Convert error_report() to warn_report()
[qemu/ar7.git] / hw / ppc / spapr.c
blob16638ce80cb738037cc6820b558c33a4269f5816
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "qom/cpu.h"
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "hw/usb.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
68 #include "trace.h"
69 #include "hw/nmi.h"
70 #include "hw/intc/intc.h"
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
77 #include <libfdt.h>
79 /* SLOF memory layout:
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
87 * We load our kernel at 4M, leaving space for SLOF initial image
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97 #define MIN_RMA_SLOF 128UL
99 #define PHANDLE_XICP 0x00001111
101 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
107 Error *local_err = NULL;
108 Object *obj;
110 obj = object_new(type_ics);
111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
118 object_property_set_bool(obj, true, "realized", &local_err);
119 if (local_err) {
120 goto error;
123 return ICS_SIMPLE(obj);
125 error:
126 error_propagate(errp, local_err);
127 return NULL;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 static inline int xics_max_server_number(void)
166 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
171 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
174 if (kvm_enabled()) {
175 if (machine_kernel_irqchip_allowed(machine) &&
176 !xics_kvm_init(spapr, errp)) {
177 spapr->icp_type = TYPE_KVM_ICP;
178 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
180 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182 return;
186 if (!spapr->ics) {
187 xics_spapr_init(spapr);
188 spapr->icp_type = TYPE_ICP;
189 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190 if (!spapr->ics) {
191 return;
195 if (smc->pre_2_10_has_unused_icps) {
196 int i;
198 for (i = 0; i < xics_max_server_number(); i++) {
199 /* Dummy entries get deregistered when real ICPState objects
200 * are registered during CPU core hotplug.
202 pre_2_10_vmstate_register_dummy_icp(i);
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208 int smt_threads)
210 int i, ret = 0;
211 uint32_t servers_prop[smt_threads];
212 uint32_t gservers_prop[smt_threads * 2];
213 int index = ppc_get_vcpu_dt_id(cpu);
215 if (cpu->compat_pvr) {
216 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217 if (ret < 0) {
218 return ret;
222 /* Build interrupt servers and gservers properties */
223 for (i = 0; i < smt_threads; i++) {
224 servers_prop[i] = cpu_to_be32(index + i);
225 /* Hack, direct the group queues back to cpu 0 */
226 gservers_prop[i*2] = cpu_to_be32(index + i);
227 gservers_prop[i*2 + 1] = 0;
229 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230 servers_prop, sizeof(servers_prop));
231 if (ret < 0) {
232 return ret;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235 gservers_prop, sizeof(gservers_prop));
237 return ret;
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
242 int index = ppc_get_vcpu_dt_id(cpu);
243 uint32_t associativity[] = {cpu_to_be32(0x5),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(0x0),
247 cpu_to_be32(cpu->node_id),
248 cpu_to_be32(index)};
250 /* Advertise NUMA via ibm,associativity */
251 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252 sizeof(associativity));
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
257 bool legacy_guest)
259 uint8_t pa_features_206[] = { 6, 0,
260 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
261 uint8_t pa_features_207[] = { 24, 0,
262 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
263 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
265 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
266 uint8_t pa_features_300[] = { 66, 0,
267 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
268 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
269 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
270 /* 6: DS207 */
271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
272 /* 16: Vector */
273 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
274 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
275 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
276 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
277 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
278 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
279 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
280 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
281 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
282 /* 42: PM, 44: PC RA, 46: SC vec'd */
283 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
284 /* 48: SIMD, 50: QP BFP, 52: String */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
286 /* 54: DecFP, 56: DecI, 58: SHA */
287 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
288 /* 60: NM atomic, 62: RNG */
289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
291 uint8_t *pa_features;
292 size_t pa_size;
294 switch (POWERPC_MMU_VER(env->mmu_model)) {
295 case POWERPC_MMU_VER_2_06:
296 pa_features = pa_features_206;
297 pa_size = sizeof(pa_features_206);
298 break;
299 case POWERPC_MMU_VER_2_07:
300 pa_features = pa_features_207;
301 pa_size = sizeof(pa_features_207);
302 break;
303 case POWERPC_MMU_VER_3_00:
304 pa_features = pa_features_300;
305 pa_size = sizeof(pa_features_300);
306 break;
307 default:
308 return;
311 if (env->ci_large_pages) {
313 * Note: we keep CI large pages off by default because a 64K capable
314 * guest provisioned with large pages might otherwise try to map a qemu
315 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
316 * even if that qemu runs on a 4k host.
317 * We dd this bit back here if we are confident this is not an issue
319 pa_features[3] |= 0x20;
321 if (kvmppc_has_cap_htm() && pa_size > 24) {
322 pa_features[24] |= 0x80; /* Transactional memory support */
324 if (legacy_guest && pa_size > 40) {
325 /* Workaround for broken kernels that attempt (guest) radix
326 * mode when they can't handle it, if they see the radix bit set
327 * in pa-features. So hide it from them. */
328 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
331 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
334 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
336 int ret = 0, offset, cpus_offset;
337 CPUState *cs;
338 char cpu_model[32];
339 int smt = kvmppc_smt_threads();
340 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
342 CPU_FOREACH(cs) {
343 PowerPCCPU *cpu = POWERPC_CPU(cs);
344 CPUPPCState *env = &cpu->env;
345 DeviceClass *dc = DEVICE_GET_CLASS(cs);
346 int index = ppc_get_vcpu_dt_id(cpu);
347 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
349 if ((index % smt) != 0) {
350 continue;
353 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
355 cpus_offset = fdt_path_offset(fdt, "/cpus");
356 if (cpus_offset < 0) {
357 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
358 "cpus");
359 if (cpus_offset < 0) {
360 return cpus_offset;
363 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
366 if (offset < 0) {
367 return offset;
371 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
372 pft_size_prop, sizeof(pft_size_prop));
373 if (ret < 0) {
374 return ret;
377 if (nb_numa_nodes > 1) {
378 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
379 if (ret < 0) {
380 return ret;
384 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
385 if (ret < 0) {
386 return ret;
389 spapr_populate_pa_features(env, fdt, offset,
390 spapr->cas_legacy_guest_workaround);
392 return ret;
395 static hwaddr spapr_node0_size(void)
397 MachineState *machine = MACHINE(qdev_get_machine());
399 if (nb_numa_nodes) {
400 int i;
401 for (i = 0; i < nb_numa_nodes; ++i) {
402 if (numa_info[i].node_mem) {
403 return MIN(pow2floor(numa_info[i].node_mem),
404 machine->ram_size);
408 return machine->ram_size;
411 static void add_str(GString *s, const gchar *s1)
413 g_string_append_len(s, s1, strlen(s1) + 1);
416 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
417 hwaddr size)
419 uint32_t associativity[] = {
420 cpu_to_be32(0x4), /* length */
421 cpu_to_be32(0x0), cpu_to_be32(0x0),
422 cpu_to_be32(0x0), cpu_to_be32(nodeid)
424 char mem_name[32];
425 uint64_t mem_reg_property[2];
426 int off;
428 mem_reg_property[0] = cpu_to_be64(start);
429 mem_reg_property[1] = cpu_to_be64(size);
431 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
432 off = fdt_add_subnode(fdt, 0, mem_name);
433 _FDT(off);
434 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
435 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
436 sizeof(mem_reg_property))));
437 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
438 sizeof(associativity))));
439 return off;
442 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
444 MachineState *machine = MACHINE(spapr);
445 hwaddr mem_start, node_size;
446 int i, nb_nodes = nb_numa_nodes;
447 NodeInfo *nodes = numa_info;
448 NodeInfo ramnode;
450 /* No NUMA nodes, assume there is just one node with whole RAM */
451 if (!nb_numa_nodes) {
452 nb_nodes = 1;
453 ramnode.node_mem = machine->ram_size;
454 nodes = &ramnode;
457 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
458 if (!nodes[i].node_mem) {
459 continue;
461 if (mem_start >= machine->ram_size) {
462 node_size = 0;
463 } else {
464 node_size = nodes[i].node_mem;
465 if (node_size > machine->ram_size - mem_start) {
466 node_size = machine->ram_size - mem_start;
469 if (!mem_start) {
470 /* ppc_spapr_init() checks for rma_size <= node0_size already */
471 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
472 mem_start += spapr->rma_size;
473 node_size -= spapr->rma_size;
475 for ( ; node_size; ) {
476 hwaddr sizetmp = pow2floor(node_size);
478 /* mem_start != 0 here */
479 if (ctzl(mem_start) < ctzl(sizetmp)) {
480 sizetmp = 1ULL << ctzl(mem_start);
483 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
484 node_size -= sizetmp;
485 mem_start += sizetmp;
489 return 0;
492 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
493 sPAPRMachineState *spapr)
495 PowerPCCPU *cpu = POWERPC_CPU(cs);
496 CPUPPCState *env = &cpu->env;
497 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
498 int index = ppc_get_vcpu_dt_id(cpu);
499 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
500 0xffffffff, 0xffffffff};
501 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
502 : SPAPR_TIMEBASE_FREQ;
503 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
504 uint32_t page_sizes_prop[64];
505 size_t page_sizes_prop_size;
506 uint32_t vcpus_per_socket = smp_threads * smp_cores;
507 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
508 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
509 sPAPRDRConnector *drc;
510 int drc_index;
511 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
512 int i;
514 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
515 if (drc) {
516 drc_index = spapr_drc_index(drc);
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
520 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
521 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
