map.nodes);
351 static inline bool section_covers_addr(const MemoryRegionSection *section,
352 hwaddr addr)
354 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
355 * the section must cover the entire address space.
357 return int128_gethi(section->size) ||
358 range_covers_byte(section->offset_within_address_space,
359 int128_getlo(section->size), addr);
362 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
364 PhysPageEntry lp = d->phys_map, *p;
365 Node *nodes = d->map.nodes;
366 MemoryRegionSection *sections = d->map.sections;
367 hwaddr index = addr >> TARGET_PAGE_BITS;
368 int i;
370 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
371 if (lp.ptr == PHYS_MAP_NODE_NIL) {
372 return &sections[PHYS_SECTION_UNASSIGNED];
374 p = nodes[lp.ptr];
375 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
378 if (section_covers_addr(&sections[lp.ptr], addr)) {
379 return &sections[lp.ptr];
380 } else {
381 return &sections[PHYS_SECTION_UNASSIGNED];
385 /* Called from RCU critical section */
386 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
387 hwaddr addr,
388 bool resolve_subpage)
390 MemoryRegionSection *section = atomic_read(&d->mru_section);
391 subpage_t *subpage;
393 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
394 !section_covers_addr(section, addr)) {
395 section = phys_page_find(d, addr);
396 atomic_set(&d->mru_section, section);
398 if (resolve_subpage && section->mr->subpage) {
399 subpage = container_of(section->mr, subpage_t, iomem);
400 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
402 return section;
405 /* Called from RCU critical section */
406 static MemoryRegionSection *
407 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
408 hwaddr *plen, bool resolve_subpage)
410 MemoryRegionSection *section;
411 MemoryRegion *mr;
412 Int128 diff;
414 section = address_space_lookup_region(d, addr, resolve_subpage);
415 /* Compute offset within MemoryRegionSection */
416 addr -= section->offset_within_address_space;
418 /* Compute offset within MemoryRegion */
419 *xlat = addr + section->offset_within_region;
421 mr = section->mr;
423 /* MMIO registers can be expected to perform full-width accesses based only
424 * on their address, without considering adjacent registers that could
425 * decode to completely different MemoryRegions. When such registers
426 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
427 * regions overlap wildly. For this reason we cannot clamp the accesses
428 * here.
430 * If the length is small (as is the case for address_space_ldl/stl),
431 * everything works fine. If the incoming length is large, however,
432 * the caller really has to do the clamping through memory_access_size.
434 if (memory_region_is_ram(mr)) {
435 diff = int128_sub(section->size, int128_make64(addr));
436 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
438 return section;
442 * address_space_translate_iommu - translate an address through an IOMMU
443 * memory region and then through the target address space.
445 * @iommu_mr: the IOMMU memory region that we start the translation from
446 * @addr: the address to be translated through the MMU
447 * @xlat: the translated address offset within the destination memory region.
448 * It cannot be %NULL.
449 * @plen_out: valid read/write length of the translated address. It
450 * cannot be %NULL.
451 * @page_mask_out: page mask for the translated address. This
452 * should only be meaningful for IOMMU translated
453 * addresses, since there may be huge pages that this bit
454 * would tell. It can be %NULL if we don't care about it.
455 * @is_write: whether the translation operation is for write
456 * @is_mmio: whether this can be MMIO, set true if it can
457 * @target_as: the address space targeted by the IOMMU
458 * @attrs: transaction attributes
460 * This function is called from RCU critical section. It is the common
461 * part of flatview_do_translate and address_space_translate_cached.
463 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
464 hwaddr *xlat,
465 hwaddr *plen_out,
466 hwaddr *page_mask_out,
467 bool is_write,
468 bool is_mmio,
469 AddressSpace **target_as,
470 MemTxAttrs attrs)
472 MemoryRegionSection *section;
473 hwaddr page_mask = (hwaddr)-1;
475 do {
476 hwaddr addr = *xlat;
477 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
478 int iommu_idx = 0;
479 IOMMUTLBEntry iotlb;
481 if (imrc->attrs_to_index) {
482 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
485 iotlb = imrc->translate(iommu_mr, addr, is_write ?
486 IOMMU_WO : IOMMU_RO, iommu_idx);
488 if (!(iotlb.perm & (1 << is_write))) {
489 goto unassigned;
492 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
493 | (addr & iotlb.addr_mask));
494 page_mask &= iotlb.addr_mask;
495 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
496 *target_as = iotlb.target_as;
498 section = address_space_translate_internal(
499 address_space_to_dispatch(iotlb.target_as), addr, xlat,
500 plen_out, is_mmio);
502 iommu_mr = memory_region_get_iommu(section->mr);
503 } while (unlikely(iommu_mr));
505 if (page_mask_out) {
506 *page_mask_out = page_mask;
508 return *section;
510 unassigned:
511 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
515 * flatview_do_translate - translate an address in FlatView
517 * @fv: the flat view that we want to translate on
518 * @addr: the address to be translated in above address space
519 * @xlat: the translated address offset within memory region. It
520 * cannot be @NULL.
521 * @plen_out: valid read/write length of the translated address. It
522 * can be @NULL when we don't care about it.
523 * @page_mask_out: page mask for the translated address. This
524 * should only be meaningful for IOMMU translated
525 * addresses, since there may be huge pages that this bit
526 * would tell. It can be @NULL if we don't care about it.
527 * @is_write: whether the translation operation is for write
528 * @is_mmio: whether this can be MMIO, set true if it can
529 * @target_as: the address space targeted by the IOMMU
530 * @attrs: memory transaction attributes
532 * This function is called from RCU critical section
534 static MemoryRegionSection flatview_do_translate(FlatView *fv,
535 hwaddr addr,
536 hwaddr *xlat,
537 hwaddr *plen_out,
538 hwaddr *page_mask_out,
539 bool is_write,
540 bool is_mmio,
541 AddressSpace **target_as,
542 MemTxAttrs attrs)
544 MemoryRegionSection *section;
545 IOMMUMemoryRegion *iommu_mr;
546 hwaddr plen = (hwaddr)(-1);
548 if (!plen_out) {
549 plen_out = &plen;
552 section = address_space_translate_internal(
553 flatview_to_dispatch(fv), addr, xlat,
554 plen_out, is_mmio);
556 iommu_mr = memory_region_get_iommu(section->mr);
557 if (unlikely(iommu_mr)) {
558 return address_space_translate_iommu(iommu_mr, xlat,
559 plen_out, page_mask_out,
560 is_write, is_mmio,
561 target_as, attrs);
563 if (page_mask_out) {
564 /* Not behind an IOMMU, use default page size. */
565 *page_mask_out = ~TARGET_PAGE_MASK;
568 return *section;
571 /* Called from RCU critical section */
572 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
573 bool is_write, MemTxAttrs attrs)
575 MemoryRegionSection section;
576 hwaddr xlat, page_mask;
579 * This can never be MMIO, and we don't really care about plen,
580 * but page mask.
582 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
583 NULL, &page_mask, is_write, false, &as,
584 attrs);
586 /* Illegal translation */
587 if (section.mr == &io_mem_unassigned) {
588 goto iotlb_fail;
591 /* Convert memory region offset into address space offset */
592 xlat += section.offset_within_address_space -
593 section.offset_within_region;
595 return (IOMMUTLBEntry) {
596 .target_as = as,
597 .iova = addr & ~page_mask,
598 .translated_addr = xlat & ~page_mask,
599 .addr_mask = page_mask,
600 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
601 .perm = IOMMU_RW,
604 iotlb_fail:
605 return (IOMMUTLBEntry) {0};
608 /* Called from RCU critical section */
609 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
610 hwaddr *plen, bool is_write,
611 MemTxAttrs attrs)
613 MemoryRegion *mr;
614 MemoryRegionSection section;
615 AddressSpace *as = NULL;
617 /* This can be MMIO, so setup MMIO bit. */
618 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
619 is_write, true, &as, attrs);
620 mr = section.mr;
622 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
623 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
624 *plen = MIN(page, *plen);
627 return mr;
630 typedef struct TCGIOMMUNotifier {
631 IOMMUNotifier n;
632 MemoryRegion *mr;
633 CPUState *cpu;
634 int iommu_idx;
635 bool active;
636 } TCGIOMMUNotifier;
638 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
640 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
642 if (!notifier->active) {
643 return;
645 tlb_flush(notifier->cpu);
646 notifier->active = false;
647 /* We leave the notifier struct on the list to avoid reallocating it later.
648 * Generally the number of IOMMUs a CPU deals with will be small.
649 * In any case we can't unregister the iommu notifier from a notify
650 * callback.
654 static void tcg_register_iommu_notifier(CPUState *cpu,
655 IOMMUMemoryRegion *iommu_mr,
656 int iommu_idx)
658 /* Make sure this CPU has an IOMMU notifier registered for this
659 * IOMMU/IOMMU index combination, so that we can flush its TLB
660 * when the IOMMU tells us the mappings we've cached have changed.
662 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
663 TCGIOMMUNotifier *notifier;
664 int i;
666 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
667 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
668 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
669 break;
672 if (i == cpu->iommu_notifiers->len) {
673 /* Not found, add a new entry at the end of the array */
674 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
675 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
677 notifier->mr = mr;
678 notifier->iommu_idx = iommu_idx;
679 notifier->cpu = cpu;
680 /* Rather than trying to register interest in the specific part
681 * of the iommu's address space that we've accessed and then
682 * expand it later as subsequent accesses touch more of it, we
683 * just register interest in the whole thing, on the assumption
684 * that iommu reconfiguration will be rare.
686 iommu_notifier_init(&notifier->n,
687 tcg_iommu_unmap_notify,
688 IOMMU_NOTIFIER_UNMAP,
690 HWADDR_MAX,
691 iommu_idx);
692 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
695 if (!notifier->active) {
696 notifier->active = true;
700 static void tcg_iommu_free_notifier_list(CPUState *cpu)
702 /* Destroy the CPU's notifier list */
703 int i;
704 TCGIOMMUNotifier *notifier;
706 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
707 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
708 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
710 g_array_free(cpu->iommu_notifiers, true);
713 /* Called from RCU critical section */
714 MemoryRegionSection *
715 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
716 hwaddr *xlat, hwaddr *plen,
717 MemTxAttrs attrs, int *prot)
719 MemoryRegionSection *section;
720 IOMMUMemoryRegion *iommu_mr;
721 IOMMUMemoryRegionClass *imrc;
722 IOMMUTLBEntry iotlb;
723 int iommu_idx;
724 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
726 for (;;) {
727 section = address_space_translate_internal(d, addr, &addr, plen, false);
729 iommu_mr = memory_region_get_iommu(section->mr);
730 if (!iommu_mr) {
731 break;
734 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
736 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
737 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
738 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
739 * doesn't short-cut its translation table walk.
741 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
742 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
743 | (addr & iotlb.addr_mask));
744 /* Update the caller's prot bits to remove permissions the IOMMU
745 * is giving us a failure response for. If we get down to no
746 * permissions left at all we can give up now.
748 if (!(iotlb.perm & IOMMU_RO)) {
749 *prot &= ~(PAGE_READ | PAGE_EXEC);
751 if (!(iotlb.perm & IOMMU_WO)) {
752 *prot &= ~PAGE_WRITE;
755 if (!*prot) {
756 goto translate_fail;
759 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
762 assert(!memory_region_is_iommu(section->mr));
763 *xlat = addr;
764 return section;
766 translate_fail:
767 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
769 #endif
771 #if !defined(CONFIG_USER_ONLY)
773 static int cpu_common_post_load(void *opaque, int version_id)
775 CPUState *cpu = opaque;
777 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
778 version_id is increased. */
779 cpu->interrupt_request &= ~0x01;
780 tlb_flush(cpu);
782 /* loadvm has just updated the content of RAM, bypassing the
783 * usual mechanisms that ensure we flush TBs for writes to
784 * memory we've translated code from. So we must flush all TBs,
785 * which will now be stale.
