Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / target-arm / cpu.h
blobfc7be51ff1d3b5be09a94f4cd31b86c184eed360
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #include "config.h"
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
30 #else
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
33 #endif
35 #define TARGET_IS_BIENDIAN 1
37 #define CPUArchState struct CPUARMState
39 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
42 #include "fpu/softfloat.h"
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_STREX 10
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
57 #define EXCP_VIRQ 14
58 #define EXCP_VFIQ 15
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SVC 11
67 #define ARMV7M_EXCP_DEBUG 12
68 #define ARMV7M_EXCP_PENDSV 14
69 #define ARMV7M_EXCP_SYSTICK 15
71 /* ARM-specific interrupt pending bits. */
72 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
76 /* The usual mapping for an AArch64 system register to its AArch32
77 * counterpart is for the 32 bit world to have access to the lower
78 * half only (with writes leaving the upper half untouched). It's
79 * therefore useful to be able to pass TCG the offset of the least
80 * significant half of a uint64_t struct member.
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
85 #else
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
88 #endif
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
91 #define ARM_CPU_IRQ 0
92 #define ARM_CPU_FIQ 1
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
96 struct arm_boot_info;
98 #define NB_MMU_MODES 7
100 /* We currently assume float and double are IEEE single and double
101 precision respectively.
102 Doing runtime conversions is tricky because VFP registers may contain
103 integer values (eg. as the result of a FTOSI instruction).
104 s<2n> maps to the least significant half of d<n>
105 s<2n+1> maps to the most significant half of d<n>
108 /* CPU state for each instance of a generic timer (in cp15 c14) */
109 typedef struct ARMGenericTimer {
110 uint64_t cval; /* Timer CompareValue register */
111 uint64_t ctl; /* Timer Control register */
112 } ARMGenericTimer;
114 #define GTIMER_PHYS 0
115 #define GTIMER_VIRT 1
116 #define GTIMER_HYP 2
117 #define GTIMER_SEC 3
118 #define NUM_GTIMERS 4
120 typedef struct {
121 uint64_t raw_tcr;
122 uint32_t mask;
123 uint32_t base_mask;
124 } TCR;
126 typedef struct CPUARMState {
127 /* Regs for current mode. */
128 uint32_t regs[16];
130 /* 32/64 switch only happens when taking and returning from
131 * exceptions so the overlap semantics are taken care of then
132 * instead of having a complicated union.
134 /* Regs for A64 mode. */
135 uint64_t xregs[32];
136 uint64_t pc;
137 /* PSTATE isn't an architectural register for ARMv8. However, it is
138 * convenient for us to assemble the underlying state into a 32 bit format
139 * identical to the architectural format used for the SPSR. (This is also
140 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
141 * 'pstate' register are.) Of the PSTATE bits:
142 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
143 * semantics as for AArch32, as described in the comments on each field)
144 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
145 * DAIF (exception masks) are kept in env->daif
146 * all other bits are stored in their correct places in env->pstate
148 uint32_t pstate;
149 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
151 /* Frequently accessed CPSR bits are stored separately for efficiency.
152 This contains all the other bits. Use cpsr_{read,write} to access
153 the whole CPSR. */
154 uint32_t uncached_cpsr;
155 uint32_t spsr;
157 /* Banked registers. */
158 uint64_t banked_spsr[8];
159 uint32_t banked_r13[8];
160 uint32_t banked_r14[8];
162 /* These hold r8-r12. */
163 uint32_t usr_regs[5];
164 uint32_t fiq_regs[5];
166 /* cpsr flag cache for faster execution */
167 uint32_t CF; /* 0 or 1 */
168 uint32_t VF; /* V is the bit 31. All other bits are undefined */
169 uint32_t NF; /* N is bit 31. All other bits are undefined. */
170 uint32_t ZF; /* Z set if zero. */
171 uint32_t QF; /* 0 or 1 */
172 uint32_t GE; /* cpsr[19:16] */
173 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
174 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
175 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
177 uint64_t elr_el[4]; /* AArch64 exception link regs */
178 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
180 /* System control coprocessor (cp15) */
181 struct {
182 uint32_t c0_cpuid;
183 union { /* Cache size selection */
184 struct {
185 uint64_t _unused_csselr0;
186 uint64_t csselr_ns;
187 uint64_t _unused_csselr1;
188 uint64_t csselr_s;
190 uint64_t csselr_el[4];
192 union { /* System control register. */
193 struct {
194 uint64_t _unused_sctlr;
195 uint64_t sctlr_ns;
196 uint64_t hsctlr;
197 uint64_t sctlr_s;
199 uint64_t sctlr_el[4];
201 uint64_t cpacr_el1; /* Architectural feature access control register */
202 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
203 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
204 uint64_t sder; /* Secure debug enable register. */
205 uint32_t nsacr; /* Non-secure access control register. */
206 union { /* MMU translation table base 0. */
207 struct {
208 uint64_t _unused_ttbr0_0;
209 uint64_t ttbr0_ns;
210 uint64_t _unused_ttbr0_1;
211 uint64_t ttbr0_s;
213 uint64_t ttbr0_el[4];
215 union { /* MMU translation table base 1. */
216 struct {
217 uint64_t _unused_ttbr1_0;
218 uint64_t ttbr1_ns;
219 uint64_t _unused_ttbr1_1;
220 uint64_t ttbr1_s;
222 uint64_t ttbr1_el[4];
224 /* MMU translation table base control. */
225 TCR tcr_el[4];
226 uint32_t c2_data; /* MPU data cachable bits. */
227 uint32_t c2_insn; /* MPU instruction cachable bits. */
228 union { /* MMU domain access control register
229 * MPU write buffer control.
