travis: define all the build matrix entries in one place
[qemu/ar7.git] / docs / pvrdma.txt
blob5175251b47d666562bde6d9da3c155584eef75b4
1 Paravirtualized RDMA Device (PVRDMA)
2 ====================================
5 1. Description
6 ===============
7 PVRDMA is the QEMU implementation of VMware's paravirtualized RDMA device.
8 It works with its Linux Kernel driver AS IS, no need for any special guest
9 modifications.
11 While it complies with the VMware device, it can also communicate with bare
12 metal RDMA-enabled machines as peers.
14 It does not require an RDMA HCA in the host, it can work with Soft-RoCE (rxe).
16 It does not require the whole guest RAM to be pinned allowing memory
17 over-commit and, even if not implemented yet, migration support will be
18 possible with some HW assistance.
20 A project presentation accompany this document:
21 - http://events.linuxfoundation.org/sites/events/files/slides/lpc-2017-pvrdma-marcel-apfelbaum-yuval-shaia.pdf
25 2. Setup
26 ========
29 2.1 Guest setup
30 ===============
31 Fedora 27+ kernels work out of the box, older distributions
32 require updating the kernel to 4.14 to include the pvrdma driver.
34 However the libpvrdma library needed by User Level Software is still
35 not available as part of the distributions, so the rdma-core library
36 needs to be compiled and optionally installed.
38 Please follow the instructions at:
39   https://github.com/linux-rdma/rdma-core.git
42 2.2 Host Setup
43 ==============
44 The pvrdma backend is an ibdevice interface that can be exposed
45 either by a Soft-RoCE(rxe) device on machines with no RDMA device,
46 or an HCA SRIOV function(VF/PF).
47 Note that ibdevice interfaces can't be shared between pvrdma devices,
48 each one requiring a separate instance (rxe or SRIOV VF).
51 2.2.1 Soft-RoCE backend(rxe)
52 ===========================
53 A stable version of rxe is required, Fedora 27+ or a Linux
54 Kernel 4.14+ is preferred.
56 The rdma_rxe module is part of the Linux Kernel but not loaded by default.
57 Install the User Level library (librxe) following the instructions from:
58 https://github.com/SoftRoCE/rxe-dev/wiki/rxe-dev:-Home
60 Associate an ETH interface with rxe by running:
61    rxe_cfg add eth0
62 An rxe0 ibdevice interface will be created and can be used as pvrdma backend.
65 2.2.2 RDMA device Virtual Function backend
66 ==========================================
67 Nothing special is required, the pvrdma device can work not only with
68 Ethernet Links, but also Infinibands Links.
69 All is needed is an ibdevice with an active port, for Mellanox cards
70 will be something like mlx5_6 which can be the backend.
73 2.2.3 QEMU setup
74 ================
75 Configure QEMU with --enable-rdma flag, installing
76 the required RDMA libraries.
80 3. Usage
81 ========
84 3.1 VM Memory settings
85 ======================
86 Currently the device is working only with memory backed RAM
87 and it must be mark as "shared":
88    -m 1G \
89    -object memory-backend-ram,id=mb1,size=1G,share \
90    -numa node,memdev=mb1 \
93 3.2 MAD Multiplexer
94 ===================
95 MAD Multiplexer is a service that exposes MAD-like interface for VMs in
96 order to overcome the limitation where only single entity can register with
97 MAD layer to send and receive RDMA-CM MAD packets.
99 To build rdmacm-mux run
100 # make rdmacm-mux
102 The application accepts 3 command line arguments and exposes a UNIX socket
103 to pass control and data to it.
104 -d rdma-device-name  Name of RDMA device to register with
105 -s unix-socket-path  Path to unix socket to listen (default /var/run/rdmacm-mux)
106 -p rdma-device-port  Port number of RDMA device to register with (default 1)
107 The final UNIX socket file name is a concatenation of the 3 arguments so
108 for example for device mlx5_0 on port 2 this /var/run/rdmacm-mux-mlx5_0-2
109 will be created.
111 pvrdma requires this service.
113 Please refer to contrib/rdmacm-mux for more details.
116 3.3 Service exposed by libvirt daemon
117 =====================================
118 The control over the RDMA device's GID table is done by updating the
119 device's Ethernet function addresses.
120 Usually the first GID entry is determined by the MAC address, the second by
121 the first IPv6 address and the third by the IPv4 address. Other entries can
122 be added by adding more IP addresses. The opposite is the same, i.e.
