ipxe: update binaries
[qemu/ar7.git] / include / qemu / bswap.h
blob1d3e4c24e41cbfdabe33cc1d2539bf63636797d2
1 #ifndef BSWAP_H
2 #define BSWAP_H
4 #include "fpu/softfloat-types.h"
6 #ifdef CONFIG_MACHINE_BSWAP_H
7 # include <sys/endian.h>
8 # include <machine/bswap.h>
9 #elif defined(__FreeBSD__)
10 # include <sys/endian.h>
11 #elif defined(__HAIKU__)
12 # include <endian.h>
13 #elif defined(CONFIG_BYTESWAP_H)
14 # include <byteswap.h>
16 static inline uint16_t bswap16(uint16_t x)
18 return bswap_16(x);
21 static inline uint32_t bswap32(uint32_t x)
23 return bswap_32(x);
26 static inline uint64_t bswap64(uint64_t x)
28 return bswap_64(x);
30 # else
31 static inline uint16_t bswap16(uint16_t x)
33 return (((x & 0x00ff) << 8) |
34 ((x & 0xff00) >> 8));
37 static inline uint32_t bswap32(uint32_t x)
39 return (((x & 0x000000ffU) << 24) |
40 ((x & 0x0000ff00U) << 8) |
41 ((x & 0x00ff0000U) >> 8) |
42 ((x & 0xff000000U) >> 24));
45 static inline uint64_t bswap64(uint64_t x)
47 return (((x & 0x00000000000000ffULL) << 56) |
48 ((x & 0x000000000000ff00ULL) << 40) |
49 ((x & 0x0000000000ff0000ULL) << 24) |
50 ((x & 0x00000000ff000000ULL) << 8) |
51 ((x & 0x000000ff00000000ULL) >> 8) |
52 ((x & 0x0000ff0000000000ULL) >> 24) |
53 ((x & 0x00ff000000000000ULL) >> 40) |
54 ((x & 0xff00000000000000ULL) >> 56));
56 #endif /* ! CONFIG_MACHINE_BSWAP_H */
58 static inline void bswap16s(uint16_t *s)
60 *s = bswap16(*s);
63 static inline void bswap32s(uint32_t *s)
65 *s = bswap32(*s);
68 static inline void bswap64s(uint64_t *s)
70 *s = bswap64(*s);
73 #if defined(HOST_WORDS_BIGENDIAN)
74 #define be_bswap(v, size) (v)
75 #define le_bswap(v, size) glue(bswap, size)(v)
76 #define be_bswaps(v, size)
77 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
78 #else
79 #define le_bswap(v, size) (v)
80 #define be_bswap(v, size) glue(bswap, size)(v)
81 #define le_bswaps(v, size)
82 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
83 #endif
85 /**
86 * Endianness conversion functions between host cpu and specified endianness.
87 * (We list the complete set of prototypes produced by the macros below
88 * to assist people who search the headers to find their definitions.)
90 * uint16_t le16_to_cpu(uint16_t v);
91 * uint32_t le32_to_cpu(uint32_t v);
92 * uint64_t le64_to_cpu(uint64_t v);
93 * uint16_t be16_to_cpu(uint16_t v);
94 * uint32_t be32_to_cpu(uint32_t v);
95 * uint64_t be64_to_cpu(uint64_t v);
97 * Convert the value @v from the specified format to the native
98 * endianness of the host CPU by byteswapping if necessary, and
99 * return the converted value.
101 * uint16_t cpu_to_le16(uint16_t v);
102 * uint32_t cpu_to_le32(uint32_t v);
103 * uint64_t cpu_to_le64(uint64_t v);
104 * uint16_t cpu_to_be16(uint16_t v);
105 * uint32_t cpu_to_be32(uint32_t v);
106 * uint64_t cpu_to_be64(uint64_t v);
108 * Convert the value @v from the native endianness of the host CPU to
109 * the specified format by byteswapping if necessary, and return
110 * the converted value.
