2 * RISC-V ACLINT (Advanced Core Local Interruptor)
3 * URL: https://github.com/riscv/riscv-aclint
5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * Copyright (c) 2017 SiFive, Inc.
7 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
9 * This provides real-time clock, timer and interprocessor interrupts.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms and conditions of the GNU General Public License,
13 * version 2 or later, as published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * You should have received a copy of the GNU General Public License along with
21 * this program. If not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
35 #include "migration/vmstate.h"
37 typedef struct riscv_aclint_mtimer_callback
{
38 RISCVAclintMTimerState
*s
;
40 } riscv_aclint_mtimer_callback
;
42 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq
)
44 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
45 timebase_freq
, NANOSECONDS_PER_SECOND
);
48 static uint64_t cpu_riscv_read_rtc(void *opaque
)
50 RISCVAclintMTimerState
*mtimer
= opaque
;
51 return cpu_riscv_read_rtc_raw(mtimer
->timebase_freq
) + mtimer
->time_delta
;
55 * Called when timecmp is written to update the QEMU timer or immediately
56 * trigger timer interrupt if mtimecmp <= current timer value.
58 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState
*mtimer
,
63 uint32_t timebase_freq
= mtimer
->timebase_freq
;
67 uint64_t rtc
= cpu_riscv_read_rtc(mtimer
);
69 /* Compute the relative hartid w.r.t the socket */
70 hartid
= hartid
- mtimer
->hartid_base
;
72 mtimer
->timecmp
[hartid
] = value
;
73 if (mtimer
->timecmp
[hartid
] <= rtc
) {
75 * If we're setting an MTIMECMP value in the "past",
76 * immediately raise the timer interrupt
78 qemu_irq_raise(mtimer
->timer_irqs
[hartid
]);
82 /* otherwise, set up the future timer interrupt */
83 qemu_irq_lower(mtimer
->timer_irqs
[hartid
]);
84 diff
= mtimer
->timecmp
[hartid
] - rtc
;
85 /* back to ns (note args switched in muldiv64) */
86 uint64_t ns_diff
= muldiv64(diff
, NANOSECONDS_PER_SECOND
, timebase_freq
);
89 * check if ns_diff overflowed and check if the addition would potentially
92 if ((NANOSECONDS_PER_SECOND
> timebase_freq
&& ns_diff
< diff
) ||
93 ns_diff
> INT64_MAX
) {
97 * as it is very unlikely qemu_clock_get_ns will return a value
98 * greater than INT64_MAX, no additional check is needed for an
99 * unsigned integer overflow.
101 next
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + ns_diff
;
103 * if ns_diff is INT64_MAX next may still be outside the range
104 * of a signed integer.
106 next
= MIN(next
, INT64_MAX
);
109 timer_mod(mtimer
->timers
[hartid
], next
);
113 * Callback used when the timer set using timer_mod expires.
114 * Should raise the timer interrupt line
116 static void riscv_aclint_mtimer_cb(void *opaque
)
118 riscv_aclint_mtimer_callback
*state
= opaque
;
120 qemu_irq_raise(state
->s
->timer_irqs
[state
->num
]);
123 /* CPU read MTIMER register */
124 static uint64_t riscv_aclint_mtimer_read(void *opaque
, hwaddr addr
,
127 RISCVAclintMTimerState
*mtimer
= opaque
;
129 if (addr
>= mtimer
->timecmp_base
&&
130 addr
< (mtimer
->timecmp_base
+ (mtimer
->num_harts
<< 3))) {
131 size_t hartid
= mtimer
->hartid_base