123 whenever an address is removed, the corresponding GID entry is removed.
124 The process is done by the network and RDMA stacks. Whenever an address is
125 added the ib_core driver is notified and calls the device driver add_gid
126 function which in turn update the device.
127 To support this in pvrdma device the device hooks into the create_bind and
128 destroy_bind HW commands triggered by pvrdma driver in guest.
130 Whenever changed is made to the pvrdma port's GID table a special QMP
131 messages is sent to be processed by libvirt to update the address of the
132 backend Ethernet device.
134 pvrdma requires that libvirt service will be up.
137 3.4 PCI devices settings
138 ========================
139 RoCE device exposes two functions - an Ethernet and RDMA.
140 To support it, pvrdma device is composed of two PCI functions, an Ethernet
141 device of type vmxnet3 on PCI slot 0 and a PVRDMA device on PCI slot 1. The
142 Ethernet function can be used for other Ethernet purposes such as IP.
145 3.5 Device parameters
146 =====================
147 - netdev: Specifies the Ethernet device function name on the host for
148   example enp175s0f0. For Soft-RoCE device (rxe) this would be the Ethernet
149   device used to create it.
150 - ibdev: The IB device name on host for example rxe0, mlx5_0 etc.
151 - mad-chardev: The name of the MAD multiplexer char device.
152 - ibport: In case of multi-port device (such as Mellanox's HCA) this
153   specify the port to use. If not set 1 will be used.
154 - dev-caps-max-mr-size: The maximum size of MR.
155 - dev-caps-max-qp:      Maximum number of QPs.
156 - dev-caps-max-sge:     Maximum number of SGE elements in WR.
157 - dev-caps-max-cq:      Maximum number of CQs.
158 - dev-caps-max-mr:      Maximum number of MRs.
159 - dev-caps-max-pd:      Maximum number of PDs.
160 - dev-caps-max-ah:      Maximum number of AHs.
162 Notes:
163 - The first 3 parameters are mandatory settings, the rest have their
164   defaults.
165 - The last 8 parameters (the ones that prefixed by dev-caps) defines the top
166   limits but the final values is adjusted by the backend device limitations.
167 - netdev can be extracted from ibdev's sysfs
168   (/sys/class/infiniband/<ibdev>/device/net/)
171 3.6 Example
172 ===========
173 Define bridge device with vmxnet3 network backend:
174 <interface type='bridge'>
175   <mac address='56:b4:44:e9:62:dc'/>
176   <source bridge='bridge1'/>
177   <model type='vmxnet3'/>
178   <address type='pci' domain='0x0000' bus='0x00' slot='0x10' function='0x0' multifunction='on'/>
179 </interface>
181 Define pvrdma device:
182 <qemu:commandline>
183   <qemu:arg value='-object'/>
184   <qemu:arg value='memory-backend-ram,id=mb1,size=1G,share'/>
185   <qemu:arg value='-numa'/>
186   <qemu:arg value='node,memdev=mb1'/>
187   <qemu:arg value='-chardev'/>
188   <qemu:arg value='socket,path=/var/run/rdmacm-mux-rxe0-1,id=mads'/>
189   <qemu:arg value='-device'/>
190   <qemu:arg value='pvrdma,addr=10.1,ibdev=rxe0,netdev=bridge0,mad-chardev=mads'/>
191 </qemu:commandline>
195 4. Implementation details
196 =========================
199 4.1 Overview
200 ============
201 The device acts like a proxy between the Guest Driver and the host
202 ibdevice interface.
203 On configuration path:
204  - For every hardware resource request (PD/QP/CQ/...) the pvrdma will request
205    a resource from the backend interface, maintaining a 1-1 mapping
206    between the guest and host.
207 On data path:
208  - Every post_send/receive received from the guest will be converted into
209    a post_send/receive for the backend. The buffers data will not be touched
210    or copied resulting in near bare-metal performance for large enough buffers.
211  - Completions from the backend interface will result in completions for
212    the pvrdma device.
215 4.2 PCI BARs
216 ============
217 PCI Bars:
218         BAR 0 - MSI-X
219         MSI-X vectors:
220                 (0) Command - used when execution of a command is completed.
221                 (1) Async - not in use.
222                 (2) Completion - used when a completion event is placed in
223                   device's CQ ring.