523 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
524 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
525 env->dcache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
527 env->dcache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
529 env->icache_line_size)));
530 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
531 env->icache_line_size)));
533 if (pcc->l1_dcache_size) {
534 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
535 pcc->l1_dcache_size)));
536 } else {
537 warn_report("Unknown L1 dcache size for cpu");
539 if (pcc->l1_icache_size) {
540 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
541 pcc->l1_icache_size)));
542 } else {
543 warn_report("Unknown L1 icache size for cpu");
546 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
547 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
548 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
549 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
550 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
551 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
553 if (env->spr_cb[SPR_PURR].oea_read) {
554 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
557 if (env->mmu_model & POWERPC_MMU_1TSEG) {
558 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
559 segs, sizeof(segs))));
562 /* Advertise VMX/VSX (vector extensions) if available
563 * 0 / no property == no vector extensions
564 * 1 == VMX / Altivec available
565 * 2 == VSX available */
566 if (env->insns_flags & PPC_ALTIVEC) {
567 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
569 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
572 /* Advertise DFP (Decimal Floating Point) if available
573 * 0 / no property == no DFP
574 * 1 == DFP available */
575 if (env->insns_flags2 & PPC2_DFP) {
576 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
579 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
580 sizeof(page_sizes_prop));
581 if (page_sizes_prop_size) {
582 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
583 page_sizes_prop, page_sizes_prop_size)));
586 spapr_populate_pa_features(env, fdt, offset, false);
588 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
589 cs->cpu_index / vcpus_per_socket)));
591 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
592 pft_size_prop, sizeof(pft_size_prop))));
594 if (nb_numa_nodes > 1) {
595 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
598 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
600 if (pcc->radix_page_info) {
601 for (i = 0; i < pcc->radix_page_info->count; i++) {
602 radix_AP_encodings[i] =
603 cpu_to_be32(pcc->radix_page_info->entries[i]);
605 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
606 radix_AP_encodings,
607 pcc->radix_page_info->count *
608 sizeof(radix_AP_encodings[0]))));
612 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
614 CPUState *cs;
615 int cpus_offset;
616 char *nodename;
617 int smt = kvmppc_smt_threads();
619 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
620 _FDT(cpus_offset);
621 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
622 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
625 * We walk the CPUs in reverse order to ensure that CPU DT nodes
626 * created by fdt_add_subnode() end up in the right order in FDT
627 * for the guest kernel the enumerate the CPUs correctly.
629 CPU_FOREACH_REVERSE(cs) {
630 PowerPCCPU *cpu = POWERPC_CPU(cs);
631 int index = ppc_get_vcpu_dt_id(cpu);
632 DeviceClass *dc = DEVICE_GET_CLASS(cs);
633 int offset;
635 if ((index % smt) != 0) {
636 continue;
639 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
640 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
641 g_free(nodename);
642 _FDT(offset);
643 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
649 * Adds ibm,dynamic-reconfiguration-memory node.
650 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
651 * of this device tree node.
653 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
655 MachineState *machine = MACHINE(spapr);
656 int ret, i, offset;
657 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
658 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
659 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
660 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
661 memory_region_size(&spapr->hotplug_memory.mr)) /
662 lmb_size;
663 uint32_t *int_buf, *cur_index, buf_len;
664 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
667 * Don't create the node if there is no hotpluggable memory
669 if (machine->ram_size == machine->maxram_size) {
670 return 0;
674 * Allocate enough buffer size to fit in ibm,dynamic-memory
675 * or ibm,associativity-lookup-arrays
677 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
678 * sizeof(uint32_t);
679 cur_index = int_buf = g_malloc0(buf_len);
681 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
683 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
684 sizeof(prop_lmb_size));
685 if (ret < 0) {
686 goto out;
689 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
690 if (ret < 0) {
691 goto out;
694 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
695 if (ret < 0) {
696 goto out;
699 /* ibm,dynamic-memory */
700 int_buf[0] = cpu_to_be32(nr_lmbs);
701 cur_index++;
702 for (i = 0; i < nr_lmbs; i++) {
703 uint64_t addr = i * lmb_size;
704 uint32_t *dynamic_memory = cur_index;
706 if (i >= hotplug_lmb_start) {
707 sPAPRDRConnector *drc;
709 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
710 g_assert(drc);
712 dynamic_memory[0] = cpu_to_be32(addr >> 32);
713 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
714 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
715 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
716 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
717 if (memory_region_present(get_system_memory(), addr)) {
718 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
719 } else {
720 dynamic_memory[5] = cpu_to_be32(0);
722 } else {
724 * LMB information for RMA, boot time RAM and gap b/n RAM and
725 * hotplug memory region -- all these are marked as reserved
726 * and as having no valid DRC.
728 dynamic_memory[0] = cpu_to_be32(addr >> 32);
729 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
730 dynamic_memory[2] = cpu_to_be32(0);
731 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
732 dynamic_memory[4] = cpu_to_be32(-1);
733 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
734 SPAPR_LMB_FLAGS_DRC_INVALID);
737 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
739 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
740 if (ret < 0) {
741 goto out;
744 /* ibm,associativity-lookup-arrays */
745 cur_index = int_buf;
746 int_buf[0] = cpu_to_be32(nr_nodes);
747 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
748 cur_index += 2;
749 for (i = 0; i < nr_nodes; i++) {
750 uint32_t associativity[] = {
751 cpu_to_be32(0x0),
752 cpu_to_be32(0x0),
753 cpu_to_be32(0x0),
754 cpu_to_be32(i)
756 memcpy(cur_index, associativity, sizeof(associativity));
757 cur_index += 4;
759 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
760 (cur_index - int_buf) * sizeof(uint32_t));
761 out:
762 g_free(int_buf);
763 return ret;
766 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
767 sPAPROptionVector *ov5_updates)
769 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
770 int ret = 0, offset;
772 /* Generate ibm,dynamic-reconfiguration-memory node if required */
773 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
774 g_assert(smc->dr_lmb_enabled);
775 ret = spapr_populate_drconf_memory(spapr, fdt);
776 if (ret) {
777 goto out;
781 /* /interrupt controller */
782 if (!spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)) {
783 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
786 offset = fdt_path_offset(fdt, "/chosen");
787 if (offset < 0) {
788 offset = fdt_add_subnode(fdt, 0, "chosen");
789 if (offset < 0) {
790 return offset;
793 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
794 "ibm,architecture-vec-5");
796 out:
797 return ret;
800 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
801 target_ulong addr, target_ulong size,
802 sPAPROptionVector *ov5_updates)
804 void *fdt, *fdt_skel;
805 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
807 size -= sizeof(hdr);
809 /* Create skeleton */
810 fdt_skel = g_malloc0(size);
811 _FDT((fdt_create(fdt_skel, size)));
812 _FDT((fdt_begin_node(fdt_skel, "")));
813 _FDT((fdt_end_node(fdt_skel)));
814 _FDT((fdt_finish(fdt_skel)));
815 fdt = g_malloc0(size);
816 _FDT((fdt_open_into(fdt_skel, fdt, size)));
817 g_free(fdt_skel);
819 /* Fixup cpu nodes */
820 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
822 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
823 return -1;
826 /* Pack resulting tree */
827 _FDT((fdt_pack(fdt)));
829 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
830 trace_spapr_cas_failed(size);
831 return -1;
834 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
835 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
836 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
837 g_free(fdt);
839 return 0;
842 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
844 int rtas;
845 GString *hypertas = g_string_sized_new(256);
846 GString *qemu_hypertas = g_string_sized_new(256);
847 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
848 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
849 memory_region_size(&spapr->hotplug_memory.mr);
850 uint32_t lrdr_capacity[] = {
851 cpu_to_be32(max_hotplug_addr >> 32),
852 cpu_to_be32(max_hotplug_addr & 0xffffffff),
853 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
854 cpu_to_be32(max_cpus / smp_threads),
857 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
859 /* hypertas */
860 add_str(hypertas, "hcall-pft");
861 add_str(hypertas, "hcall-term");
862 add_str(hypertas, "hcall-dabr");
863 add_str(hypertas, "hcall-interrupt");
864 add_str(hypertas, "hcall-tce");
865 add_str(hypertas, "hcall-vio");
866 add_str(hypertas, "hcall-splpar");
867 add_str(hypertas, "hcall-bulk");
868 add_str(hypertas, "hcall-set-mode");
869 add_str(hypertas, "hcall-sprg0");
870 add_str(hypertas, "hcall-copy");
871 add_str(hypertas, "hcall-debug");
872 add_str(qemu_hypertas, "hcall-memop1");
874 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
875 add_str(hypertas, "hcall-multi-tce");
877 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
878 hypertas->str, hypertas->len));
879 g_string_free(hypertas, TRUE);
880 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
881 qemu_hypertas->str, qemu_hypertas->len));
882 g_string_free(qemu_hypertas, TRUE);
884 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
885 refpoints, sizeof(refpoints)));
887 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
888 RTAS_ERROR_LOG_MAX));
889 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
890 RTAS_EVENT_SCAN_RATE));
892 if (msi_nonbroken) {
893 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
897 * According to PAPR, rtas ibm,os-term does not guarantee a return
898 * back to the guest cpu.