+
132 ((addr
- mtimer
->timecmp_base
) >> 3);
133 CPUState
*cpu
= cpu_by_arch_id(hartid
);
134 CPURISCVState
*env
= cpu
? cpu_env(cpu
) : NULL
;
136 qemu_log_mask(LOG_GUEST_ERROR
,
137 "aclint-mtimer: invalid hartid: %zu", hartid
);
138 } else if ((addr
& 0x7) == 0) {
139 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */
140 uint64_t timecmp
= mtimer
->timecmp
[hartid
];
141 return (size
== 4) ? (timecmp
& 0xFFFFFFFF) : timecmp
;
142 } else if ((addr
& 0x7) == 4) {
144 uint64_t timecmp
= mtimer
->timecmp
[hartid
];
145 return (timecmp
>> 32) & 0xFFFFFFFF;
147 qemu_log_mask(LOG_UNIMP
,
148 "aclint-mtimer: invalid read: %08x", (uint32_t)addr
);
151 } else if (addr
== mtimer
->time_base
) {
152 /* time_lo for RV32/RV64 or timecmp for RV64 */
153 uint64_t rtc
= cpu_riscv_read_rtc(mtimer
);
154 return (size
== 4) ? (rtc
& 0xFFFFFFFF) : rtc
;
155 } else if (addr
== mtimer
->time_base
+ 4) {
157 return (cpu_riscv_read_rtc(mtimer
) >> 32) & 0xFFFFFFFF;
160 qemu_log_mask(LOG_UNIMP
,
161 "aclint-mtimer: invalid read: %08x", (uint32_t)addr
);
165 /* CPU write MTIMER register */
166 static void riscv_aclint_mtimer_write(void *opaque
, hwaddr addr
,
167 uint64_t value
, unsigned size
)
169 RISCVAclintMTimerState
*mtimer
= opaque
;
172 if (addr
>= mtimer
->timecmp_base
&&
173 addr
< (mtimer
->timecmp_base
+ (mtimer
->num_harts
<< 3))) {
174 size_t hartid
= mtimer
->hartid_base
+
175 ((addr
- mtimer
->timecmp_base
) >> 3);
176 CPUState
*cpu
= cpu_by_arch_id(hartid
);
177 CPURISCVState
*env
= cpu
? cpu_env(cpu
) : NULL
;
179 qemu_log_mask(LOG_GUEST_ERROR
,
180 "aclint-mtimer: invalid hartid: %zu", hartid
);
181 } else if ((addr
& 0x7) == 0) {
183 /* timecmp_lo for RV32/RV64 */
184 uint64_t timecmp_hi
= mtimer
->timecmp
[hartid
] >> 32;
185 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
186 timecmp_hi
<< 32 | (value
& 0xFFFFFFFF));
188 /* timecmp for RV64 */
189 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
192 } else if ((addr
& 0x7) == 4) {
194 /* timecmp_hi for RV32/RV64 */
195 uint64_t timecmp_lo
= mtimer
->timecmp
[hartid
];
196 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
197 value
<< 32 | (timecmp_lo
& 0xFFFFFFFF));
199 qemu_log_mask(LOG_GUEST_ERROR
,
200 "aclint-mtimer: invalid timecmp_hi write: %08x",
204 qemu_log_mask(LOG_UNIMP
,
205 "aclint-mtimer: invalid timecmp write: %08x",
209 } else if (addr
== mtimer
->time_base
|| addr
== mtimer
->time_base
+ 4) {
210 uint64_t rtc_r
= cpu_riscv_read_rtc_raw(mtimer
->timebase_freq
);
211 uint64_t rtc
= cpu_riscv_read_rtc(mtimer
);
213 if (addr
== mtimer
->time_base
) {
215 /* time_lo for RV32/RV64 */
216 mtimer
->time_delta
= ((rtc
& ~0xFFFFFFFFULL
) | value
) - rtc_r
;
219 mtimer
->time_delta
= value
- rtc_r
;
223 /* time_hi for RV32/RV64 */
224 mtimer
->time_delta
= (value
<< 32 | (rtc
& 0xFFFFFFFF)) - rtc_r
;
226 qemu_log_mask(LOG_GUEST_ERROR
,
227 "aclint-mtimer: invalid time_hi write: %08x",
233 /* Check if timer interrupt is triggered for each hart. */
234 for (i
= 0; i
< mtimer
->num_harts
; i
++) {
235 CPUState
*cpu
= cpu_by_arch_id(mtimer
->hartid_base
+ i
);
236 CPURISCVState
*env
= cpu
? cpu_env(cpu
) : NULL
;
240 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
),
241 mtimer
->hartid_base
+ i
,
247 qemu_log_mask(LOG_UNIMP