231 struct {
232 uint64_t dacr_ns;
233 uint64_t dacr_s;
235 struct {
236 uint64_t dacr32_el2;
239 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
240 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
241 uint64_t hcr_el2; /* Hypervisor configuration register */
242 uint64_t scr_el3; /* Secure configuration register. */
243 union { /* Fault status registers. */
244 struct {
245 uint64_t ifsr_ns;
246 uint64_t ifsr_s;
248 struct {
249 uint64_t ifsr32_el2;
252 union {
253 struct {
254 uint64_t _unused_dfsr;
255 uint64_t dfsr_ns;
256 uint64_t hsr;
257 uint64_t dfsr_s;
259 uint64_t esr_el[4];
261 uint32_t c6_region[8]; /* MPU base/size registers. */
262 union { /* Fault address registers. */
263 struct {
264 uint64_t _unused_far0;
265 #ifdef HOST_WORDS_BIGENDIAN
266 uint32_t ifar_ns;
267 uint32_t dfar_ns;
268 uint32_t ifar_s;
269 uint32_t dfar_s;
270 #else
271 uint32_t dfar_ns;
272 uint32_t ifar_ns;
273 uint32_t dfar_s;
274 uint32_t ifar_s;
275 #endif
276 uint64_t _unused_far3;
278 uint64_t far_el[4];
280 union { /* Translation result. */
281 struct {
282 uint64_t _unused_par_0;
283 uint64_t par_ns;
284 uint64_t _unused_par_1;
285 uint64_t par_s;
287 uint64_t par_el[4];
290 uint32_t c6_rgnr;
292 uint32_t c9_insn; /* Cache lockdown registers. */
293 uint32_t c9_data;
294 uint64_t c9_pmcr; /* performance monitor control register */
295 uint64_t c9_pmcnten; /* perf monitor counter enables */
296 uint32_t c9_pmovsr; /* perf monitor overflow status */
297 uint32_t c9_pmxevtyper; /* perf monitor event type */
298 uint32_t c9_pmuserenr; /* perf monitor user enable */
299 uint32_t c9_pminten; /* perf monitor interrupt enables */
300 union { /* Memory attribute redirection */
301 struct {
302 #ifdef HOST_WORDS_BIGENDIAN
303 uint64_t _unused_mair_0;
304 uint32_t mair1_ns;
305 uint32_t mair0_ns;
306 uint64_t _unused_mair_1;
307 uint32_t mair1_s;
308 uint32_t mair0_s;
309 #else
310 uint64_t _unused_mair_0;
311 uint32_t mair0_ns;
312 uint32_t mair1_ns;
313 uint64_t _unused_mair_1;
314 uint32_t mair0_s;
315 uint32_t mair1_s;
316 #endif
318 uint64_t mair_el[4];
320 union { /* vector base address register */
321 struct {
322 uint64_t _unused_vbar;
323 uint64_t vbar_ns;
324 uint64_t hvbar;
325 uint64_t vbar_s;
327 uint64_t vbar_el[4];
329 uint32_t mvbar; /* (monitor) vector base address register */
330 struct { /* FCSE PID. */
331 uint32_t fcseidr_ns;
332 uint32_t fcseidr_s;
334 union { /* Context ID. */
335 struct {
336 uint64_t _unused_contextidr_0;
337 uint64_t contextidr_ns;
338 uint64_t _unused_contextidr_1;
339 uint64_t contextidr_s;
341 uint64_t contextidr_el[4];
343 union { /* User RW Thread register. */
344 struct {
345 uint64_t tpidrurw_ns;
346 uint64_t tpidrprw_ns;
347 uint64_t htpidr;
348 uint64_t _tpidr_el3;
350 uint64_t tpidr_el[4];
352 /* The secure banks of these registers don't map anywhere */
353 uint64_t tpidrurw_s;
354 uint64_t tpidrprw_s;
355 uint64_t tpidruro_s;
357 union { /* User RO Thread register. */
358 uint64_t tpidruro_ns;
359 uint64_t tpidrro_el[1];
361 uint64_t c14_cntfrq; /* Counter Frequency register */
362 uint64_t c14_cntkctl; /* Timer Control register */
363 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
364 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
365 ARMGenericTimer c14_timer[NUM_GTIMERS];
366 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
367 uint32_t c15_ticonfig; /* TI925T configuration byte. */
368 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
369 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
370 uint32_t c15_threadid; /* TI debugger thread-ID. */
371 uint32_t c15_config_base_address; /* SCU base address. */
372 uint32_t c15_diagnostic; /* diagnostic register */
373 uint32_t c15_power_diagnostic;
374 uint32_t c15_power_control; /* power control */
375 uint64_t dbgbvr[16]; /* breakpoint value registers */
376 uint64_t dbgbcr[16]; /* breakpoint control registers */
377 uint64_t dbgwvr[16]; /* watchpoint value registers */
378 uint64_t dbgwcr[16]; /* watchpoint control registers */
379 uint64_t mdscr_el1;
380 /* If the counter is enabled, this stores the last time the counter
381 * was reset. Otherwise it stores the counter value
383 uint64_t c15_ccnt;
384 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
385 } cp15;
387 struct {
388 uint32_t other_sp;
389 uint32_t vecbase;
390 uint32_t basepri;
391 uint32_t control;
392 int current_sp;
393 int exception;
394 } v7m;
396 /* Information associated with an exception about to be taken:
397 * code which raises an exception must set cs->exception_index and
398 * the relevant parts of this structure; the cpu_do_interrupt function
399 * will then set the guest-visible registers as part of the exception
400 * entry process.
402 struct {
403 uint32_t syndrome; /* AArch64 format syndrome register */
404 uint32_t fsr; /* AArch32 format fault status register info */
405 uint64_t vaddress; /* virtual addr associated with exception, if any */
406 uint32_t target_el; /* EL the exception should be targeted for */
407 /* If we implement EL2 we will also need to store information
408 * about the intermediate physical address for stage 2 faults.
410 } exception;
412 /* Thumb-2 EE state. */
413 uint32_t teecr;
414 uint32_t teehbr;
416 /* VFP coprocessor state. */
417 struct {
418 /* VFP/Neon register state. Note that the mapping between S, D and Q
419 * views of the register bank differs between AArch64 and AArch32:
420 * In AArch32:
421 * Qn = regs[2n+1]:regs[2n]
422 * Dn = regs[n]
423 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
424 * (and regs[32] to regs[63] are inaccessible)
425 * In AArch64:
426 * Qn = regs[2n+1]:regs[2n]
427 * Dn = regs[2n]
428 * Sn = regs[2n] bits 31..0
429 * This corresponds to the architecturally defined mapping between
430 * the two execution states, and means we do not need to explicitly
431 * map these registers when changing states.
433 float64 regs[64];
435 uint32_t xregs[16];
436 /* We store these fpcsr fields separately for convenience. */
437 int vec_len;
438 int vec_stride;
440 /* scratch space when Tn are not sufficient. */
441 uint32_t scratch[8];
443 /* fp_status is the "normal" fp status. standard_fp_status retains
444 * values corresponding to the ARM "Standard FPSCR Value", ie
445 * default-NaN, flush-to-zero, round-to-nearest and is used by
446 * any operations (generally Neon) which the architecture defines
447 * as controlled by the standard FPSCR value rather than the FPSCR.
449 * To avoid having to transfer exception bits around, we simply
450 * say that the FPSCR cumulative exception flags are the logical
451 * OR of the flags in the two fp statuses. This relies on the
452 * only thing which needs to read the exception flags being
453 * an explicit FPSCR read.
455 float_status fp_status;
456 float_status standard_fp_status;
457 } vfp;
458 uint64_t exclusive_addr;
459 uint64_t exclusive_val;
460 uint64_t exclusive_high;
461 #if defined(CONFIG_USER_ONLY)
462 uint64_t exclusive_test;
463 uint32_t exclusive_info;
464 #endif
466 /* iwMMXt coprocessor state. */
467 struct {
468 uint64_t regs[16];
469 uint64_t val;
471 uint32_t cregs[16];
472 } iwmmxt;
474 /* For mixed endian mode. */
475 bool bswap_code;
477 #if defined(CONFIG_USER_ONLY)
478 /* For usermode syscall translation. */
479 int eabi;
480 #endif
482 struct CPUBreakpoint *cpu_breakpoint[16];
483 struct CPUWatchpoint *cpu_watchpoint[16];
485 CPU_COMMON
487 /* These fields after the common ones so they are preserved on reset. */
489 /* Internal CPU feature flags. */
490 uint64_t features;
492 /* PMSAv7 MPU */
493 struct {
494 uint32_t *drbar;
495 uint32_t *drsr;
496 uint32_t *dracr;
497 } pmsav7;
499 void *nvic;
500 const struct arm_boot_info *boot_info;
501 } CPUARMState;
503 #include "cpu-qom.h"
505 ARMCPU *cpu_arm_init(const char *cpu_model);
506 int cpu_arm_exec(CPUState *cpu);
507 uint32_t do_arm_semihosting(CPUARMState *env);
508 void aarch64_sync_32_to_64(CPUARMState *env);
509 void aarch64_sync_64_to_32(CPUARMState *env);
511 static inline bool is_a64(CPUARMState *env)
513 return env->aarch64;
516 /* you can call this signal handler from your SIGBUS and SIGSEGV
517 signal handlers to inform the virtual CPU of exceptions. non zero
518 is returned if the signal was handled by the virtual CPU. */
519 int cpu_arm_signal_handler(int host_signum, void *pinfo,
520 void *puc);
523 * pmccntr_sync
524 * @env: CPUARMState
526 * Synchronises the counter in the PMCCNTR. This must always be called twice,
527 * once before any action that might affect the timer and again afterwards.
