2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include <sys/types.h>
25 #include <sys/ioctl.h>
28 #include <linux/kvm.h>
29 #include <asm/ptrace.h>
31 #include "qemu-common.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
38 #include "sysemu/device_tree.h"
39 #include "qapi/qmp/qjson.h"
40 #include "exec/gdbstub.h"
41 #include "exec/address-spaces.h"
43 #include "qapi-event.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
47 #include "hw/s390x/ebcdic.h"
48 #include "exec/memattrs.h"
50 /* #define DEBUG_KVM */
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
114 #define NR_LOCAL_IRQS 32
116 * Needs to be big enough to contain max_cpus emergency signals
117 * and in addition NR_LOCAL_IRQS interrupts
119 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
120 (max_cpus + NR_LOCAL_IRQS))
122 static CPUWatchpoint hw_watchpoint
;
124 * We don't use a list because this structure is also used to transmit the
125 * hardware breakpoints to the kernel.
127 static struct kvm_hw_breakpoint
*hw_breakpoints
;
128 static int nb_hw_breakpoints
;
130 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
134 static int cap_sync_regs
;
135 static int cap_async_pf
;
136 static int cap_mem_op
;
137 static int cap_s390_irq
;
139 static void *legacy_s390_alloc(size_t size
, uint64_t *align
);
141 static int kvm_s390_query_mem_limit(KVMState
*s
, uint64_t *memory_limit
)
143 struct kvm_device_attr attr
= {
144 .group
= KVM_S390_VM_MEM_CTRL
,
145 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
146 .addr
= (uint64_t) memory_limit
,
149 return kvm_vm_ioctl(s
, KVM_GET_DEVICE_ATTR
, &attr
);
152 int kvm_s390_set_mem_limit(KVMState
*s
, uint64_t new_limit
, uint64_t *hw_limit
)
156 struct kvm_device_attr attr
= {
157 .group
= KVM_S390_VM_MEM_CTRL
,
158 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
159 .addr
= (uint64_t) &new_limit
,
162 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
166 rc
= kvm_s390_query_mem_limit(s
, hw_limit
);
169 } else if (*hw_limit
< new_limit
) {
173 return kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
176 void kvm_s390_cmma_reset(void)
179 struct kvm_device_attr attr
= {
180 .group
= KVM_S390_VM_MEM_CTRL
,
181 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
184 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
185 trace_kvm_clear_cmma(rc
);
188 static void kvm_s390_enable_cmma(KVMState
*s
)
191 struct kvm_device_attr attr
= {
192 .group
= KVM_S390_VM_MEM_CTRL
,
193 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
196 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_ENABLE_CMMA
) ||
197 !kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_CLR_CMMA
)) {
201 rc
= kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
202 trace_kvm_enable_cmma(rc
);
205 static void kvm_s390_set_attr(uint64_t attr
)
207 struct kvm_device_attr attribute
= {
208 .group
= KVM_S390_VM_CRYPTO
,
212 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
215 error_report("Failed to set crypto device attribute %lu: %s",
216 attr
, strerror(-ret
));
220 static void kvm_s390_init_aes_kw(void)
222 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
224 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
226 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
229 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
230 kvm_s390_set_attr(attr
);
234 static void kvm_s390_init_dea_kw(void)
236 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
238 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
240 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
243 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
244 kvm_s390_set_attr(attr
);
248 void kvm_s390_crypto_reset(void)
250 kvm_s390_init_aes_kw();
251 kvm_s390_init_dea_kw();
254 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
256 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
257 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
258 cap_mem_op
= kvm_check_extension(s
, KVM_CAP_S390_MEM_OP
);
259 cap_s390_irq
= kvm_check_extension(s
, KVM_CAP_S390_INJECT_IRQ
);
261 kvm_s390_enable_cmma(s
);
263 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
264 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
265 phys_mem_set_alloc(legacy_s390_alloc
);
268 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
269 kvm_vm_enable_cap(s
, KVM_CAP_S390_VECTOR_REGISTERS
, 0);
270 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_STSI
, 0);
275 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
277 return cpu
->cpu_index
;
280 int kvm_arch_init_vcpu(CPUState
*cs
)
282 S390CPU
*cpu
= S390_CPU(cs
);
283 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
284 cpu
->irqstate
= g_malloc0(VCPU_IRQ_BUF_SIZE
);
288 void kvm_s390_reset_vcpu(S390CPU
*cpu
)
290 CPUState
*cs
= CPU(cpu
);
292 /* The initial reset call is needed here to reset in-kernel
293 * vcpu data that we can't access directly from QEMU
294 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
295 * Before this ioctl cpu_synchronize_state() is called in common kvm
297 if (kvm_vcpu_ioctl(cs
, KVM_S390_INITIAL_RESET
, NULL
)) {
298 error_report("Initial CPU reset failed on CPU %i", cs
->cpu_index
);
302 static int can_sync_regs(CPUState
*cs
, int regs
)
304 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
307 int kvm_arch_put_registers(CPUState
*cs
, int level
)
309 S390CPU
*cpu
= S390_CPU(cs
);
310 CPUS390XState
*env
= &cpu
->env
;
311 struct kvm_sregs sregs
;
312 struct kvm_regs regs
;
313 struct kvm_fpu fpu
= {};
317 /* always save the PSW and the GPRS*/
318 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
319 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
321 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
322 for (i
= 0; i
< 16; i
++) {
323 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
324 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
327 for (i
= 0; i
< 16; i
++) {
328 regs
.gprs
[i
] = env
->regs
[i
];
330 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
336 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
337 for (i
= 0; i
< 32; i
++) {
338 cs
->kvm_run
->s
.regs
.vrs
[i
][0] = env
->vregs
[i
][0].ll
;
339 cs
->kvm_run
->s
.regs
.vrs
[i
][1] = env
->vregs
[i
][1].ll
;
341 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
342 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_VRS
;
345 for (i
= 0; i
< 16; i
++) {
346 fpu
.fprs
[i
] = get_freg(env
, i
)->ll
;
350 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
356 /* Do we need to save more than that? */
357 if (level
== KVM_PUT_RUNTIME_STATE
) {
361 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
362 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
363 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
364 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
365 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
366 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
367 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
370 * These ONE_REGS are not protected by a capability. As they are only
371 * necessary for migration we just trace a possible error, but don't
372 * return with an error return code.