900 * While an additional ibm,extended-os-term property indicates
901 * that rtas call return will always occur. Set this property.
903 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
905 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
906 lrdr_capacity, sizeof(lrdr_capacity)));
908 spapr_dt_rtas_tokens(fdt, rtas);
911 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
912 * that the guest may request and thus the valid values for bytes 24..26 of
913 * option vector 5: */
914 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
916 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
918 char val[2 * 4] = {
919 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
920 24, 0x00, /* Hash/Radix, filled in below. */
921 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
922 26, 0x40, /* Radix options: GTSE == yes. */
925 if (kvm_enabled()) {
926 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
927 val[3] = 0x80; /* OV5_MMU_BOTH */
928 } else if (kvmppc_has_cap_mmu_radix()) {
929 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
930 } else {
931 val[3] = 0x00; /* Hash */
933 } else {
934 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
935 /* V3 MMU supports both hash and radix (with dynamic switching) */
936 val[3] = 0xC0;
937 } else {
938 /* Otherwise we can only do hash */
939 val[3] = 0x00;
942 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
943 val, sizeof(val)));
946 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
948 MachineState *machine = MACHINE(spapr);
949 int chosen;
950 const char *boot_device = machine->boot_order;
951 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
952 size_t cb = 0;
953 char *bootlist = get_boot_devices_list(&cb, true);
955 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
957 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
958 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
959 spapr->initrd_base));
960 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
961 spapr->initrd_base + spapr->initrd_size));
963 if (spapr->kernel_size) {
964 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
965 cpu_to_be64(spapr->kernel_size) };
967 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
968 &kprop, sizeof(kprop)));
969 if (spapr->kernel_le) {
970 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
973 if (boot_menu) {
974 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
976 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
977 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
978 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
980 if (cb && bootlist) {
981 int i;
983 for (i = 0; i < cb; i++) {
984 if (bootlist[i] == '\n') {
985 bootlist[i] = ' ';
988 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
991 if (boot_device && strlen(boot_device)) {
992 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
995 if (!spapr->has_graphics && stdout_path) {
996 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
999 spapr_dt_ov5_platform_support(fdt, chosen);
1001 g_free(stdout_path);
1002 g_free(bootlist);
1005 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1007 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1008 * KVM to work under pHyp with some guest co-operation */
1009 int hypervisor;
1010 uint8_t hypercall[16];
1012 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1013 /* indicate KVM hypercall interface */
1014 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1015 if (kvmppc_has_cap_fixup_hcalls()) {
1017 * Older KVM versions with older guest kernels were broken
1018 * with the magic page, don't allow the guest to map it.
1020 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1021 sizeof(hypercall))) {
1022 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1023 hypercall, sizeof(hypercall)));
1028 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1029 hwaddr rtas_addr,
1030 hwaddr rtas_size)
1032 MachineState *machine = MACHINE(qdev_get_machine());
1033 MachineClass *mc = MACHINE_GET_CLASS(machine);
1034 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1035 int ret;
1036 void *fdt;
1037 sPAPRPHBState *phb;
1038 char *buf;
1040 fdt = g_malloc0(FDT_MAX_SIZE);
1041 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1043 /* Root node */
1044 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1045 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1046 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1049 * Add info to guest to indentify which host is it being run on
1050 * and what is the uuid of the guest
1052 if (kvmppc_get_host_model(&buf)) {
1053 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1054 g_free(buf);
1056 if (kvmppc_get_host_serial(&buf)) {
1057 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1058 g_free(buf);
1061 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1063 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1064 if (qemu_uuid_set) {
1065 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1067 g_free(buf);
1069 if (qemu_get_vm_name()) {
1070 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1071 qemu_get_vm_name()));
1074 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1075 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1077 ret = spapr_populate_memory(spapr, fdt);
1078 if (ret < 0) {
1079 error_report("couldn't setup memory nodes in fdt");
1080 exit(1);
1083 /* /vdevice */
1084 spapr_dt_vdevice(spapr->vio_bus, fdt);
1086 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1087 ret = spapr_rng_populate_dt(fdt);
1088 if (ret < 0) {
1089 error_report("could not set up rng device in the fdt");
1090 exit(1);
1094 QLIST_FOREACH(phb, &spapr->phbs, list) {
1095 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1096 if (ret < 0) {
1097 error_report("couldn't setup PCI devices in fdt");
1098 exit(1);
1102 /* cpus */
1103 spapr_populate_cpus_dt_node(fdt, spapr);
1105 if (smc->dr_lmb_enabled) {
1106 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1109 if (mc->has_hotpluggable_cpus) {
1110 int offset = fdt_path_offset(fdt, "/cpus");
1111 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1112 SPAPR_DR_CONNECTOR_TYPE_CPU);
1113 if (ret < 0) {
1114 error_report("Couldn't set up CPU DR device tree properties");
1115 exit(1);
1119 /* /event-sources */
1120 spapr_dt_events(spapr, fdt);
1122 /* /rtas */
1123 spapr_dt_rtas(spapr, fdt);
1125 /* /chosen */
1126 spapr_dt_chosen(spapr, fdt);
1128 /* /hypervisor */
1129 if (kvm_enabled()) {
1130 spapr_dt_hypervisor(spapr, fdt);
1133 /* Build memory reserve map */
1134 if (spapr->kernel_size) {
1135 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1137 if (spapr->initrd_size) {
1138 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1141 /* ibm,client-architecture-support updates */
1142 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1143 if (ret < 0) {
1144 error_report("couldn't setup CAS properties fdt");
1145 exit(1);
1148 return fdt;
1151 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1153 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1156 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1157 PowerPCCPU *cpu)
1159 CPUPPCState *env = &cpu->env;
1161 /* The TCG path should also be holding the BQL at this point */
1162 g_assert(qemu_mutex_iothread_locked());
1164 if (msr_pr) {
1165 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1166 env->gpr[3] = H_PRIVILEGE;
1167 } else {
1168 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1172 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1174 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1176 return spapr->patb_entry;
1179 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1180 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1181 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1182 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1183 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1186 * Get the fd to access the kernel htab, re-opening it if necessary
1188 static int get_htab_fd(sPAPRMachineState *spapr)
1190 if (spapr->htab_fd >= 0) {
1191 return spapr->htab_fd;
1194 spapr->htab_fd = kvmppc_get_htab_fd(false);
1195 if (spapr->htab_fd < 0) {
1196 error_report("Unable to open fd for reading hash table from KVM: %s",
1197 strerror(errno));
1200 return spapr->htab_fd;
1203 void close_htab_fd(sPAPRMachineState *spapr)
1205 if (spapr->htab_fd >= 0) {
1206 close(spapr->htab_fd);
1208 spapr->htab_fd = -1;
1211 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1213 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1215 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1218 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1219 hwaddr ptex, int n)
1221 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1222 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1224 if (!spapr->htab) {
1226 * HTAB is controlled by KVM. Fetch into temporary buffer
1228 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1229 kvmppc_read_hptes(hptes, ptex, n);
1230 return hptes;
1234 * HTAB is controlled by QEMU. Just point to the internally
1235 * accessible PTEG.