528 * The function is used to swap the state of the register if required.
529 * This only happens when not in user mode (!CONFIG_USER_ONLY)
531 void pmccntr_sync(CPUARMState *env);
533 /* SCTLR bit meanings. Several bits have been reused in newer
534 * versions of the architecture; in that case we define constants
535 * for both old and new bit meanings. Code which tests against those
536 * bits should probably check or otherwise arrange that the CPU
537 * is the architectural version it expects.
539 #define SCTLR_M (1U << 0)
540 #define SCTLR_A (1U << 1)
541 #define SCTLR_C (1U << 2)
542 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
543 #define SCTLR_SA (1U << 3)
544 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
545 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
546 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
547 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
548 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
549 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
550 #define SCTLR_ITD (1U << 7) /* v8 onward */
551 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
552 #define SCTLR_SED (1U << 8) /* v8 onward */
553 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
554 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
555 #define SCTLR_F (1U << 10) /* up to v6 */
556 #define SCTLR_SW (1U << 10) /* v7 onward */
557 #define SCTLR_Z (1U << 11)
558 #define SCTLR_I (1U << 12)
559 #define SCTLR_V (1U << 13)
560 #define SCTLR_RR (1U << 14) /* up to v7 */
561 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
562 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
563 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
564 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
565 #define SCTLR_nTWI (1U << 16) /* v8 onward */
566 #define SCTLR_HA (1U << 17)
567 #define SCTLR_BR (1U << 17) /* PMSA only */
568 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
569 #define SCTLR_nTWE (1U << 18) /* v8 onward */
570 #define SCTLR_WXN (1U << 19)
571 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
572 #define SCTLR_UWXN (1U << 20) /* v7 onward */
573 #define SCTLR_FI (1U << 21)
574 #define SCTLR_U (1U << 22)
575 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
576 #define SCTLR_VE (1U << 24) /* up to v7 */
577 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
578 #define SCTLR_EE (1U << 25)
579 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
580 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
581 #define SCTLR_NMFI (1U << 27)
582 #define SCTLR_TRE (1U << 28)
583 #define SCTLR_AFE (1U << 29)
584 #define SCTLR_TE (1U << 30)
586 #define CPTR_TCPAC (1U << 31)
587 #define CPTR_TTA (1U << 20)
588 #define CPTR_TFP (1U << 10)
590 #define CPSR_M (0x1fU)
591 #define CPSR_T (1U << 5)
592 #define CPSR_F (1U << 6)
593 #define CPSR_I (1U << 7)
594 #define CPSR_A (1U << 8)
595 #define CPSR_E (1U << 9)
596 #define CPSR_IT_2_7 (0xfc00U)
597 #define CPSR_GE (0xfU << 16)
598 #define CPSR_IL (1U << 20)
599 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
600 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
601 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
602 * where it is live state but not accessible to the AArch32 code.
604 #define CPSR_RESERVED (0x7U << 21)
605 #define CPSR_J (1U << 24)
606 #define CPSR_IT_0_1 (3U << 25)
607 #define CPSR_Q (1U << 27)
608 #define CPSR_V (1U << 28)
609 #define CPSR_C (1U << 29)
610 #define CPSR_Z (1U << 30)
611 #define CPSR_N (1U << 31)
612 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
613 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
615 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
616 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
617 | CPSR_NZCV)
618 /* Bits writable in user mode. */
619 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
620 /* Execution state bits. MRS read as zero, MSR writes ignored. */
621 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
622 /* Mask of bits which may be set by exception return copying them from SPSR */
623 #define CPSR_ERET_MASK (~CPSR_RESERVED)
625 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
626 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
627 #define TTBCR_PD0 (1U << 4)
628 #define TTBCR_PD1 (1U << 5)
629 #define TTBCR_EPD0 (1U << 7)
630 #define TTBCR_IRGN0 (3U << 8)
631 #define TTBCR_ORGN0 (3U << 10)
632 #define TTBCR_SH0 (3U << 12)
633 #define TTBCR_T1SZ (3U << 16)
634 #define TTBCR_A1 (1U << 22)
635 #define TTBCR_EPD1 (1U << 23)
636 #define TTBCR_IRGN1 (3U << 24)
637 #define TTBCR_ORGN1 (3U << 26)
638 #define TTBCR_SH1 (1U << 28)
639 #define TTBCR_EAE (1U << 31)
641 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
642 * Only these are valid when in AArch64 mode; in
643 * AArch32 mode SPSRs are basically CPSR-format.
645 #define PSTATE_SP (1U)
646 #define PSTATE_M (0xFU)
647 #define PSTATE_nRW (1U << 4)
648 #define PSTATE_F (1U << 6)
649 #define PSTATE_I (1U << 7)
650 #define PSTATE_A (1U << 8)
651 #define PSTATE_D (1U << 9)
652 #define PSTATE_IL (1U << 20)
653 #define PSTATE_SS (1U << 21)
654 #define PSTATE_V (1U << 28)
655 #define PSTATE_C (1U << 29)
656 #define PSTATE_Z (1U << 30)
657 #define PSTATE_N (1U << 31)
658 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
659 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
660 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
661 /* Mode values for AArch64 */
662 #define PSTATE_MODE_EL3h 13
663 #define PSTATE_MODE_EL3t 12
664 #define PSTATE_MODE_EL2h 9
665 #define PSTATE_MODE_EL2t 8
666 #define PSTATE_MODE_EL1h 5
667 #define PSTATE_MODE_EL1t 4
668 #define PSTATE_MODE_EL0t 0
670 /* Map EL and handler into a PSTATE_MODE. */
671 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
673 return (el << 2) | handler;
676 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
677 * interprocessing, so we don't attempt to sync with the cpsr state used by
678 * the 32 bit decoder.