374 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
375 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
376 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
377 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
378 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
381 /* pfault parameters */
382 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
383 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
384 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
385 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
386 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
387 } else if (cap_async_pf
) {
388 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
392 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
396 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
402 /* access registers and control registers*/
403 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
404 for (i
= 0; i
< 16; i
++) {
405 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
406 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
408 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
409 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
411 for (i
= 0; i
< 16; i
++) {
412 sregs
.acrs
[i
] = env
->aregs
[i
];
413 sregs
.crs
[i
] = env
->cregs
[i
];
415 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
421 /* Finally the prefix */
422 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
423 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
424 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
426 /* prefix is only supported via sync regs */
431 int kvm_arch_get_registers(CPUState
*cs
)
433 S390CPU
*cpu
= S390_CPU(cs
);
434 CPUS390XState
*env
= &cpu
->env
;
435 struct kvm_sregs sregs
;
436 struct kvm_regs regs
;
441 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
442 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
445 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
446 for (i
= 0; i
< 16; i
++) {
447 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
450 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
454 for (i
= 0; i
< 16; i
++) {
455 env
->regs
[i
] = regs
.gprs
[i
];
459 /* The ACRS and CRS */
460 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
461 for (i
= 0; i
< 16; i
++) {
462 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
463 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
466 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
470 for (i
= 0; i
< 16; i
++) {
471 env
->aregs
[i
] = sregs
.acrs
[i
];
472 env
->cregs
[i
] = sregs
.crs
[i
];
476 /* Floating point and vector registers */
477 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
478 for (i
= 0; i
< 32; i
++) {
479 env
->vregs
[i
][0].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][0];
480 env
->vregs
[i
][1].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][1];
482 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
484 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
488 for (i
= 0; i
< 16; i
++) {
489 get_freg(env
, i
)->ll
= fpu
.fprs
[i
];
495 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
496 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
499 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
500 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
501 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
502 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
503 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
504 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
507 * These ONE_REGS are not protected by a capability. As they are only
508 * necessary for migration we just trace a possible error, but don't
509 * return with an error return code.
511 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
512 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
513 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
514 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
515 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
518 /* pfault parameters */
519 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
520 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
521 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
522 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
523 } else if (cap_async_pf
) {
524 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
528 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
532 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
541 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
544 struct kvm_device_attr attr
= {
545 .group
= KVM_S390_VM_TOD
,
546 .attr
= KVM_S390_VM_TOD_LOW
,
547 .addr
= (uint64_t)tod_low
,
550 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
555 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
556 attr
.addr
= (uint64_t)tod_high
;
557 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
560 int kvm_s390_set_clock(uint8_t *tod_high
, uint64_t *tod_low
)
564 struct kvm_device_attr attr
= {
565 .group
= KVM_S390_VM_TOD
,
566 .attr
= KVM_S390_VM_TOD_LOW
,
567 .addr
= (uint64_t)tod_low
,
570 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
575 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
576 attr
.addr
= (uint64_t)tod_high
;
577 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
582 * @addr: the logical start address in guest memory
583 * @ar: the access register number
584 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
585 * @len: length that should be transferred
586 * @is_write: true = write, false = read
587 * Returns: 0 on success, non-zero if an exception or error occurred
589 * Use KVM ioctl to read/write from/to guest memory. An access exception
590 * is injected into the vCPU in case of translation errors.
592 int kvm_s390_mem_op(S390CPU
*cpu
, vaddr addr
, uint8_t ar
, void *hostbuf
,
593 int len
, bool is_write
)
595 struct kvm_s390_mem_op mem_op
= {
597 .flags
= KVM_S390_MEMOP_F_INJECT_EXCEPTION
,
599 .op
= is_write
? KVM_S390_MEMOP_LOGICAL_WRITE
600 : KVM_S390_MEMOP_LOGICAL_READ
,
601 .buf
= (uint64_t)hostbuf
,
610 mem_op
.flags
|= KVM_S390_MEMOP_F_CHECK_ONLY
;
613 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
615 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret
));
621 * Legacy layout for s390:
622 * Older S390 KVM requires the topmost vma of the RAM to be
623 * smaller than an system defined value, which is at least 256GB.
624 * Larger systems have larger values. We put the guest between
625 * the end of data segment (system break) and this value. We
626 * use 32GB as a base to have enough room for the system break
627 * to grow. We also have to use MAP parameters that avoid
628 * read-only mapping of guest pages.