787 tb_flush(cpu);
789 return 0;
792 static int cpu_common_pre_load(void *opaque)
794 CPUState *cpu = opaque;
796 cpu->exception_index = -1;
798 return 0;
801 static bool cpu_common_exception_index_needed(void *opaque)
803 CPUState *cpu = opaque;
805 return tcg_enabled() && cpu->exception_index != -1;
808 static const VMStateDescription vmstate_cpu_common_exception_index = {
809 .name = "cpu_common/exception_index",
810 .version_id = 1,
811 .minimum_version_id = 1,
812 .needed = cpu_common_exception_index_needed,
813 .fields = (VMStateField[]) {
814 VMSTATE_INT32(exception_index, CPUState),
815 VMSTATE_END_OF_LIST()
819 static bool cpu_common_crash_occurred_needed(void *opaque)
821 CPUState *cpu = opaque;
823 return cpu->crash_occurred;
826 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
827 .name = "cpu_common/crash_occurred",
828 .version_id = 1,
829 .minimum_version_id = 1,
830 .needed = cpu_common_crash_occurred_needed,
831 .fields = (VMStateField[]) {
832 VMSTATE_BOOL(crash_occurred, CPUState),
833 VMSTATE_END_OF_LIST()
837 const VMStateDescription vmstate_cpu_common = {
838 .name = "cpu_common",
839 .version_id = 1,
840 .minimum_version_id = 1,
841 .pre_load = cpu_common_pre_load,
842 .post_load = cpu_common_post_load,
843 .fields = (VMStateField[]) {
844 VMSTATE_UINT32(halted, CPUState),
845 VMSTATE_UINT32(interrupt_request, CPUState),
846 VMSTATE_END_OF_LIST()
848 .subsections = (const VMStateDescription*[]) {
849 &vmstate_cpu_common_exception_index,
850 &vmstate_cpu_common_crash_occurred,
851 NULL
855 #endif
857 CPUState *qemu_get_cpu(int index)
859 CPUState *cpu;
861 CPU_FOREACH(cpu) {
862 if (cpu->cpu_index == index) {
863 return cpu;
867 return NULL;
870 #if !defined(CONFIG_USER_ONLY)
871 void cpu_address_space_init(CPUState *cpu, int asidx,
872 const char *prefix, MemoryRegion *mr)
874 CPUAddressSpace *newas;
875 AddressSpace *as = g_new0(AddressSpace, 1);
876 char *as_name;
878 assert(mr);
879 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
880 address_space_init(as, mr, as_name);
881 g_free(as_name);
883 /* Target code should have set num_ases before calling us */
884 assert(asidx < cpu->num_ases);
886 if (asidx == 0) {
887 /* address space 0 gets the convenience alias */
888 cpu->as = as;
891 /* KVM cannot currently support multiple address spaces. */
892 assert(asidx == 0 || !kvm_enabled());
894 if (!cpu->cpu_ases) {
895 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
898 newas = &cpu->cpu_ases[asidx];
899 newas->cpu = cpu;
900 newas->as = as;
901 if (tcg_enabled()) {
902 newas->tcg_as_listener.commit = tcg_commit;
903 memory_listener_register(&newas->tcg_as_listener, as);
907 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
909 /* Return the AddressSpace corresponding to the specified index */
910 return cpu->cpu_ases[asidx].as;
912 #endif
914 void cpu_exec_unrealizefn(CPUState *cpu)
916 CPUClass *cc = CPU_GET_CLASS(cpu);
918 cpu_list_remove(cpu);
920 if (cc->vmsd != NULL) {
921 vmstate_unregister(NULL, cc->vmsd, cpu);
923 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
924 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
926 #ifndef CONFIG_USER_ONLY
927 tcg_iommu_free_notifier_list(cpu);
928 #endif
931 Property cpu_common_props[] = {
932 #ifndef CONFIG_USER_ONLY
933 /* Create a memory property for softmmu CPU object,
934 * so users can wire up its memory. (This can't go in qom/cpu.c
935 * because that file is compiled only once for both user-mode
936 * and system builds.) The default if no link is set up is to use
937 * the system address space.
939 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
940 MemoryRegion *),
941 #endif
942 DEFINE_PROP_END_OF_LIST(),
945 void cpu_exec_initfn(CPUState *cpu)
947 cpu->as = NULL;
948 cpu->num_ases = 0;
950 #ifndef CONFIG_USER_ONLY
951 cpu->thread_id = qemu_get_thread_id();
952 cpu->memory = system_memory;
953 object_ref(OBJECT(cpu->memory));
954 #endif
957 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
959 CPUClass *cc = CPU_GET_CLASS(cpu);
960 static bool tcg_target_initialized;
962 cpu_list_add(cpu);
964 if (tcg_enabled() && !tcg_target_initialized) {
965 tcg_target_initialized = true;
966 cc->tcg_initialize();
968 tlb_init(cpu);
970 #ifndef CONFIG_USER_ONLY
971 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
972 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
974 if (cc->vmsd != NULL) {
975 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
978 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
979 #endif
982 const char *parse_cpu_model(const char *cpu_model)
984 ObjectClass *oc;
985 CPUClass *cc;
986 gchar **model_pieces;
987 const char *cpu_type;
989 model_pieces = g_strsplit(cpu_model, ",", 2);
991 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
992 if (oc == NULL) {
993 error_report("unable to find CPU model '%s'", model_pieces[0]);
994 g_strfreev(model_pieces);
995 exit(EXIT_FAILURE);
998 cpu_type = object_class_get_name(oc);
999 cc = CPU_CLASS(oc);
1000 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1001 g_strfreev(model_pieces);
1002 return cpu_type;
1005 #if defined(CONFIG_USER_ONLY)
1006 void tb_invalidate_phys_addr(target_ulong addr)
1008 mmap_lock();
1009 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1010 mmap_unlock();
1013 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1015 tb_invalidate_phys_addr(pc);
1017 #else
1018 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1020 ram_addr_t ram_addr;
1021 MemoryRegion *mr;
1022 hwaddr l = 1;
1024 if (!tcg_enabled()) {
1025 return;
1028 rcu_read_lock();
1029 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1030 if (!(memory_region_is_ram(mr)
1031 || memory_region_is_romd(mr))) {
1032 rcu_read_unlock();
1033 return;
1035 ram_addr = memory_region_get_ram_addr(mr) + addr;
1036 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1037 rcu_read_unlock();
1040 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1042 MemTxAttrs attrs;
1043 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1044 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1045 if (phys != -1) {
1046 /* Locks grabbed by tb_invalidate_phys_addr */
1047 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1048 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1051 #endif
1053 #if defined(CONFIG_USER_ONLY)
1054 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1059 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1060 int flags)
1062 return -ENOSYS;
1065 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1069 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1070 int flags, CPUWatchpoint **watchpoint)
1072 return -ENOSYS;
1074 #else
1075 /* Add a watchpoint. */
1076 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1077 int flags, CPUWatchpoint **watchpoint)
1079 CPUWatchpoint *wp;
1081 /* forbid ranges which are empty or run off the end of the address space */
1082 if (len == 0 || (addr + len - 1) < addr) {
1083 error_report("tried to set invalid watchpoint at %"
1084 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1085 return -EINVAL;
1087 wp = g_malloc(sizeof(*wp));
1089 wp->vaddr = addr;
1090 wp->len = len;
1091 wp->flags = flags;
1093 /* keep all GDB-injected watchpoints in front */
1094 if (flags & BP_GDB) {
1095 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1096 } else {
1097 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1100 tlb_flush_page(cpu, addr);
1102 if (watchpoint)
1103 *watchpoint = wp;
1104 return 0;
1107 /* Remove a specific watchpoint. */
1108 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1109 int flags)
1111 CPUWatchpoint *wp;
1113 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1114 if (addr == wp->vaddr && len == wp->len
1115 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1116 cpu_watchpoint_remove_by_ref(cpu, wp);
1117 return 0;
1120 return -ENOENT;
1123 /* Remove a specific watchpoint by reference. */
1124 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1126 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1128 tlb_flush_page(cpu, watchpoint->vaddr);
1130 g_free(watchpoint);
1133 /* Remove all matching watchpoints. */
1134 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1136 CPUWatchpoint *wp, *next;
1138 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1139 if (wp->flags & mask) {
1140 cpu_watchpoint_remove_by_ref(cpu, wp);
1145 /* Return true if this watchpoint address matches the specified
1146 * access (ie the address range covered by the watchpoint overlaps
1147 * partially or completely with the address range covered by the
1148 * access).
1150 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1151 vaddr addr,
1152 vaddr len)
1154 /* We know the lengths are non-zero, but a little caution is
1155 * required to avoid errors in the case where the range ends
1156 * exactly at the top of the address space and so addr + len
1157 * wraps round to zero.
1159 vaddr wpend = wp->vaddr + wp->len - 1;
1160 vaddr addrend = addr + len - 1;
1162 return !(addr > wpend || wp->vaddr > addrend);
1165 #endif
1167 /* Add a breakpoint. */
1168 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1169 CPUBreakpoint **breakpoint)
1171 CPUBreakpoint *bp;
1173 bp = g_malloc(sizeof(*bp));
1175 bp->pc = pc;
1176 bp->flags = flags;
1178 /* keep all GDB-injected breakpoints in front */
1179 if (flags & BP_GDB) {
1180 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1181 } else {
1182 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1185 breakpoint_invalidate(cpu, pc);
1187 if (breakpoint) {
1188 *breakpoint = bp;
1190 return 0;
1193 /* Remove a specific breakpoint. */
1194 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1196 CPUBreakpoint *bp;
1198 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1199 if (bp->pc == pc && bp->flags == flags) {
1200 cpu_breakpoint_remove_by_ref(cpu, bp);
1201 return 0;
1204 return -ENOENT;
1207 /* Remove a specific breakpoint by reference. */
1208 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1210 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1212 breakpoint_invalidate(cpu, breakpoint->pc);
1214 g_free(breakpoint);
1217 /* Remove all matching breakpoints. */
1218 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1220 CPUBreakpoint *bp, *next;
1222 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1223 if (bp->flags & mask) {
1224 cpu_breakpoint_remove_by_ref(cpu, bp);
1229 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1230 CPU loop after each instruction */
1231 void cpu_single_step(CPUState *cpu, int enabled)
1233 if (cpu->singlestep_enabled != enabled) {
1234 cpu->singlestep_enabled = enabled;
1235 if (kvm_enabled()) {
1236 kvm_update_guest_debug(cpu, 0);
1237 } else {
1238 /* must flush all the translated code to avoid inconsistencies */
1239 /* XXX: only flush what is necessary */
1240 tb_flush(cpu);
1245 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1247 va_list ap;
1248 va_list ap2;
1250 va_start(ap, fmt);
1251 va_copy(ap2, ap);
1252 fprintf(stderr, "qemu: fatal: ");
1253 vfprintf(stderr, fmt, ap);
1254 fprintf(stderr, "\n");
1255 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1256 if (qemu_log_separate()) {
1257 qemu_log_lock();
1258 qemu_log("qemu: fatal: ");
1259 qemu_log_vprintf(fmt, ap2);
1260 qemu_log("\n");
1261 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1262 qemu_log_flush();
1263 qemu_log_unlock();
1264 qemu_log_close();
1266 va_end(ap2);
1267 va_end(ap);
1268 replay_finish();
1269 #if defined(CONFIG_USER_ONLY)
1271 struct sigaction act;
1272 sigfillset(&act.sa_mask);
1273 act.sa_handler = SIG_DFL;
1274 act.sa_flags = 0;
1275 sigaction(SIGABRT, &act, NULL);
1277 #endif
1278 abort();
1281 #if !defined(CONFIG_USER_ONLY)
1282 /* Called from RCU critical section */
1283 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1285 RAMBlock *block;
1287 block = atomic_rcu_read(&ram_list.mru_block);
1288 if (block && addr - block->offset < block->max_length) {
1289 return block;
1291 RAMBLOCK_FOREACH(block) {
1292 if (addr - block->offset < block->max_length) {
1293 goto found;
1297 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1298 abort();
1300 found:
1301 /* It is safe to write mru_block outside the iothread lock. This
1302 * is what happens:
1304 * mru_block = xxx
1305 * rcu_read_unlock()
1306 * xxx removed from list
1307 * rcu_read_lock()
1308 * read mru_block
1309 * mru_block = NULL;
1310 * call_rcu(reclaim_ramblock, xxx);
1311 * rcu_read_unlock()
1313 * atomic_rcu_set is not needed here. The block was already published
1314 * when it was placed into the list. Here we're just making an extra
1315 * copy of the pointer.