1237 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1240 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1241 const ppc_hash_pte64_t *hptes,
1242 hwaddr ptex, int n)
1244 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1246 if (!spapr->htab) {
1247 g_free((void *)hptes);
1250 /* Nothing to do for qemu managed HPT */
1253 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1254 uint64_t pte0, uint64_t pte1)
1256 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1257 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1259 if (!spapr->htab) {
1260 kvmppc_write_hpte(ptex, pte0, pte1);
1261 } else {
1262 stq_p(spapr->htab + offset, pte0);
1263 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1267 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1269 int shift;
1271 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1272 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1273 * that's much more than is needed for Linux guests */
1274 shift = ctz64(pow2ceil(ramsize)) - 7;
1275 shift = MAX(shift, 18); /* Minimum architected size */
1276 shift = MIN(shift, 46); /* Maximum architected size */
1277 return shift;
1280 void spapr_free_hpt(sPAPRMachineState *spapr)
1282 g_free(spapr->htab);
1283 spapr->htab = NULL;
1284 spapr->htab_shift = 0;
1285 close_htab_fd(spapr);
1288 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1289 Error **errp)
1291 long rc;
1293 /* Clean up any HPT info from a previous boot */
1294 spapr_free_hpt(spapr);
1296 rc = kvmppc_reset_htab(shift);
1297 if (rc < 0) {
1298 /* kernel-side HPT needed, but couldn't allocate one */
1299 error_setg_errno(errp, errno,
1300 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1301 shift);
1302 /* This is almost certainly fatal, but if the caller really
1303 * wants to carry on with shift == 0, it's welcome to try */
1304 } else if (rc > 0) {
1305 /* kernel-side HPT allocated */
1306 if (rc != shift) {
1307 error_setg(errp,
1308 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1309 shift, rc);
1312 spapr->htab_shift = shift;
1313 spapr->htab = NULL;
1314 } else {
1315 /* kernel-side HPT not needed, allocate in userspace instead */
1316 size_t size = 1ULL << shift;
1317 int i;
1319 spapr->htab = qemu_memalign(size, size);
1320 if (!spapr->htab) {
1321 error_setg_errno(errp, errno,
1322 "Could not allocate HPT of order %d", shift);
1323 return;
1326 memset(spapr->htab, 0, size);
1327 spapr->htab_shift = shift;
1329 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1330 DIRTY_HPTE(HPTE(spapr->htab, i));
1335 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1337 spapr_reallocate_hpt(spapr,
1338 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1339 &error_fatal);
1340 if (spapr->vrma_adjust) {
1341 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1342 spapr->htab_shift);
1344 /* We're setting up a hash table, so that means we're not radix */
1345 spapr->patb_entry = 0;
1348 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1350 bool matched = false;
1352 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1353 matched = true;
1356 if (!matched) {
1357 error_report("Device %s is not supported by this machine yet.",
1358 qdev_fw_name(DEVICE(sbdev)));
1359 exit(1);
1363 static void ppc_spapr_reset(void)
1365 MachineState *machine = MACHINE(qdev_get_machine());
1366 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1367 PowerPCCPU *first_ppc_cpu;
1368 uint32_t rtas_limit;
1369 hwaddr rtas_addr, fdt_addr;
1370 void *fdt;
1371 int rc;
1373 /* Check for unknown sysbus devices */
1374 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1376 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1377 /* If using KVM with radix mode available, VCPUs can be started
1378 * without a HPT because KVM will start them in radix mode.
1379 * Set the GR bit in PATB so that we know there is no HPT. */
1380 spapr->patb_entry = PATBE1_GR;
1381 } else {
1382 spapr_setup_hpt_and_vrma(spapr);
1385 qemu_devices_reset();
1388 * We place the device tree and RTAS just below either the top of the RMA,
1389 * or just below 2GB, whichever is lowere, so that it can be
1390 * processed with 32-bit real mode code if necessary
1392 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1393 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1394 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1396 /* if this reset wasn't generated by CAS, we should reset our
1397 * negotiated options and start from scratch */
1398 if (!spapr->cas_reboot) {
1399 spapr_ovec_cleanup(spapr->ov5_cas);
1400 spapr->ov5_cas = spapr_ovec_new();
1402 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1405 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1407 spapr_load_rtas(spapr, fdt, rtas_addr);
1409 rc = fdt_pack(fdt);
1411 /* Should only fail if we've built a corrupted tree */
1412 assert(rc == 0);
1414 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1415 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1416 fdt_totalsize(fdt), FDT_MAX_SIZE);
1417 exit(1);
1420 /* Load the fdt */
1421 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1422 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1423 g_free(fdt);
1425 /* Set up the entry state */
1426 first_ppc_cpu = POWERPC_CPU(first_cpu);
1427 first_ppc_cpu->env.gpr[3] = fdt_addr;
1428 first_ppc_cpu->env.gpr[5] = 0;
1429 first_cpu->halted = 0;
1430 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1432 spapr->cas_reboot = false;
1435 static void spapr_create_nvram(sPAPRMachineState *spapr)
1437 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1438 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1440 if (dinfo) {
1441 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1442 &error_fatal);
1445 qdev_init_nofail(dev);
1447 spapr->nvram = (struct sPAPRNVRAM *)dev;
1450 static void spapr_rtc_create(sPAPRMachineState *spapr)
1452 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1453 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1454 &error_fatal);
1455 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1456 &error_fatal);
1457 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1458 "date", &error_fatal);
1461 /* Returns whether we want to use VGA or not */
1462 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1464 switch (vga_interface_type) {
1465 case VGA_NONE:
1466 return false;
1467 case VGA_DEVICE:
1468 return true;
1469 case VGA_STD:
1470 case VGA_VIRTIO:
1471 return pci_vga_init(pci_bus) != NULL;
1472 default:
1473 error_setg(errp,
1474 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1475 return false;
1479 static int spapr_post_load(void *opaque, int version_id)
1481 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1482 int err = 0;
1484 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1485 CPUState *cs;
1486 CPU_FOREACH(cs) {
1487 PowerPCCPU *cpu = POWERPC_CPU(cs);
1488 icp_resend(ICP(cpu->intc));
1492 /* In earlier versions, there was no separate qdev for the PAPR
1493 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1494 * So when migrating from those versions, poke the incoming offset
1495 * value into the RTC device */
1496 if (version_id < 3) {
1497 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1500 if (spapr->patb_entry) {
1501 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1502 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1503 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1505 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1506 if (err) {
1507 error_report("Process table config unsupported by the host");
1508 return -EINVAL;
1512 return err;
1515 static bool version_before_3(void *opaque, int version_id)
1517 return version_id < 3;
1520 static bool spapr_ov5_cas_needed(void *opaque)
1522 sPAPRMachineState *spapr = opaque;
1523 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1524 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1525 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1526 bool cas_needed;
1528 /* Prior to the introduction of sPAPROptionVector, we had two option
1529 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1530 * Both of these options encode machine topology into the device-tree
1531 * in such a way that the now-booted OS should still be able to interact
1532 * appropriately with QEMU regardless of what options were actually
1533 * negotiatied on the source side.
1535 * As such, we can avoid migrating the CAS-negotiated options if these
1536 * are the only options available on the current machine/platform.
1537 * Since these are the only options available for pseries-2.7 and
1538 * earlier, this allows us to maintain old->new/new->old migration
1539 * compatibility.
1541 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1542 * via default pseries-2.8 machines and explicit command-line parameters.
1543 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1544 * of the actual CAS-negotiated values to continue working properly. For
1545 * example, availability of memory unplug depends on knowing whether
1546 * OV5_HP_EVT was negotiated via CAS.
1548 * Thus, for any cases where the set of available CAS-negotiatable
1549 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1550 * include the CAS-negotiated options in the migration stream.
1552 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1553 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1555 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1556 * the mask itself since in the future it's possible "legacy" bits may be
1557 * removed via machine options, which could generate a false positive
1558 * that breaks migration.
