2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
32 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
35 BDRVQcow2State
*s
= bs
->opaque
;
36 int new_l1_size2
, ret
, i
;
37 uint64_t *new_l1_table
;
38 int64_t old_l1_table_offset
, old_l1_size
;
39 int64_t new_l1_table_offset
, new_l1_size
;
42 if (min_size
<= s
->l1_size
)
45 /* Do a sanity check on min_size before trying to calculate new_l1_size
46 * (this prevents overflows during the while loop for the calculation of
48 if (min_size
> INT_MAX
/ sizeof(uint64_t)) {
53 new_l1_size
= min_size
;
55 /* Bump size up to reduce the number of times we have to grow */
56 new_l1_size
= s
->l1_size
;
57 if (new_l1_size
== 0) {
60 while (min_size
> new_l1_size
) {
61 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
65 if (new_l1_size
> INT_MAX
/ sizeof(uint64_t)) {
70 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
71 s
->l1_size
, new_l1_size
);
74 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
75 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
,
76 align_offset(new_l1_size2
, 512));
77 if (new_l1_table
== NULL
) {
80 memset(new_l1_table
, 0, align_offset(new_l1_size2
, 512));
82 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
84 /* write new table (align to cluster) */
85 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
86 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
87 if (new_l1_table_offset
< 0) {
88 qemu_vfree(new_l1_table
);
89 return new_l1_table_offset
;
92 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
97 /* the L1 position has not yet been updated, so these clusters must
98 * indeed be completely free */
99 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
105 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
106 for(i
= 0; i
< s
->l1_size
; i
++)
107 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
108 ret
= bdrv_pwrite_sync(bs
->file
->bs
, new_l1_table_offset
,
109 new_l1_table
, new_l1_size2
);
112 for(i
= 0; i
< s
->l1_size
; i
++)
113 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
116 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
117 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
118 stq_be_p(data
+ 4, new_l1_table_offset
);
119 ret
= bdrv_pwrite_sync(bs
->file
->bs
, offsetof(QCowHeader
, l1_size
),
124 qemu_vfree(s
->l1_table
);
125 old_l1_table_offset
= s
->l1_table_offset
;
126 s
->l1_table_offset
= new_l1_table_offset
;
127 s
->l1_table
= new_l1_table
;
128 old_l1_size
= s
->l1_size
;
129 s
->l1_size
= new_l1_size
;
130 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
131 QCOW2_DISCARD_OTHER
);
134 qemu_vfree(new_l1_table
);
135 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
136 QCOW2_DISCARD_OTHER
);
143 * Loads a L2 table into memory. If the table is in the cache, the cache
144 * is used; otherwise the L2 table is loaded from the image file.
146 * Returns a pointer to the L2 table on success, or NULL if the read from
147 * the image file failed.
150 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
153 BDRVQcow2State
*s
= bs
->opaque
;
156 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
162 * Writes one sector of the L1 table to the disk (can't update single entries
163 * and we really don't want bdrv_pread to perform a read-modify-write)
165 #define L1_ENTRIES_PER_SECTOR (512 / 8)
166 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
168 BDRVQcow2State
*s
= bs
->opaque
;
169 uint64_t buf
[L1_ENTRIES_PER_SECTOR
] = { 0 };
173 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
174 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
&& l1_start_index
+ i
< s
->l1_size
;
177 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
180 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
181 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
186 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
187 ret
= bdrv_pwrite_sync(bs
->file
->bs
,
188 s
->l1_table_offset
+ 8 * l1_start_index
,
200 * Allocate a new l2 entry in the file. If l1_index points to an already
201 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
202 * table) copy the contents of the old L2 table into the newly allocated one.
203 * Otherwise the new table is initialized with zeros.