1317 ram_list.mru_block = block;
1318 return block;
1321 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1323 CPUState *cpu;
1324 ram_addr_t start1;
1325 RAMBlock *block;
1326 ram_addr_t end;
1328 assert(tcg_enabled());
1329 end = TARGET_PAGE_ALIGN(start + length);
1330 start &= TARGET_PAGE_MASK;
1332 rcu_read_lock();
1333 block = qemu_get_ram_block(start);
1334 assert(block == qemu_get_ram_block(end - 1));
1335 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1336 CPU_FOREACH(cpu) {
1337 tlb_reset_dirty(cpu, start1, length);
1339 rcu_read_unlock();
1342 /* Note: start and end must be within the same ram block. */
1343 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1344 ram_addr_t length,
1345 unsigned client)
1347 DirtyMemoryBlocks *blocks;
1348 unsigned long end, page;
1349 bool dirty = false;
1351 if (length == 0) {
1352 return false;
1355 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1356 page = start >> TARGET_PAGE_BITS;
1358 rcu_read_lock();
1360 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1362 while (page < end) {
1363 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1364 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1365 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1367 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1368 offset, num);
1369 page += num;
1372 rcu_read_unlock();
1374 if (dirty && tcg_enabled()) {
1375 tlb_reset_dirty_range_all(start, length);
1378 return dirty;
1381 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1382 (ram_addr_t start, ram_addr_t length, unsigned client)
1384 DirtyMemoryBlocks *blocks;
1385 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1386 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1387 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1388 DirtyBitmapSnapshot *snap;
1389 unsigned long page, end, dest;
1391 snap = g_malloc0(sizeof(*snap) +
1392 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1393 snap->start = first;
1394 snap->end = last;
1396 page = first >> TARGET_PAGE_BITS;
1397 end = last >> TARGET_PAGE_BITS;
1398 dest = 0;
1400 rcu_read_lock();
1402 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1404 while (page < end) {
1405 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1406 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1407 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1409 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1410 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1411 offset >>= BITS_PER_LEVEL;
1413 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1414 blocks->blocks[idx] + offset,
1415 num);
1416 page += num;
1417 dest += num >> BITS_PER_LEVEL;
1420 rcu_read_unlock();
1422 if (tcg_enabled()) {
1423 tlb_reset_dirty_range_all(start, length);
1426 return snap;
1429 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1430 ram_addr_t start,
1431 ram_addr_t length)
1433 unsigned long page, end;
1435 assert(start >= snap->start);
1436 assert(start + length <= snap->end);
1438 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1439 page = (start - snap->start) >> TARGET_PAGE_BITS;
1441 while (page < end) {
1442 if (test_bit(page, snap->dirty)) {
1443 return true;
1445 page++;
1447 return false;
1450 /* Called from RCU critical section */
1451 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1452 MemoryRegionSection *section,
1453 target_ulong vaddr,
1454 hwaddr paddr, hwaddr xlat,
1455 int prot,
1456 target_ulong *address)
1458 hwaddr iotlb;
1459 CPUWatchpoint *wp;
1461 if (memory_region_is_ram(section->mr)) {
1462 /* Normal RAM. */
1463 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1464 if (!section->readonly) {
1465 iotlb |= PHYS_SECTION_NOTDIRTY;
1466 } else {
1467 iotlb |= PHYS_SECTION_ROM;
1469 } else {
1470 AddressSpaceDispatch *d;
1472 d = flatview_to_dispatch(section->fv);
1473 iotlb = section - d->map.sections;
1474 iotlb += xlat;
1477 /* Make accesses to pages with watchpoints go via the
1478 watchpoint trap routines. */
1479 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1480 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1481 /* Avoid trapping reads of pages with a write breakpoint. */
1482 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1483 iotlb = PHYS_SECTION_WATCH + paddr;
1484 *address |= TLB_MMIO;
1485 break;
1490 return iotlb;
1492 #endif /* defined(CONFIG_USER_ONLY) */
1494 #if !defined(CONFIG_USER_ONLY)
1496 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1497 uint16_t section);
1498 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1500 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1501 qemu_anon_ram_alloc;
1504 * Set a custom physical guest memory alloator.
1505 * Accelerators with unusual needs may need this. Hopefully, we can
1506 * get rid of it eventually.
1508 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1510 phys_mem_alloc = alloc;
1513 static uint16_t phys_section_add(PhysPageMap *map,
1514 MemoryRegionSection *section)
1516 /* The physical section number is ORed with a page-aligned
1517 * pointer to produce the iotlb entries. Thus it should
1518 * never overflow into the page-aligned value.
1520 assert(map->sections_nb < TARGET_PAGE_SIZE);
1522 if (map->sections_nb == map->sections_nb_alloc) {
1523 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1524 map->sections = g_renew(MemoryRegionSection, map->sections,
1525 map->sections_nb_alloc);
1527 map->sections[map->sections_nb] = *section;
1528 memory_region_ref(section->mr);
1529 return map->sections_nb++;
1532 static void phys_section_destroy(MemoryRegion *mr)
1534 bool have_sub_page = mr->subpage;
1536 memory_region_unref(mr);
1538 if (have_sub_page) {
1539 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1540 object_unref(OBJECT(&subpage->iomem));
1541 g_free(subpage);
1545 static void phys_sections_free(PhysPageMap *map)
1547 while (map->sections_nb > 0) {
1548 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1549 phys_section_destroy(section->mr);
1551 g_free(map->sections);
1552 g_free(map->nodes);
1555 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1557 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1558 subpage_t *subpage;
1559 hwaddr base = section->offset_within_address_space
1560 & TARGET_PAGE_MASK;
1561 MemoryRegionSection *existing = phys_page_find(d, base);
1562 MemoryRegionSection subsection = {
1563 .offset_within_address_space = base,
1564 .size = int128_make64(TARGET_PAGE_SIZE),
1566 hwaddr start, end;
1568 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1570 if (!(existing->mr->subpage)) {
1571 subpage = subpage_init(fv, base);
1572 subsection.fv = fv;
1573 subsection.mr = &subpage->iomem;
1574 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1575 phys_section_add(&d->map, &subsection));
1576 } else {
1577 subpage = container_of(existing->mr, subpage_t, iomem);
1579 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1580 end = start + int128_get64(section->size) - 1;
1581 subpage_register(subpage, start, end,
1582 phys_section_add(&d->map, section));
1586 static void register_multipage(FlatView *fv,
1587 MemoryRegionSection *section)
1589 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1590 hwaddr start_addr = section->offset_within_address_space;
1591 uint16_t section_index = phys_section_add(&d->map, section);
1592 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1593 TARGET_PAGE_BITS));
1595 assert(num_pages);
1596 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1599 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1601 MemoryRegionSection now = *section, remain = *section;
1602 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1604 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1605 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1606 - now.offset_within_address_space;
1608 now.size = int128_min(int128_make64(left), now.size);
1609 register_subpage(fv, &now);
1610 } else {
1611 now.size = int128_zero();
1613 while (int128_ne(remain.size, now.size)) {
1614 remain.size = int128_sub(remain.size, now.size);
1615 remain.offset_within_address_space += int128_get64(now.size);
1616 remain.offset_within_region += int128_get64(now.size);
1617 now = remain;
1618 if (int128_lt(remain.size, page_size)) {
1619 register_subpage(fv, &now);
1620 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1621 now.size = page_size;
1622 register_subpage(fv, &now);
1623 } else {
1624 now.size = int128_and(now.size, int128_neg(page_size));
1625 register_multipage(fv, &now);
1630 void qemu_flush_coalesced_mmio_buffer(void)
1632 if (kvm_enabled())
1633 kvm_flush_coalesced_mmio_buffer();
1636 void qemu_mutex_lock_ramlist(void)
1638 qemu_mutex_lock(&ram_list.mutex);
1641 void qemu_mutex_unlock_ramlist(void)
1643 qemu_mutex_unlock(&ram_list.mutex);
1646 void ram_block_dump(Monitor *mon)
1648 RAMBlock *block;
1649 char *psize;
1651 rcu_read_lock();
1652 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1653 "Block Name", "PSize", "Offset", "Used", "Total");
1654 RAMBLOCK_FOREACH(block) {
1655 psize = size_to_str(block->page_size);
1656 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1657 " 0x%016" PRIx64 "\n", block->idstr, psize,
1658 (uint64_t)block->offset,
1659 (uint64_t)block->used_length,
1660 (uint64_t)block->max_length);
1661 g_free(psize);
1663 rcu_read_unlock();
1666 #ifdef __linux__
1668 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1669 * may or may not name the same files / on the same filesystem now as
1670 * when we actually open and map them. Iterate over the file
1671 * descriptors instead, and use qemu_fd_getpagesize().
1673 static int find_max_supported_pagesize(Object *obj, void *opaque)
1675 long *hpsize_min = opaque;
1677 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1678 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1680 if (hpsize < *hpsize_min) {
1681 *hpsize_min = hpsize;
1685 return 0;
1688 long qemu_getrampagesize(void)
1690 long hpsize = LONG_MAX;
1691 long mainrampagesize;
1692 Object *memdev_root;
1694 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1696 /* it's possible we have memory-backend objects with
1697 * hugepage-backed RAM. these may get mapped into system
1698 * address space via -numa parameters or memory hotplug
1699 * hooks. we want to take these into account, but we
1700 * also want to make sure these supported hugepage
1701 * sizes are applicable across the entire range of memory
1702 * we may boot from, so we take the min across all
1703 * backends, and assume normal pages in cases where a
1704 * backend isn't backed by hugepages.
1706 memdev_root = object_resolve_path("/objects", NULL);
1707 if (memdev_root) {
1708 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1710 if (hpsize == LONG_MAX) {
1711 /* No additional memory regions found ==> Report main RAM page size */
1712 return mainrampagesize;
1715 /* If NUMA is disabled or the NUMA nodes are not backed with a
1716 * memory-backend, then there is at least one node using "normal" RAM,
1717 * so if its page size is smaller we have got to report that size instead.
1719 if (hpsize > mainrampagesize &&
1720 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1721 static bool warned;
1722 if (!warned) {
1723 error_report("Huge page support disabled (n/a for main memory).");
1724 warned = true;
1726 return mainrampagesize;
1729 return hpsize;
1731 #else
1732 long qemu_getrampagesize(void)
1734 return getpagesize();
1736 #endif
1738 #ifdef CONFIG_POSIX
1739 static int64_t get_file_size(int fd)
1741 int64_t size = lseek(fd, 0, SEEK_END);
1742 if (size < 0) {
1743 return -errno;
1745 return size;
1748 static int file_ram_open(const char *path,
1749 const char *region_name,
1750 bool *created,
1751 Error **errp)
1753 char *filename;
1754 char *sanitized_name;
1755 char *c;
1756 int fd = -1;
1758 *created = false;
1759 for (;;) {
1760 fd = open(path, O_RDWR);
1761 if (fd >= 0) {
1762 /* @path names an existing file, use it */
1763 break;
1765 if (errno == ENOENT) {
1766 /* @path names a file that doesn't exist, create it */
1767 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1768 if (fd >= 0) {
1769 *created = true;
1770 break;
1772 } else if (errno == EISDIR) {
1773 /* @path names a directory, create a file there */
1774 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1775 sanitized_name = g_strdup(region_name);
1776 for (c = sanitized_name; *c != '\0'; c++) {
1777 if (*c == '/') {
1778 *c = '_';
1782 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1783 sanitized_name);
1784 g_free(sanitized_name);
1786 fd = mkstemp(filename);
1787 if (fd >= 0) {
1788 unlink(filename);
1789 g_free(filename);
1790 break;
1792 g_free(filename);
1794 if (errno != EEXIST && errno != EINTR) {
1795 error_setg_errno(errp, errno,
1796 "can't open backing store %s for guest RAM",
1797 path);
1798 return -1;
1801 * Try again on EINTR and EEXIST. The latter happens when
1802 * something else creates the file between our two open().