,
248 "aclint-mtimer: invalid write: %08x", (uint32_t)addr
);
251 static const MemoryRegionOps riscv_aclint_mtimer_ops
= {
252 .read
= riscv_aclint_mtimer_read
,
253 .write
= riscv_aclint_mtimer_write
,
254 .endianness
= DEVICE_LITTLE_ENDIAN
,
256 .min_access_size
= 4,
260 .min_access_size
= 4,
261 .max_access_size
= 8,
265 static Property riscv_aclint_mtimer_properties
[] = {
266 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState
,
268 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState
, num_harts
, 1),
269 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState
,
270 timecmp_base
, RISCV_ACLINT_DEFAULT_MTIMECMP
),
271 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState
,
272 time_base
, RISCV_ACLINT_DEFAULT_MTIME
),
273 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState
,
274 aperture_size
, RISCV_ACLINT_DEFAULT_MTIMER_SIZE
),
275 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState
,
277 DEFINE_PROP_END_OF_LIST(),
280 static void riscv_aclint_mtimer_realize(DeviceState
*dev
, Error
**errp
)
282 RISCVAclintMTimerState
*s
= RISCV_ACLINT_MTIMER(dev
);
285 memory_region_init_io(&s
->mmio
, OBJECT(dev
), &riscv_aclint_mtimer_ops
,
286 s
, TYPE_RISCV_ACLINT_MTIMER
, s
->aperture_size
);
287 sysbus_init_mmio(SYS_BUS_DEVICE(dev
), &s
->mmio
);
289 s
->timer_irqs
= g_new(qemu_irq
, s
->num_harts
);
290 qdev_init_gpio_out(dev
, s
->timer_irqs
, s
->num_harts
);
292 s
->timers
= g_new0(QEMUTimer
*, s
->num_harts
);
293 s
->timecmp
= g_new0(uint64_t, s
->num_harts
);
294 /* Claim timer interrupt bits */
295 for (i
= 0; i
< s
->num_harts
; i
++) {
296 RISCVCPU
*cpu
= RISCV_CPU(cpu_by_arch_id(s
->hartid_base
+ i
));
297 if (riscv_cpu_claim_interrupts(cpu
, MIP_MTIP
) < 0) {
298 error_report("MTIP already claimed");
304 static void riscv_aclint_mtimer_reset_enter(Object
*obj
, ResetType type
)
307 * According to RISC-V ACLINT spec:
308 * - On MTIMER device reset, the MTIME register is cleared to zero.
309 * - On MTIMER device reset, the MTIMECMP registers are in unknown state.
311 RISCVAclintMTimerState
*mtimer
= RISCV_ACLINT_MTIMER(obj
);
314 * Clear mtime register by writing to 0 it.
315 * Pending mtime interrupts will also be cleared at the same time.
317 riscv_aclint_mtimer_write(mtimer
, mtimer
->time_base
, 0, 8);
320 static const VMStateDescription vmstate_riscv_mtimer
= {
321 .name
= "riscv_mtimer",
323 .minimum_version_id
= 1,
324 .fields
= (const VMStateField
[]) {
325 VMSTATE_VARRAY_UINT32(timecmp
, RISCVAclintMTimerState
,
327 vmstate_info_uint64
, uint64_t),
328 VMSTATE_END_OF_LIST()
332 static void riscv_aclint_mtimer_class_init(ObjectClass
*klass
, void *data
)
334 DeviceClass
*dc
= DEVICE_CLASS(klass
);
335 dc
->realize
= riscv_aclint_mtimer_realize
;
336 device_class_set_props(dc
, riscv_aclint_mtimer_properties
);
337 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
338 rc
->phases
.enter
= riscv_aclint_mtimer_reset_enter
;
339 dc
->vmsd
= &vmstate_riscv_mtimer
;
342 static const TypeInfo riscv_aclint_mtimer_info
= {
343 .name
= TYPE_RISCV_ACLINT_MTIMER
,
344 .parent
= TYPE_SYS_BUS_DEVICE
,
345 .instance_size
= sizeof(RISCVAclintMTimerState
),
346 .class_init
= riscv_aclint_mtimer_class_init
,
350 * Create ACLINT MTIMER device.