224         BAR 1 - Registers
225         --------------------------------------------------------
226         | VERSION |  DSR | CTL | REQ | ERR |  ICR | IMR  | MAC |
227         --------------------------------------------------------
228                 DSR - Address of driver/device shared memory used
229               for the command channel, used for passing:
230                             - General info such as driver version
231                             - Address of 'command' and 'response'
232                             - Address of async ring
233                             - Address of device's CQ ring
234                             - Device capabilities
235                 CTL - Device control operations (activate, reset etc)
236                 IMG - Set interrupt mask
237                 REQ - Command execution register
238                 ERR - Operation status
240         BAR 2 - UAR
241         ---------------------------------------------------------
242         | QP_NUM  | SEND/RECV Flag ||  CQ_NUM |   ARM/POLL Flag |
243         ---------------------------------------------------------
244                 - Offset 0 used for QP operations (send and recv)
245                 - Offset 4 used for CQ operations (arm and poll)
248 4.3 Major flows
249 ===============
251 4.3.1 Create CQ
252 ===============
253     - Guest driver
254         - Allocates pages for CQ ring
255         - Creates page directory (pdir) to hold CQ ring's pages
256         - Initializes CQ ring
257         - Initializes 'Create CQ' command object (cqe, pdir etc)
258         - Copies the command to 'command' address
259         - Writes 0 into REQ register
260     - Device
261         - Reads the request object from the 'command' address
262         - Allocates CQ object and initialize CQ ring based on pdir
263         - Creates the backend CQ
264         - Writes operation status to ERR register
265         - Posts command-interrupt to guest
266     - Guest driver
267         - Reads the HW response code from ERR register
269 4.3.2 Create QP
270 ===============
271     - Guest driver
272         - Allocates pages for send and receive rings
273         - Creates page directory(pdir) to hold the ring's pages
274         - Initializes 'Create QP' command object (max_send_wr,
275           send_cq_handle, recv_cq_handle, pdir etc)
276         - Copies the object to 'command' address
277         - Write 0 into REQ register
278     - Device
279         - Reads the request object from 'command' address
280         - Allocates the QP object and initialize
281             - Send and recv rings based on pdir
282             - Send and recv ring state
283         - Creates the backend QP
284         - Writes the operation status to ERR register
285         - Posts command-interrupt to guest
286     - Guest driver
287         - Reads the HW response code from ERR register
289 4.3.3 Post receive
290 ==================
291     - Guest driver
292         - Initializes a wqe and place it on recv ring
293         - Write to qpn|qp_recv_bit (31) to QP offset in UAR
294     - Device
295         - Extracts qpn from UAR
296         - Walks through the ring and does the following for each wqe
297             - Prepares the backend CQE context to be used when
298               receiving completion from backend (wr_id, op_code, emu_cq_num)
299             - For each sge prepares backend sge
300             - Calls backend's post_recv
302 4.3.4 Process backend events
303 ============================
304     - Done by a dedicated thread used to process backend events;
305       at initialization is attached to the device and creates
306       the communication channel.
307     - Thread main loop:
308         - Polls for completions
309         - Extracts QEMU _cq_num, wr_id and op_code from context
310         - Writes CQE to CQ ring
311         - Writes CQ number to device CQ
312         - Sends completion-interrupt to guest
313         - Deallocates context
314         - Acks the event to backend
318 5. Limitations
319 ==============
320 - The device obviously is limited by the Guest Linux Driver features implementation
321   of the VMware device API.
322 - Memory registration mechanism requires mremap for every page in the buffer in order
323   to map it to a contiguous virtual address range. Since this is not the data path
324   it should not matter much. If the default max mr size is increased, be aware that
325   memory registration can take up to 0.5 seconds for 1GB of memory.
326 - The device requires target page size to be the same as the host page size,
327   otherwise it will fail to init.
328 - QEMU cannot map guest RAM from a file descriptor if a pvrdma device is attached,
329   so it can't work with huge pages. The limitation will be addressed in the future,
330   however QEMU allocates Guest RAM with MADV_HUGEPAGE so if there are enough huge
331   pages available, QEMU will use them. QEMU will fail to init if the requirements
332   are not met.
336 6. Performance
337 ==============
338 By design the pvrdma device exits on each post-send/receive, so for small buffers
339 the performance is affected; however for medium buffers it will became close to
340 bare metal and from 1MB buffers and  up it reaches bare metal performance.
341 (tested with 2 VMs, the pvrdma devices connected to 2 VFs of the same device)
343 All the above assumes no memory registration is done on data path.