1806 return fd;
1809 static void *file_ram_alloc(RAMBlock *block,
1810 ram_addr_t memory,
1811 int fd,
1812 bool truncate,
1813 Error **errp)
1815 void *area;
1817 block->page_size = qemu_fd_getpagesize(fd);
1818 if (block->mr->align % block->page_size) {
1819 error_setg(errp, "alignment 0x%" PRIx64
1820 " must be multiples of page size 0x%zx",
1821 block->mr->align, block->page_size);
1822 return NULL;
1823 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1824 error_setg(errp, "alignment 0x%" PRIx64
1825 " must be a power of two", block->mr->align);
1826 return NULL;
1828 block->mr->align = MAX(block->page_size, block->mr->align);
1829 #if defined(__s390x__)
1830 if (kvm_enabled()) {
1831 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1833 #endif
1835 if (memory < block->page_size) {
1836 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1837 "or larger than page size 0x%zx",
1838 memory, block->page_size);
1839 return NULL;
1842 memory = ROUND_UP(memory, block->page_size);
1845 * ftruncate is not supported by hugetlbfs in older
1846 * hosts, so don't bother bailing out on errors.
1847 * If anything goes wrong with it under other filesystems,
1848 * mmap will fail.
1850 * Do not truncate the non-empty backend file to avoid corrupting
1851 * the existing data in the file. Disabling shrinking is not
1852 * enough. For example, the current vNVDIMM implementation stores
1853 * the guest NVDIMM labels at the end of the backend file. If the
1854 * backend file is later extended, QEMU will not be able to find
1855 * those labels. Therefore, extending the non-empty backend file
1856 * is disabled as well.
1858 if (truncate && ftruncate(fd, memory)) {
1859 perror("ftruncate");
1862 area = qemu_ram_mmap(fd, memory, block->mr->align,
1863 block->flags & RAM_SHARED);
1864 if (area == MAP_FAILED) {
1865 error_setg_errno(errp, errno,
1866 "unable to map backing store for guest RAM");
1867 return NULL;
1870 if (mem_prealloc) {
1871 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1872 if (errp && *errp) {
1873 qemu_ram_munmap(area, memory);
1874 return NULL;
1878 block->fd = fd;
1879 return area;
1881 #endif
1883 /* Allocate space within the ram_addr_t space that governs the
1884 * dirty bitmaps.
1885 * Called with the ramlist lock held.
1887 static ram_addr_t find_ram_offset(ram_addr_t size)
1889 RAMBlock *block, *next_block;
1890 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1892 assert(size != 0); /* it would hand out same offset multiple times */
1894 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1895 return 0;
1898 RAMBLOCK_FOREACH(block) {
1899 ram_addr_t candidate, next = RAM_ADDR_MAX;
1901 /* Align blocks to start on a 'long' in the bitmap
1902 * which makes the bitmap sync'ing take the fast path.
1904 candidate = block->offset + block->max_length;
1905 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1907 /* Search for the closest following block
1908 * and find the gap.
1910 RAMBLOCK_FOREACH(next_block) {
1911 if (next_block->offset >= candidate) {
1912 next = MIN(next, next_block->offset);
1916 /* If it fits remember our place and remember the size
1917 * of gap, but keep going so that we might find a smaller
1918 * gap to fill so avoiding fragmentation.
1920 if (next - candidate >= size && next - candidate < mingap) {
1921 offset = candidate;
1922 mingap = next - candidate;
1925 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1928 if (offset == RAM_ADDR_MAX) {
1929 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1930 (uint64_t)size);
1931 abort();
1934 trace_find_ram_offset(size, offset);
1936 return offset;
1939 static unsigned long last_ram_page(void)
1941 RAMBlock *block;
1942 ram_addr_t last = 0;
1944 rcu_read_lock();
1945 RAMBLOCK_FOREACH(block) {
1946 last = MAX(last, block->offset + block->max_length);
1948 rcu_read_unlock();
1949 return last >> TARGET_PAGE_BITS;
1952 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1954 int ret;
1956 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1957 if (!machine_dump_guest_core(current_machine)) {
1958 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1959 if (ret) {
1960 perror("qemu_madvise");
1961 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1962 "but dump_guest_core=off specified\n");
1967 const char *qemu_ram_get_idstr(RAMBlock *rb)
1969 return rb->idstr;
1972 bool qemu_ram_is_shared(RAMBlock *rb)
1974 return rb->flags & RAM_SHARED;
1977 /* Note: Only set at the start of postcopy */
1978 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1980 return rb->flags & RAM_UF_ZEROPAGE;
1983 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1985 rb->flags |= RAM_UF_ZEROPAGE;
1988 bool qemu_ram_is_migratable(RAMBlock *rb)
1990 return rb->flags & RAM_MIGRATABLE;
1993 void qemu_ram_set_migratable(RAMBlock *rb)
1995 rb->flags |= RAM_MIGRATABLE;
1998 void qemu_ram_unset_migratable(RAMBlock *rb)
2000 rb->flags &= ~RAM_MIGRATABLE;
2003 /* Called with iothread lock held. */
2004 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2006 RAMBlock *block;
2008 assert(new_block);
2009 assert(!new_block->idstr[0]);
2011 if (dev) {
2012 char *id = qdev_get_dev_path(dev);
2013 if (id) {
2014 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2015 g_free(id);
2018 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2020 rcu_read_lock();
2021 RAMBLOCK_FOREACH(block) {
2022 if (block != new_block &&
2023 !strcmp(block->idstr, new_block->idstr)) {
2024 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2025 new_block->idstr);
2026 abort();
2029 rcu_read_unlock();
2032 /* Called with iothread lock held. */
2033 void qemu_ram_unset_idstr(RAMBlock *block)
2035 /* FIXME: arch_init.c assumes that this is not called throughout
2036 * migration. Ignore the problem since hot-unplug during migration
2037 * does not work anyway.
2039 if (block) {
2040 memset(block->idstr, 0, sizeof(block->idstr));
2044 size_t qemu_ram_pagesize(RAMBlock *rb)
2046 return rb->page_size;
2049 /* Returns the largest size of page in use */
2050 size_t qemu_ram_pagesize_largest(void)
2052 RAMBlock *block;
2053 size_t largest = 0;
2055 RAMBLOCK_FOREACH(block) {
2056 largest = MAX(largest, qemu_ram_pagesize(block));
2059 return largest;
2062 static int memory_try_enable_merging(void *addr, size_t len)
2064 if (!machine_mem_merge(current_machine)) {
2065 /* disabled by the user */
2066 return 0;
2069 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2072 /* Only legal before guest might have detected the memory size: e.g. on
2073 * incoming migration, or right after reset.
2075 * As memory core doesn't know how is memory accessed, it is up to
2076 * resize callback to update device state and/or add assertions to detect
2077 * misuse, if necessary.
2079 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2081 assert(block);
2083 newsize = HOST_PAGE_ALIGN(newsize);
2085 if (block->used_length == newsize) {
2086 return 0;
2089 if (!(block->flags & RAM_RESIZEABLE)) {
2090 error_setg_errno(errp, EINVAL,
2091 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2092 " in != 0x" RAM_ADDR_FMT, block->idstr,
2093 newsize, block->used_length);
2094 return -EINVAL;
2097 if (block->max_length < newsize) {
2098 error_setg_errno(errp, EINVAL,
2099 "Length too large: %s: 0x" RAM_ADDR_FMT
2100 " > 0x" RAM_ADDR_FMT, block->idstr,
2101 newsize, block->max_length);
2102 return -EINVAL;
2105 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2106 block->used_length = newsize;
2107 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2108 DIRTY_CLIENTS_ALL);
2109 memory_region_set_size(block->mr, newsize);
2110 if (block->resized) {
2111 block->resized(block->idstr, newsize, block->host);
2113 return 0;
2116 /* Called with ram_list.mutex held */
2117 static void dirty_memory_extend(ram_addr_t old_ram_size,
2118 ram_addr_t new_ram_size)
2120 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2121 DIRTY_MEMORY_BLOCK_SIZE);
2122 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2123 DIRTY_MEMORY_BLOCK_SIZE);
2124 int i;
2126 /* Only need to extend if block count increased */
2127 if (new_num_blocks <= old_num_blocks) {
2128 return;
2131 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2132 DirtyMemoryBlocks *old_blocks;
2133 DirtyMemoryBlocks *new_blocks;
2134 int j;
2136 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2137 new_blocks = g_malloc(sizeof(*new_blocks) +
2138 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2140 if (old_num_blocks) {
2141 memcpy(new_blocks->blocks, old_blocks->blocks,
2142 old_num_blocks * sizeof(old_blocks->blocks[0]));
2145 for (j = old_num_blocks; j < new_num_blocks; j++) {
2146 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2149 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2151 if (old_blocks) {
2152 g_free_rcu(old_blocks, rcu);
2157 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2159 RAMBlock *block;
2160 RAMBlock *last_block = NULL;
2161 ram_addr_t old_ram_size, new_ram_size;
2162 Error *err = NULL;
2164 old_ram_size = last_ram_page();
2166 qemu_mutex_lock_ramlist();
2167 new_block->offset = find_ram_offset(new_block->max_length);
2169 if (!new_block->host) {
2170 if (xen_enabled()) {
2171 xen_ram_alloc(new_block->offset, new_block->max_length,
2172 new_block->mr, &err);
2173 if (err) {
2174 error_propagate(errp, err);
2175 qemu_mutex_unlock_ramlist();
2176 return;
2178 } else {
2179 new_block->host = phys_mem_alloc(new_block->max_length,
2180 &new_block->mr->align, shared);
2181 if (!new_block->host) {
2182 error_setg_errno(errp, errno,
2183 "cannot set up guest memory '%s'",
2184 memory_region_name(new_block->mr));
2185 qemu_mutex_unlock_ramlist();
2186 return;
2188 memory_try_enable_merging(new_block->host, new_block->max_length);
2192 new_ram_size = MAX(old_ram_size,
2193 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2194 if (new_ram_size > old_ram_size) {
2195 dirty_memory_extend(old_ram_size, new_ram_size);
2197 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2198 * QLIST (which has an RCU-friendly variant) does not have insertion at
2199 * tail, so save the last element in last_block.
2201 RAMBLOCK_FOREACH(block) {
2202 last_block = block;
2203 if (block->max_length < new_block->max_length) {
2204 break;
2207 if (block) {
2208 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2209 } else if (last_block) {
2210 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2211 } else { /* list is empty */
2212 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2214 ram_list.mru_block = NULL;
2216 /* Write list before version */
2217 smp_wmb();
2218 ram_list.version++;
2219 qemu_mutex_unlock_ramlist();
2221 cpu_physical_memory_set_dirty_range(new_block->offset,
2222 new_block->used_length,
2223 DIRTY_CLIENTS_ALL);
2225 if (new_block->host) {
2226 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2227 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2228 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2229 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2230 ram_block_notify_add(new_block->host, new_block->max_length);
2234 #ifdef CONFIG_POSIX
2235 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2236 uint32_t ram_flags, int fd,
2237 Error **errp)
2239 RAMBlock *new_block;
2240 Error *local_err = NULL;
2241 int64_t file_size;
2243 /* Just support these ram flags by now. */
2244 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2246 if (xen_enabled()) {
2247 error_setg(errp, "-mem-path not supported with Xen");
2248 return NULL;
2251 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2252 error_setg(errp,
2253 "host lacks kvm mmu notifiers, -mem-path unsupported");
2254 return NULL;
2257 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2259 * file_ram_alloc() needs to allocate just like
2260 * phys_mem_alloc, but we haven't bothered to provide
2261 * a hook there.