112 * void le16_to_cpus(uint16_t *v);
113 * void le32_to_cpus(uint32_t *v);
114 * void le64_to_cpus(uint64_t *v);
115 * void be16_to_cpus(uint16_t *v);
116 * void be32_to_cpus(uint32_t *v);
117 * void be64_to_cpus(uint64_t *v);
119 * Do an in-place conversion of the value pointed to by @v from the
120 * specified format to the native endianness of the host CPU.
122 * void cpu_to_le16s(uint16_t *v);
123 * void cpu_to_le32s(uint32_t *v);
124 * void cpu_to_le64s(uint64_t *v);
125 * void cpu_to_be16s(uint16_t *v);
126 * void cpu_to_be32s(uint32_t *v);
127 * void cpu_to_be64s(uint64_t *v);
129 * Do an in-place conversion of the value pointed to by @v from the
130 * native endianness of the host CPU to the specified format.
132 * Both X_to_cpu() and cpu_to_X() perform the same operation; you
133 * should use whichever one is better documenting of the function your
134 * code is performing.
136 * Do not use these functions for conversion of values which are in guest
137 * memory, since the data may not be sufficiently aligned for the host CPU's
138 * load and store instructions. Instead you should use the ld*_p() and
139 * st*_p() functions, which perform loads and stores of data of any
140 * required size and endianness and handle possible misalignment.
143 #define CPU_CONVERT(endian, size, type)\
144 static inline type endian ## size ## _to_cpu(type v)\
146 return glue(endian, _bswap)(v, size);\
149 static inline type cpu_to_ ## endian ## size(type v)\
151 return glue(endian, _bswap)(v, size);\
154 static inline void endian ## size ## _to_cpus(type *p)\
156 glue(endian, _bswaps)(p, size);\
159 static inline void cpu_to_ ## endian ## size ## s(type *p)\
161 glue(endian, _bswaps)(p, size);\
164 CPU_CONVERT(be, 16, uint16_t)
165 CPU_CONVERT(be, 32, uint32_t)
166 CPU_CONVERT(be, 64, uint64_t)
168 CPU_CONVERT(le, 16, uint16_t)
169 CPU_CONVERT(le, 32, uint32_t)
170 CPU_CONVERT(le, 64, uint64_t)
172 /* len must be one of 1, 2, 4 */
173 static inline uint32_t qemu_bswap_len(uint32_t value, int len)
175 return bswap32(value) >> (32 - 8 * len);
179 * Same as cpu_to_le{16,32}, except that gcc will figure the result is
180 * a compile-time constant if you pass in a constant. So this can be
181 * used to initialize static variables.
183 #if defined(HOST_WORDS_BIGENDIAN)
184 # define const_le32(_x) \
185 ((((_x) & 0x000000ffU) << 24) | \
186 (((_x) & 0x0000ff00U) << 8) | \
187 (((_x) & 0x00ff0000U) >> 8) | \
188 (((_x) & 0xff000000U) >> 24))
189 # define const_le16(_x) \
190 ((((_x) & 0x00ff) << 8) | \
191 (((_x) & 0xff00) >> 8))
192 #else
193 # define const_le32(_x) (_x)
194 # define const_le16(_x) (_x)
195 #endif
197 /* Unions for reinterpreting between floats and integers. */
199 typedef union {
200 float32 f;
201 uint32_t l;
202 } CPU_FloatU;
204 typedef union {
205 float64 d;
206 #if defined(HOST_WORDS_BIGENDIAN)
207 struct {
208 uint32_t upper;
209 uint32_t lower;
210 } l;
211 #else
212 struct {
213 uint32_t lower;
214 uint32_t upper;
215 } l;
216 #endif
217 uint64_t ll;
218 } CPU_DoubleU;
220 typedef union {
221 floatx80 d;
222 struct {
223 uint64_t lower;
224 uint16_t upper;
225 } l;
226 } CPU_LDoubleU;
228 typedef union {
229 float128 q;
230 #if defined(HOST_WORDS_BIGENDIAN)
231 struct {
232 uint32_t upmost;
233 uint32_t upper;
234 uint32_t lower;
235 uint32_t lowest;
236 } l;
237 struct {
238 uint64_t upper;
239 uint64_t lower;
240 } ll;
241 #else
242 struct {
243 uint32_t lowest;
244 uint32_t lower;
245 uint32_t upper;
246 uint32_t upmost;
247 } l;
248 struct {
249 uint64_t lower;
250 uint64_t upper;
251 } ll;
252 #endif
253 } CPU_QuadU;
255 /* unaligned/endian-independent pointer access */
258 * the generic syntax is:
260 * load: ld{type}{sign}{size}_{endian}_p(ptr)
262 * store: st{type}{size}_{endian}_p(ptr, val)
264 * Note there are small differences with the softmmu access API!