680 static inline uint32_t pstate_read(CPUARMState *env)
682 int ZF;
684 ZF = (env->ZF == 0);
685 return (env->NF & 0x80000000) | (ZF << 30)
686 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
687 | env->pstate | env->daif;
690 static inline void pstate_write(CPUARMState *env, uint32_t val)
692 env->ZF = (~val) & PSTATE_Z;
693 env->NF = val;
694 env->CF = (val >> 29) & 1;
695 env->VF = (val << 3) & 0x80000000;
696 env->daif = val & PSTATE_DAIF;
697 env->pstate = val & ~CACHED_PSTATE_BITS;
700 /* Return the current CPSR value. */
701 uint32_t cpsr_read(CPUARMState *env);
702 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
703 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
705 /* Return the current xPSR value. */
706 static inline uint32_t xpsr_read(CPUARMState *env)
708 int ZF;
709 ZF = (env->ZF == 0);
710 return (env->NF & 0x80000000) | (ZF << 30)
711 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
712 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
713 | ((env->condexec_bits & 0xfc) << 8)
714 | env->v7m.exception;
717 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
718 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
720 if (mask & CPSR_NZCV) {
721 env->ZF = (~val) & CPSR_Z;
722 env->NF = val;
723 env->CF = (val >> 29) & 1;
724 env->VF = (val << 3) & 0x80000000;
726 if (mask & CPSR_Q)
727 env->QF = ((val & CPSR_Q) != 0);
728 if (mask & (1 << 24))
729 env->thumb = ((val & (1 << 24)) != 0);
730 if (mask & CPSR_IT_0_1) {
731 env->condexec_bits &= ~3;
732 env->condexec_bits |= (val >> 25) & 3;
734 if (mask & CPSR_IT_2_7) {
735 env->condexec_bits &= 3;
736 env->condexec_bits |= (val >> 8) & 0xfc;
738 if (mask & 0x1ff) {
739 env->v7m.exception = val & 0x1ff;
743 #define HCR_VM (1ULL << 0)
744 #define HCR_SWIO (1ULL << 1)
745 #define HCR_PTW (1ULL << 2)
746 #define HCR_FMO (1ULL << 3)
747 #define HCR_IMO (1ULL << 4)
748 #define HCR_AMO (1ULL << 5)
749 #define HCR_VF (1ULL << 6)
750 #define HCR_VI (1ULL << 7)
751 #define HCR_VSE (1ULL << 8)
752 #define HCR_FB (1ULL << 9)
753 #define HCR_BSU_MASK (3ULL << 10)
754 #define HCR_DC (1ULL << 12)
755 #define HCR_TWI (1ULL << 13)
756 #define HCR_TWE (1ULL << 14)
757 #define HCR_TID0 (1ULL << 15)
758 #define HCR_TID1 (1ULL << 16)
759 #define HCR_TID2 (1ULL << 17)
760 #define HCR_TID3 (1ULL << 18)
761 #define HCR_TSC (1ULL << 19)
762 #define HCR_TIDCP (1ULL << 20)
763 #define HCR_TACR (1ULL << 21)
764 #define HCR_TSW (1ULL << 22)
765 #define HCR_TPC (1ULL << 23)
766 #define HCR_TPU (1ULL << 24)
767 #define HCR_TTLB (1ULL << 25)
768 #define HCR_TVM (1ULL << 26)
769 #define HCR_TGE (1ULL << 27)
770 #define HCR_TDZ (1ULL << 28)
771 #define HCR_HCD (1ULL << 29)
772 #define HCR_TRVM (1ULL << 30)
773 #define HCR_RW (1ULL << 31)
774 #define HCR_CD (1ULL << 32)
775 #define HCR_ID (1ULL << 33)
776 #define HCR_MASK ((1ULL << 34) - 1)
778 #define SCR_NS (1U << 0)
779 #define SCR_IRQ (1U << 1)
780 #define SCR_FIQ (1U << 2)
781 #define SCR_EA (1U << 3)
782 #define SCR_FW (1U << 4)
783 #define SCR_AW (1U << 5)
784 #define SCR_NET (1U << 6)
785 #define SCR_SMD (1U << 7)
786 #define SCR_HCE (1U << 8)
787 #define SCR_SIF (1U << 9)
788 #define SCR_RW (1U << 10)
789 #define SCR_ST (1U << 11)
790 #define SCR_TWI (1U << 12)
791 #define SCR_TWE (1U << 13)
792 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
793 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
795 /* Return the current FPSCR value. */
796 uint32_t vfp_get_fpscr(CPUARMState *env);
797 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
799 /* For A64 the FPSCR is split into two logically distinct registers,
800 * FPCR and FPSR. However since they still use non-overlapping bits
801 * we store the underlying state in fpscr and just mask on read/write.
803 #define FPSR_MASK 0xf800009f
804 #define FPCR_MASK 0x07f79f00
805 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
807 return vfp_get_fpscr(env) & FPSR_MASK;
810 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
812 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
813 vfp_set_fpscr(env, new_fpscr);
816 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
818 return vfp_get_fpscr(env) & FPCR_MASK;
821 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
823 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
824 vfp_set_fpscr(env, new_fpscr);
827 enum arm_cpu_mode {
828 ARM_CPU_MODE_USR = 0x10,
829 ARM_CPU_MODE_FIQ = 0x11,
830 ARM_CPU_MODE_IRQ = 0x12,
831 ARM_CPU_MODE_SVC = 0x13,
832 ARM_CPU_MODE_MON = 0x16,
833 ARM_CPU_MODE_ABT = 0x17,
834 ARM_CPU_MODE_HYP = 0x1a,
835 ARM_CPU_MODE_UND = 0x1b,
836 ARM_CPU_MODE_SYS = 0x1f
839 /* VFP system registers. */
840 #define ARM_VFP_FPSID 0
841 #define ARM_VFP_FPSCR 1
842 #define ARM_VFP_MVFR2 5
843 #define ARM_VFP_MVFR1 6
844 #define ARM_VFP_MVFR0 7
845 #define ARM_VFP_FPEXC 8
846 #define ARM_VFP_FPINST 9
847 #define ARM_VFP_FPINST2 10
849 /* iwMMXt coprocessor control registers. */
850 #define ARM_IWMMXT_wCID 0
851 #define ARM_IWMMXT_wCon 1
852 #define ARM_IWMMXT_wCSSF 2
853 #define ARM_IWMMXT_wCASF 3
854 #define ARM_IWMMXT_wCGR0 8
855 #define ARM_IWMMXT_wCGR1 9
856 #define ARM_IWMMXT_wCGR2 10
857 #define ARM_IWMMXT_wCGR3 11
859 /* If adding a feature bit which corresponds to a Linux ELF
860 * HWCAP bit, remember to update the feature-bit-to-hwcap
861 * mapping in linux-user/elfload.c:get_elf_hwcap().
863 enum arm_features {
864 ARM_FEATURE_VFP, /* Vector Floating-point. */
865 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
866 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
867 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
868 ARM_FEATURE_V6,
869 ARM_FEATURE_V6K,
870 ARM_FEATURE_V7,
871 //~ See http://lists.nongnu.org/archive/html/qemu-devel/2009-05/msg01570.html
872 //~ ARM_FEATURE_THUMB, /* TODO: still unused. */
873 //~ ARM_FEATURE_THUMB1 = ARM_FEATURE_THUMB, /* TODO: still unused. */
874 ARM_FEATURE_THUMB2,
875 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
876 ARM_FEATURE_VFP3,
877 ARM_FEATURE_VFP_FP16,
878 ARM_FEATURE_NEON,
879 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
880 ARM_FEATURE_M, /* Microcontroller profile. */
881 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
882 // TODO: long multiply instructions (M variant), standard for v4 and v5.
883 // TODO: enhanced dsp instructions (E variant).
884 // TODO: ARMv5TExP.
885 ARM_FEATURE_THUMB2EE,
886 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
887 ARM_FEATURE_V4T,
888 ARM_FEATURE_V5,
889 ARM_FEATURE_STRONGARM,
890 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
891 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
892 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
893 ARM_FEATURE_GENERIC_TIMER,
894 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
895 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
896 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
897 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
898 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
899 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
900 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
901 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
902 ARM_FEATURE_V8,
903 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
904 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
905 ARM_FEATURE_CBAR, /* has cp15 CBAR */
906 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
907 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
908 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
909 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
910 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
911 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
912 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
913 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
916 static inline int arm_feature(CPUARMState *env, int feature)
918 return (env->features & (1ULL << feature)) != 0;
921 #if !defined(CONFIG_USER_ONLY)
922 /* Return true if exception levels below EL3 are in secure state,
923 * or would be following an exception return to that level.
924 * Unlike arm_is_secure() (which is always a question about the
925 * _current_ state of the CPU) this doesn't care about the current
926 * EL or mode.
928 static inline bool arm_is_secure_below_el3(CPUARMState *env)
930 if (arm_feature(env, ARM_FEATURE_EL3)) {
931 return !(env->cp15.scr_el3 & SCR_NS);
932 } else {
933 /* If EL2 is not supported then the secure state is implementation
934 * defined, in which case QEMU defaults to non-secure.