2263 error_setg(errp,
2264 "-mem-path not supported with this accelerator");
2265 return NULL;
2268 size = HOST_PAGE_ALIGN(size);
2269 file_size = get_file_size(fd);
2270 if (file_size > 0 && file_size < size) {
2271 error_setg(errp, "backing store %s size 0x%" PRIx64
2272 " does not match 'size' option 0x" RAM_ADDR_FMT,
2273 mem_path, file_size, size);
2274 return NULL;
2277 new_block = g_malloc0(sizeof(*new_block));
2278 new_block->mr = mr;
2279 new_block->used_length = size;
2280 new_block->max_length = size;
2281 new_block->flags = ram_flags;
2282 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2283 if (!new_block->host) {
2284 g_free(new_block);
2285 return NULL;
2288 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2289 if (local_err) {
2290 g_free(new_block);
2291 error_propagate(errp, local_err);
2292 return NULL;
2294 return new_block;
2299 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2300 uint32_t ram_flags, const char *mem_path,
2301 Error **errp)
2303 int fd;
2304 bool created;
2305 RAMBlock *block;
2307 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2308 if (fd < 0) {
2309 return NULL;
2312 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2313 if (!block) {
2314 if (created) {
2315 unlink(mem_path);
2317 close(fd);
2318 return NULL;
2321 return block;
2323 #endif
2325 static
2326 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2327 void (*resized)(const char*,
2328 uint64_t length,
2329 void *host),
2330 void *host, bool resizeable, bool share,
2331 MemoryRegion *mr, Error **errp)
2333 RAMBlock *new_block;
2334 Error *local_err = NULL;
2336 size = HOST_PAGE_ALIGN(size);
2337 max_size = HOST_PAGE_ALIGN(max_size);
2338 new_block = g_malloc0(sizeof(*new_block));
2339 new_block->mr = mr;
2340 new_block->resized = resized;
2341 new_block->used_length = size;
2342 new_block->max_length = max_size;
2343 assert(max_size >= size);
2344 new_block->fd = -1;
2345 new_block->page_size = getpagesize();
2346 new_block->host = host;
2347 if (host) {
2348 new_block->flags |= RAM_PREALLOC;
2350 if (resizeable) {
2351 new_block->flags |= RAM_RESIZEABLE;
2353 ram_block_add(new_block, &local_err, share);
2354 if (local_err) {
2355 g_free(new_block);
2356 error_propagate(errp, local_err);
2357 return NULL;
2359 return new_block;
2362 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2363 MemoryRegion *mr, Error **errp)
2365 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2366 false, mr, errp);
2369 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2370 MemoryRegion *mr, Error **errp)
2372 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2373 share, mr, errp);
2376 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2377 void (*resized)(const char*,
2378 uint64_t length,
2379 void *host),
2380 MemoryRegion *mr, Error **errp)
2382 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2383 false, mr, errp);
2386 static void reclaim_ramblock(RAMBlock *block)
2388 if (block->flags & RAM_PREALLOC) {
2390 } else if (xen_enabled()) {
2391 xen_invalidate_map_cache_entry(block->host);
2392 #ifndef _WIN32
2393 } else if (block->fd >= 0) {
2394 qemu_ram_munmap(block->host, block->max_length);
2395 close(block->fd);
2396 #endif
2397 } else {
2398 qemu_anon_ram_free(block->host, block->max_length);
2400 g_free(block);
2403 void qemu_ram_free(RAMBlock *block)
2405 if (!block) {
2406 return;
2409 if (block->host) {
2410 ram_block_notify_remove(block->host, block->max_length);
2413 qemu_mutex_lock_ramlist();
2414 QLIST_REMOVE_RCU(block, next);
2415 ram_list.mru_block = NULL;
2416 /* Write list before version */
2417 smp_wmb();
2418 ram_list.version++;
2419 call_rcu(block, reclaim_ramblock, rcu);
2420 qemu_mutex_unlock_ramlist();
2423 #ifndef _WIN32
2424 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2426 RAMBlock *block;
2427 ram_addr_t offset;
2428 int flags;
2429 void *area, *vaddr;
2431 RAMBLOCK_FOREACH(block) {
2432 offset = addr - block->offset;
2433 if (offset < block->max_length) {
2434 vaddr = ramblock_ptr(block, offset);
2435 if (block->flags & RAM_PREALLOC) {
2437 } else if (xen_enabled()) {
2438 abort();
2439 } else {
2440 flags = MAP_FIXED;
2441 if (block->fd >= 0) {
2442 flags |= (block->flags & RAM_SHARED ?
2443 MAP_SHARED : MAP_PRIVATE);
2444 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2445 flags, block->fd, offset);
2446 } else {
2448 * Remap needs to match alloc. Accelerators that
2449 * set phys_mem_alloc never remap. If they did,
2450 * we'd need a remap hook here.
2452 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2454 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2455 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2456 flags, -1, 0);
2458 if (area != vaddr) {
2459 error_report("Could not remap addr: "
2460 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2461 length, addr);
2462 exit(1);
2464 memory_try_enable_merging(vaddr, length);
2465 qemu_ram_setup_dump(vaddr, length);
2470 #endif /* !_WIN32 */
2472 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2473 * This should not be used for general purpose DMA. Use address_space_map
2474 * or address_space_rw instead. For local memory (e.g. video ram) that the
2475 * device owns, use memory_region_get_ram_ptr.
2477 * Called within RCU critical section.
2479 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2481 RAMBlock *block = ram_block;
2483 if (block == NULL) {
2484 block = qemu_get_ram_block(addr);
2485 addr -= block->offset;
2488 if (xen_enabled() && block->host == NULL) {
2489 /* We need to check if the requested address is in the RAM
2490 * because we don't want to map the entire memory in QEMU.
2491 * In that case just map until the end of the page.
2493 if (block->offset == 0) {
2494 return xen_map_cache(addr, 0, 0, false);
2497 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2499 return ramblock_ptr(block, addr);
2502 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2503 * but takes a size argument.
2505 * Called within RCU critical section.
2507 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2508 hwaddr *size, bool lock)
2510 RAMBlock *block = ram_block;
2511 if (*size == 0) {
2512 return NULL;
2515 if (block == NULL) {
2516 block = qemu_get_ram_block(addr);
2517 addr -= block->offset;
2519 *size = MIN(*size, block->max_length - addr);
2521 if (xen_enabled() && block->host == NULL) {
2522 /* We need to check if the requested address is in the RAM
2523 * because we don't want to map the entire memory in QEMU.
2524 * In that case just map the requested area.
2526 if (block->offset == 0) {
2527 return xen_map_cache(addr, *size, lock, lock);
2530 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2533 return ramblock_ptr(block, addr);
2536 /* Return the offset of a hostpointer within a ramblock */
2537 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2539 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2540 assert((uintptr_t)host >= (uintptr_t)rb->host);
2541 assert(res < rb->max_length);
2543 return res;
2547 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2548 * in that RAMBlock.
2550 * ptr: Host pointer to look up
2551 * round_offset: If true round the result offset down to a page boundary
2552 * *ram_addr: set to result ram_addr
2553 * *offset: set to result offset within the RAMBlock
2555 * Returns: RAMBlock (or NULL if not found)
2557 * By the time this function returns, the returned pointer is not protected
2558 * by RCU anymore. If the caller is not within an RCU critical section and
2559 * does not hold the iothread lock, it must have other means of protecting the
2560 * pointer, such as a reference to the region that includes the incoming
2561 * ram_addr_t.
2563 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2564 ram_addr_t *offset)
2566 RAMBlock *block;
2567 uint8_t *host = ptr;
2569 if (xen_enabled()) {
2570 ram_addr_t ram_addr;
2571 rcu_read_lock();
2572 ram_addr = xen_ram_addr_from_mapcache(ptr);
2573 block = qemu_get_ram_block(ram_addr);
2574 if (block) {
2575 *offset = ram_addr - block->offset;
2577 rcu_read_unlock();
2578 return block;
2581 rcu_read_lock();
2582 block = atomic_rcu_read(&ram_list.mru_block);
2583 if (block && block->host && host - block->host < block->max_length) {
2584 goto found;
2587 RAMBLOCK_FOREACH(block) {
2588 /* This case append when the block is not mapped. */
2589 if (block->host == NULL) {
2590 continue;
2592 if (host - block->host < block->max_length) {
2593 goto found;
2597 rcu_read_unlock();
2598 return NULL;
2600 found:
2601 *offset = (host - block->host);
2602 if (round_offset) {
2603 *offset &= TARGET_PAGE_MASK;
2605 rcu_read_unlock();
2606 return block;
2610 * Finds the named RAMBlock
2612 * name: The name of RAMBlock to find
2614 * Returns: RAMBlock (or NULL if not found)
2616 RAMBlock *qemu_ram_block_by_name(const char *name)
2618 RAMBlock *block;
2620 RAMBLOCK_FOREACH(block) {
2621 if (!strcmp(name, block->idstr)) {
2622 return block;
2626 return NULL;
2629 /* Some of the softmmu routines need to translate from a host pointer
2630 (typically a TLB entry) back to a ram offset. */
2631 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2633 RAMBlock *block;
2634 ram_addr_t offset;
2636 block = qemu_ram_block_from_host(ptr, false, &offset);
2637 if (!block) {
2638 return RAM_ADDR_INVALID;
2641 return block->offset + offset;
2644 /* Called within RCU critical section. */
2645 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2646 CPUState *cpu,
2647 vaddr mem_vaddr,
2648 ram_addr_t ram_addr,
2649 unsigned size)
2651 ndi->cpu = cpu;
2652 ndi->ram_addr = ram_addr;
2653 ndi->mem_vaddr = mem_vaddr;
2654 ndi->size = size;
2655 ndi->pages = NULL;
2657 assert(tcg_enabled());
2658 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2659 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2660 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2664 /* Called within RCU critical section. */
2665 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2667 if (ndi->pages) {
2668 assert(tcg_enabled());
2669 page_collection_unlock(ndi->pages);
2670 ndi->pages = NULL;
2673 /* Set both VGA and migration bits for simplicity and to remove
2674 * the notdirty callback faster.