630 static void *legacy_s390_alloc(size_t size
, uint64_t *align
)
634 mem
= mmap((void *) 0x800000000ULL
, size
,
635 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
636 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
637 return mem
== MAP_FAILED
? NULL
: mem
;
640 /* DIAG 501 is used for sw breakpoints */
641 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
643 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
646 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
647 sizeof(diag_501
), 0) ||
648 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)diag_501
,
649 sizeof(diag_501
), 1)) {
655 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
657 uint8_t t
[sizeof(diag_501
)];
659 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sizeof(diag_501
), 0)) {
661 } else if (memcmp(t
, diag_501
, sizeof(diag_501
))) {
663 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
664 sizeof(diag_501
), 1)) {
671 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
676 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
677 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
678 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
679 return &hw_breakpoints
[n
];
686 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
690 if (find_hw_breakpoint(addr
, len
, type
)) {
694 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
696 if (!hw_breakpoints
) {
697 nb_hw_breakpoints
= 0;
698 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
701 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
704 if (!hw_breakpoints
) {
705 nb_hw_breakpoints
= 0;
709 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
710 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
711 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
718 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
719 target_ulong len
, int type
)
722 case GDB_BREAKPOINT_HW
:
725 case GDB_WATCHPOINT_WRITE
:
729 type
= KVM_HW_WP_WRITE
;
734 return insert_hw_breakpoint(addr
, len
, type
);
737 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
738 target_ulong len
, int type
)
741 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
748 if (nb_hw_breakpoints
> 0) {
750 * In order to trim the array, move the last element to the position to
751 * be removed - if necessary.
753 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
754 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
756 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
758 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
760 g_free(hw_breakpoints
);
761 hw_breakpoints
= NULL
;
767 void kvm_arch_remove_all_hw_breakpoints(void)
769 nb_hw_breakpoints
= 0;
770 g_free(hw_breakpoints
);
771 hw_breakpoints
= NULL
;
774 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
778 if (nb_hw_breakpoints
> 0) {
779 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
780 dbg
->arch
.hw_bp
= hw_breakpoints
;
782 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
783 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
784 hw_breakpoints
[i
].addr
);
786 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
788 dbg
->arch
.nr_hw_bp
= 0;
789 dbg
->arch
.hw_bp
= NULL
;
793 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
797 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
799 return MEMTXATTRS_UNSPECIFIED
;
802 int kvm_arch_process_async_events(CPUState
*cs
)
807 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
808 struct kvm_s390_interrupt
*interrupt
)
812 interrupt
->type
= irq
->type
;
814 case KVM_S390_INT_VIRTIO
:
815 interrupt
->parm
= irq
->u
.ext
.ext_params
;
817 case KVM_S390_INT_PFAULT_INIT
:
818 case KVM_S390_INT_PFAULT_DONE
:
819 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
821 case KVM_S390_PROGRAM_INT
:
822 interrupt
->parm
= irq
->u
.pgm
.code
;
824 case KVM_S390_SIGP_SET_PREFIX
:
825 interrupt
->parm
= irq
->u
.prefix
.address
;
827 case KVM_S390_INT_SERVICE
:
828 interrupt
->parm
= irq
->u
.ext
.ext_params
;
831 interrupt
->parm
= irq
->u
.mchk
.cr14
;
832 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
834 case KVM_S390_INT_EXTERNAL_CALL
:
835 interrupt
->parm
= irq
->u
.extcall
.code
;
837 case KVM_S390_INT_EMERGENCY
:
838 interrupt
->parm
= irq
->u
.emerg
.code
;
840 case KVM_S390_SIGP_STOP
:
841 case KVM_S390_RESTART
:
842 break; /* These types have no parameters */
843 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
844 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
845 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
846 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
847 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
856 static void inject_vcpu_irq_legacy(CPUState
*cs
, struct kvm_s390_irq
*irq
)
858 struct kvm_s390_interrupt kvmint
= {};
861 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
863 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
867 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
869 fprintf(stderr
, "KVM failed to inject interrupt\n");
874 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
876 CPUState
*cs
= CPU(cpu
);
880 r
= kvm_vcpu_ioctl(cs
, KVM_S390_IRQ
, irq
);
884 error_report("KVM failed to inject interrupt %llx", irq
->type
);
888 inject_vcpu_irq_legacy(cs
, irq
);
891 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
893 struct kvm_s390_interrupt kvmint
= {};
896 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
898 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
902 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
904 fprintf(stderr
, "KVM failed to inject interrupt\n");
909 void kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
911 static bool use_flic
= true;
915 r
= kvm_s390_inject_flic(irq
);
923 __kvm_s390_floating_interrupt(irq
);
926 void kvm_s390_virtio_irq(int config_change
, uint64_t token
)
928 struct kvm_s390_irq irq
= {
929 .type
= KVM_S390_INT_VIRTIO
,
930 .u
.ext
.ext_params
= config_change
,
931 .u
.ext
.ext_params2
= token
,
934 kvm_s390_floating_interrupt(&irq
);
937 void kvm_s390_service_interrupt(uint32_t parm
)
939 struct kvm_s390_irq irq
= {
940 .type
= KVM_S390_INT_SERVICE
,
941 .u
.ext
.ext_params
= parm
,
944 kvm_s390_floating_interrupt(&irq
);
947 static void enter_pgmcheck(S390CPU
*cpu
, uint16_t code
)
949 struct kvm_s390_irq irq
= {
950 .type
= KVM_S390_PROGRAM_INT
,
954 kvm_s390_vcpu_interrupt(cpu
, &irq
);
957 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
959 struct kvm_s390_irq irq
= {
960 .type
= KVM_S390_PROGRAM_INT
,
962 .u
.pgm
.trans_exc_code
= te_code
,
963 .u
.pgm