936 return false;
940 /* Return true if the processor is in secure state */
941 static inline bool arm_is_secure(CPUARMState *env)
943 if (arm_feature(env, ARM_FEATURE_EL3)) {
944 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
945 /* CPU currently in AArch64 state and EL3 */
946 return true;
947 } else if (!is_a64(env) &&
948 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
949 /* CPU currently in AArch32 state and monitor mode */
950 return true;
953 return arm_is_secure_below_el3(env);
956 #else
957 static inline bool arm_is_secure_below_el3(CPUARMState *env)
959 return false;
962 static inline bool arm_is_secure(CPUARMState *env)
964 return false;
966 #endif
968 /* Return true if the specified exception level is running in AArch64 state. */
969 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
971 /* We don't currently support EL2, and this isn't valid for EL0
972 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
973 * then the state of EL0 isn't well defined.)
975 assert(el == 1 || el == 3);
977 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
978 * is a QEMU-imposed simplification which we may wish to change later.
979 * If we in future support EL2 and/or EL3, then the state of lower
980 * exception levels is controlled by the HCR.RW and SCR.RW bits.
982 return arm_feature(env, ARM_FEATURE_AARCH64);
985 /* Function for determing whether guest cp register reads and writes should
986 * access the secure or non-secure bank of a cp register. When EL3 is
987 * operating in AArch32 state, the NS-bit determines whether the secure
988 * instance of a cp register should be used. When EL3 is AArch64 (or if
989 * it doesn't exist at all) then there is no register banking, and all
990 * accesses are to the non-secure version.
992 static inline bool access_secure_reg(CPUARMState *env)
994 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
995 !arm_el_is_aa64(env, 3) &&
996 !(env->cp15.scr_el3 & SCR_NS));
998 return ret;
1001 /* Macros for accessing a specified CP register bank */
1002 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1003 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1005 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1006 do { \
1007 if (_secure) { \
1008 (_env)->cp15._regname##_s = (_val); \
1009 } else { \
1010 (_env)->cp15._regname##_ns = (_val); \
1012 } while (0)
1014 /* Macros for automatically accessing a specific CP register bank depending on
1015 * the current secure state of the system. These macros are not intended for
1016 * supporting instruction translation reads/writes as these are dependent
1017 * solely on the SCR.NS bit and not the mode.
1019 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1020 A32_BANKED_REG_GET((_env), _regname, \
1021 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
1023 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1024 A32_BANKED_REG_SET((_env), _regname, \
1025 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1026 (_val))
1028 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1029 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1030 uint32_t cur_el, bool secure);
1032 /* Interface between CPU and Interrupt controller. */
1033 void armv7m_nvic_set_pending(void *opaque, int irq);
1034 int armv7m_nvic_acknowledge_irq(void *opaque);
1035 void armv7m_nvic_complete_irq(void *opaque, int irq);
1037 /* Interface for defining coprocessor registers.
1038 * Registers are defined in tables of arm_cp_reginfo structs
1039 * which are passed to define_arm_cp_regs().
1042 /* When looking up a coprocessor register we look for it
1043 * via an integer which encodes all of:
1044 * coprocessor number
1045 * Crn, Crm, opc1, opc2 fields
1046 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1047 * or via MRRC/MCRR?)
1048 * non-secure/secure bank (AArch32 only)
1049 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1050 * (In this case crn and opc2 should be zero.)
1051 * For AArch64, there is no 32/64 bit size distinction;
1052 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1053 * and 4 bit CRn and CRm. The encoding patterns are chosen
1054 * to be easy to convert to and from the KVM encodings, and also
1055 * so that the hashtable can contain both AArch32 and AArch64
1056 * registers (to allow for interprocessing where we might run
1057 * 32 bit code on a 64 bit core).
1059 /* This bit is private to our hashtable cpreg; in KVM register
1060 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1061 * in the upper bits of the 64 bit ID.
1063 #define CP_REG_AA64_SHIFT 28
1064 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1066 /* To enable banking of coprocessor registers depending on ns-bit we
1067 * add a bit to distinguish between secure and non-secure cpregs in the
1068 * hashtable.
1070 #define CP_REG_NS_SHIFT 29
1071 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1073 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1074 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1075 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1077 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1078 (CP_REG_AA64_MASK | \
1079 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1080 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1081 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1082 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1083 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1084 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1086 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1087 * version used as a key for the coprocessor register hashtable
1089 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1091 uint32_t cpregid = kvmid;
1092 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1093 cpregid |= CP_REG_AA64_MASK;
1094 } else {
1095 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1096 cpregid |= (1 << 15);
1099 /* KVM is always non-secure so add the NS flag on AArch32 register
1100 * entries.
1102 cpregid |= 1 << CP_REG_NS_SHIFT;
1104 return cpregid;
1107 /* Convert a truncated 32 bit hashtable key into the full
1108 * 64 bit KVM register ID.
1110 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1112 uint64_t kvmid;
1114 if (cpregid & CP_REG_AA64_MASK) {
1115 kvmid = cpregid & ~CP_REG_AA64_MASK;
1116 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1117 } else {
1118 kvmid = cpregid & ~(1 << 15);
1119 if (cpregid & (1 << 15)) {
1120 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1121 } else {
1122 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1125 return kvmid;
1128 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1129 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1130 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1131 * TCG can assume the value to be constant (ie load at translate time)
1132 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1133 * indicates that the TB should not be ended after a write to this register
1134 * (the default is that the TB ends after cp writes). OVERRIDE permits
1135 * a register definition to override a previous definition for the
1136 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1137 * old must have the OVERRIDE bit set.
1138 * ALIAS indicates that this register is an alias view of some underlying
1139 * state which is also visible via another register, and that the other
1140 * register is handling migration and reset; registers marked ALIAS will not be
1141 * migrated but may have their state set by syncing of register state from KVM.
1142 * NO_RAW indicates that this register has no underlying state and does not
1143 * support raw access for state saving/loading; it will not be used for either
1144 * migration or KVM state synchronization. (Typically this is for "registers"
1145 * which are actually used as instructions for cache maintenance and so on.)
1146 * IO indicates that this register does I/O and therefore its accesses
1147 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1148 * registers which implement clocks or timers require this.
1150 #define ARM_CP_SPECIAL 1
1151 #define ARM_CP_CONST 2
1152 #define ARM_CP_64BIT 4
1153 #define ARM_CP_SUPPRESS_TB_END 8
1154 #define ARM_CP_OVERRIDE 16
1155 #define ARM_CP_ALIAS 32
1156 #define ARM_CP_IO 64
1157 #define ARM_CP_NO_RAW 128
1158 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1159 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1160 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1161 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1162 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1163 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1164 /* Used only as a terminator for ARMCPRegInfo lists */
1165 #define ARM_CP_SENTINEL 0xffff
1166 /* Mask of only the flag bits in a type field */
1167 #define ARM_CP_FLAG_MASK 0xff
1169 /* Valid values for ARMCPRegInfo state field, indicating which of
1170 * the AArch32 and AArch64 execution states this register is visible in.
1171 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1172 * If the reginfo is declared to be visible in both states then a second
1173 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1174 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1175 * Note that we rely on the values of these enums as we iterate through
1176 * the various states in some places.
1178 enum {
1179 ARM_CP_STATE_AA32 = 0,
1180 ARM_CP_STATE_AA64 = 1,
1181 ARM_CP_STATE_BOTH = 2,
1184 /* ARM CP register secure state flags. These flags identify security state
1185 * attributes for a given CP register entry.
1186 * The existence of both or neither secure and non-secure flags indicates that
1187 * the register has both a secure and non-secure hash entry. A single one of
1188 * these flags causes the register to only be hashed for the specified
1189 * security state.