2676 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2677 DIRTY_CLIENTS_NOCODE);
2678 /* we remove the notdirty callback only if the code has been
2679 flushed */
2680 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2681 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2685 /* Called within RCU critical section. */
2686 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2687 uint64_t val, unsigned size)
2689 NotDirtyInfo ndi;
2691 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2692 ram_addr, size);
2694 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2695 memory_notdirty_write_complete(&ndi);
2698 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2699 unsigned size, bool is_write,
2700 MemTxAttrs attrs)
2702 return is_write;
2705 static const MemoryRegionOps notdirty_mem_ops = {
2706 .write = notdirty_mem_write,
2707 .valid.accepts = notdirty_mem_accepts,
2708 .endianness = DEVICE_NATIVE_ENDIAN,
2709 .valid = {
2710 .min_access_size = 1,
2711 .max_access_size = 8,
2712 .unaligned = false,
2714 .impl = {
2715 .min_access_size = 1,
2716 .max_access_size = 8,
2717 .unaligned = false,
2721 /* Generate a debug exception if a watchpoint has been hit. */
2722 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2724 CPUState *cpu = current_cpu;
2725 CPUClass *cc = CPU_GET_CLASS(cpu);
2726 target_ulong vaddr;
2727 CPUWatchpoint *wp;
2729 assert(tcg_enabled());
2730 if (cpu->watchpoint_hit) {
2731 /* We re-entered the check after replacing the TB. Now raise
2732 * the debug interrupt so that is will trigger after the
2733 * current instruction. */
2734 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2735 return;
2737 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2738 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2739 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2740 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2741 && (wp->flags & flags)) {
2742 if (flags == BP_MEM_READ) {
2743 wp->flags |= BP_WATCHPOINT_HIT_READ;
2744 } else {
2745 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2747 wp->hitaddr = vaddr;
2748 wp->hitattrs = attrs;
2749 if (!cpu->watchpoint_hit) {
2750 if (wp->flags & BP_CPU &&
2751 !cc->debug_check_watchpoint(cpu, wp)) {
2752 wp->flags &= ~BP_WATCHPOINT_HIT;
2753 continue;
2755 cpu->watchpoint_hit = wp;
2757 mmap_lock();
2758 tb_check_watchpoint(cpu);
2759 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2760 cpu->exception_index = EXCP_DEBUG;
2761 mmap_unlock();
2762 cpu_loop_exit(cpu);
2763 } else {
2764 /* Force execution of one insn next time. */
2765 cpu->cflags_next_tb = 1 | curr_cflags();
2766 mmap_unlock();
2767 cpu_loop_exit_noexc(cpu);
2770 } else {
2771 wp->flags &= ~BP_WATCHPOINT_HIT;
2776 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2777 so these check for a hit then pass through to the normal out-of-line
2778 phys routines. */
2779 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2780 unsigned size, MemTxAttrs attrs)
2782 MemTxResult res;
2783 uint64_t data;
2784 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2785 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2787 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2788 switch (size) {
2789 case 1:
2790 data = address_space_ldub(as, addr, attrs, &res);
2791 break;
2792 case 2:
2793 data = address_space_lduw(as, addr, attrs, &res);
2794 break;
2795 case 4:
2796 data = address_space_ldl(as, addr, attrs, &res);
2797 break;
2798 case 8:
2799 data = address_space_ldq(as, addr, attrs, &res);
2800 break;
2801 default: abort();
2803 *pdata = data;
2804 return res;
2807 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2808 uint64_t val, unsigned size,
2809 MemTxAttrs attrs)
2811 MemTxResult res;
2812 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2813 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2815 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2816 switch (size) {
2817 case 1:
2818 address_space_stb(as, addr, val, attrs, &res);
2819 break;
2820 case 2:
2821 address_space_stw(as, addr, val, attrs, &res);
2822 break;
2823 case 4:
2824 address_space_stl(as, addr, val, attrs, &res);
2825 break;
2826 case 8:
2827 address_space_stq(as, addr, val, attrs, &res);
2828 break;
2829 default: abort();
2831 return res;
2834 static const MemoryRegionOps watch_mem_ops = {
2835 .read_with_attrs = watch_mem_read,
2836 .write_with_attrs = watch_mem_write,
2837 .endianness = DEVICE_NATIVE_ENDIAN,
2838 .valid = {
2839 .min_access_size = 1,
2840 .max_access_size = 8,
2841 .unaligned = false,
2843 .impl = {
2844 .min_access_size = 1,
2845 .max_access_size = 8,
2846 .unaligned = false,
2850 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2851 MemTxAttrs attrs, uint8_t *buf, int len);
2852 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2853 const uint8_t *buf, int len);
2854 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2855 bool is_write, MemTxAttrs attrs);
2857 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2858 unsigned len, MemTxAttrs attrs)
2860 subpage_t *subpage = opaque;
2861 uint8_t buf[8];
2862 MemTxResult res;
2864 #if defined(DEBUG_SUBPAGE)
2865 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2866 subpage, len, addr);
2867 #endif
2868 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2869 if (res) {
2870 return res;
2872 *data = ldn_p(buf, len);
2873 return MEMTX_OK;
2876 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2877 uint64_t value, unsigned len, MemTxAttrs attrs)
2879 subpage_t *subpage = opaque;
2880 uint8_t buf[8];
2882 #if defined(DEBUG_SUBPAGE)
2883 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2884 " value %"PRIx64"\n",
2885 __func__, subpage, len, addr, value);
2886 #endif
2887 stn_p(buf, len, value);
2888 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2891 static bool subpage_accepts(void *opaque, hwaddr addr,
2892 unsigned len, bool is_write,
2893 MemTxAttrs attrs)
2895 subpage_t *subpage = opaque;
2896 #if defined(DEBUG_SUBPAGE)
2897 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2898 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2899 #endif
2901 return flatview_access_valid(subpage->fv, addr + subpage->base,
2902 len, is_write, attrs);
2905 static const MemoryRegionOps subpage_ops = {
2906 .read_with_attrs = subpage_read,
2907 .write_with_attrs = subpage_write,
2908 .impl.min_access_size = 1,
2909 .impl.max_access_size = 8,
2910 .valid.min_access_size = 1,
2911 .valid.max_access_size = 8,
2912 .valid.accepts = subpage_accepts,
2913 .endianness = DEVICE_NATIVE_ENDIAN,
2916 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2917 uint16_t section)
2919 int idx, eidx;
2921 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2922 return -1;
2923 idx = SUBPAGE_IDX(start);
2924 eidx = SUBPAGE_IDX(end);
2925 #if defined(DEBUG_SUBPAGE)
2926 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2927 __func__, mmio, start, end, idx, eidx, section);
2928 #endif
2929 for (; idx <= eidx; idx++) {
2930 mmio->sub_section[idx] = section;
2933 return 0;
2936 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2938 subpage_t *mmio;
2940 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2941 mmio->fv = fv;
2942 mmio->base = base;
2943 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2944 NULL, TARGET_PAGE_SIZE);
2945 mmio->iomem.subpage = true;
2946 #if defined(DEBUG_SUBPAGE)
2947 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2948 mmio, base, TARGET_PAGE_SIZE);
2949 #endif
2950 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2952 return mmio;
2955 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2957 assert(fv);
2958 MemoryRegionSection section = {
2959 .fv = fv,
2960 .mr = mr,
2961 .offset_within_address_space = 0,
2962 .offset_within_region = 0,
2963 .size = int128_2_64(),
2966 return phys_section_add(map, &section);
2969 static void readonly_mem_write(void *opaque, hwaddr addr,
2970 uint64_t val, unsigned size)
2972 /* Ignore any write to ROM. */
2975 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2976 unsigned size, bool is_write,
2977 MemTxAttrs attrs)
2979 return is_write;
2982 /* This will only be used for writes, because reads are special cased
2983 * to directly access the underlying host ram.
2985 static const MemoryRegionOps readonly_mem_ops = {
2986 .write = readonly_mem_write,
2987 .valid.accepts = readonly_mem_accepts,
2988 .endianness = DEVICE_NATIVE_ENDIAN,
2989 .valid = {
2990 .min_access_size = 1,
2991 .max_access_size = 8,
2992 .unaligned = false,
2994 .impl = {
2995 .min_access_size = 1,
2996 .max_access_size = 8,
2997 .unaligned = false,
3001 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3002 hwaddr index, MemTxAttrs attrs)
3004 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3005 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3006 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3007 MemoryRegionSection *sections = d->map.sections;
3009 return &sections[index & ~TARGET_PAGE_MASK];
3012 static void io_mem_init(void)
3014 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3015 NULL, NULL, UINT64_MAX);
3016 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3017 NULL, UINT64_MAX);
3019 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3020 * which can be called without the iothread mutex.
3022 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3023 NULL, UINT64_MAX);
3024 memory_region_clear_global_locking(&io_mem_notdirty);
3026 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3027 NULL, UINT64_MAX);
3030 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3032 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3033 uint16_t n;
3035 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3036 assert(n == PHYS_SECTION_UNASSIGNED);
3037 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3038 assert(n == PHYS_SECTION_NOTDIRTY);
3039 n = dummy_section(&d->map, fv, &io_mem_rom);
3040 assert(n == PHYS_SECTION_ROM);
3041 n = dummy_section(&d->map, fv, &io_mem_watch);
3042 assert(n == PHYS_SECTION_WATCH);
3044 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3046 return d;
3049 void address_space_dispatch_free(AddressSpaceDispatch *d)
3051 phys_sections_free(&d->map);
3052 g_free(d);
3055 static void tcg_commit(MemoryListener *listener)
3057 CPUAddressSpace *cpuas;
3058 AddressSpaceDispatch *d;
3060 assert(tcg_enabled());
3061 /* since each CPU stores ram addresses in its TLB cache, we must
3062 reset the modified entries */
3063 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3064 cpu_reloading_memory_map();
3065 /* The CPU and TLB are protected by the iothread lock.
3066 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3067 * may have split the RCU critical section.
3069 d = address_space_to_dispatch(cpuas->as);
3070 atomic_rcu_set(&cpuas->memory_dispatch, d);
3071 tlb_flush(cpuas->cpu);
3074 static void memory_map_init(void)
3076 system_memory = g_malloc(sizeof(*system_memory));
3078 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3079 address_space_init(&address_space_memory, system_memory, "memory");
3081 system_io = g_malloc(sizeof(*system_io));
3082 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3083 65536);
3084 address_space_init(&address_space_io, system_io, "I/O");
3087 MemoryRegion *get_system_memory(void)
3089 return system_memory;
3092 MemoryRegion *get_system_io(void)
3094 return system_io;
3097 #endif /* !defined(CONFIG_USER_ONLY) */
3099 /* physical memory access (slow version, mainly for debug) */
3100 #if defined(CONFIG_USER_ONLY)
3101 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3102 uint8_t *buf, int len, int is_write)
3104 int l, flags;
3105 target_ulong page;
3106 void * p;
3108 while (len > 0) {
3109 page = addr & TARGET_PAGE_MASK;
3110 l = (page + TARGET_PAGE_SIZE) - addr;
3111 if (l > len)
3112 l = len;
3113 flags = page_get_flags(page);
3114 if (!(flags & PAGE_VALID))
3115 return -1;
3116 if (is_write) {
3117 if (!(flags & PAGE_WRITE))
3118 return -1;
3119 /* XXX: this code should not depend on lock_user */
3120 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3121 return -1;
3122 memcpy(p, buf, l);
3123 unlock_user(p, addr, l);
3124 } else {
3125 if (!(flags & PAGE_READ))
3126 return -1;
3127 /* XXX: this code should not depend on lock_user */
3128 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3129 return -1;
3130 memcpy(buf, p, l);
3131 unlock_user(p, addr, 0);
3133 len -= l;
3134 buf += l;
3135 addr += l;
3137 return 0;
3140 #else
3142 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3143 hwaddr length)
3145 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3146 addr += memory_region_get_ram_addr(mr);
3148 /* No early return if dirty_log_mask is or becomes 0, because
3149 * cpu_physical_memory_set_dirty_range will still call
3150 * xen_modified_memory.