266 * type is:
267 * (empty): integer access
268 * f : float access
270 * sign is:
271 * (empty): for 32 or 64 bit sizes (including floats and doubles)
272 * u : unsigned
273 * s : signed
275 * size is:
276 * b: 8 bits
277 * w: 16 bits
278 * l: 32 bits
279 * q: 64 bits
281 * endian is:
282 * he : host endian
283 * be : big endian
284 * le : little endian
285 * te : target endian
286 * (except for byte accesses, which have no endian infix).
288 * The target endian accessors are obviously only available to source
289 * files which are built per-target; they are defined in cpu-all.h.
291 * In all cases these functions take a host pointer.
292 * For accessors that take a guest address rather than a
293 * host address, see the cpu_{ld,st}_* accessors defined in
294 * cpu_ldst.h.
296 * For cases where the size to be used is not fixed at compile time,
297 * there are
298 * stn_{endian}_p(ptr, sz, val)
299 * which stores @val to @ptr as an @endian-order number @sz bytes in size
300 * and
301 * ldn_{endian}_p(ptr, sz)
302 * which loads @sz bytes from @ptr as an unsigned @endian-order number
303 * and returns it in a uint64_t.
306 static inline int ldub_p(const void *ptr)
308 return *(uint8_t *)ptr;
311 static inline int ldsb_p(const void *ptr)
313 return *(int8_t *)ptr;
316 static inline void stb_p(void *ptr, uint8_t v)
318 *(uint8_t *)ptr = v;
322 * Any compiler worth its salt will turn these memcpy into native unaligned
323 * operations. Thus we don't need to play games with packed attributes, or
324 * inline byte-by-byte stores.
325 * Some compilation environments (eg some fortify-source implementations)
326 * may intercept memcpy() in a way that defeats the compiler optimization,
327 * though, so we use __builtin_memcpy() to give ourselves the best chance
328 * of good performance.
331 static inline int lduw_he_p(const void *ptr)
333 uint16_t r;
334 __builtin_memcpy(&r, ptr, sizeof(r));
335 return r;
338 static inline int ldsw_he_p(const void *ptr)
340 int16_t r;
341 __builtin_memcpy(&r, ptr, sizeof(r));
342 return r;
345 static inline void stw_he_p(void *ptr, uint16_t v)
347 __builtin_memcpy(ptr, &v, sizeof(v));
350 static inline int ldl_he_p(const void *ptr)
352 int32_t r;
353 __builtin_memcpy(&r, ptr, sizeof(r));
354 return r;
357 static inline void stl_he_p(void *ptr, uint32_t v)
359 __builtin_memcpy(ptr, &v, sizeof(v));
362 static inline uint64_t ldq_he_p(const void *ptr)
364 uint64_t r;
365 __builtin_memcpy(&r, ptr, sizeof(r));
366 return r;
369 static inline void stq_he_p(void *ptr, uint64_t v)
371 __builtin_memcpy(ptr, &v, sizeof(v));
374 static inline int lduw_le_p(const void *ptr)
376 return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
379 static inline int ldsw_le_p(const void *ptr)
381 return (int16_t)le_bswap(lduw_he_p(ptr), 16);
384 static inline int ldl_le_p(const void *ptr)
386 return le_bswap(ldl_he_p(ptr), 32);
389 static inline uint64_t ldq_le_p(const void *ptr)
391 return le_bswap(ldq_he_p(ptr), 64);
394 static inline void stw_le_p(void *ptr, uint16_t v)