207 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
209 BDRVQcow2State
*s
= bs
->opaque
;
210 uint64_t old_l2_offset
;
211 uint64_t *l2_table
= NULL
;
215 old_l2_offset
= s
->l1_table
[l1_index
];
217 trace_qcow2_l2_allocate(bs
, l1_index
);
219 /* allocate a new l2 entry */
221 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
227 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
232 /* allocate a new entry in the l2 cache */
234 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
235 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
242 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
243 /* if there was no old l2 table, clear the new table */
244 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
248 /* if there was an old l2 table, read it from the disk */
249 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
250 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
251 old_l2_offset
& L1E_OFFSET_MASK
,
252 (void**) &old_table
);
257 memcpy(l2_table
, old_table
, s
->cluster_size
);
259 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &old_table
);
262 /* write the l2 table to the file */
263 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
265 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
266 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
267 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
272 /* update the L1 entry */
273 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
274 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
275 ret
= qcow2_write_l1_entry(bs
, l1_index
);
281 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
285 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
286 if (l2_table
!= NULL
) {
287 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
289 s
->l1_table
[l1_index
] = old_l2_offset
;
291 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
292 QCOW2_DISCARD_ALWAYS
);
298 * Checks how many clusters in a given L2 table are contiguous in the image
299 * file. As soon as one of the flags in the bitmask stop_flags changes compared
300 * to the first cluster, the search is stopped and the cluster is not counted
301 * as contiguous. (This allows it, for example, to stop at the first compressed
302 * cluster which may require a different handling)
304 static int count_contiguous_clusters(int nb_clusters
, int cluster_size
,
305 uint64_t *l2_table
, uint64_t stop_flags
)
308 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
309 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
310 uint64_t offset
= first_entry
& mask
;
315 assert(qcow2_get_cluster_type(first_entry
) == QCOW2_CLUSTER_NORMAL
);
317 for (i
= 0; i
< nb_clusters
; i
++) {
318 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
319 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
327 static int count_contiguous_clusters_by_type(int nb_clusters
,
333 for (i
= 0; i
< nb_clusters
; i
++) {
334 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
336 if (type
!= wanted_type
) {
344 /* The crypt function is compatible with the linux cryptoloop
345 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
347 int qcow2_encrypt_sectors(BDRVQcow2State
*s
, int64_t sector_num
,
348 uint8_t *out_buf
, const uint8_t *in_buf
,
349 int nb_sectors
, bool enc
,
359 for(i
= 0; i
< nb_sectors
; i
++) {
360 ivec
.ll
[0] = cpu_to_le64(sector_num
);
362 if (qcrypto_cipher_setiv(s
->cipher
,
363 ivec
.b
, G_N_ELEMENTS(ivec
.b
),
368 ret
= qcrypto_cipher_encrypt(s
->cipher
,
374 ret
= qcrypto_cipher_decrypt(s
->cipher
,
390 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
392 uint64_t cluster_offset
,
393 int n_start
, int n_end
)
395 BDRVQcow2State
*s
= bs
->opaque
;
405 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
406 iov
.iov_base
= qemu_try_blockalign(bs
, iov
.iov_len
);
407 if (iov
.iov_base
== NULL
) {
411 qemu_iovec_init_external(&qiov
, &iov
, 1);
413 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
420 /* Call .bdrv_co_readv() directly instead of using the public block-layer
421 * interface. This avoids double I/O throttling and request tracking,
422 * which can lead to deadlock when block layer copy-on-read is enabled.
424 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
432 if (qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
433 iov
.iov_base
, iov
.iov_base
, n
,
441 ret
= qcow2_pre_write_overlap_check(bs
, 0,
442 cluster_offset
+ n_start
* BDRV_SECTOR_SIZE
, n
* BDRV_SECTOR_SIZE
);
447 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
448 ret
= bdrv_co_writev(bs
->file
->bs
, (cluster_offset
>> 9) + n_start
, n
,
456 qemu_vfree(iov
.iov_base
);
464 * For a given offset of the disk image, find the cluster offset in
465 * qcow2 file. The offset is stored in *cluster_offset.
467 * on entry, *num is the number of contiguous sectors we'd like to
468 * access following offset.
470 * on exit, *num is the number of contiguous sectors we can read.
472 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
475 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
476 int *num
, uint64_t *cluster_offset
)
478 BDRVQcow2State
*s
= bs
->opaque
;
479 unsigned int l2_index
;
480 uint64_t l1_index
, l2_offset
, *l2_table
;
482 unsigned int index_in_cluster
, nb_clusters
;
483 uint64_t nb_available
, nb_needed
;
486 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
487 nb_needed
= *num
+ index_in_cluster
;
489 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
491 /* compute how many bytes there are between the offset and
492 * the end of the l1 entry
495 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
497 /* compute the number of available sectors */
499 nb_available
= (nb_available
>> 9) + index_in_cluster
;
501 if (nb_needed
> nb_available
) {
502 nb_needed
= nb_available
;
504 assert(nb_needed
<= INT_MAX
);
508 /* seek to the l2 offset in the l1 table */
510 l1_index
= offset
>> l1_bits
;
511 if (l1_index
>= s
->l1_size
) {
512 ret
= QCOW2_CLUSTER_UNALLOCATED
;
516 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
518 ret
= QCOW2_CLUSTER_UNALLOCATED
;
522 if (offset_into_cluster(s
, l2_offset
)) {
523 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
524 " unaligned (L1 index: %#" PRIx64
")",
525 l2_offset
, l1_index
);
529 /* load the l2 table in memory */
531 ret
= l2_load(bs
, l2_offset
, &l2_table
);
536 /* find the cluster offset for the given disk offset */
538 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
539 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
541 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
542 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
544 ret
= qcow2_get_cluster_type(*cluster_offset
);
546 case QCOW2_CLUSTER_COMPRESSED
:
547 /* Compressed clusters can only be processed one by one */
549 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
551 case QCOW2_CLUSTER_ZERO
:
552 if (s
->qcow_version
< 3) {
553 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
554 " in pre-v3 image (L2 offset: %#" PRIx64
555 ", L2 index: %#x)", l2_offset
, l2_index
);
559 c
= count_contiguous_clusters_by_type(nb_clusters
, &l2_table
[l2_index
],
563 case QCOW2_CLUSTER_UNALLOCATED
:
564 /* how many empty clusters ? */
565 c
= count_contiguous_clusters_by_type(nb_clusters
, &l2_table
[l2_index
],
566 QCOW2_CLUSTER_UNALLOCATED
);
569 case QCOW2_CLUSTER_NORMAL
:
570 /* how many allocated clusters ? */
571 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
572 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
573 *cluster_offset
&= L2E_OFFSET_MASK
;
574 if (offset_into_cluster(s
, *cluster_offset
)) {
575 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset %#"
576 PRIx64
" unaligned (L2 offset: %#" PRIx64
577 ", L2 index: %#x)", *cluster_offset
,
578 l2_offset
, l2_index
);
587 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
589 nb_available
= (c
* s
->cluster_sectors
);
592 if (nb_available
> nb_needed
)
593 nb_available
= nb_needed
;
595 *num
= nb_available
- index_in_cluster
;
600 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
607 * for a given disk offset, load (and allocate if needed)
610 * the l2 table offset in the qcow2 file and the cluster index
611 * in the l2 table are given to the caller.