3152 if (dirty_log_mask) {
3153 dirty_log_mask =
3154 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3156 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3157 assert(tcg_enabled());
3158 tb_invalidate_phys_range(addr, addr + length);
3159 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3161 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3164 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3166 unsigned access_size_max = mr->ops->valid.max_access_size;
3168 /* Regions are assumed to support 1-4 byte accesses unless
3169 otherwise specified. */
3170 if (access_size_max == 0) {
3171 access_size_max = 4;
3174 /* Bound the maximum access by the alignment of the address. */
3175 if (!mr->ops->impl.unaligned) {
3176 unsigned align_size_max = addr & -addr;
3177 if (align_size_max != 0 && align_size_max < access_size_max) {
3178 access_size_max = align_size_max;
3182 /* Don't attempt accesses larger than the maximum. */
3183 if (l > access_size_max) {
3184 l = access_size_max;
3186 l = pow2floor(l);
3188 return l;
3191 static bool prepare_mmio_access(MemoryRegion *mr)
3193 bool unlocked = !qemu_mutex_iothread_locked();
3194 bool release_lock = false;
3196 if (unlocked && mr->global_locking) {
3197 qemu_mutex_lock_iothread();
3198 unlocked = false;
3199 release_lock = true;
3201 if (mr->flush_coalesced_mmio) {
3202 if (unlocked) {
3203 qemu_mutex_lock_iothread();
3205 qemu_flush_coalesced_mmio_buffer();
3206 if (unlocked) {
3207 qemu_mutex_unlock_iothread();
3211 return release_lock;
3214 /* Called within RCU critical section. */
3215 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3216 MemTxAttrs attrs,
3217 const uint8_t *buf,
3218 int len, hwaddr addr1,
3219 hwaddr l, MemoryRegion *mr)
3221 uint8_t *ptr;
3222 uint64_t val;
3223 MemTxResult result = MEMTX_OK;
3224 bool release_lock = false;
3226 for (;;) {
3227 if (!memory_access_is_direct(mr, true)) {
3228 release_lock |= prepare_mmio_access(mr);
3229 l = memory_access_size(mr, l, addr1);
3230 /* XXX: could force current_cpu to NULL to avoid
3231 potential bugs */
3232 val = ldn_p(buf, l);
3233 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3234 } else {
3235 /* RAM case */
3236 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3237 memcpy(ptr, buf, l);
3238 invalidate_and_set_dirty(mr, addr1, l);
3241 if (release_lock) {
3242 qemu_mutex_unlock_iothread();
3243 release_lock = false;
3246 len -= l;
3247 buf += l;
3248 addr += l;
3250 if (!len) {
3251 break;
3254 l = len;
3255 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3258 return result;
3261 /* Called from RCU critical section. */
3262 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3263 const uint8_t *buf, int len)
3265 hwaddr l;
3266 hwaddr addr1;
3267 MemoryRegion *mr;
3268 MemTxResult result = MEMTX_OK;
3270 l = len;
3271 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3272 result = flatview_write_continue(fv, addr, attrs, buf, len,
3273 addr1, l, mr);
3275 return result;
3278 /* Called within RCU critical section. */
3279 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3280 MemTxAttrs attrs, uint8_t *buf,
3281 int len, hwaddr addr1, hwaddr l,
3282 MemoryRegion *mr)
3284 uint8_t *ptr;
3285 uint64_t val;
3286 MemTxResult result = MEMTX_OK;
3287 bool release_lock = false;
3289 for (;;) {
3290 if (!memory_access_is_direct(mr, false)) {
3291 /* I/O case */
3292 release_lock |= prepare_mmio_access(mr);
3293 l = memory_access_size(mr, l, addr1);
3294 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3295 stn_p(buf, l, val);
3296 } else {
3297 /* RAM case */
3298 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3299 memcpy(buf, ptr, l);
3302 if (release_lock) {
3303 qemu_mutex_unlock_iothread();
3304 release_lock = false;
3307 len -= l;
3308 buf += l;
3309 addr += l;
3311 if (!len) {
3312 break;
3315 l = len;
3316 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3319 return result;
3322 /* Called from RCU critical section. */
3323 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3324 MemTxAttrs attrs, uint8_t *buf, int len)
3326 hwaddr l;
3327 hwaddr addr1;
3328 MemoryRegion *mr;
3330 l = len;
3331 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3332 return flatview_read_continue(fv, addr, attrs, buf, len,
3333 addr1, l, mr);
3336 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3337 MemTxAttrs attrs, uint8_t *buf, int len)
3339 MemTxResult result = MEMTX_OK;
3340 FlatView *fv;
3342 if (len > 0) {
3343 rcu_read_lock();
3344 fv = address_space_to_flatview(as);
3345 result = flatview_read(fv, addr, attrs, buf, len);
3346 rcu_read_unlock();
3349 return result;
3352 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3353 MemTxAttrs attrs,
3354 const uint8_t *buf, int len)
3356 MemTxResult result = MEMTX_OK;
3357 FlatView *fv;
3359 if (len > 0) {
3360 rcu_read_lock();
3361 fv = address_space_to_flatview(as);
3362 result = flatview_write(fv, addr, attrs, buf, len);
3363 rcu_read_unlock();
3366 return result;
3369 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3370 uint8_t *buf, int len, bool is_write)
3372 if (is_write) {
3373 return address_space_write(as, addr, attrs, buf, len);
3374 } else {
3375 return address_space_read_full(as, addr, attrs, buf, len);
3379 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3380 int len, int is_write)
3382 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3383 buf, len, is_write);
3386 enum write_rom_type {
3387 WRITE_DATA,
3388 FLUSH_CACHE,
3391 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3392 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3394 hwaddr l;
3395 uint8_t *ptr;
3396 hwaddr addr1;
3397 MemoryRegion *mr;
3399 rcu_read_lock();
3400 while (len > 0) {
3401 l = len;
3402 mr = address_space_translate(as, addr, &addr1, &l, true,
3403 MEMTXATTRS_UNSPECIFIED);
3405 if (!(memory_region_is_ram(mr) ||
3406 memory_region_is_romd(mr))) {
3407 l = memory_access_size(mr, l, addr1);
3408 } else {
3409 /* ROM/RAM case */
3410 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3411 switch (type) {
3412 case WRITE_DATA:
3413 memcpy(ptr, buf, l);
3414 invalidate_and_set_dirty(mr, addr1, l);
3415 break;
3416 case FLUSH_CACHE:
3417 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3418 break;
3421 len -= l;
3422 buf += l;
3423 addr += l;
3425 rcu_read_unlock();
3428 /* used for ROM loading : can write in RAM and ROM */
3429 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3430 const uint8_t *buf, int len)
3432 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3435 void cpu_flush_icache_range(hwaddr start, int len)
3438 * This function should do the same thing as an icache flush that was
3439 * triggered from within the guest. For TCG we are always cache coherent,
3440 * so there is no need to flush anything. For KVM / Xen we need to flush
3441 * the host's instruction cache at least.
3443 if (tcg_enabled()) {
3444 return;
3447 cpu_physical_memory_write_rom_internal(&address_space_memory,
3448 start, NULL, len, FLUSH_CACHE);
3451 typedef struct {
3452 MemoryRegion *mr;
3453 void *buffer;
3454 hwaddr addr;
3455 hwaddr len;
3456 bool in_use;
3457 } BounceBuffer;
3459 static BounceBuffer bounce;
3461 typedef struct MapClient {
3462 QEMUBH *bh;
3463 QLIST_ENTRY(MapClient) link;
3464 } MapClient;
3466 QemuMutex map_client_list_lock;
3467 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3468 = QLIST_HEAD_INITIALIZER(map_client_list);
3470 static void cpu_unregister_map_client_do(MapClient *client)
3472 QLIST_REMOVE(client, link);
3473 g_free(client);
3476 static void cpu_notify_map_clients_locked(void)
3478 MapClient *client;
3480 while (!QLIST_EMPTY(&map_client_list)) {
3481 client = QLIST_FIRST(&map_client_list);
3482 qemu_bh_schedule(client->bh);
3483 cpu_unregister_map_client_do(client);
3487 void cpu_register_map_client(QEMUBH *bh)
3489 MapClient *client = g_malloc(sizeof(*client));
3491 qemu_mutex_lock(&map_client_list_lock);
3492 client->bh = bh;
3493 QLIST_INSERT_HEAD(&map_client_list, client, link);
3494 if (!atomic_read(&bounce.in_use)) {
3495 cpu_notify_map_clients_locked();
3497 qemu_mutex_unlock(&map_client_list_lock);
3500 void cpu_exec_init_all(void)
3502 qemu_mutex_init(&ram_list.mutex);
3503 /* The data structures we set up here depend on knowing the page size,
3504 * so no more changes can be made after this point.
3505 * In an ideal world, nothing we did before we had finished the
3506 * machine setup would care about the target page size, and we could
3507 * do this much later, rather than requiring board models to state
3508 * up front what their requirements are.
3510 finalize_target_page_bits();
3511 io_mem_init();
3512 memory_map_init();
3513 qemu_mutex_init(&map_client_list_lock);
3516 void cpu_unregister_map_client(QEMUBH *bh)
3518 MapClient *client;
3520 qemu_mutex_lock(&map_client_list_lock);
3521 QLIST_FOREACH(client, &map_client_list, link) {
3522 if (client->bh == bh) {
3523 cpu_unregister_map_client_do(client);
3524 break;
3527 qemu_mutex_unlock(&map_client_list_lock);
3530 static void cpu_notify_map_clients(void)
3532 qemu_mutex_lock(&map_client_list_lock);
3533 cpu_notify_map_clients_locked();
3534 qemu_mutex_unlock(&map_client_list_lock);
3537 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3538 bool is_write, MemTxAttrs attrs)
3540 MemoryRegion *mr;
3541 hwaddr l, xlat;
3543 while (len > 0) {
3544 l = len;
3545 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3546 if (!memory_access_is_direct(mr, is_write)) {
3547 l = memory_access_size(mr, l, addr);
3548 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3549 return false;
3553 len -= l;
3554 addr += l;
3556 return true;
3559 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3560 int len, bool is_write,
3561 MemTxAttrs attrs)
3563 FlatView *fv;
3564 bool result;
3566 rcu_read_lock();
3567 fv = address_space_to_flatview(as);
3568 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3569 rcu_read_unlock();
3570 return result;
3573 static hwaddr
3574 flatview_extend_translation(FlatView *fv, hwaddr addr,
3575 hwaddr target_len,
3576 MemoryRegion *mr, hwaddr base, hwaddr len,
3577 bool is_write, MemTxAttrs attrs)
3579 hwaddr done = 0;
3580 hwaddr xlat;
3581 MemoryRegion *this_mr;
3583 for (;;) {
3584 target_len -= len;
3585 addr += len;
3586 done += len;
3587 if (target_len == 0) {
3588 return done;
3591 len = target_len;
3592 this_mr = flatview_translate(fv, addr, &xlat,
3593 &len, is_write, attrs);
3594 if (this_mr != mr || xlat != base + done) {
3595 return done;
3600 /* Map a physical memory region into a host virtual address.
3601 * May map a subset of the requested range, given by and returned in *plen.
3602 * May return NULL if resources needed to perform the mapping are exhausted.
3603 * Use only for reads OR writes - not for read-modify-write operations.
3604 * Use cpu_register_map_client() to know when retrying the map operation is
3605 * likely to succeed.
3607 void *address_space_map(AddressSpace *as,
3608 hwaddr addr,
3609 hwaddr *plen,
3610 bool is_write,
3611 MemTxAttrs attrs)
3613 hwaddr len = *plen;
3614 hwaddr l, xlat;
3615 MemoryRegion *mr;
3616 void *ptr;
3617 FlatView *fv;
3619 if (len == 0) {
3620 return NULL;
3623 l = len;
3624 rcu_read_lock();
3625 fv = address_space_to_flatview(as);
3626 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3628 if (!memory_access_is_direct(mr, is_write)) {
3629 if (atomic_xchg(&bounce.in_use, true)) {
3630 rcu_read_unlock();
3631 return NULL;
3633 /* Avoid unbounded allocations */
3634 l = MIN(l, TARGET_PAGE_SIZE);
3635 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3636 bounce.addr = addr;
3637 bounce.len = l;
3639 memory_region_ref(mr);
3640 bounce.mr = mr;
3641 if (!is_write) {
3642 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3643 bounce.buffer, l);
3646 rcu_read_unlock();
3647 *plen = l;
3648 return bounce.buffer;
3652 memory_region_ref(mr);
3653 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3654 l, is_write, attrs);
3655 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3656 rcu_read_unlock();
3658 return ptr;
3661 /* Unmaps a memory region previously mapped by address_space_map().
3662 * Will also mark the memory as dirty if is_write == 1. access_len gives
3663 * the amount of memory that was actually read or written by the caller.
3665 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3666 int is_write, hwaddr access_len)
3668 if (buffer != bounce.buffer) {
3669 MemoryRegion *mr;
3670 ram_addr_t addr1;
3672 mr = memory_region_from_host(buffer, &addr1);
3673 assert(mr != NULL);
3674 if (is_write) {
3675 invalidate_and_set_dirty(mr, addr1, access_len);
3677 if (xen_enabled()) {
3678 xen_invalidate_map_cache_entry(buffer);
3680 memory_region_unref(mr);
3681 return;
3683 if (is_write) {
3684 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3685 bounce.buffer, access_len);
3687 qemu_vfree(bounce.buffer);
3688 bounce.buffer = NULL;
3689 memory_region_unref(bounce.mr);
3690 atomic_mb_set(&bounce.in_use, false);
3691 cpu_notify_map_clients();
3694 void *cpu_physical_memory_map(hwaddr addr,
3695 hwaddr *plen,
3696 int is_write)
3698 return address_space_map(&address_space_memory, addr, plen, is_write,
3699 MEMTXATTRS_UNSPECIFIED);
3702 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3703 int is_write, hwaddr access_len)
3705 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3708 #define ARG1_DECL AddressSpace *as
3709 #define ARG1 as
3710 #define SUFFIX
3711 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3712 #define RCU_READ_LOCK(...) rcu_read_lock()
3713 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3714 #include "memory_ldst.inc.c"
3716 int64_t address_space_cache_init(MemoryRegionCache *cache,
3717 AddressSpace *as,
3718 hwaddr addr,
3719 hwaddr len,
3720 bool is_write)
3722 AddressSpaceDispatch *d;
3723 hwaddr l;
3724 MemoryRegion *mr;
3726 assert(len > 0);
3728 l = len;
3729 cache->fv = address_space_get_flatview(as);
3730 d = flatview_to_dispatch(cache->fv);
3731 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3733 mr = cache->mrs.mr;
3734 memory_region_ref(mr);
3735 if (memory_access_is_direct(mr, is_write)) {
3736 /* We don't care about the memory attributes here as we're only
3737 * doing this if we found actual RAM, which behaves the same
3738 * regardless of attributes; so UNSPECIFIED is fine.