.exc_access_id
= te_code
& 3,
966 kvm_s390_vcpu_interrupt(cpu
, &irq
);
969 static int kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
972 CPUS390XState
*env
= &cpu
->env
;
977 cpu_synchronize_state(CPU(cpu
));
978 sccb
= env
->regs
[ipbh0
& 0xf];
979 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
981 r
= sclp_service_call(env
, sccb
, code
);
983 enter_pgmcheck(cpu
, -r
);
991 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
993 CPUS390XState
*env
= &cpu
->env
;
995 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
997 cpu_synchronize_state(CPU(cpu
));
1001 ioinst_handle_xsch(cpu
, env
->regs
[1]);
1004 ioinst_handle_csch(cpu
, env
->regs
[1]);
1007 ioinst_handle_hsch(cpu
, env
->regs
[1]);
1010 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1013 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1016 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
);
1019 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1022 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1023 fprintf(stderr
, "Spurious tsch intercept\n");
1026 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
);
1029 /* This should have been handled by kvm already. */
1030 fprintf(stderr
, "Spurious tpi intercept\n");
1033 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
1034 run
->s390_sieic
.ipb
);
1037 ioinst_handle_rsch(cpu
, env
->regs
[1]);
1040 ioinst_handle_rchp(cpu
, env
->regs
[1]);
1043 /* We do not provide this instruction, it is suppressed. */
1046 ioinst_handle_sal(cpu
, env
->regs
[1]);
1049 /* Not provided, set CC = 3 for subchannel not operational */
1052 case PRIV_B2_SCLP_CALL
:
1053 rc
= kvm_sclp_service_call(cpu
, run
, ipbh0
);
1057 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
1064 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
,
1067 CPUS390XState
*env
= &cpu
->env
;
1068 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
1069 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1070 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1071 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1073 if (disp2
& 0x80000) {
1074 disp2
+= 0xfff00000;
1080 return (base2
? env
->regs
[base2
] : 0) +
1081 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
1084 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
,
1087 CPUS390XState
*env
= &cpu
->env
;
1088 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1089 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1090 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1092 if (disp2
& 0x80000) {
1093 disp2
+= 0xfff00000;
1099 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1102 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1104 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1106 return clp_service_call(cpu
, r2
);
1109 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1111 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1112 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1114 return pcilg_service_call(cpu
, r1
, r2
);
1117 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1119 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1120 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1122 return pcistg_service_call(cpu
, r1
, r2
);
1125 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1127 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1131 cpu_synchronize_state(CPU(cpu
));
1132 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1134 return stpcifc_service_call(cpu
, r1
, fiba
, ar
);
1137 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1143 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1145 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1146 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1148 return rpcit_service_call(cpu
, r1
, r2
);
1151 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1153 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1154 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1158 cpu_synchronize_state(CPU(cpu
));
1159 gaddr
= get_base_disp_rsy(cpu
, run
, &ar
);
1161 return pcistb_service_call(cpu
, r1
, r3
, gaddr
, ar
);
1164 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1166 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1170 cpu_synchronize_state(CPU(cpu
));
1171 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1173 return mpcifc_service_call(cpu
, r1
, fiba
, ar
);
1176 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1182 r
= kvm_clp_service_call(cpu
, run
);
1184 case PRIV_B9_PCISTG
:
1185 r
= kvm_pcistg_service_call(cpu
, run
);
1188 r
= kvm_pcilg_service_call(cpu
, run
);
1191 r
= kvm_rpcit_service_call(cpu
, run
);
1194 /* just inject exception */
1199 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1206 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1211 case PRIV_EB_PCISTB
:
1212 r
= kvm_pcistb_service_call(cpu
, run
);
1215 r
= kvm_sic_service_call(cpu
, run
);
1218 /* just inject exception */
1223 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1230 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1235 case PRIV_E3_MPCIFC
:
1236 r
= kvm_mpcifc_service_call(cpu
, run
);
1238 case PRIV_E3_STPCIFC
:
1239 r
= kvm_stpcifc_service_call(cpu
, run
);
1243 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1250 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1252 CPUS390XState
*env
= &cpu
->env
;
1255 cpu_synchronize_state(CPU(cpu
));
1256 ret
= s390_virtio_hypercall(env
);
1257 if (ret
== -EINVAL
) {
1258 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1265 static void kvm_handle_diag_288(S390CPU
*cpu
, struct kvm_run
*run
)
1270 cpu_synchronize_state(CPU(cpu
));
1271 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1272 r3
= run
->s390_sieic
.ipa
& 0x000f;
1273 rc
= handle_diag_288(&cpu
->env
, r1
, r3
);
1275 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1279 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1283 cpu_synchronize_state(CPU(cpu
));
1284 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1285 r3
= run
->s390_sieic
.ipa
& 0x000f;
1286 handle_diag_308(&cpu
->env
, r1
, r3
);
1289 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1291 CPUS390XState
*env
= &cpu
->env
;
1294 cpu_synchronize_state(CPU(cpu
));
1296 pc
= env
->psw
.addr
- 4;
1297 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1305 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1307 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1313 * For any diagnose call we support, bits 48-63 of the resulting
1314 * address specify the function code; the remainder is ignored.