613 * Returns 0 on success, -errno in failure case
615 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
616 uint64_t **new_l2_table
,
619 BDRVQcow2State
*s
= bs
->opaque
;
620 unsigned int l2_index
;
621 uint64_t l1_index
, l2_offset
;
622 uint64_t *l2_table
= NULL
;
625 /* seek to the l2 offset in the l1 table */
627 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
628 if (l1_index
>= s
->l1_size
) {
629 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
635 assert(l1_index
< s
->l1_size
);
636 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
637 if (offset_into_cluster(s
, l2_offset
)) {
638 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
639 " unaligned (L1 index: %#" PRIx64
")",
640 l2_offset
, l1_index
);
644 /* seek the l2 table of the given l2 offset */
646 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
647 /* load the l2 table in memory */
648 ret
= l2_load(bs
, l2_offset
, &l2_table
);
653 /* First allocate a new L2 table (and do COW if needed) */
654 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
659 /* Then decrease the refcount of the old table */
661 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
662 QCOW2_DISCARD_OTHER
);
666 /* find the cluster offset for the given disk offset */
668 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
670 *new_l2_table
= l2_table
;
671 *new_l2_index
= l2_index
;
677 * alloc_compressed_cluster_offset
679 * For a given offset of the disk image, return cluster offset in
682 * If the offset is not found, allocate a new compressed cluster.
684 * Return the cluster offset if successful,
685 * Return 0, otherwise.
689 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
693 BDRVQcow2State
*s
= bs
->opaque
;
696 int64_t cluster_offset
;
699 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
704 /* Compression can't overwrite anything. Fail if the cluster was already
706 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
707 if (cluster_offset
& L2E_OFFSET_MASK
) {
708 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
712 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
713 if (cluster_offset
< 0) {
714 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
718 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
719 (cluster_offset
>> 9);
721 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
722 ((uint64_t)nb_csectors
<< s
->csize_shift
);
724 /* update L2 table */
726 /* compressed clusters never have the copied flag */
728 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
729 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
730 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
731 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
733 return cluster_offset
;
736 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
738 BDRVQcow2State
*s
= bs
->opaque
;
741 if (r
->nb_sectors
== 0) {
745 qemu_co_mutex_unlock(&s
->lock
);
746 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
747 r
->offset
/ BDRV_SECTOR_SIZE
,
748 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
749 qemu_co_mutex_lock(&s
->lock
);
756 * Before we update the L2 table to actually point to the new cluster, we
757 * need to be sure that the refcounts have been increased and COW was
760 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
765 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
767 BDRVQcow2State
*s
= bs
->opaque
;
768 int i
, j
= 0, l2_index
, ret
;
769 uint64_t *old_cluster
, *l2_table
;
770 uint64_t cluster_offset
= m
->alloc_offset
;
772 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
773 assert(m
->nb_clusters
> 0);
775 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
776 if (old_cluster
== NULL
) {
781 /* copy content of unmodified sectors */
782 ret
= perform_cow(bs
, m
, &m
->cow_start
);
787 ret
= perform_cow(bs
, m
, &m
->cow_end
);
792 /* Update L2 table. */
793 if (s
->use_lazy_refcounts
) {
794 qcow2_mark_dirty(bs
);
796 if (qcow2_need_accurate_refcounts(s
)) {
797 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
798 s
->refcount_block_cache
);
801 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
805 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
807 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
808 for (i
= 0; i
< m
->nb_clusters
; i
++) {
809 /* if two concurrent writes happen to the same unallocated cluster
810 * each write allocates separate cluster and writes data concurrently.