3740 l = flatview_extend_translation(cache->fv, addr, len, mr,
3741 cache->xlat, l, is_write,
3742 MEMTXATTRS_UNSPECIFIED);
3743 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3744 } else {
3745 cache->ptr = NULL;
3748 cache->len = l;
3749 cache->is_write = is_write;
3750 return l;
3753 void address_space_cache_invalidate(MemoryRegionCache *cache,
3754 hwaddr addr,
3755 hwaddr access_len)
3757 assert(cache->is_write);
3758 if (likely(cache->ptr)) {
3759 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3763 void address_space_cache_destroy(MemoryRegionCache *cache)
3765 if (!cache->mrs.mr) {
3766 return;
3769 if (xen_enabled()) {
3770 xen_invalidate_map_cache_entry(cache->ptr);
3772 memory_region_unref(cache->mrs.mr);
3773 flatview_unref(cache->fv);
3774 cache->mrs.mr = NULL;
3775 cache->fv = NULL;
3778 /* Called from RCU critical section. This function has the same
3779 * semantics as address_space_translate, but it only works on a
3780 * predefined range of a MemoryRegion that was mapped with
3781 * address_space_cache_init.
3783 static inline MemoryRegion *address_space_translate_cached(
3784 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3785 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3787 MemoryRegionSection section;
3788 MemoryRegion *mr;
3789 IOMMUMemoryRegion *iommu_mr;
3790 AddressSpace *target_as;
3792 assert(!cache->ptr);
3793 *xlat = addr + cache->xlat;
3795 mr = cache->mrs.mr;
3796 iommu_mr = memory_region_get_iommu(mr);
3797 if (!iommu_mr) {
3798 /* MMIO region. */
3799 return mr;
3802 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3803 NULL, is_write, true,
3804 &target_as, attrs);
3805 return section.mr;
3808 /* Called from RCU critical section. address_space_read_cached uses this
3809 * out of line function when the target is an MMIO or IOMMU region.
3811 void
3812 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3813 void *buf, int len)
3815 hwaddr addr1, l;
3816 MemoryRegion *mr;
3818 l = len;
3819 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3820 MEMTXATTRS_UNSPECIFIED);
3821 flatview_read_continue(cache->fv,
3822 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3823 addr1, l, mr);
3826 /* Called from RCU critical section. address_space_write_cached uses this
3827 * out of line function when the target is an MMIO or IOMMU region.
3829 void
3830 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3831 const void *buf, int len)
3833 hwaddr addr1, l;
3834 MemoryRegion *mr;
3836 l = len;
3837 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3838 MEMTXATTRS_UNSPECIFIED);
3839 flatview_write_continue(cache->fv,
3840 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3841 addr1, l, mr);
3844 #define ARG1_DECL MemoryRegionCache *cache
3845 #define ARG1 cache
3846 #define SUFFIX _cached_slow
3847 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3848 #define RCU_READ_LOCK() ((void)0)
3849 #define RCU_READ_UNLOCK() ((void)0)
3850 #include "memory_ldst.inc.c"
3852 /* virtual memory access for debug (includes writing to ROM) */
3853 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3854 uint8_t *buf, int len, int is_write)
3856 int l;
3857 hwaddr phys_addr;
3858 target_ulong page;
3860 cpu_synchronize_state(cpu);
3861 while (len > 0) {
3862 int asidx;
3863 MemTxAttrs attrs;
3865 page = addr & TARGET_PAGE_MASK;
3866 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3867 asidx = cpu_asidx_from_attrs(cpu, attrs);
3868 /* if no physical page mapped, return an error */
3869 if (phys_addr == -1)
3870 return -1;
3871 l = (page + TARGET_PAGE_SIZE) - addr;
3872 if (l > len)
3873 l = len;
3874 phys_addr += (addr & ~TARGET_PAGE_MASK);
3875 if (is_write) {
3876 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3877 phys_addr, buf, l);
3878 } else {
3879 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3880 MEMTXATTRS_UNSPECIFIED,
3881 buf, l, 0);
3883 len -= l;
3884 buf += l;
3885 addr += l;
3887 return 0;
3891 * Allows code that needs to deal with migration bitmaps etc to still be built
3892 * target independent.
3894 size_t qemu_target_page_size(void)
3896 return TARGET_PAGE_SIZE;
3899 int qemu_target_page_bits(void)
3901 return TARGET_PAGE_BITS;
3904 int qemu_target_page_bits_min(void)
3906 return TARGET_PAGE_BITS_MIN;
3908 #endif
3910 bool target_words_bigendian(void)
3912 #if defined(TARGET_WORDS_BIGENDIAN)
3913 return true;
3914 #else
3915 return false;
3916 #endif
3919 #ifndef CONFIG_USER_ONLY
3920 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3922 MemoryRegion*mr;
3923 hwaddr l = 1;
3924 bool res;
3926 rcu_read_lock();
3927 mr = address_space_translate(&address_space_memory,
3928 phys_addr, &phys_addr, &l, false,
3929 MEMTXATTRS_UNSPECIFIED);
3931 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3932 rcu_read_unlock();
3933 return res;
3936 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3938 RAMBlock *block;
3939 int ret = 0;
3941 rcu_read_lock();
3942 RAMBLOCK_FOREACH(block) {
3943 ret = func(block->idstr, block->host, block->offset,
3944 block->used_length, opaque);
3945 if (ret) {
3946 break;
3949 rcu_read_unlock();
3950 return ret;
3953 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3955 RAMBlock *block;
3956 int ret = 0;
3958 rcu_read_lock();
3959 RAMBLOCK_FOREACH(block) {
3960 if (!qemu_ram_is_migratable(block)) {
3961 continue;
3963 ret = func(block->idstr, block->host, block->offset,
3964 block->used_length, opaque);
3965 if (ret) {
3966 break;
3969 rcu_read_unlock();
3970 return ret;
3974 * Unmap pages of memory from start to start+length such that
3975 * they a) read as 0, b) Trigger whatever fault mechanism
3976 * the OS provides for postcopy.
3977 * The pages must be unmapped by the end of the function.
3978 * Returns: 0 on success, none-0 on failure
3981 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3983 int ret = -1;
3985 uint8_t *host_startaddr = rb->host + start;
3987 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3988 error_report("ram_block_discard_range: Unaligned start address: %p",
3989 host_startaddr);
3990 goto err;
3993 if ((start + length) <= rb->used_length) {
3994 bool need_madvise, need_fallocate;
3995 uint8_t *host_endaddr = host_startaddr + length;
3996 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3997 error_report("ram_block_discard_range: Unaligned end address: %p",
3998 host_endaddr);
3999 goto err;
4002 errno = ENOTSUP; /* If we are missing MADVISE etc */
4004 /* The logic here is messy;
4005 * madvise DONTNEED fails for hugepages
4006 * fallocate works on hugepages and shmem
4008 need_madvise = (rb->page_size == qemu_host_page_size);
4009 need_fallocate = rb->fd != -1;
4010 if (need_fallocate) {
4011 /* For a file, this causes the area of the file to be zero'd
4012 * if read, and for hugetlbfs also causes it to be unmapped
4013 * so a userfault will trigger.
4015 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4016 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4017 start, length);
4018 if (ret) {
4019 ret = -errno;
4020 error_report("ram_block_discard_range: Failed to fallocate "
4021 "%s:%" PRIx64 " +%zx (%d)",
4022 rb->idstr, start, length, ret);
4023 goto err;
4025 #else
4026 ret = -ENOSYS;
4027 error_report("ram_block_discard_range: fallocate not available/file"
4028 "%s:%" PRIx64 " +%zx (%d)",
4029 rb->idstr, start, length, ret);
4030 goto err;
4031 #endif
4033 if (need_madvise) {
4034 /* For normal RAM this causes it to be unmapped,
4035 * for shared memory it causes the local mapping to disappear
4036 * and to fall back on the file contents (which we just
4037 * fallocate'd away).
4039 #if defined(CONFIG_MADVISE)
4040 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4041 if (ret) {
4042 ret = -errno;
4043 error_report("ram_block_discard_range: Failed to discard range "
4044 "%s:%" PRIx64 " +%zx (%d)",
4045 rb->idstr, start, length, ret);
4046 goto err;
4048 #else
4049 ret = -ENOSYS;
4050 error_report("ram_block_discard_range: MADVISE not available"
4051 "%s:%" PRIx64 " +%zx (%d)",
4052 rb->idstr, start, length, ret);
4053 goto err;
4054 #endif
4056 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4057 need_madvise, need_fallocate, ret);
4058 } else {
4059 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4060 "/%zx/" RAM_ADDR_FMT")",
4061 rb->idstr, start, length, rb->used_length);
4064 err:
4065 return ret;
4068 bool ramblock_is_pmem(RAMBlock *rb)
4070 return rb->flags & RAM_PMEM;
4073 #endif
4075 void page_size_init(void)
4077 /* NOTE: we can always suppose that qemu_host_page_size >=
4078 TARGET_PAGE_SIZE */
4079 if (qemu_host_page_size == 0) {
4080 qemu_host_page_size = qemu_real_host_page_size;
4082 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4083 qemu_host_page_size = TARGET_PAGE_SIZE;
4085 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4088 #if !defined(CONFIG_USER_ONLY)
4090 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4091 int start, int end, int skip, int ptr)
4093 if (start == end - 1) {
4094 mon(f, "\t%3d ", start);
4095 } else {
4096 mon(f, "\t%3d..%-3d ", start, end - 1);
4098 mon(f, " skip=%d ", skip);
4099 if (ptr == PHYS_MAP_NODE_NIL) {
4100 mon(f, " ptr=NIL");
4101 } else if (!skip) {
4102 mon(f, " ptr=#%d", ptr);
4103 } else {
4104 mon(f, " ptr=[%d]", ptr);
4106 mon(f, "\n");
4109 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4110 int128_sub((size), int128_one())) : 0)
4112 void mtree_print_dispatch(fprintf_function mon, void *f,
4113 AddressSpaceDispatch *d, MemoryRegion *root)
4115 int i;
4117 mon(f, " Dispatch\n");
4118 mon(f, " Physical sections\n");
4120 for (i = 0; i < d->map.sections_nb; ++i) {
4121 MemoryRegionSection *s = d->map.sections + i;
4122 const char *names[] = { " [unassigned]", " [not dirty]",
4123 " [ROM]", " [watch]" };
4125 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4127 s->offset_within_address_space,
4128 s->offset_within_address_space + MR_SIZE(s->mr->size),
4129 s->mr->name ? s->mr->name : "(noname)",
4130 i < ARRAY_SIZE(names) ? names[i] : "",
4131 s->mr == root ? " [ROOT]" : "",
4132 s == d->mru_section ? " [MRU]" : "",
4133 s->mr->is_iommu ? " [iommu]" : "");
4135 if (s->mr->alias) {
4136 mon(f, " alias=%s", s->mr->alias->name ?
4137 s->mr->alias->name : "noname");
4139 mon(f, "\n");
4142 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4143 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4144 for (i = 0; i < d->map.nodes_nb; ++i) {
4145 int j, jprev;
4146 PhysPageEntry prev;
4147 Node *n = d->map.nodes + i;
4149 mon(f, " [%d]\n", i);
4151 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4152 PhysPageEntry *pe = *n + j;
4154 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4155 continue;
4158 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4160 jprev = j;
4161 prev = *pe;
4164 if (jprev != ARRAY_SIZE(*n)) {
4165 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4170 #endif