396 stw_he_p(ptr, le_bswap(v, 16));
399 static inline void stl_le_p(void *ptr, uint32_t v)
401 stl_he_p(ptr, le_bswap(v, 32));
404 static inline void stq_le_p(void *ptr, uint64_t v)
406 stq_he_p(ptr, le_bswap(v, 64));
409 /* float access */
411 static inline float32 ldfl_le_p(const void *ptr)
413 CPU_FloatU u;
414 u.l = ldl_le_p(ptr);
415 return u.f;
418 static inline void stfl_le_p(void *ptr, float32 v)
420 CPU_FloatU u;
421 u.f = v;
422 stl_le_p(ptr, u.l);
425 static inline float64 ldfq_le_p(const void *ptr)
427 CPU_DoubleU u;
428 u.ll = ldq_le_p(ptr);
429 return u.d;
432 static inline void stfq_le_p(void *ptr, float64 v)
434 CPU_DoubleU u;
435 u.d = v;
436 stq_le_p(ptr, u.ll);
439 static inline int lduw_be_p(const void *ptr)
441 return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
444 static inline int ldsw_be_p(const void *ptr)
446 return (int16_t)be_bswap(lduw_he_p(ptr), 16);
449 static inline int ldl_be_p(const void *ptr)
451 return be_bswap(ldl_he_p(ptr), 32);
454 static inline uint64_t ldq_be_p(const void *ptr)
456 return be_bswap(ldq_he_p(ptr), 64);
459 static inline void stw_be_p(void *ptr, uint16_t v)
461 stw_he_p(ptr, be_bswap(v, 16));
464 static inline void stl_be_p(void *ptr, uint32_t v)
466 stl_he_p(ptr, be_bswap(v, 32));
469 static inline void stq_be_p(void *ptr, uint64_t v)
471 stq_he_p(ptr, be_bswap(v, 64));
474 /* float access */
476 static inline float32 ldfl_be_p(const void *ptr)
478 CPU_FloatU u;
479 u.l = ldl_be_p(ptr);
480 return u.f;
483 static inline void stfl_be_p(void *ptr, float32 v)
485 CPU_FloatU u;
486 u.f = v;
487 stl_be_p(ptr, u.l);
490 static inline float64 ldfq_be_p(const void *ptr)
492 CPU_DoubleU u;
493 u.ll = ldq_be_p(ptr);
494 return u.d;
497 static inline void stfq_be_p(void *ptr, float64 v)
499 CPU_DoubleU u;
500 u.d = v;
501 stq_be_p(ptr, u.ll);
504 static inline unsigned long leul_to_cpu(unsigned long v)
506 #if HOST_LONG_BITS == 32
507 return le_bswap(v, 32);
508 #elif HOST_LONG_BITS == 64
509 return le_bswap(v, 64);
510 #else
511 # error Unknown sizeof long
512 #endif
515 /* Store v to p as a sz byte value in host order */
516 #define DO_STN_LDN_P(END) \
517 static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v) \
519 switch (sz) { \
520 case 1: \
521 stb_p(ptr, v); \
522 break; \
523 case 2: \
524 stw_ ## END ## _p(ptr, v); \
525 break; \
526 case 4: \
527 stl_ ## END ## _p(ptr, v); \
528 break; \
529 case 8: \
530 stq_ ## END ## _p(ptr, v); \
531 break; \
532 default: \
533 g_assert_not_reached(); \
536 static inline uint64_t ldn_## END ## _p(const void *ptr, int sz) \
538 switch (sz) { \
539 case 1: \
540 return ldub_p(ptr); \
541 case 2: \
542 return lduw_ ## END ## _p(ptr); \
543 case 4: \
544 return (uint32_t)ldl_ ## END ## _p(ptr); \
545 case 8: \
546 return ldq_ ## END ## _p(ptr); \
547 default: \
548 g_assert_not_reached(); \
552 DO_STN_LDN_P(he)
553 DO_STN_LDN_P(le)
554 DO_STN_LDN_P(be)
556 #undef DO_STN_LDN_P
558 #undef le_bswap
559 #undef be_bswap
560 #undef le_bswaps
561 #undef be_bswaps
563 #endif /* BSWAP_H */