811 * The first one to complete updates l2 table with pointer to its
812 * cluster the second one has to do RMW (which is done above by
813 * copy_sectors()), update l2 table with its cluster pointer and free
814 * old cluster. This is what this loop does */
815 if(l2_table
[l2_index
+ i
] != 0)
816 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
818 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
819 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
823 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
826 * If this was a COW, we need to decrease the refcount of the old cluster.
828 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
829 * clusters), the next write will reuse them anyway.
832 for (i
= 0; i
< j
; i
++) {
833 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
834 QCOW2_DISCARD_NEVER
);
845 * Returns the number of contiguous clusters that can be used for an allocating
846 * write, but require COW to be performed (this includes yet unallocated space,
847 * which must copy from the backing file)
849 static int count_cow_clusters(BDRVQcow2State
*s
, int nb_clusters
,
850 uint64_t *l2_table
, int l2_index
)
854 for (i
= 0; i
< nb_clusters
; i
++) {
855 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
856 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
858 switch(cluster_type
) {
859 case QCOW2_CLUSTER_NORMAL
:
860 if (l2_entry
& QCOW_OFLAG_COPIED
) {
864 case QCOW2_CLUSTER_UNALLOCATED
:
865 case QCOW2_CLUSTER_COMPRESSED
:
866 case QCOW2_CLUSTER_ZERO
:
874 assert(i
<= nb_clusters
);
879 * Check if there already is an AIO write request in flight which allocates
880 * the same cluster. In this case we need to wait until the previous
881 * request has completed and updated the L2 table accordingly.
884 * 0 if there was no dependency. *cur_bytes indicates the number of
885 * bytes from guest_offset that can be read before the next
886 * dependency must be processed (or the request is complete)
888 * -EAGAIN if we had to wait for another request, previously gathered
889 * information on cluster allocation may be invalid now. The caller
890 * must start over anyway, so consider *cur_bytes undefined.
892 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
893 uint64_t *cur_bytes
, QCowL2Meta
**m
)
895 BDRVQcow2State
*s
= bs
->opaque
;
896 QCowL2Meta
*old_alloc
;
897 uint64_t bytes
= *cur_bytes
;
899 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
901 uint64_t start
= guest_offset
;
902 uint64_t end
= start
+ bytes
;
903 uint64_t old_start
= l2meta_cow_start(old_alloc
);
904 uint64_t old_end
= l2meta_cow_end(old_alloc
);
906 if (end
<= old_start
|| start
>= old_end
) {
907 /* No intersection */
909 if (start
< old_start
) {
910 /* Stop at the start of a running allocation */
911 bytes
= old_start
- start
;
916 /* Stop if already an l2meta exists. After yielding, it wouldn't
917 * be valid any more, so we'd have to clean up the old L2Metas
918 * and deal with requests depending on them before starting to
919 * gather new ones. Not worth the trouble. */
920 if (bytes
== 0 && *m
) {
926 /* Wait for the dependency to complete. We need to recheck
927 * the free/allocated clusters when we continue. */
928 qemu_co_mutex_unlock(&s
->lock
);
929 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
930 qemu_co_mutex_lock(&s
->lock
);
936 /* Make sure that existing clusters and new allocations are only used up to
937 * the next dependency if we shortened the request above */
944 * Checks how many already allocated clusters that don't require a copy on
945 * write there are at the given guest_offset (up to *bytes). If
946 * *host_offset is not zero, only physically contiguous clusters beginning at
947 * this host offset are counted.
949 * Note that guest_offset may not be cluster aligned. In this case, the
950 * returned *host_offset points to exact byte referenced by guest_offset and
951 * therefore isn't cluster aligned as well.
954 * 0: if no allocated clusters are available at the given offset.
955 * *bytes is normally unchanged. It is set to 0 if the cluster
956 * is allocated and doesn't need COW, but doesn't have the right
959 * 1: if allocated clusters that don't require a COW are available at
960 * the requested offset. *bytes may have decreased and describes
961 * the length of the area that can be written to.
963 * -errno: in error cases
965 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
966 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
968 BDRVQcow2State
*s
= bs
->opaque
;
970 uint64_t cluster_offset
;
972 uint64_t nb_clusters
;
973 unsigned int keep_clusters
;
976 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
979 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
980 == offset_into_cluster(s
, *host_offset
));
983 * Calculate the number of clusters to look for. We stop at L2 table
984 * boundaries to keep things simple.