1190 * Although definitions may have any combination of the S/NS bits, each
1191 * registered entry will only have one to identify whether the entry is secure
1192 * or non-secure.
1194 enum {
1195 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1196 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1199 /* Return true if cptype is a valid type field. This is used to try to
1200 * catch errors where the sentinel has been accidentally left off the end
1201 * of a list of registers.
1203 static inline bool cptype_valid(int cptype)
1205 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1206 || ((cptype & ARM_CP_SPECIAL) &&
1207 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1210 /* Access rights:
1211 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1212 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1213 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1214 * (ie any of the privileged modes in Secure state, or Monitor mode).
1215 * If a register is accessible in one privilege level it's always accessible
1216 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1217 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1218 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1219 * terminology a little and call this PL3.
1220 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1221 * with the ELx exception levels.
1223 * If access permissions for a register are more complex than can be
1224 * described with these bits, then use a laxer set of restrictions, and
1225 * do the more restrictive/complex check inside a helper function.
1227 #define PL3_R 0x80
1228 #define PL3_W 0x40
1229 #define PL2_R (0x20 | PL3_R)
1230 #define PL2_W (0x10 | PL3_W)
1231 #define PL1_R (0x08 | PL2_R)
1232 #define PL1_W (0x04 | PL2_W)
1233 #define PL0_R (0x02 | PL1_R)
1234 #define PL0_W (0x01 | PL1_W)
1236 #define PL3_RW (PL3_R | PL3_W)
1237 #define PL2_RW (PL2_R | PL2_W)
1238 #define PL1_RW (PL1_R | PL1_W)
1239 #define PL0_RW (PL0_R | PL0_W)
1241 /* Return the current Exception Level (as per ARMv8; note that this differs
1242 * from the ARMv7 Privilege Level).
1244 static inline int arm_current_el(CPUARMState *env)
1246 if (arm_feature(env, ARM_FEATURE_M)) {
1247 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1250 if (is_a64(env)) {
1251 return extract32(env->pstate, 2, 2);
1254 switch (env->uncached_cpsr & 0x1f) {
1255 case ARM_CPU_MODE_USR:
1256 return 0;
1257 case ARM_CPU_MODE_HYP:
1258 return 2;
1259 case ARM_CPU_MODE_MON:
1260 return 3;
1261 default:
1262 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1263 /* If EL3 is 32-bit then all secure privileged modes run in
1264 * EL3
1266 return 3;
1269 return 1;
1273 typedef struct ARMCPRegInfo ARMCPRegInfo;
1275 typedef enum CPAccessResult {
1276 /* Access is permitted */
1277 CP_ACCESS_OK = 0,
1278 /* Access fails due to a configurable trap or enable which would
1279 * result in a categorized exception syndrome giving information about
1280 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1281 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1282 * PL1 if in EL0, otherwise to the current EL).
1284 CP_ACCESS_TRAP = 1,
1285 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1286 * Note that this is not a catch-all case -- the set of cases which may
1287 * result in this failure is specifically defined by the architecture.
1289 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1290 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1291 CP_ACCESS_TRAP_EL2 = 3,
1292 CP_ACCESS_TRAP_EL3 = 4,
1293 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1294 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1295 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1296 } CPAccessResult;
1298 /* Access functions for coprocessor registers. These cannot fail and
1299 * may not raise exceptions.
1301 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1302 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1303 uint64_t value);
1304 /* Access permission check functions for coprocessor registers. */
1305 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1306 /* Hook function for register reset */
1307 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1309 #define CP_ANY 0xff
1311 /* Definition of an ARM coprocessor register */
1312 struct ARMCPRegInfo {
1313 /* Name of register (useful mainly for debugging, need not be unique) */
1314 const char *name;
1315 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1316 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1317 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1318 * will be decoded to this register. The register read and write
1319 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1320 * used by the program, so it is possible to register a wildcard and
1321 * then behave differently on read/write if necessary.
1322 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1323 * must both be zero.
1324 * For AArch64-visible registers, opc0 is also used.
1325 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1326 * way to distinguish (for KVM's benefit) guest-visible system registers
1327 * from demuxed ones provided to preserve the "no side effects on
1328 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1329 * visible (to match KVM's encoding); cp==0 will be converted to
1330 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1332 uint8_t cp;
1333 uint8_t crn;
1334 uint8_t crm;
1335 uint8_t opc0;
1336 uint8_t opc1;
1337 uint8_t opc2;
1338 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1339 int state;
1340 /* Register type: ARM_CP_* bits/values */
1341 int type;
1342 /* Access rights: PL*_[RW] */
1343 int access;
1344 /* Security state: ARM_CP_SECSTATE_* bits/values */
1345 int secure;
1346 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1347 * this register was defined: can be used to hand data through to the
1348 * register read/write functions, since they are passed the ARMCPRegInfo*.
1350 void *opaque;
1351 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1352 * fieldoffset is non-zero, the reset value of the register.
1354 uint64_t resetvalue;
1355 /* Offset of the field in CPUARMState for this register.
1357 * This is not needed if either:
1358 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1359 * 2. both readfn and writefn are specified
1361 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1363 /* Offsets of the secure and non-secure fields in CPUARMState for the
1364 * register if it is banked. These fields are only used during the static
1365 * registration of a register. During hashing the bank associated
1366 * with a given security state is copied to fieldoffset which is used from
1367 * there on out.
1369 * It is expected that register definitions use either fieldoffset or
1370 * bank_fieldoffsets in the definition but not both. It is also expected
1371 * that both bank offsets are set when defining a banked register. This
1372 * use indicates that a register is banked.
1374 ptrdiff_t bank_fieldoffsets[2];
1376 /* Function for making any access checks for this register in addition to
1377 * those specified by the 'access' permissions bits. If NULL, no extra
1378 * checks required. The access check is performed at runtime, not at
1379 * translate time.
1381 CPAccessFn *accessfn;
1382 /* Function for handling reads of this register. If NULL, then reads
1383 * will be done by loading from the offset into CPUARMState specified
1384 * by fieldoffset.
1386 CPReadFn *readfn;
1387 /* Function for handling writes of this register. If NULL, then writes
1388 * will be done by writing to the offset into CPUARMState specified
1389 * by fieldoffset.
1391 CPWriteFn *writefn;
1392 /* Function for doing a "raw" read; used when we need to copy
1393 * coprocessor state to the kernel for KVM or out for
1394 * migration. This only needs to be provided if there is also a
1395 * readfn and it has side effects (for instance clear-on-read bits).
1397 CPReadFn *raw_readfn;
1398 /* Function for doing a "raw" write; used when we need to copy KVM
1399 * kernel coprocessor state into userspace, or for inbound
1400 * migration. This only needs to be provided if there is also a
1401 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1402 * or similar behaviour.
1404 CPWriteFn *raw_writefn;
1405 /* Function for resetting the register. If NULL, then reset will be done
1406 * by writing resetvalue to the field specified in fieldoffset. If
1407 * fieldoffset is 0 then no reset will be done.
1409 CPResetFn *resetfn;
1412 /* Macros which are lvalues for the field in CPUARMState for the
1413 * ARMCPRegInfo *ri.
1415 #define CPREG_FIELD32(env, ri) \
1416 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1417 #define CPREG_FIELD64(env, ri) \
1418 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1420 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1422 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1423 const ARMCPRegInfo *regs, void *opaque);
1424 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1425 const ARMCPRegInfo *regs, void *opaque);
1426 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1428 define_arm_cp_regs_with_opaque(cpu, regs, NULL);
1430 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1432 define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
1434 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1436 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1437 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1438 uint64_t value);
1439 /* CPReadFn that can be used for read-as-zero behaviour */
1440 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1442 /* CPResetFn that does nothing, for use if no reset is required even
1443 * if fieldoffset is non zero.