1316 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
, NULL
) & DIAG_KVM_CODE_MASK
;
1317 switch (func_code
) {
1318 case DIAG_TIMEREVENT
:
1319 kvm_handle_diag_288(cpu
, run
);
1322 kvm_handle_diag_308(cpu
, run
);
1324 case DIAG_KVM_HYPERCALL
:
1325 r
= handle_hypercall(cpu
, run
);
1327 case DIAG_KVM_BREAKPOINT
:
1328 r
= handle_sw_breakpoint(cpu
, run
);
1331 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1332 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1339 typedef struct SigpInfo
{
1343 uint64_t *status_reg
;
1346 static void set_sigp_status(SigpInfo
*si
, uint64_t status
)
1348 *si
->status_reg
&= 0xffffffff00000000ULL
;
1349 *si
->status_reg
|= status
;
1350 si
->cc
= SIGP_CC_STATUS_STORED
;
1353 static void sigp_start(void *arg
)
1357 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1358 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1362 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1363 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1366 static void sigp_stop(void *arg
)
1369 struct kvm_s390_irq irq
= {
1370 .type
= KVM_S390_SIGP_STOP
,
1373 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_OPERATING
) {
1374 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1378 /* disabled wait - sleeping in user space */
1379 if (CPU(si
->cpu
)->halted
) {
1380 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1382 /* execute the stop function */
1383 si
->cpu
->env
.sigp_order
= SIGP_STOP
;
1384 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1386 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1389 #define ADTL_SAVE_AREA_SIZE 1024
1390 static int kvm_s390_store_adtl_status(S390CPU
*cpu
, hwaddr addr
)
1393 hwaddr len
= ADTL_SAVE_AREA_SIZE
;
1395 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1399 if (len
!= ADTL_SAVE_AREA_SIZE
) {
1400 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1404 memcpy(mem
, &cpu
->env
.vregs
, 512);
1406 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1411 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1412 #define SAVE_AREA_SIZE 512
1413 static int kvm_s390_store_status(S390CPU
*cpu
, hwaddr addr
, bool store_arch
)
1415 static const uint8_t ar_id
= 1;
1416 uint64_t ckc
= cpu
->env
.ckc
>> 8;
1419 hwaddr len
= SAVE_AREA_SIZE
;
1421 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1425 if (len
!= SAVE_AREA_SIZE
) {
1426 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1431 cpu_physical_memory_write(offsetof(LowCore
, ar_access_id
), &ar_id
, 1);
1433 for (i
= 0; i
< 16; ++i
) {
1434 *((uint64
*)mem
+ i
) = get_freg(&cpu
->env
, i
)->ll
;
1436 memcpy(mem
+ 128, &cpu
->env
.regs
, 128);
1437 memcpy(mem
+ 256, &cpu
->env
.psw
, 16);
1438 memcpy(mem
+ 280, &cpu
->env
.psa
, 4);
1439 memcpy(mem
+ 284, &cpu
->env
.fpc
, 4);
1440 memcpy(mem
+ 292, &cpu
->env
.todpr
, 4);
1441 memcpy(mem
+ 296, &cpu
->env
.cputm
, 8);
1442 memcpy(mem
+ 304, &ckc
, 8);
1443 memcpy(mem
+ 320, &cpu
->env
.aregs
, 64);
1444 memcpy(mem
+ 384, &cpu
->env
.cregs
, 128);
1446 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1451 static void sigp_stop_and_store_status(void *arg
)
1454 struct kvm_s390_irq irq
= {
1455 .type
= KVM_S390_SIGP_STOP
,
1458 /* disabled wait - sleeping in user space */
1459 if (s390_cpu_get_state(si
->cpu
) == CPU_STATE_OPERATING
&&
1460 CPU(si
->cpu
)->halted
) {
1461 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1464 switch (s390_cpu_get_state(si
->cpu
)) {
1465 case CPU_STATE_OPERATING
:
1466 si
->cpu
->env
.sigp_order
= SIGP_STOP_STORE_STATUS
;
1467 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1468 /* store will be performed when handling the stop intercept */
1470 case CPU_STATE_STOPPED
:
1471 /* already stopped, just store the status */
1472 cpu_synchronize_state(CPU(si
->cpu
));
1473 kvm_s390_store_status(si
->cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
, true);
1476 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1479 static void sigp_store_status_at_address(void *arg
)
1482 uint32_t address
= si
->param
& 0x7ffffe00u
;
1484 /* cpu has to be stopped */
1485 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1486 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1490 cpu_synchronize_state(CPU(si
->cpu
));
1492 if (kvm_s390_store_status(si
->cpu
, address
, false)) {
1493 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1496 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1499 static void sigp_store_adtl_status(void *arg
)
1503 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_VECTOR_REGISTERS
)) {
1504 set_sigp_status(si
, SIGP_STAT_INVALID_ORDER
);
1508 /* cpu has to be stopped */
1509 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1510 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1514 /* parameter must be aligned to 1024-byte boundary */
1515 if (si
->param
& 0x3ff) {
1516 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1520 cpu_synchronize_state(CPU(si
->cpu
));
1522 if (kvm_s390_store_adtl_status(si
->cpu
, si
->param
)) {
1523 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1526 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1529 static void sigp_restart(void *arg
)
1532 struct kvm_s390_irq irq
= {
1533 .type
= KVM_S390_RESTART
,
1536 switch (s390_cpu_get_state(si
->cpu
)) {
1537 case CPU_STATE_STOPPED
:
1538 /* the restart irq has to be delivered prior to any other pending irq */