987 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
989 l2_index
= offset_to_l2_index(s
, guest_offset
);
990 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
991 assert(nb_clusters
<= INT_MAX
);
993 /* Find L2 entry for the first involved cluster */
994 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
999 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
1001 /* Check how many clusters are already allocated and don't need COW */
1002 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
1003 && (cluster_offset
& QCOW_OFLAG_COPIED
))
1005 /* If a specific host_offset is required, check it */
1006 bool offset_matches
=
1007 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
1009 if (offset_into_cluster(s
, cluster_offset
& L2E_OFFSET_MASK
)) {
1010 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1011 "%#llx unaligned (guest offset: %#" PRIx64
1012 ")", cluster_offset
& L2E_OFFSET_MASK
,
1018 if (*host_offset
!= 0 && !offset_matches
) {
1024 /* We keep all QCOW_OFLAG_COPIED clusters */
1026 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1027 &l2_table
[l2_index
],
1028 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1029 assert(keep_clusters
<= nb_clusters
);
1031 *bytes
= MIN(*bytes
,
1032 keep_clusters
* s
->cluster_size
1033 - offset_into_cluster(s
, guest_offset
));
1042 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1044 /* Only return a host offset if we actually made progress. Otherwise we
1045 * would make requirements for handle_alloc() that it can't fulfill */
1047 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
1048 + offset_into_cluster(s
, guest_offset
);
1055 * Allocates new clusters for the given guest_offset.
1057 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1058 * contain the number of clusters that have been allocated and are contiguous
1059 * in the image file.
1061 * If *host_offset is non-zero, it specifies the offset in the image file at
1062 * which the new clusters must start. *nb_clusters can be 0 on return in this
1063 * case if the cluster at host_offset is already in use. If *host_offset is
1064 * zero, the clusters can be allocated anywhere in the image file.
1066 * *host_offset is updated to contain the offset into the image file at which
1067 * the first allocated cluster starts.
1069 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1070 * function has been waiting for another request and the allocation must be
1071 * restarted, but the whole request should not be failed.
1073 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1074 uint64_t *host_offset
, uint64_t *nb_clusters
)
1076 BDRVQcow2State
*s
= bs
->opaque
;
1078 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1079 *host_offset
, *nb_clusters
);
1081 /* Allocate new clusters */
1082 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1083 if (*host_offset
== 0) {
1084 int64_t cluster_offset
=
1085 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1086 if (cluster_offset
< 0) {
1087 return cluster_offset
;
1089 *host_offset
= cluster_offset
;
1092 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1102 * Allocates new clusters for an area that either is yet unallocated or needs a
1103 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1104 * the new allocation can match the specified host offset.
1106 * Note that guest_offset may not be cluster aligned. In this case, the
1107 * returned *host_offset points to exact byte referenced by guest_offset and
1108 * therefore isn't cluster aligned as well.
1111 * 0: if no clusters could be allocated. *bytes is set to 0,
1112 * *host_offset is left unchanged.
1114 * 1: if new clusters were allocated. *bytes may be decreased if the
1115 * new allocation doesn't cover all of the requested area.
1116 * *host_offset is updated to contain the host offset of the first
1117 * newly allocated cluster.
1119 * -errno: in error cases
1121 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1122 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1124 BDRVQcow2State
*s
= bs
->opaque
;
1128 uint64_t nb_clusters
;
1131 uint64_t alloc_cluster_offset
;
1133 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1138 * Calculate the number of clusters to look for. We stop at L2 table
1139 * boundaries to keep things simple.
1142 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1144 l2_index
= offset_to_l2_index(s
, guest_offset
);
1145 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1146 assert(nb_clusters
<= INT_MAX
);
1148 /* Find L2 entry for the first involved cluster */
1149 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1154 entry
= be64_to_cpu(l2_table
[l2_index
]);
1156 /* For the moment, overwrite compressed clusters one by one */
1157 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1160 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1163 /* This function is only called when there were no non-COW clusters, so if
1164 * we can't find any unallocated or COW clusters either, something is
1165 * wrong with our code. */
1166 assert(nb_clusters
> 0);
1168 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1170 /* Allocate, if necessary at a given offset in the image file */
1171 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1172 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1178 /* Can't extend contiguous allocation */
1179 if (nb_clusters
== 0) {
1184 /* !*host_offset would overwrite the image header and is reserved for "no
1185 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1186 * following overlap check; do that now to avoid having an invalid value in
1188 if (!alloc_cluster_offset
) {
1189 ret
= qcow2_pre_write_overlap_check(bs
, 0, alloc_cluster_offset
,
1190 nb_clusters
* s
->cluster_size
);
1196 * Save info needed for meta data update.
1198 * requested_sectors: Number of sectors from the start of the first
1199 * newly allocated cluster to the end of the (possibly shortened
1200 * before) write request.
1202 * avail_sectors: Number of sectors from the start of the first
1203 * newly allocated to the end of the last newly allocated cluster.