1445 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1447 /* Return true if this reginfo struct's field in the cpu state struct
1448 * is 64 bits wide.
1450 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1452 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1455 static inline bool cp_access_ok(int current_el,
1456 const ARMCPRegInfo *ri, int isread)
1458 return (ri->access >> ((current_el * 2) + isread)) & 1;
1461 /* Raw read of a coprocessor register (as needed for migration, etc) */
1462 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1465 * write_list_to_cpustate
1466 * @cpu: ARMCPU
1468 * For each register listed in the ARMCPU cpreg_indexes list, write
1469 * its value from the cpreg_values list into the ARMCPUState structure.
1470 * This updates TCG's working data structures from KVM data or
1471 * from incoming migration state.
1473 * Returns: true if all register values were updated correctly,
1474 * false if some register was unknown or could not be written.
1475 * Note that we do not stop early on failure -- we will attempt
1476 * writing all registers in the list.
1478 bool write_list_to_cpustate(ARMCPU *cpu);
1481 * write_cpustate_to_list:
1482 * @cpu: ARMCPU
1484 * For each register listed in the ARMCPU cpreg_indexes list, write
1485 * its value from the ARMCPUState structure into the cpreg_values list.
1486 * This is used to copy info from TCG's working data structures into
1487 * KVM or for outbound migration.
1489 * Returns: true if all register values were read correctly,
1490 * false if some register was unknown or could not be read.
1491 * Note that we do not stop early on failure -- we will attempt
1492 * reading all registers in the list.
1494 bool write_cpustate_to_list(ARMCPU *cpu);
1496 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1497 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1498 conventional cores (ie. Application or Realtime profile). */
1500 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1502 #define ARM_CPUID_TI915T 0x54029152
1503 #define ARM_CPUID_TI925T 0x54029252
1505 #if defined(CONFIG_USER_ONLY)
1506 #define TARGET_PAGE_BITS 12
1507 #else
1508 /* The ARM MMU allows 1k pages. */
1509 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1510 architecture revisions. Maybe a configure option to disable them. */
1511 #define TARGET_PAGE_BITS 10
1512 #endif
1514 #if defined(TARGET_AARCH64)
1515 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1516 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1517 #else
1518 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1519 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1520 #endif
1522 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1523 unsigned int target_el)
1525 CPUARMState *env = cs->env_ptr;
1526 unsigned int cur_el = arm_current_el(env);
1527 bool secure = arm_is_secure(env);
1528 uint32_t scr;
1529 uint32_t hcr;
1530 bool pstate_unmasked;
1531 int8_t unmasked = 0;
1533 /* Don't take exceptions if they target a lower EL.
1534 * This check should catch any exceptions that would not be taken but left
1535 * pending.
1537 if (cur_el > target_el) {
1538 return false;
1541 switch (excp_idx) {
1542 case EXCP_FIQ:
1543 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1544 * override the CPSR.F in determining if the exception is masked or
1545 * not. If neither of these are set then we fall back to the CPSR.F
1546 * setting otherwise we further assess the state below.
1548 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1549 scr = (env->cp15.scr_el3 & SCR_FIQ);
1551 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1552 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1553 * set then FIQs can be masked by CPSR.F when non-secure but only
1554 * when FIQs are only routed to EL3.
1556 scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1557 pstate_unmasked = !(env->daif & PSTATE_F);
1558 break;
1560 case EXCP_IRQ:
1561 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1562 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1563 * setting has already been taken into consideration when setting the
1564 * target EL, so it does not have a further affect here.
1566 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1567 scr = false;
1568 pstate_unmasked = !(env->daif & PSTATE_I);
1569 break;
1571 case EXCP_VFIQ:
1572 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1573 /* VFIQs are only taken when hypervized and non-secure. */
1574 return false;
1576 return !(env->daif & PSTATE_F);
1577 case EXCP_VIRQ:
1578 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1579 /* VIRQs are only taken when hypervized and non-secure. */
1580 return false;
1582 return !(env->daif & PSTATE_I);
1583 default:
1584 g_assert_not_reached();
1587 /* Use the target EL, current execution state and SCR/HCR settings to
1588 * determine whether the corresponding CPSR bit is used to mask the
1589 * interrupt.
1591 if ((target_el > cur_el) && (target_el != 1)) {
1592 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1593 unmasked = 1;
1597 /* The PSTATE bits only mask the interrupt if we have not overriden the
1598 * ability above.
1600 return unmasked || pstate_unmasked;
1603 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1605 #define cpu_exec cpu_arm_exec
1606 #define cpu_gen_code cpu_arm_gen_code
1607 #define cpu_signal_handler cpu_arm_signal_handler
1608 #define cpu_list arm_cpu_list
1610 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1612 * If EL3 is 64-bit:
1613 * + NonSecure EL1 & 0 stage 1
1614 * + NonSecure EL1 & 0 stage 2
1615 * + NonSecure EL2
1616 * + Secure EL1 & EL0
1617 * + Secure EL3
1618 * If EL3 is 32-bit:
1619 * + NonSecure PL1 & 0 stage 1
1620 * + NonSecure PL1 & 0 stage 2
1621 * + NonSecure PL2
1622 * + Secure PL0 & PL1
1623 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1625 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1626 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1627 * may differ in access permissions even if the VA->PA map is the same
1628 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1629 * translation, which means that we have one mmu_idx that deals with two
1630 * concatenated translation regimes [this sort of combined s1+2 TLB is
1631 * architecturally permitted]
1632 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1633 * handling via the TLB. The only way to do a stage 1 translation without
1634 * the immediate stage 2 translation is via the ATS or AT system insns,
1635 * which can be slow-pathed and always do a page table walk.
1636 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1637 * translation regimes, because they map reasonably well to each other
1638 * and they can't both be active at the same time.
1639 * This gives us the following list of mmu_idx values:
1641 * NS EL0 (aka NS PL0) stage 1+2
1642 * NS EL1 (aka NS PL1) stage 1+2
1643 * NS EL2 (aka NS PL2)
1644 * S EL3 (aka S PL1)
1645 * S EL0 (aka S PL0)
1646 * S EL1 (not used if EL3 is 32 bit)
1647 * NS EL0+1 stage 2
1649 * (The last of these is an mmu_idx because we want to be able to use the TLB
1650 * for the accesses done as part of a stage 1 page table walk, rather than
1651 * having to walk the stage 2 page table over and over.)
1653 * Our enumeration includes at the end some entries which are not "true"
1654 * mmu_idx values in that they don't have corresponding TLBs and are only
1655 * valid for doing slow path page table walks.
1657 * The constant names here are patterned after the general style of the names
1658 * of the AT/ATS operations.
1659 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1661 typedef enum ARMMMUIdx {
1662 ARMMMUIdx_S12NSE0 = 0,
1663 ARMMMUIdx_S12NSE1 = 1,
1664 ARMMMUIdx_S1E2 = 2,
1665 ARMMMUIdx_S1E3 = 3,
1666 ARMMMUIdx_S1SE0 = 4,
1667 ARMMMUIdx_S1SE1 = 5,
1668 ARMMMUIdx_S2NS = 6,
1669 /* Indexes below here don't have TLBs and are used only for AT system
1670 * instructions or for the first stage of an S12 page table walk.