1560 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1561 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1563 spapr_ovec_cleanup(ov5_mask);
1564 spapr_ovec_cleanup(ov5_legacy);
1565 spapr_ovec_cleanup(ov5_removed);
1567 return cas_needed;
1570 static const VMStateDescription vmstate_spapr_ov5_cas = {
1571 .name = "spapr_option_vector_ov5_cas",
1572 .version_id = 1,
1573 .minimum_version_id = 1,
1574 .needed = spapr_ov5_cas_needed,
1575 .fields = (VMStateField[]) {
1576 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1577 vmstate_spapr_ovec, sPAPROptionVector),
1578 VMSTATE_END_OF_LIST()
1582 static bool spapr_patb_entry_needed(void *opaque)
1584 sPAPRMachineState *spapr = opaque;
1586 return !!spapr->patb_entry;
1589 static const VMStateDescription vmstate_spapr_patb_entry = {
1590 .name = "spapr_patb_entry",
1591 .version_id = 1,
1592 .minimum_version_id = 1,
1593 .needed = spapr_patb_entry_needed,
1594 .fields = (VMStateField[]) {
1595 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1596 VMSTATE_END_OF_LIST()
1600 static const VMStateDescription vmstate_spapr = {
1601 .name = "spapr",
1602 .version_id = 3,
1603 .minimum_version_id = 1,
1604 .post_load = spapr_post_load,
1605 .fields = (VMStateField[]) {
1606 /* used to be @next_irq */
1607 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1609 /* RTC offset */
1610 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1612 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1613 VMSTATE_END_OF_LIST()
1615 .subsections = (const VMStateDescription*[]) {
1616 &vmstate_spapr_ov5_cas,
1617 &vmstate_spapr_patb_entry,
1618 NULL
1622 static int htab_save_setup(QEMUFile *f, void *opaque)
1624 sPAPRMachineState *spapr = opaque;
1626 /* "Iteration" header */
1627 if (!spapr->htab_shift) {
1628 qemu_put_be32(f, -1);
1629 } else {
1630 qemu_put_be32(f, spapr->htab_shift);
1633 if (spapr->htab) {
1634 spapr->htab_save_index = 0;
1635 spapr->htab_first_pass = true;
1636 } else {
1637 if (spapr->htab_shift) {
1638 assert(kvm_enabled());
1643 return 0;
1646 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1647 int64_t max_ns)
1649 bool has_timeout = max_ns != -1;
1650 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1651 int index = spapr->htab_save_index;
1652 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1654 assert(spapr->htab_first_pass);
1656 do {
1657 int chunkstart;
1659 /* Consume invalid HPTEs */
1660 while ((index < htabslots)
1661 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1662 CLEAN_HPTE(HPTE(spapr->htab, index));
1663 index++;
1666 /* Consume valid HPTEs */
1667 chunkstart = index;
1668 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1669 && HPTE_VALID(HPTE(spapr->htab, index))) {
1670 CLEAN_HPTE(HPTE(spapr->htab, index));
1671 index++;
1674 if (index > chunkstart) {
1675 int n_valid = index - chunkstart;
1677 qemu_put_be32(f, chunkstart);
1678 qemu_put_be16(f, n_valid);
1679 qemu_put_be16(f, 0);
1680 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1681 HASH_PTE_SIZE_64 * n_valid);
1683 if (has_timeout &&
1684 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1685 break;
1688 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1690 if (index >= htabslots) {
1691 assert(index == htabslots);
1692 index = 0;
1693 spapr->htab_first_pass = false;
1695 spapr->htab_save_index = index;
1698 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1699 int64_t max_ns)
1701 bool final = max_ns < 0;
1702 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1703 int examined = 0, sent = 0;
1704 int index = spapr->htab_save_index;
1705 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1707 assert(!spapr->htab_first_pass);
1709 do {
1710 int chunkstart, invalidstart;
1712 /* Consume non-dirty HPTEs */
1713 while ((index < htabslots)
1714 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1715 index++;
1716 examined++;
1719 chunkstart = index;
1720 /* Consume valid dirty HPTEs */
1721 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1722 && HPTE_DIRTY(HPTE(spapr->htab, index))
1723 && HPTE_VALID(HPTE(spapr->htab, index))) {
1724 CLEAN_HPTE(HPTE(spapr->htab, index));
1725 index++;
1726 examined++;
1729 invalidstart = index;
1730 /* Consume invalid dirty HPTEs */
1731 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1732 && HPTE_DIRTY(HPTE(spapr->htab, index))
1733 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1734 CLEAN_HPTE(HPTE(spapr->htab, index));
1735 index++;
1736 examined++;
1739 if (index > chunkstart) {
1740 int n_valid = invalidstart - chunkstart;
1741 int n_invalid = index - invalidstart;
1743 qemu_put_be32(f, chunkstart);
1744 qemu_put_be16(f, n_valid);
1745 qemu_put_be16(f, n_invalid);
1746 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1747 HASH_PTE_SIZE_64 * n_valid);
1748 sent += index - chunkstart;
1750 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1751 break;
1755 if (examined >= htabslots) {
1756 break;
1759 if (index >= htabslots) {
1760 assert(index == htabslots);
1761 index = 0;
1763 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1765 if (index >= htabslots) {
1766 assert(index == htabslots);
1767 index = 0;
1770 spapr->htab_save_index = index;
1772 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1775 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1776 #define MAX_KVM_BUF_SIZE 2048
1778 static int htab_save_iterate(QEMUFile *f, void *opaque)
1780 sPAPRMachineState *spapr = opaque;
1781 int fd;
1782 int rc = 0;
1784 /* Iteration header */
1785 if (!spapr->htab_shift) {
1786 qemu_put_be32(f, -1);
1787 return 0;
1788 } else {
1789 qemu_put_be32(f, 0);
1792 if (!spapr->htab) {
1793 assert(kvm_enabled());
1795 fd = get_htab_fd(spapr);
1796 if (fd < 0) {
1797 return fd;
1800 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1801 if (rc < 0) {
1802 return rc;
1804 } else if (spapr->htab_first_pass) {
1805 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1806 } else {
1807 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1810 /* End marker */
1811 qemu_put_be32(f, 0);
1812 qemu_put_be16(f, 0);
1813 qemu_put_be16(f, 0);
1815 return rc;
1818 static int htab_save_complete(QEMUFile *f, void *opaque)
1820 sPAPRMachineState *spapr = opaque;
1821 int fd;
1823 /* Iteration header */
1824 if (!spapr->htab_shift) {
1825 qemu_put_be32(f, -1);
1826 return 0;
1827 } else {
1828 qemu_put_be32(f, 0);
1831 if (!spapr->htab) {
1832 int rc;
1834 assert(kvm_enabled());
1836 fd = get_htab_fd(spapr);
1837 if (fd < 0) {
1838 return fd;
1841 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1842 if (rc < 0) {
1843 return rc;
1845 } else {
1846 if (spapr->htab_first_pass) {
1847 htab_save_first_pass(f, spapr, -1);
1849 htab_save_later_pass(f, spapr, -1);
1852 /* End marker */
1853 qemu_put_be32(f, 0);
1854 qemu_put_be16(f, 0);
1855 qemu_put_be16(f, 0);
1857 return 0;
1860 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1862 sPAPRMachineState *spapr = opaque;
1863 uint32_t section_hdr;
1864 int fd = -1;
1866 if (version_id < 1 || version_id > 1) {
1867 error_report("htab_load() bad version");
1868 return -EINVAL;
1871 section_hdr = qemu_get_be32(f);
1873 if (section_hdr == -1) {
1874 spapr_free_hpt(spapr);
1875 return 0;
1878 if (section_hdr) {
1879 Error *local_err = NULL;
1881 /* First section gives the htab size */
1882 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1883 if (local_err) {
1884 error_report_err(local_err);
1885 return -EINVAL;
1887 return 0;
1890 if (!spapr->htab) {
1891 assert(kvm_enabled());
1893 fd = kvmppc_get_htab_fd(true);
1894 if (fd < 0) {
1895 error_report("Unable to open fd to restore KVM hash table: %s",
1896 strerror(errno));
1900 while (true) {
1901 uint32_t index;
1902 uint16_t n_valid, n_invalid;
1904 index = qemu_get_be32(f);
1905 n_valid = qemu_get_be16(f);
1906 n_invalid = qemu_get_be16(f);
1908 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1909 /* End of Stream */
1910 break;
1913 if ((index + n_valid + n_invalid) >
1914 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1915 /* Bad index in stream */
1916 error_report(
1917 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1918 index, n_valid, n_invalid, spapr->htab_shift);
1919 return -EINVAL;
1922 if (spapr->htab) {
1923 if (n_valid) {
1924 qemu_get_buffer(f, HPTE(spapr->htab, index),
1925 HASH_PTE_SIZE_64 * n_valid);
1927 if (n_invalid) {
1928 memset(HPTE(spapr->htab, index + n_valid), 0,
1929 HASH_PTE_SIZE_64 * n_invalid);
1931 } else {
1932 int rc;
1934 assert(fd >= 0);
1936 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1937 if (rc < 0) {
1938 return rc;
1943 if (!spapr->htab) {
1944 assert(fd >= 0);
1945 close(fd);
1948 return 0;
1951 static void htab_save_cleanup(void *opaque)
1953 sPAPRMachineState *spapr = opaque;
1955 close_htab_fd(spapr);
1958 static SaveVMHandlers savevm_htab_handlers = {
1959 .save_setup = htab_save_setup,
1960 .save_live_iterate = htab_save_iterate,
1961 .save_live_complete_precopy = htab_save_complete,
1962 .save_cleanup = htab_save_cleanup,
1963 .load_state = htab_load,
1966 static void spapr_boot_set(void *opaque, const char *boot_device,
1967 Error **errp)
1969 MachineState *machine = MACHINE(qdev_get_machine());
1970 machine->boot_order = g_strdup(boot_device);
1973 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1975 MachineState *machine = MACHINE(spapr);
1976 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1977 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1978 int i;
1980 for (i = 0; i < nr_lmbs; i++) {
1981 uint64_t addr;
1983 addr = i * lmb_size + spapr->hotplug_memory.base;
1984 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
1985 addr / lmb_size);
1990 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1991 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1992 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1994 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1996 int i;
1998 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1999 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2000 " is not aligned to %llu MiB",
2001 machine->ram_size,
2002 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2003 return;
2006 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2007 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2008 " is not aligned to %llu MiB",
2009 machine->ram_size,
2010 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2011 return;
2014 for (i = 0; i < nb_numa_nodes; i++) {
2015 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2016 error_setg(errp,
2017 "Node %d memory size 0x%" PRIx64
2018 " is not aligned to %llu MiB",
2019 i, numa_info[i].node_mem,
2020 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2021 return;
2026 /* find cpu slot in machine->possible_cpus by core_id */
2027 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2029 int index = id / smp_threads;
2031 if (index >= ms->possible_cpus->len) {
2032 return NULL;
2034 if (idx) {
2035 *idx = index;
2037 return &ms->possible_cpus->cpus[index];
2040 static void spapr_init_cpus(sPAPRMachineState *spapr)
2042 MachineState *machine = MACHINE(spapr);
2043 MachineClass *mc = MACHINE_GET_CLASS(machine);
2044 char *type = spapr_get_cpu_core_type(machine->cpu_model);
2045 int smt = kvmppc_smt_threads();
2046 const CPUArchIdList *possible_cpus;