1205 * nb_sectors: The number of sectors from the start of the first
1206 * newly allocated cluster to the end of the area that the write
1207 * request actually writes to (excluding COW at the end)
1209 int requested_sectors
=
1210 (*bytes
+ offset_into_cluster(s
, guest_offset
))
1211 >> BDRV_SECTOR_BITS
;
1212 int avail_sectors
= nb_clusters
1213 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
1214 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
1215 >> BDRV_SECTOR_BITS
;
1216 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
1217 QCowL2Meta
*old_m
= *m
;
1219 *m
= g_malloc0(sizeof(**m
));
1221 **m
= (QCowL2Meta
) {
1224 .alloc_offset
= alloc_cluster_offset
,
1225 .offset
= start_of_cluster(s
, guest_offset
),
1226 .nb_clusters
= nb_clusters
,
1227 .nb_available
= nb_sectors
,
1231 .nb_sectors
= alloc_n_start
,
1234 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
1235 .nb_sectors
= avail_sectors
- nb_sectors
,
1238 qemu_co_queue_init(&(*m
)->dependent_requests
);
1239 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1241 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1242 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
1243 - offset_into_cluster(s
, guest_offset
));
1244 assert(*bytes
!= 0);
1249 if (*m
&& (*m
)->nb_clusters
> 0) {
1250 QLIST_REMOVE(*m
, next_in_flight
);
1256 * alloc_cluster_offset
1258 * For a given offset on the virtual disk, find the cluster offset in qcow2
1259 * file. If the offset is not found, allocate a new cluster.
1261 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1262 * other fields in m are meaningless.
1264 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1265 * contiguous clusters that have been allocated. In this case, the other
1266 * fields of m are valid and contain information about the first allocated
1269 * If the request conflicts with another write request in flight, the coroutine
1270 * is queued and will be reentered when the dependency has completed.
1272 * Return 0 on success and -errno in error cases
1274 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1275 int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1277 BDRVQcow2State
*s
= bs
->opaque
;
1278 uint64_t start
, remaining
;
1279 uint64_t cluster_offset
;
1283 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *num
);
1285 assert((offset
& ~BDRV_SECTOR_MASK
) == 0);
1289 remaining
= (uint64_t)*num
<< BDRV_SECTOR_BITS
;
1297 if (!*host_offset
) {
1298 *host_offset
= start_of_cluster(s
, cluster_offset
);
1301 assert(remaining
>= cur_bytes
);
1304 remaining
-= cur_bytes
;
1305 cluster_offset
+= cur_bytes
;
1307 if (remaining
== 0) {
1311 cur_bytes
= remaining
;
1314 * Now start gathering as many contiguous clusters as possible:
1316 * 1. Check for overlaps with in-flight allocations
1318 * a) Overlap not in the first cluster -> shorten this request and
1319 * let the caller handle the rest in its next loop iteration.
1321 * b) Real overlaps of two requests. Yield and restart the search
1322 * for contiguous clusters (the situation could have changed
1323 * while we were sleeping)
1325 * c) TODO: Request starts in the same cluster as the in-flight
1326 * allocation ends. Shorten the COW of the in-fight allocation,
1327 * set cluster_offset to write to the same cluster and set up
1328 * the right synchronisation between the in-flight request and
1331 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1332 if (ret
== -EAGAIN
) {
1333 /* Currently handle_dependencies() doesn't yield if we already had
1334 * an allocation. If it did, we would have to clean up the L2Meta
1335 * structs before starting over. */
1338 } else if (ret
< 0) {
1340 } else if (cur_bytes
== 0) {
1343 /* handle_dependencies() may have decreased cur_bytes (shortened
1344 * the allocations below) so that the next dependency is processed
1345 * correctly during the next loop iteration. */
1349 * 2. Count contiguous COPIED clusters.
1351 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1356 } else if (cur_bytes
== 0) {
1361 * 3. If the request still hasn't completed, allocate new clusters,
1362 * considering any cluster_offset of steps 1c or 2.
1364 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1370 assert(cur_bytes
== 0);
1375 *num
-= remaining
>> BDRV_SECTOR_BITS
;
1377 assert(*host_offset
!= 0);
1382 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1383 const uint8_t *buf
, int buf_size
)
1385 z_stream strm1
, *strm
= &strm1
;
1388 memset(strm
, 0, sizeof(*strm
));
1390 strm
->next_in
= (uint8_t *)buf
;
1391 strm
->avail_in
= buf_size
;
1392 strm
->next_out
= out_buf
;
1393 strm
->avail_out
= out_buf_size
;
1395 ret
= inflateInit2(strm
, -12);
1398 ret
= inflate(strm
, Z_FINISH
);
1399 out_len
= strm
->next_out
- out_buf
;
1400 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1401 out_len
!= out_buf_size
) {
1409 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1411 BDRVQcow2State
*s
= bs
->opaque
;
1412 int ret
, csize
, nb_csectors
, sector_offset
;
1415 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1416 if (s
->cluster_cache_offset
!= coffset
) {
1417 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1418 sector_offset
= coffset
& 511;
1419 csize
= nb_csectors
* 512 - sector_offset
;
1420 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1421 ret
= bdrv_read(bs
->file
->bs
, coffset
>> 9, s
->cluster_data
,
1426 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1427 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1430 s
->cluster_cache_offset
= coffset
;
1436 * This discards as many clusters of nb_clusters as possible at once (i.e.