1672 ARMMMUIdx_S1NSE0 = 7,
1673 ARMMMUIdx_S1NSE1 = 8,
1674 } ARMMMUIdx;
1676 #define MMU_USER_IDX 0
1678 /* Return the exception level we're running at if this is our mmu_idx */
1679 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1681 assert(mmu_idx < ARMMMUIdx_S2NS);
1682 return mmu_idx & 3;
1685 /* Determine the current mmu_idx to use for normal loads/stores */
1686 static inline int cpu_mmu_index(CPUARMState *env)
1688 int el = arm_current_el(env);
1690 if (el < 2 && arm_is_secure_below_el3(env)) {
1691 return ARMMMUIdx_S1SE0 + el;
1693 return el;
1696 /* Return the Exception Level targeted by debug exceptions;
1697 * currently always EL1 since we don't implement EL2 or EL3.
1699 static inline int arm_debug_target_el(CPUARMState *env)
1701 return 1;
1704 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1706 if (arm_current_el(env) == arm_debug_target_el(env)) {
1707 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1708 || (env->daif & PSTATE_D)) {
1709 return false;
1712 return true;
1715 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1717 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1718 return aa64_generate_debug_exceptions(env);
1720 return arm_current_el(env) != 2;
1723 /* Return true if debugging exceptions are currently enabled.
1724 * This corresponds to what in ARM ARM pseudocode would be
1725 * if UsingAArch32() then
1726 * return AArch32.GenerateDebugExceptions()
1727 * else
1728 * return AArch64.GenerateDebugExceptions()
1729 * We choose to push the if() down into this function for clarity,
1730 * since the pseudocode has it at all callsites except for the one in
1731 * CheckSoftwareStep(), where it is elided because both branches would
1732 * always return the same value.
1734 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1735 * don't yet implement those exception levels or their associated trap bits.
1737 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1739 if (env->aarch64) {
1740 return aa64_generate_debug_exceptions(env);
1741 } else {
1742 return aa32_generate_debug_exceptions(env);
1746 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1747 * implicitly means this always returns false in pre-v8 CPUs.)
1749 static inline bool arm_singlestep_active(CPUARMState *env)
1751 return extract32(env->cp15.mdscr_el1, 0, 1)
1752 && arm_el_is_aa64(env, arm_debug_target_el(env))
1753 && arm_generate_debug_exceptions(env);
1756 #include "exec/cpu-all.h"
1758 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1759 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1760 * We put flags which are shared between 32 and 64 bit mode at the top
1761 * of the word, and flags which apply to only one mode at the bottom.
1763 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1764 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1765 #define ARM_TBFLAG_MMUIDX_SHIFT 28
1766 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
1767 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1768 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1769 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1770 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1771 /* Target EL if we take a floating-point-disabled exception */
1772 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1773 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
1775 /* Bit usage when in AArch32 state: */
1776 #define ARM_TBFLAG_THUMB_SHIFT 0
1777 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1778 #define ARM_TBFLAG_VECLEN_SHIFT 1
1779 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1780 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1781 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1782 #define ARM_TBFLAG_VFPEN_SHIFT 7
1783 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1784 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1785 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1786 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1787 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1788 /* We store the bottom two bits of the CPAR as TB flags and handle
1789 * checks on the other bits at runtime
1791 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
1792 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1793 /* Indicates whether cp register reads and writes by guest code should access
1794 * the secure or nonsecure bank of banked registers; note that this is not
1795 * the same thing as the current security state of the processor!
1797 #define ARM_TBFLAG_NS_SHIFT 19
1798 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1800 /* Bit usage when in AArch64 state: currently we have no A64 specific bits */
1802 /* some convenience accessor macros */
1803 #define ARM_TBFLAG_AARCH64_STATE(F) \
1804 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1805 #define ARM_TBFLAG_MMUIDX(F) \
1806 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
1807 #define ARM_TBFLAG_SS_ACTIVE(F) \
1808 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1809 #define ARM_TBFLAG_PSTATE_SS(F) \
1810 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1811 #define ARM_TBFLAG_FPEXC_EL(F) \
1812 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
1813 #define ARM_TBFLAG_THUMB(F) \
1814 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1815 #define ARM_TBFLAG_VECLEN(F) \
1816 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1817 #define ARM_TBFLAG_VECSTRIDE(F) \
1818 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1819 #define ARM_TBFLAG_VFPEN(F) \
1820 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1821 #define ARM_TBFLAG_CONDEXEC(F) \
1822 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1823 #define ARM_TBFLAG_BSWAP_CODE(F) \
1824 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1825 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1826 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1827 #define ARM_TBFLAG_NS(F) \
1828 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1830 /* Return the exception level to which FP-disabled exceptions should
1831 * be taken, or 0 if FP is enabled.
1833 static inline int fp_exception_el(CPUARMState *env)
1835 int fpen;
1836 int cur_el = arm_current_el(env);
1838 /* CPACR and the CPTR registers don't exist before v6, so FP is
1839 * always accessible
1841 if (!arm_feature(env, ARM_FEATURE_V6)) {
1842 return 0;
1845 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1846 * 0, 2 : trap EL0 and EL1/PL1 accesses
1847 * 1 : trap only EL0 accesses
1848 * 3 : trap no accesses
1850 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1851 switch (fpen) {
1852 case 0:
1853 case 2:
1854 if (cur_el == 0 || cur_el == 1) {
1855 /* Trap to PL1, which might be EL1 or EL3 */
1856 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1857 return 3;
1859 return 1;
1861 if (cur_el == 3 && !is_a64(env)) {
1862 /* Secure PL1 running at EL3 */
1863 return 3;
1865 break;
1866 case 1:
1867 if (cur_el == 0) {
1868 return 1;
1870 break;
1871 case 3:
1872 break;
1875 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1876 * check because zero bits in the registers mean "don't trap".
1879 /* CPTR_EL2 : present in v7VE or v8 */
1880 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1881 && !arm_is_secure_below_el3(env)) {
1882 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1883 return 2;
1886 /* CPTR_EL3 : present in v8 */
1887 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1888 /* Trap all FP ops to EL3 */
1889 return 3;
1892 return 0;
1895 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1896 target_ulong *cs_base, int *flags)
1898 if (is_a64(env)) {
1899 *pc = env->pc;
1900 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
1901 } else {
1902 *pc = env->regs[15];
1903 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1904 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1905 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1906 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1907 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1908 if (!(access_secure_reg(env))) {
1909 *flags |= ARM_TBFLAG_NS_MASK;
1911 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1912 || arm_el_is_aa64(env, 1)) {
1913 *flags |= ARM_TBFLAG_VFPEN_MASK;
1915 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1916 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1919 *flags |= (cpu_mmu_index(env) << ARM_TBFLAG_MMUIDX_SHIFT);
1920 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1921 * states defined in the ARM ARM for software singlestep:
1922 * SS_ACTIVE PSTATE.SS State
1923 * 0 x Inactive (the TB flag for SS is always 0)
1924 * 1 0 Active-pending
1925 * 1 1 Active-not-pending
1927 if (arm_singlestep_active(env)) {
1928 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1929 if (is_a64(env)) {
1930 if (env->pstate & PSTATE_SS) {
1931 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1933 } else {
1934 if (env->uncached_cpsr & PSTATE_SS) {
1935 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1939 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
1941 *cs_base = 0;
1944 #include "exec/exec-all.h"
1946 enum {
1947 QEMU_PSCI_CONDUIT_DISABLED = 0,
1948 QEMU_PSCI_CONDUIT_SMC = 1,
1949 QEMU_PSCI_CONDUIT_HVC = 2,
1952 #endif