2047 int boot_cores_nr = smp_cpus / smp_threads;
2048 int i;
2050 if (!type) {
2051 error_report("Unable to find sPAPR CPU Core definition");
2052 exit(1);
2055 possible_cpus = mc->possible_cpu_arch_ids(machine);
2056 if (mc->has_hotpluggable_cpus) {
2057 if (smp_cpus % smp_threads) {
2058 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2059 smp_cpus, smp_threads);
2060 exit(1);
2062 if (max_cpus % smp_threads) {
2063 error_report("max_cpus (%u) must be multiple of threads (%u)",
2064 max_cpus, smp_threads);
2065 exit(1);
2067 } else {
2068 if (max_cpus != smp_cpus) {
2069 error_report("This machine version does not support CPU hotplug");
2070 exit(1);
2072 boot_cores_nr = possible_cpus->len;
2075 for (i = 0; i < possible_cpus->len; i++) {
2076 int core_id = i * smp_threads;
2078 if (mc->has_hotpluggable_cpus) {
2079 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2080 (core_id / smp_threads) * smt);
2083 if (i < boot_cores_nr) {
2084 Object *core = object_new(type);
2085 int nr_threads = smp_threads;
2087 /* Handle the partially filled core for older machine types */
2088 if ((i + 1) * smp_threads >= smp_cpus) {
2089 nr_threads = smp_cpus - i * smp_threads;
2092 object_property_set_int(core, nr_threads, "nr-threads",
2093 &error_fatal);
2094 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2095 &error_fatal);
2096 object_property_set_bool(core, true, "realized", &error_fatal);
2099 g_free(type);
2102 /* pSeries LPAR / sPAPR hardware init */
2103 static void ppc_spapr_init(MachineState *machine)
2105 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2106 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2107 const char *kernel_filename = machine->kernel_filename;
2108 const char *initrd_filename = machine->initrd_filename;
2109 PCIHostState *phb;
2110 int i;
2111 MemoryRegion *sysmem = get_system_memory();
2112 MemoryRegion *ram = g_new(MemoryRegion, 1);
2113 MemoryRegion *rma_region;
2114 void *rma = NULL;
2115 hwaddr rma_alloc_size;
2116 hwaddr node0_size = spapr_node0_size();
2117 long load_limit, fw_size;
2118 char *filename;
2120 msi_nonbroken = true;
2122 QLIST_INIT(&spapr->phbs);
2123 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2125 /* Allocate RMA if necessary */
2126 rma_alloc_size = kvmppc_alloc_rma(&rma);
2128 if (rma_alloc_size == -1) {
2129 error_report("Unable to create RMA");
2130 exit(1);
2133 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2134 spapr->rma_size = rma_alloc_size;
2135 } else {
2136 spapr->rma_size = node0_size;
2138 /* With KVM, we don't actually know whether KVM supports an
2139 * unbounded RMA (PR KVM) or is limited by the hash table size
2140 * (HV KVM using VRMA), so we always assume the latter
2142 * In that case, we also limit the initial allocations for RTAS
2143 * etc... to 256M since we have no way to know what the VRMA size
2144 * is going to be as it depends on the size of the hash table
2145 * isn't determined yet.
2147 if (kvm_enabled()) {
2148 spapr->vrma_adjust = 1;
2149 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2152 /* Actually we don't support unbounded RMA anymore since we
2153 * added proper emulation of HV mode. The max we can get is
2154 * 16G which also happens to be what we configure for PAPR
2155 * mode so make sure we don't do anything bigger than that
2157 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2160 if (spapr->rma_size > node0_size) {
2161 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2162 spapr->rma_size);
2163 exit(1);
2166 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2167 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2169 /* Set up Interrupt Controller before we create the VCPUs */
2170 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2172 /* Set up containers for ibm,client-set-architecture negotiated options */
2173 spapr->ov5 = spapr_ovec_new();
2174 spapr->ov5_cas = spapr_ovec_new();
2176 if (smc->dr_lmb_enabled) {
2177 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2178 spapr_validate_node_memory(machine, &error_fatal);
2181 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2182 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2183 /* KVM and TCG always allow GTSE with radix... */
2184 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2186 /* ... but not with hash (currently). */
2188 /* advertise support for dedicated HP event source to guests */
2189 if (spapr->use_hotplug_event_source) {
2190 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2193 /* init CPUs */
2194 if (machine->cpu_model == NULL) {
2195 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2198 spapr_cpu_parse_features(spapr);
2200 spapr_init_cpus(spapr);
2202 if (kvm_enabled()) {
2203 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2204 kvmppc_enable_logical_ci_hcalls();
2205 kvmppc_enable_set_mode_hcall();
2207 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2208 kvmppc_enable_clear_ref_mod_hcalls();
2211 /* allocate RAM */
2212 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2213 machine->ram_size);
2214 memory_region_add_subregion(sysmem, 0, ram);
2216 if (rma_alloc_size && rma) {
2217 rma_region = g_new(MemoryRegion, 1);
2218 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2219 rma_alloc_size, rma);
2220 vmstate_register_ram_global(rma_region);
2221 memory_region_add_subregion(sysmem, 0, rma_region);
2224 /* initialize hotplug memory address space */
2225 if (machine->ram_size < machine->maxram_size) {
2226 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2228 * Limit the number of hotpluggable memory slots to half the number
2229 * slots that KVM supports, leaving the other half for PCI and other
2230 * devices. However ensure that number of slots doesn't drop below 32.
2232 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2233 SPAPR_MAX_RAM_SLOTS;
2235 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2236 max_memslots = SPAPR_MAX_RAM_SLOTS;
2238 if (machine->ram_slots > max_memslots) {
2239 error_report("Specified number of memory slots %"
2240 PRIu64" exceeds max supported %d",
2241 machine->ram_slots, max_memslots);
2242 exit(1);
2245 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2246 SPAPR_HOTPLUG_MEM_ALIGN);
2247 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2248 "hotplug-memory", hotplug_mem_size);
2249 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2250 &spapr->hotplug_memory.mr);
2253 if (smc->dr_lmb_enabled) {
2254 spapr_create_lmb_dr_connectors(spapr);
2257 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2258 if (!filename) {
2259 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2260 exit(1);
2262 spapr->rtas_size = get_image_size(filename);
2263 if (spapr->rtas_size < 0) {
2264 error_report("Could not get size of LPAR rtas '%s'", filename);
2265 exit(1);
2267 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2268 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2269 error_report("Could not load LPAR rtas '%s'", filename);
2270 exit(1);
2272 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2273 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2274 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2275 exit(1);
2277 g_free(filename);
2279 /* Set up RTAS event infrastructure */
2280 spapr_events_init(spapr);
2282 /* Set up the RTC RTAS interfaces */
2283 spapr_rtc_create(spapr);
2285 /* Set up VIO bus */
2286 spapr->vio_bus = spapr_vio_bus_init();
2288 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2289 if (serial_hds[i]) {
2290 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2294 /* We always have at least the nvram device on VIO */
2295 spapr_create_nvram(spapr);
2297 /* Set up PCI */
2298 spapr_pci_rtas_init();
2300 phb = spapr_create_phb(spapr, 0);
2302 for (i = 0; i < nb_nics; i++) {
2303 NICInfo *nd = &nd_table[i];
2305 if (!nd->model) {
2306 nd->model = g_strdup("ibmveth");
2309 if (strcmp(nd->model, "ibmveth") == 0) {
2310 spapr_vlan_create(spapr->vio_bus, nd);
2311 } else {
2312 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2316 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2317 spapr_vscsi_create(spapr->vio_bus);
2320 /* Graphics */
2321 if (spapr_vga_init(phb->bus, &error_fatal)) {
2322 spapr->has_graphics = true;
2323 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2326 if (machine->usb) {
2327 if (smc->use_ohci_by_default) {
2328 pci_create_simple(phb->bus, -1, "pci-ohci");
2329 } else {
2330 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2333 if (spapr->has_graphics) {
2334 USBBus *usb_bus = usb_bus_find(-1);
2336 usb_create_simple(usb_bus, "usb-kbd");
2337 usb_create_simple(usb_bus, "usb-mouse");
2341 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2342 error_report(
2343 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2344 MIN_RMA_SLOF);
2345 exit(1);
2348 if (kernel_filename) {
2349 uint64_t lowaddr = 0;
2351 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2352 NULL, NULL, &lowaddr, NULL, 1,
2353 PPC_ELF_MACHINE, 0, 0);
2354 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2355 spapr->kernel_size = load_elf(kernel_filename,
2356 translate_kernel_address, NULL, NULL,
2357 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2358 0, 0);
2359 spapr->kernel_le = spapr->kernel_size > 0;
2361 if (spapr->kernel_size < 0) {
2362 error_report("error loading %s: %s", kernel_filename,
2363 load_elf_strerror(spapr->kernel_size));
2364 exit(1);
2367 /* load initrd */
2368 if (initrd_filename) {
2369 /* Try to locate the initrd in the gap between the kernel
2370 * and the firmware. Add a bit of space just in case
2372 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2373 + 0x1ffff) & ~0xffff;
2374 spapr->initrd_size = load_image_targphys(initrd_filename,
2375 spapr->initrd_base,
2376 load_limit
2377 - spapr->initrd_base);
2378 if (spapr->initrd_size < 0) {
2379 error_report("could not load initial ram disk '%s'",
2380 initrd_filename);
2381 exit(1);
2386 if (bios_name == NULL) {
2387 bios_name = FW_FILE_NAME;
2389 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2390 if (!filename) {
2391 error_report("Could not find LPAR firmware '%s'", bios_name);
2392 exit(1);
2394 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2395 if (fw_size <= 0) {
2396 error_report("Could not load LPAR firmware '%s'", filename);
2397 exit(1);
2399 g_free(filename);
2401 /* FIXME: Should register things through the MachineState's qdev
2402 * interface, this is a legacy from the sPAPREnvironment structure
2403 * which predated MachineState but had a similar function */
2404 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2405 register_savevm_live(NULL, "spapr/htab", -1, 1,
2406 &savevm_htab_handlers, spapr);
2408 qemu_register_boot_set(spapr_boot_set, spapr);
2410 if (kvm_enabled()) {
2411 /* to stop and start vmclock */
2412 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2413 &spapr->tb);
2415 kvmppc_spapr_enable_inkernel_multitce();
2419 static int spapr_kvm_type(const char *vm_type)
2421 if (!vm_type) {
2422 return 0;
2425 if (!strcmp(vm_type, "HV")) {
2426 return 1;
2429 if (!strcmp(vm_type, "PR")) {
2430 return 2;
2433 error_report("Unknown kvm-type specified '%s'", vm_type);
2434 exit(1);
2438 * Implementation of an interface to adjust firmware path
2439 * for the bootindex property handling.