1437 * all clusters in the same L2 table) and returns the number of discarded
1440 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1441 uint64_t nb_clusters
, enum qcow2_discard_type type
,
1444 BDRVQcow2State
*s
= bs
->opaque
;
1450 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1455 /* Limit nb_clusters to one L2 table */
1456 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1457 assert(nb_clusters
<= INT_MAX
);
1459 for (i
= 0; i
< nb_clusters
; i
++) {
1460 uint64_t old_l2_entry
;
1462 old_l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1465 * If full_discard is false, make sure that a discarded area reads back
1466 * as zeroes for v3 images (we cannot do it for v2 without actually
1467 * writing a zero-filled buffer). We can skip the operation if the
1468 * cluster is already marked as zero, or if it's unallocated and we
1469 * don't have a backing file.
1471 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1472 * holding s->lock, so that doesn't work today.
1474 * If full_discard is true, the sector should not read back as zeroes,
1475 * but rather fall through to the backing file.
1477 switch (qcow2_get_cluster_type(old_l2_entry
)) {
1478 case QCOW2_CLUSTER_UNALLOCATED
:
1479 if (full_discard
|| !bs
->backing
) {
1484 case QCOW2_CLUSTER_ZERO
:
1485 if (!full_discard
) {
1490 case QCOW2_CLUSTER_NORMAL
:
1491 case QCOW2_CLUSTER_COMPRESSED
:
1498 /* First remove L2 entries */
1499 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1500 if (!full_discard
&& s
->qcow_version
>= 3) {
1501 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1503 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1506 /* Then decrease the refcount */
1507 qcow2_free_any_clusters(bs
, old_l2_entry
, 1, type
);
1510 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1515 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1516 int nb_sectors
, enum qcow2_discard_type type
, bool full_discard
)
1518 BDRVQcow2State
*s
= bs
->opaque
;
1519 uint64_t end_offset
;
1520 uint64_t nb_clusters
;
1523 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1525 /* Round start up and end down */
1526 offset
= align_offset(offset
, s
->cluster_size
);
1527 end_offset
= start_of_cluster(s
, end_offset
);
1529 if (offset
> end_offset
) {
1533 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1535 s
->cache_discards
= true;
1537 /* Each L2 table is handled by its own loop iteration */
1538 while (nb_clusters
> 0) {
1539 ret
= discard_single_l2(bs
, offset
, nb_clusters
, type
, full_discard
);
1545 offset
+= (ret
* s
->cluster_size
);
1550 s
->cache_discards
= false;
1551 qcow2_process_discards(bs
, ret
);
1557 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1558 * all clusters in the same L2 table) and returns the number of zeroed
1561 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1562 uint64_t nb_clusters
)
1564 BDRVQcow2State
*s
= bs
->opaque
;
1570 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1575 /* Limit nb_clusters to one L2 table */
1576 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1577 assert(nb_clusters
<= INT_MAX
);
1579 for (i
= 0; i
< nb_clusters
; i
++) {
1580 uint64_t old_offset
;
1582 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1584 /* Update L2 entries */
1585 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1586 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1587 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1588 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1590 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1594 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1599 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1601 BDRVQcow2State
*s
= bs
->opaque
;
1602 uint64_t nb_clusters
;
1605 /* The zero flag is only supported by version 3 and newer */
1606 if (s
->qcow_version
< 3) {
1610 /* Each L2 table is handled by its own loop iteration */
1611 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1613 s
->cache_discards
= true;
1615 while (nb_clusters
> 0) {
1616 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1622 offset
+= (ret
* s
->cluster_size
);
1627 s
->cache_discards
= false;
1628 qcow2_process_discards(bs
, ret
);
1634 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1635 * non-backed non-pre-allocated zero clusters).
1637 * l1_entries and *visited_l1_entries are used to keep track of progress for
1638 * status_cb(). l1_entries contains the total number of L1 entries and
1639 * *visited_l1_entries counts all visited L1 entries.