1539 cpu_synchronize_state(CPU(si
->cpu
));
1540 do_restart_interrupt(&si
->cpu
->env
);
1541 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1543 case CPU_STATE_OPERATING
:
1544 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1547 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1550 int kvm_s390_cpu_restart(S390CPU
*cpu
)
1556 run_on_cpu(CPU(cpu
), sigp_restart
, &si
);
1557 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu
->env
);
1561 static void sigp_initial_cpu_reset(void *arg
)
1564 CPUState
*cs
= CPU(si
->cpu
);
1565 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1567 cpu_synchronize_state(cs
);
1568 scc
->initial_cpu_reset(cs
);
1569 cpu_synchronize_post_reset(cs
);
1570 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1573 static void sigp_cpu_reset(void *arg
)
1576 CPUState
*cs
= CPU(si
->cpu
);
1577 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1579 cpu_synchronize_state(cs
);
1581 cpu_synchronize_post_reset(cs
);
1582 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1585 static void sigp_set_prefix(void *arg
)
1588 uint32_t addr
= si
->param
& 0x7fffe000u
;
1590 cpu_synchronize_state(CPU(si
->cpu
));
1592 if (!address_space_access_valid(&address_space_memory
, addr
,
1593 sizeof(struct LowCore
), false)) {
1594 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1598 /* cpu has to be stopped */
1599 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1600 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1604 si
->cpu
->env
.psa
= addr
;
1605 cpu_synchronize_post_init(CPU(si
->cpu
));
1606 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1609 static int handle_sigp_single_dst(S390CPU
*dst_cpu
, uint8_t order
,
1610 uint64_t param
, uint64_t *status_reg
)
1615 .status_reg
= status_reg
,
1618 /* cpu available? */
1619 if (dst_cpu
== NULL
) {
1620 return SIGP_CC_NOT_OPERATIONAL
;
1623 /* only resets can break pending orders */
1624 if (dst_cpu
->env
.sigp_order
!= 0 &&
1625 order
!= SIGP_CPU_RESET
&&
1626 order
!= SIGP_INITIAL_CPU_RESET
) {
1627 return SIGP_CC_BUSY
;
1632 run_on_cpu(CPU(dst_cpu
), sigp_start
, &si
);
1635 run_on_cpu(CPU(dst_cpu
), sigp_stop
, &si
);
1638 run_on_cpu(CPU(dst_cpu
), sigp_restart
, &si
);
1640 case SIGP_STOP_STORE_STATUS
:
1641 run_on_cpu(CPU(dst_cpu
), sigp_stop_and_store_status
, &si
);
1643 case SIGP_STORE_STATUS_ADDR
:
1644 run_on_cpu(CPU(dst_cpu
), sigp_store_status_at_address
, &si
);
1646 case SIGP_STORE_ADTL_STATUS
:
1647 run_on_cpu(CPU(dst_cpu
), sigp_store_adtl_status
, &si
);
1649 case SIGP_SET_PREFIX
:
1650 run_on_cpu(CPU(dst_cpu
), sigp_set_prefix
, &si
);
1652 case SIGP_INITIAL_CPU_RESET
:
1653 run_on_cpu(CPU(dst_cpu
), sigp_initial_cpu_reset
, &si
);
1655 case SIGP_CPU_RESET
:
1656 run_on_cpu(CPU(dst_cpu
), sigp_cpu_reset
, &si
);
1659 DPRINTF("KVM: unknown SIGP: 0x%x\n", order
);
1660 set_sigp_status(&si
, SIGP_STAT_INVALID_ORDER
);
1666 static int sigp_set_architecture(S390CPU
*cpu
, uint32_t param
,
1667 uint64_t *status_reg
)
1672 /* due to the BQL, we are the only active cpu */
1673 CPU_FOREACH(cur_cs
) {
1674 cur_cpu
= S390_CPU(cur_cs
);
1675 if (cur_cpu
->env
.sigp_order
!= 0) {
1676 return SIGP_CC_BUSY
;
1678 cpu_synchronize_state(cur_cs
);
1679 /* all but the current one have to be stopped */
1680 if (cur_cpu
!= cpu
&&
1681 s390_cpu_get_state(cur_cpu
) != CPU_STATE_STOPPED
) {
1682 *status_reg
&= 0xffffffff00000000ULL
;
1683 *status_reg
|= SIGP_STAT_INCORRECT_STATE
;
1684 return SIGP_CC_STATUS_STORED
;
1688 switch (param
& 0xff) {
1689 case SIGP_MODE_ESA_S390
:
1691 return SIGP_CC_NOT_OPERATIONAL
;
1692 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW
:
1693 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW
:
1694 CPU_FOREACH(cur_cs
) {
1695 cur_cpu
= S390_CPU(cur_cs
);
1696 cur_cpu
->env
.pfault_token
= -1UL;
1700 *status_reg
&= 0xffffffff00000000ULL
;
1701 *status_reg
|= SIGP_STAT_INVALID_PARAMETER
;
1702 return SIGP_CC_STATUS_STORED
;
1705 return SIGP_CC_ORDER_CODE_ACCEPTED
;
1708 #define SIGP_ORDER_MASK 0x000000ff
1710 static int handle_sigp(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1712 CPUS390XState
*env
= &cpu
->env
;
1713 const uint8_t r1
= ipa1
>> 4;
1714 const uint8_t r3
= ipa1
& 0x0f;
1717 uint64_t *status_reg
;
1719 S390CPU
*dst_cpu
= NULL
;
1721 cpu_synchronize_state(CPU(cpu
));
1723 /* get order code */
1724 order
= decode_basedisp_rs(env
, run
->s390_sieic
.ipb
, NULL
)
1726 status_reg
= &env
->regs
[r1
];
1727 param
= (r1
% 2) ? env
->regs
[r1
] : env
->regs
[r1
+ 1];
1731 ret
= sigp_set_architecture(cpu
, param
, status_reg
);
1734 /* all other sigp orders target a single vcpu */
1735 dst_cpu
= s390_cpu_addr2state(env
->regs
[r3
]);
1736 ret
= handle_sigp_single_dst(dst_cpu
, order
, param
, status_reg
);
1739 trace_kvm_sigp_finished(order
, CPU(cpu
)->cpu_index
,
1740 dst_cpu
? CPU(dst_cpu
)->cpu_index
: -1, ret
);
1750 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1752 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1753 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1756 DPRINTF("handle_instruction 0x%x 0x%x\n",
1757 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1760 r
= handle_b2(cpu
, run
, ipa1
);
1763 r
= handle_b9(cpu
, run
, ipa1
);
1766 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1769 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1772 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1775 r