352 DeviceState
*riscv_aclint_mtimer_create(hwaddr addr
, hwaddr size
,
353 uint32_t hartid_base
, uint32_t num_harts
,
354 uint32_t timecmp_base
, uint32_t time_base
, uint32_t timebase_freq
,
358 DeviceState
*dev
= qdev_new(TYPE_RISCV_ACLINT_MTIMER
);
359 RISCVAclintMTimerState
*s
= RISCV_ACLINT_MTIMER(dev
);
361 assert(num_harts
<= RISCV_ACLINT_MAX_HARTS
);
362 assert(!(addr
& 0x7));
363 assert(!(timecmp_base
& 0x7));
364 assert(!(time_base
& 0x7));
366 qdev_prop_set_uint32(dev
, "hartid-base", hartid_base
);
367 qdev_prop_set_uint32(dev
, "num-harts", num_harts
);
368 qdev_prop_set_uint32(dev
, "timecmp-base", timecmp_base
);
369 qdev_prop_set_uint32(dev
, "time-base", time_base
);
370 qdev_prop_set_uint32(dev
, "aperture-size", size
);
371 qdev_prop_set_uint32(dev
, "timebase-freq", timebase_freq
);
372 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
373 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, addr
);
375 for (i
= 0; i
< num_harts
; i
++) {
376 CPUState
*cpu
= cpu_by_arch_id(hartid_base
+ i
);
377 RISCVCPU
*rvcpu
= RISCV_CPU(cpu
);
378 CPURISCVState
*env
= cpu
? cpu_env(cpu
) : NULL
;
379 riscv_aclint_mtimer_callback
*cb
=
380 g_new0(riscv_aclint_mtimer_callback
, 1);
386 if (provide_rdtime
) {
387 riscv_cpu_set_rdtime_fn(env
, cpu_riscv_read_rtc
, dev
);
392 s
->timers
[i
] = timer_new_ns(QEMU_CLOCK_VIRTUAL
,
393 &riscv_aclint_mtimer_cb
, cb
);
396 qdev_connect_gpio_out(dev
, i
,
397 qdev_get_gpio_in(DEVICE(rvcpu
), IRQ_M_TIMER
));
403 /* CPU read [M|S]SWI register */
404 static uint64_t riscv_aclint_swi_read(void *opaque
, hwaddr addr
,
407 RISCVAclintSwiState
*swi
= opaque
;
409 if (addr
< (swi
->num_harts
<< 2)) {
410 size_t hartid
= swi
->hartid_base
+ (addr
>> 2);
411 CPUState
*cpu
= cpu_by_arch_id(hartid
);
412 CPURISCVState
*env
= cpu
? cpu_env(cpu
) : NULL
;
414 qemu_log_mask(LOG_GUEST_ERROR
,
415 "aclint-swi: invalid hartid: %zu", hartid
);
416 } else if ((addr
& 0x3) == 0) {
417 return (swi
->sswi
) ? 0 : ((env
->mip
& MIP_MSIP
) > 0);
421 qemu_log_mask(LOG_UNIMP
,
422 "aclint-swi: invalid read: %08x", (uint32_t)addr
);
426 /* CPU write [M|S]SWI register */
427 static void riscv_aclint_swi_write(void *opaque
, hwaddr addr
, uint64_t value
,
430 RISCVAclintSwiState
*swi
= opaque
;
432 if (addr
< (swi
->num_harts
<< 2)) {
433 size_t hartid
= swi
->hartid_base
+ (addr
>> 2);
434 CPUState
*cpu
= cpu_by_arch_id(hartid
);
435 CPURISCVState
*env
= cpu
? cpu_env(cpu
) : NULL
;
437 qemu_log_mask(LOG_GUEST_ERROR
,
438 "aclint-swi: invalid hartid: %zu", hartid
);
439 } else if ((addr
& 0x3) == 0) {
441 qemu_irq_raise(swi
->soft_irqs
[hartid
- swi
->hartid_base
]);
444 qemu_irq_lower(swi
->soft_irqs
[hartid
- swi
->hartid_base
]);
451 qemu_log_mask(LOG_UNIMP
,
452 "aclint-swi: invalid write: %08x", (uint32_t)addr
);
455 static const MemoryRegionOps riscv_aclint_swi_ops
= {
456 .read
= riscv_aclint_swi_read
,
457 .write
= riscv_aclint_swi_write
,
458 .endianness
= DEVICE_LITTLE_ENDIAN
,
460 .min_access_size
= 4,
465 static Property riscv_aclint_swi_properties
[] = {
466 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState
, hartid_base
, 0),
467 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState
, num_harts
, 1),
468 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState
, sswi
, false),
469 DEFINE_PROP_END_OF_LIST(),
472 static void riscv_aclint_swi_realize(DeviceState
*dev
, Error
**errp
)
474 RISCVAclintSwiState
*swi
= RISCV_ACLINT_SWI(dev
);
477 memory_region_init_io(&swi
->mmio
, OBJECT(dev
), &riscv_aclint_swi_ops
, swi
,
478 TYPE_RISCV_ACLINT_SWI
, RISCV_ACLINT_SWI_SIZE
);
479 sysbus_init_mmio(SYS_BUS_DEVICE(dev
), &swi
->mmio
);
481 swi
->soft_irqs
= g_new(qemu_irq
, swi
->num_harts
);
482 qdev_init_gpio_out(dev
, swi
->soft_irqs
, swi
->num_harts
);
484 /* Claim software interrupt bits */
485 for (i
= 0; i
< swi
->num_harts
; i
++) {
486 RISCVCPU
*cpu
= RISCV_CPU(qemu_get_cpu(swi
->hartid_base
+ i
));
487 /* We don't claim mip.SSIP because it is writable by software */
488 if (riscv_cpu_claim_interrupts(cpu
, swi
->sswi
? 0 : MIP_MSIP
) < 0) {
489 error_report("MSIP already claimed");
495 static void riscv_aclint_swi_reset_enter(Object
*obj
, ResetType type
)
498 * According to RISC-V ACLINT spec:
499 * - On MSWI device reset, each MSIP register is cleared to zero.
501 * p.s. SSWI device reset does nothing since SETSIP register always reads 0.
503 RISCVAclintSwiState
*swi
= RISCV_ACLINT_SWI(obj
);
507 for (i
= 0; i
< swi
->num_harts
; i
++) {
508 /* Clear MSIP registers by lowering software interrupts. */
509 qemu_irq_lower(swi
->soft_irqs
[i
]);
514 static void riscv_aclint_swi_class_init(ObjectClass
*klass
, void *data
)
516 DeviceClass
*dc
= DEVICE_CLASS(klass
);
517 dc
->realize
= riscv_aclint_swi_realize
;
518 device_class_set_props(dc
, riscv_aclint_swi_properties
);
519 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
520 rc
->phases
.enter
= riscv_aclint_swi_reset_enter
;
523 static const TypeInfo riscv_aclint_swi_info
= {
524 .name
= TYPE_RISCV_ACLINT_SWI
,
525 .parent
= TYPE_SYS_BUS_DEVICE
,
526 .instance_size
= sizeof(RISCVAclintSwiState
),
527 .class_init
= riscv_aclint_swi_class_init
,
531 * Create ACLINT [M|S]SWI device.
533 DeviceState
*riscv_aclint_swi_create(hwaddr addr
, uint32_t hartid_base
,
534 uint32_t num_harts
, bool sswi
)
537 DeviceState
*dev
= qdev_new(TYPE_RISCV_ACLINT_SWI
);
539 assert(num_harts
<= RISCV_ACLINT_MAX_HARTS
);
540 assert(!(addr
& 0x3));
542 qdev_prop_set_uint32(dev
, "hartid-base", hartid_base
);
543 qdev_prop_set_uint32(dev
, "num-harts", num_harts
);
544 qdev_prop_set_uint32(dev
, "sswi", sswi
? true : false);
545 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
546 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, addr
);
548 for (i
= 0; i
< num_harts
; i
++) {
549 CPUState
*cpu
= cpu_by_arch_id(hartid_base
+ i
);
550 RISCVCPU
*rvcpu
= RISCV_CPU(cpu
);
552 qdev_connect_gpio_out(dev
, i
,
553 qdev_get_gpio_in(DEVICE(rvcpu
),
554 (sswi
) ? IRQ_S_SOFT
: IRQ_M_SOFT
));
560 static void riscv_aclint_register_types(void)
562 type_register_static(&riscv_aclint_mtimer_info
);
563 type_register_static(&riscv_aclint_swi_info
);
566 type_init(riscv_aclint_register_types
)