1641 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1642 int l1_size
, int64_t *visited_l1_entries
,
1644 BlockDriverAmendStatusCB
*status_cb
,
1647 BDRVQcow2State
*s
= bs
->opaque
;
1648 bool is_active_l1
= (l1_table
== s
->l1_table
);
1649 uint64_t *l2_table
= NULL
;
1653 if (!is_active_l1
) {
1654 /* inactive L2 tables require a buffer to be stored in when loading
1656 l2_table
= qemu_try_blockalign(bs
->file
->bs
, s
->cluster_size
);
1657 if (l2_table
== NULL
) {
1662 for (i
= 0; i
< l1_size
; i
++) {
1663 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1664 bool l2_dirty
= false;
1665 uint64_t l2_refcount
;
1669 (*visited_l1_entries
)++;
1671 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1676 if (offset_into_cluster(s
, l2_offset
)) {
1677 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1678 PRIx64
" unaligned (L1 index: %#x)",
1685 /* get active L2 tables from cache */
1686 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1687 (void **)&l2_table
);
1689 /* load inactive L2 tables from disk */
1690 ret
= bdrv_read(bs
->file
->bs
, l2_offset
/ BDRV_SECTOR_SIZE
,
1691 (void *)l2_table
, s
->cluster_sectors
);
1697 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1703 for (j
= 0; j
< s
->l2_size
; j
++) {
1704 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1705 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1706 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1707 bool preallocated
= offset
!= 0;
1709 if (cluster_type
!= QCOW2_CLUSTER_ZERO
) {
1713 if (!preallocated
) {
1715 /* not backed; therefore we can simply deallocate the
1722 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1728 if (l2_refcount
> 1) {
1729 /* For shared L2 tables, set the refcount accordingly (it is
1730 * already 1 and needs to be l2_refcount) */
1731 ret
= qcow2_update_cluster_refcount(bs
,
1732 offset
>> s
->cluster_bits
,
1733 refcount_diff(1, l2_refcount
), false,
1734 QCOW2_DISCARD_OTHER
);
1736 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1737 QCOW2_DISCARD_OTHER
);
1743 if (offset_into_cluster(s
, offset
)) {
1744 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1745 "%#" PRIx64
" unaligned (L2 offset: %#"
1746 PRIx64
", L2 index: %#x)", offset
,
1748 if (!preallocated
) {
1749 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1750 QCOW2_DISCARD_ALWAYS
);
1756 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
1758 if (!preallocated
) {
1759 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1760 QCOW2_DISCARD_ALWAYS
);
1765 ret
= bdrv_write_zeroes(bs
->file
->bs
, offset
/ BDRV_SECTOR_SIZE
,
1766 s
->cluster_sectors
, 0);
1768 if (!preallocated
) {
1769 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1770 QCOW2_DISCARD_ALWAYS
);
1775 if (l2_refcount
== 1) {
1776 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1778 l2_table
[j
] = cpu_to_be64(offset
);
1785 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1786 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1788 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1791 ret
= qcow2_pre_write_overlap_check(bs
,
1792 QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
, l2_offset
,
1798 ret
= bdrv_write(bs
->file
->bs
, l2_offset
/ BDRV_SECTOR_SIZE
,
1799 (void *)l2_table
, s
->cluster_sectors
);
1806 (*visited_l1_entries
)++;
1808 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1816 if (!is_active_l1
) {
1817 qemu_vfree(l2_table
);
1819 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1826 * For backed images, expands all zero clusters on the image. For non-backed
1827 * images, deallocates all non-pre-allocated zero clusters (and claims the
1828 * allocation for pre-allocated ones). This is important for downgrading to a
1829 * qcow2 version which doesn't yet support metadata zero clusters.
1831 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
1832 BlockDriverAmendStatusCB
*status_cb
,
1835 BDRVQcow2State
*s
= bs
->opaque
;
1836 uint64_t *l1_table
= NULL
;
1837 int64_t l1_entries
= 0, visited_l1_entries
= 0;
1842 l1_entries
= s
->l1_size
;
1843 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1844 l1_entries
+= s
->snapshots
[i
].l1_size
;
1848 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
1849 &visited_l1_entries
, l1_entries
,
1850 status_cb
, cb_opaque
);
1855 /* Inactive L1 tables may point to active L2 tables - therefore it is
1856 * necessary to flush the L2 table cache before trying to access the L2
1857 * tables pointed to by inactive L1 entries (else we might try to expand
1858 * zero clusters that have already been expanded); furthermore, it is also
1859 * necessary to empty the L2 table cache, since it may contain tables which
1860 * are now going to be modified directly on disk, bypassing the cache.
1861 * qcow2_cache_empty() does both for us. */
1862 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
1867 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1868 int l1_sectors
= (s
->snapshots
[i
].l1_size
* sizeof(uint64_t) +
1869 BDRV_SECTOR_SIZE
- 1) / BDRV_SECTOR_SIZE
;
1871 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
1873 ret
= bdrv_read(bs
->file
->bs
,
1874 s
->snapshots
[i
].l1_table_offset
/ BDRV_SECTOR_SIZE
,
1875 (void *)l1_table
, l1_sectors
);
1880 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
1881 be64_to_cpus(&l1_table
[j
]);
1884 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
1885 &visited_l1_entries
, l1_entries
,
1886 status_cb
, cb_opaque
);