= handle_sigp(cpu
, run
, ipa1
);
1781 enter_pgmcheck(cpu
, 0x0001);
1787 static bool is_special_wait_psw(CPUState
*cs
)
1789 /* signal quiesce */
1790 return cs
->kvm_run
->psw_addr
== 0xfffUL
;
1793 static void unmanageable_intercept(S390CPU
*cpu
, const char *str
, int pswoffset
)
1795 CPUState
*cs
= CPU(cpu
);
1797 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1798 str
, cs
->cpu_index
, ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
),
1799 ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
+ 8));
1801 qemu_system_guest_panicked();
1804 static int handle_intercept(S390CPU
*cpu
)
1806 CPUState
*cs
= CPU(cpu
);
1807 struct kvm_run
*run
= cs
->kvm_run
;
1808 int icpt_code
= run
->s390_sieic
.icptcode
;
1811 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1812 (long)cs
->kvm_run
->psw_addr
);
1813 switch (icpt_code
) {
1814 case ICPT_INSTRUCTION
:
1815 r
= handle_instruction(cpu
, run
);
1818 unmanageable_intercept(cpu
, "program interrupt",
1819 offsetof(LowCore
, program_new_psw
));
1823 unmanageable_intercept(cpu
, "external interrupt",
1824 offsetof(LowCore
, external_new_psw
));
1828 /* disabled wait, since enabled wait is handled in kernel */
1829 cpu_synchronize_state(cs
);
1830 if (s390_cpu_halt(cpu
) == 0) {
1831 if (is_special_wait_psw(cs
)) {
1832 qemu_system_shutdown_request();
1834 qemu_system_guest_panicked();
1840 if (s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
) == 0) {
1841 qemu_system_shutdown_request();
1843 if (cpu
->env
.sigp_order
== SIGP_STOP_STORE_STATUS
) {
1844 kvm_s390_store_status(cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
,
1847 cpu
->env
.sigp_order
= 0;
1850 case ICPT_SOFT_INTERCEPT
:
1851 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1855 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1859 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1867 static int handle_tsch(S390CPU
*cpu
)
1869 CPUState
*cs
= CPU(cpu
);
1870 struct kvm_run
*run
= cs
->kvm_run
;
1873 cpu_synchronize_state(cs
);
1875 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
);
1879 * If an I/O interrupt had been dequeued, we have to reinject it.
1881 if (run
->s390_tsch
.dequeued
) {
1882 kvm_s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1883 run
->s390_tsch
.subchannel_nr
,
1884 run
->s390_tsch
.io_int_parm
,
1885 run
->s390_tsch
.io_int_word
);
1892 static void insert_stsi_3_2_2(S390CPU
*cpu
, __u64 addr
, uint8_t ar
)
1894 struct sysib_322 sysib
;
1897 if (s390_cpu_virt_mem_read(cpu
, addr
, ar
, &sysib
, sizeof(sysib
))) {
1900 /* Shift the stack of Extended Names to prepare for our own data */
1901 memmove(&sysib
.ext_names
[1], &sysib
.ext_names
[0],
1902 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- 1));
1903 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1904 * assumed it's not capable of managing Extended Names for lower levels.
1906 for (del
= 1; del
< sysib
.count
; del
++) {
1907 if (!sysib
.vm
[del
].ext_name_encoding
|| !sysib
.ext_names
[del
][0]) {
1911 if (del
< sysib
.count
) {
1912 memset(sysib
.ext_names
[del
], 0,
1913 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- del
));
1915 /* Insert short machine name in EBCDIC, padded with blanks */
1917 memset(sysib
.vm
[0].name
, 0x40, sizeof(sysib
.vm
[0].name
));
1918 ebcdic_put(sysib
.vm
[0].name
, qemu_name
, MIN(sizeof(sysib
.vm
[0].name
),
1919 strlen(qemu_name
)));
1921 sysib
.vm
[0].ext_name_encoding
= 2; /* 2 = UTF-8 */
1922 memset(sysib
.ext_names
[0], 0, sizeof(sysib
.ext_names
[0]));
1923 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1924 * considered by s390 as not capable of providing any Extended Name.
1925 * Therefore if no name was specified on qemu invocation, we go with the
1926 * same "KVMguest" default, which KVM has filled into short name field.
1929 strncpy((char *)sysib
.ext_names
[0], qemu_name
,
1930 sizeof(sysib
.ext_names
[0]));
1932 strcpy((char *)sysib
.ext_names
[0], "KVMguest");
1935 memcpy(sysib
.vm
[0].uuid
, qemu_uuid
, sizeof(sysib
.vm
[0].uuid
));
1937 s390_cpu_virt_mem_write(cpu
, addr
, ar
, &sysib
, sizeof(sysib
));
1940 static int handle_stsi(S390CPU
*cpu
)
1942 CPUState
*cs
= CPU(cpu
);
1943 struct kvm_run
*run
= cs
->kvm_run
;
1945 switch (run
->s390_stsi
.fc
) {
1947 if (run
->s390_stsi
.sel1
!= 2 || run
->s390_stsi
.sel2
!= 2) {
1950 /* Only sysib 3.2.2 needs post-handling for now. */
1951 insert_stsi_3_2_2(cpu
, run
->s390_stsi
.addr
, run
->s390_stsi
.ar
);
1958 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
1960 CPUState
*cs
= CPU(cpu
);
1961 struct kvm_run
*run
= cs
->kvm_run
;
1964 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1966 switch (arch_info
->type
) {
1967 case KVM_HW_WP_WRITE
:
1968 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1969 cs
->watchpoint_hit
= &hw_watchpoint
;
1970 hw_watchpoint
.vaddr
= arch_info
->addr
;
1971 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1976 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1980 case KVM_SINGLESTEP
:
1981 if (cs
->singlestep_enabled
) {
1992 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1994 S390CPU
*cpu
= S390_CPU(cs
);
1997 qemu_mutex_lock_iothread();
1999 switch (run
->exit_reason
) {
2000 case KVM_EXIT_S390_SIEIC
:
2001 ret
= handle_intercept(cpu
);
2003 case KVM_EXIT_S390_RESET
:
2004 s390_reipl_request();
2006 case KVM_EXIT_S390_TSCH
:
2007 ret