2441 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2442 DeviceState *dev)
2444 #define CAST(type, obj, name) \
2445 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2446 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2447 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2448 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2450 if (d) {
2451 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2452 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2453 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2455 if (spapr) {
2457 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2458 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2459 * in the top 16 bits of the 64-bit LUN
2461 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2462 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2463 (uint64_t)id << 48);
2464 } else if (virtio) {
2466 * We use SRP luns of the form 01000000 | (target << 8) | lun
2467 * in the top 32 bits of the 64-bit LUN
2468 * Note: the quote above is from SLOF and it is wrong,
2469 * the actual binding is:
2470 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2472 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2473 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2474 (uint64_t)id << 32);
2475 } else if (usb) {
2477 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2478 * in the top 32 bits of the 64-bit LUN
2480 unsigned usb_port = atoi(usb->port->path);
2481 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2482 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2483 (uint64_t)id << 32);
2488 * SLOF probes the USB devices, and if it recognizes that the device is a
2489 * storage device, it changes its name to "storage" instead of "usb-host",
2490 * and additionally adds a child node for the SCSI LUN, so the correct
2491 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2493 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2494 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2495 if (usb_host_dev_is_scsi_storage(usbdev)) {
2496 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2500 if (phb) {
2501 /* Replace "pci" with "pci@800000020000000" */
2502 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2505 if (vsc) {
2506 /* Same logic as virtio above */
2507 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2508 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2511 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2512 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2513 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2514 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2517 return NULL;
2520 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2522 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2524 return g_strdup(spapr->kvm_type);
2527 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2529 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2531 g_free(spapr->kvm_type);
2532 spapr->kvm_type = g_strdup(value);
2535 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2537 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2539 return spapr->use_hotplug_event_source;
2542 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2543 Error **errp)
2545 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2547 spapr->use_hotplug_event_source = value;
2550 static void spapr_machine_initfn(Object *obj)
2552 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2554 spapr->htab_fd = -1;
2555 spapr->use_hotplug_event_source = true;
2556 object_property_add_str(obj, "kvm-type",
2557 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2558 object_property_set_description(obj, "kvm-type",
2559 "Specifies the KVM virtualization mode (HV, PR)",
2560 NULL);
2561 object_property_add_bool(obj, "modern-hotplug-events",
2562 spapr_get_modern_hotplug_events,
2563 spapr_set_modern_hotplug_events,
2564 NULL);
2565 object_property_set_description(obj, "modern-hotplug-events",
2566 "Use dedicated hotplug event mechanism in"
2567 " place of standard EPOW events when possible"
2568 " (required for memory hot-unplug support)",
2569 NULL);
2571 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2572 "Maximum permitted CPU compatibility mode",
2573 &error_fatal);
2576 static void spapr_machine_finalizefn(Object *obj)
2578 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2580 g_free(spapr->kvm_type);
2583 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2585 cpu_synchronize_state(cs);
2586 ppc_cpu_do_system_reset(cs);
2589 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2591 CPUState *cs;
2593 CPU_FOREACH(cs) {
2594 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2598 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2599 uint32_t node, bool dedicated_hp_event_source,
2600 Error **errp)
2602 sPAPRDRConnector *drc;
2603 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2604 int i, fdt_offset, fdt_size;
2605 void *fdt;
2606 uint64_t addr = addr_start;
2607 Error *local_err = NULL;
2609 for (i = 0; i < nr_lmbs; i++) {
2610 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2611 addr / SPAPR_MEMORY_BLOCK_SIZE);
2612 g_assert(drc);
2614 fdt = create_device_tree(&fdt_size);
2615 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2616 SPAPR_MEMORY_BLOCK_SIZE);
2618 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2619 if (local_err) {
2620 while (addr > addr_start) {
2621 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2622 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2623 addr / SPAPR_MEMORY_BLOCK_SIZE);
2624 spapr_drc_detach(drc, dev, NULL);
2626 g_free(fdt);
2627 error_propagate(errp, local_err);
2628 return;
2630 addr += SPAPR_MEMORY_BLOCK_SIZE;
2632 /* send hotplug notification to the
2633 * guest only in case of hotplugged memory
2635 if (dev->hotplugged) {
2636 if (dedicated_hp_event_source) {
2637 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2638 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2639 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2640 nr_lmbs,
2641 spapr_drc_index(drc));
2642 } else {
2643 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2644 nr_lmbs);
2649 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2650 uint32_t node, Error **errp)
2652 Error *local_err = NULL;
2653 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2654 PCDIMMDevice *dimm = PC_DIMM(dev);
2655 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2656 MemoryRegion *mr = ddc->get_memory_region(dimm);
2657 uint64_t align = memory_region_get_alignment(mr);
2658 uint64_t size = memory_region_size(mr);
2659 uint64_t addr;
2661 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2662 if (local_err) {
2663 goto out;
2666 addr = object_property_get_uint(OBJECT(dimm),
2667 PC_DIMM_ADDR_PROP, &local_err);
2668 if (local_err) {
2669 goto out_unplug;
2672 spapr_add_lmbs(dev, addr, size, node,
2673 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2674 &local_err);
2675 if (local_err) {
2676 goto out_unplug;
2679 return;
2681 out_unplug:
2682 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2683 out:
2684 error_propagate(errp, local_err);
2687 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2688 Error **errp)
2690 PCDIMMDevice *dimm = PC_DIMM(dev);
2691 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2692 MemoryRegion *mr = ddc->get_memory_region(dimm);
2693 uint64_t size = memory_region_size(mr);
2694 char *mem_dev;
2696 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2697 error_setg(errp, "Hotplugged memory size must be a multiple of "
2698 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2699 return;
2702 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2703 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2704 error_setg(errp, "Memory backend has bad page size. "
2705 "Use 'memory-backend-file' with correct mem-path.");
2706 goto out;
2709 out:
2710 g_free(mem_dev);
2713 struct sPAPRDIMMState {
2714 PCDIMMDevice *dimm;
2715 uint32_t nr_lmbs;
2716 QTAILQ_ENTRY(sPAPRDIMMState) next;
2719 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2720 PCDIMMDevice *dimm)
2722 sPAPRDIMMState *dimm_state = NULL;
2724 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2725 if (dimm_state->dimm == dimm) {
2726 break;
2729 return dimm_state;
2732 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2733 sPAPRDIMMState *dimm_state)
2735 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2736 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2739 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2740 sPAPRDIMMState *dimm_state)
2742 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2743 g_free(dimm_state);
2746 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2747 PCDIMMDevice *dimm)
2749 sPAPRDRConnector *drc;
2750 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2751 MemoryRegion *mr = ddc->get_memory_region(dimm);
2752 uint64_t size = memory_region_size(mr);
2753 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2754 uint32_t avail_lmbs = 0;
2755 uint64_t addr_start, addr;
2756 int i;
2757 sPAPRDIMMState *ds;
2759 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2760 &error_abort);
2762 addr = addr_start;
2763 for (i = 0; i < nr_lmbs; i++) {
2764 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2765 addr / SPAPR_MEMORY_BLOCK_SIZE);
2766 g_assert(drc);
2767 if (drc->dev) {
2768 avail_lmbs++;
2770 addr += SPAPR_MEMORY_BLOCK_SIZE;
2773 ds = g_malloc0(sizeof(sPAPRDIMMState));
2774 ds->nr_lmbs = avail_lmbs;