= handle_tsch(cpu
);
2009 case KVM_EXIT_S390_STSI
:
2010 ret
= handle_stsi(cpu
);
2012 case KVM_EXIT_DEBUG
:
2013 ret
= kvm_arch_handle_debug_exit(cpu
);
2016 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
2019 qemu_mutex_unlock_iothread();
2022 ret
= EXCP_INTERRUPT
;
2027 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2032 int kvm_arch_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2037 int kvm_arch_on_sigbus(int code
, void *addr
)
2042 void kvm_s390_io_interrupt(uint16_t subchannel_id
,
2043 uint16_t subchannel_nr
, uint32_t io_int_parm
,
2044 uint32_t io_int_word
)
2046 struct kvm_s390_irq irq
= {
2047 .u
.io
.subchannel_id
= subchannel_id
,
2048 .u
.io
.subchannel_nr
= subchannel_nr
,
2049 .u
.io
.io_int_parm
= io_int_parm
,
2050 .u
.io
.io_int_word
= io_int_word
,
2053 if (io_int_word
& IO_INT_WORD_AI
) {
2054 irq
.type
= KVM_S390_INT_IO(1, 0, 0, 0);
2056 irq
.type
= ((subchannel_id
& 0xff00) << 24) |
2057 ((subchannel_id
& 0x00060) << 22) | (subchannel_nr
<< 16);
2059 kvm_s390_floating_interrupt(&irq
);
2062 static uint64_t build_channel_report_mcic(void)
2066 /* subclass: indicate channel report pending */
2068 /* subclass modifiers: none */
2069 /* storage errors: none */
2070 /* validity bits: no damage */
2071 MCIC_VB_WP
| MCIC_VB_MS
| MCIC_VB_PM
| MCIC_VB_IA
| MCIC_VB_FP
|
2072 MCIC_VB_GR
| MCIC_VB_CR
| MCIC_VB_ST
| MCIC_VB_AR
| MCIC_VB_PR
|
2073 MCIC_VB_FC
| MCIC_VB_CT
| MCIC_VB_CC
;
2074 if (kvm_check_extension(kvm_state
, KVM_CAP_S390_VECTOR_REGISTERS
)) {
2080 void kvm_s390_crw_mchk(void)
2082 struct kvm_s390_irq irq
= {
2083 .type
= KVM_S390_MCHK
,
2084 .u
.mchk
.cr14
= 1 << 28,
2085 .u
.mchk
.mcic
= build_channel_report_mcic(),
2087 kvm_s390_floating_interrupt(&irq
);
2090 void kvm_s390_enable_css_support(S390CPU
*cpu
)
2094 /* Activate host kernel channel subsystem support. */
2095 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
2099 void kvm_arch_init_irq_routing(KVMState
*s
)
2102 * Note that while irqchip capabilities generally imply that cpustates
2103 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2104 * have to override the common code kvm_halt_in_kernel_allowed setting.
2106 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2107 kvm_gsi_routing_allowed
= true;
2108 kvm_halt_in_kernel_allowed
= false;
2112 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
2113 int vq
, bool assign
)
2115 struct kvm_ioeventfd kick
= {
2116 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
2117 KVM_IOEVENTFD_FLAG_DATAMATCH
,
2118 .fd
= event_notifier_get_fd(notifier
),
2123 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
2127 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2129 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
2132 int kvm_s390_get_memslot_count(KVMState
*s
)
2134 return kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2137 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
2139 struct kvm_mp_state mp_state
= {};
2142 /* the kvm part might not have been initialized yet */
2143 if (CPU(cpu
)->kvm_state
== NULL
) {
2147 switch (cpu_state
) {
2148 case CPU_STATE_STOPPED
:
2149 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
2151 case CPU_STATE_CHECK_STOP
:
2152 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
2154 case CPU_STATE_OPERATING
:
2155 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
2157 case CPU_STATE_LOAD
:
2158 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
2161 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2166 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2168 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
2175 void kvm_s390_vcpu_interrupt_pre_save(S390CPU
*cpu
)
2177 struct kvm_s390_irq_state irq_state
;
2178 CPUState
*cs
= CPU(cpu
);
2181 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2185 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2186 irq_state
.len
= VCPU_IRQ_BUF_SIZE
;
2188 bytes
= kvm_vcpu_ioctl(cs
, KVM_S390_GET_IRQ_STATE
, &irq_state
);
2190 cpu
->irqstate_saved_size
= 0;
2191 error_report("Migration of interrupt state failed");
2195 cpu
->irqstate_saved_size
= bytes
;
2198 int kvm_s390_vcpu_interrupt_post_load(S390CPU
*cpu
)
2200 CPUState
*cs
= CPU(cpu
);
2201 struct kvm_s390_irq_state irq_state
;
2204 if (cpu
->irqstate_saved_size
== 0) {
2208 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2212 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2213 irq_state
.len
= cpu
->irqstate_saved_size
;
2215 r
= kvm_vcpu_ioctl(cs
, KVM_S390_SET_IRQ_STATE
, &irq_state
);
2217 error_report("Setting interrupt state failed %d", r
);
2222 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2223 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2225 S390PCIBusDevice
*pbdev
;
2226 uint32_t fid
= data
>> ZPCI_MSI_VEC_BITS
;
2227 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
2229 pbdev
= s390_pci_find_dev_by_fid(fid
);
2231 DPRINTF("add_msi_route no dev\n");
2235 pbdev
->routes
.adapter
.ind_offset
= vec
;
2237 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2239 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
2240 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
2241 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
2242 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
;
2243 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;
2247 int kvm_arch_msi_data_to_gsi(uint32_t data
)