2775 ds->dimm = dimm;
2776 spapr_pending_dimm_unplugs_add(ms, ds);
2777 return ds;
2780 /* Callback to be called during DRC release. */
2781 void spapr_lmb_release(DeviceState *dev)
2783 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
2784 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
2785 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2787 /* This information will get lost if a migration occurs
2788 * during the unplug process. In this case recover it. */
2789 if (ds == NULL) {
2790 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2791 /* The DRC being examined by the caller at least must be counted */
2792 g_assert(ds->nr_lmbs);
2795 if (--ds->nr_lmbs) {
2796 return;
2799 spapr_pending_dimm_unplugs_remove(spapr, ds);
2802 * Now that all the LMBs have been removed by the guest, call the
2803 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2805 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2808 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2809 Error **errp)
2811 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2812 PCDIMMDevice *dimm = PC_DIMM(dev);
2813 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2814 MemoryRegion *mr = ddc->get_memory_region(dimm);
2816 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2817 object_unparent(OBJECT(dev));
2820 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2821 DeviceState *dev, Error **errp)
2823 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2824 Error *local_err = NULL;
2825 PCDIMMDevice *dimm = PC_DIMM(dev);
2826 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2827 MemoryRegion *mr = ddc->get_memory_region(dimm);
2828 uint64_t size = memory_region_size(mr);
2829 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2830 uint64_t addr_start, addr;
2831 int i;
2832 sPAPRDRConnector *drc;
2833 sPAPRDIMMState *ds;
2835 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2836 &local_err);
2837 if (local_err) {
2838 goto out;
2841 ds = g_malloc0(sizeof(sPAPRDIMMState));
2842 ds->nr_lmbs = nr_lmbs;
2843 ds->dimm = dimm;
2844 spapr_pending_dimm_unplugs_add(spapr, ds);
2846 addr = addr_start;
2847 for (i = 0; i < nr_lmbs; i++) {
2848 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2849 addr / SPAPR_MEMORY_BLOCK_SIZE);
2850 g_assert(drc);
2852 spapr_drc_detach(drc, dev, errp);
2853 addr += SPAPR_MEMORY_BLOCK_SIZE;
2856 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2857 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2858 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2859 nr_lmbs, spapr_drc_index(drc));
2860 out:
2861 error_propagate(errp, local_err);
2864 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2865 sPAPRMachineState *spapr)
2867 PowerPCCPU *cpu = POWERPC_CPU(cs);
2868 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2869 int id = ppc_get_vcpu_dt_id(cpu);
2870 void *fdt;
2871 int offset, fdt_size;
2872 char *nodename;
2874 fdt = create_device_tree(&fdt_size);
2875 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2876 offset = fdt_add_subnode(fdt, 0, nodename);
2878 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2879 g_free(nodename);
2881 *fdt_offset = offset;
2882 return fdt;
2885 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2886 Error **errp)
2888 MachineState *ms = MACHINE(qdev_get_machine());
2889 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
2890 CPUCore *cc = CPU_CORE(dev);
2891 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2893 if (smc->pre_2_10_has_unused_icps) {
2894 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
2895 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
2896 const char *typename = object_class_get_name(scc->cpu_class);
2897 size_t size = object_type_get_instance_size(typename);
2898 int i;
2900 for (i = 0; i < cc->nr_threads; i++) {
2901 CPUState *cs = CPU(sc->threads + i * size);
2903 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
2907 assert(core_slot);
2908 core_slot->cpu = NULL;
2909 object_unparent(OBJECT(dev));
2912 /* Callback to be called during DRC release. */
2913 void spapr_core_release(DeviceState *dev)
2915 HotplugHandler *hotplug_ctrl;
2917 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2918 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2921 static
2922 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2923 Error **errp)
2925 int index;
2926 sPAPRDRConnector *drc;
2927 Error *local_err = NULL;
2928 CPUCore *cc = CPU_CORE(dev);
2929 int smt = kvmppc_smt_threads();
2931 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2932 error_setg(errp, "Unable to find CPU core with core-id: %d",
2933 cc->core_id);
2934 return;
2936 if (index == 0) {
2937 error_setg(errp, "Boot CPU core may not be unplugged");
2938 return;
2941 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2942 g_assert(drc);
2944 spapr_drc_detach(drc, dev, &local_err);
2945 if (local_err) {
2946 error_propagate(errp, local_err);
2947 return;
2950 spapr_hotplug_req_remove_by_index(drc);
2953 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2954 Error **errp)
2956 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2957 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2958 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2959 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2960 CPUCore *cc = CPU_CORE(dev);
2961 CPUState *cs = CPU(core->threads);
2962 sPAPRDRConnector *drc;
2963 Error *local_err = NULL;
2964 void *fdt = NULL;
2965 int fdt_offset = 0;
2966 int smt = kvmppc_smt_threads();
2967 CPUArchId *core_slot;
2968 int index;
2970 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2971 if (!core_slot) {
2972 error_setg(errp, "Unable to find CPU core with core-id: %d",
2973 cc->core_id);
2974 return;
2976 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2978 g_assert(drc || !mc->has_hotpluggable_cpus);
2980 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2982 if (drc) {
2983 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2984 if (local_err) {
2985 g_free(fdt);
2986 error_propagate(errp, local_err);
2987 return;
2991 if (dev->hotplugged) {
2993 * Send hotplug notification interrupt to the guest only in case
2994 * of hotplugged CPUs.
2996 spapr_hotplug_req_add_by_index(drc);
2998 core_slot->cpu = OBJECT(dev);
3000 if (smc->pre_2_10_has_unused_icps) {
3001 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3002 const char *typename = object_class_get_name(scc->cpu_class);
3003 size_t size = object_type_get_instance_size(typename);
3004 int i;
3006 for (i = 0; i < cc->nr_threads; i++) {
3007 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3008 void *obj = sc->threads + i * size;
3010 cs = CPU(obj);
3011 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3016 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3017 Error **errp)
3019 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3020 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3021 Error *local_err = NULL;
3022 CPUCore *cc = CPU_CORE(dev);
3023 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3024 const char *type = object_get_typename(OBJECT(dev));
3025 CPUArchId *core_slot;
3026 int index;
3028 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3029 error_setg(&local_err, "CPU hotplug not supported for this machine");
3030 goto out;
3033 if (strcmp(base_core_type, type)) {
3034 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3035 goto out;
3038 if (cc->core_id % smp_threads) {
3039 error_setg(&local_err, "invalid core id %d", cc->core_id);
3040 goto out;
3044 * In general we should have homogeneous threads-per-core, but old
3045 * (pre hotplug support) machine types allow the last core to have
3046 * reduced threads as a compatibility hack for when we allowed
3047 * total vcpus not a multiple of threads-per-core.
3049 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3050 error_setg(errp, "invalid nr-threads %d, must be %d",
3051 cc->nr_threads, smp_threads);
3052 return;
3055 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3056 if (!core_slot) {
3057 error_setg(&local_err, "core id %d out of range", cc->core_id);
3058 goto out;
3061 if (core_slot->cpu) {
3062 error_setg(&local_err, "core %d already populated", cc->core_id);
3063 goto out;
3066 numa_cpu_pre_plug(core_slot, dev, &local_err);
3068 out:
3069 g_free(base_core_type);
3070 error_propagate(errp, local_err);
3073 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3074 DeviceState *dev, Error **errp)
3076 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3079 int node;
3081 if (!smc->dr_lmb_enabled) {
3082 error_setg(errp, "Memory hotplug not supported for this machine");
3083 return;
3085 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3086 if (*errp) {
3087 return;
3089 if (node < 0 || node >= MAX_NODES) {
3090 error_setg(errp, "Invaild node %d", node);
3091 return;
3095 * Currently PowerPC kernel doesn't allow hot-adding memory to
3096 * memory-less node, but instead will silently add the memory
3097 * to the first node that has some memory. This causes two
3098 * unexpected behaviours for the user.
3100 * - Memory gets hotplugged to a different node than what the user
3101 * specified.
3102 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3103 * to memory-less node, a reboot will set things accordingly
3104 * and the previously hotplugged memory now ends in the right node.
3105 * This appears as if some memory moved from one node to another.
3107 * So until kernel starts supporting memory hotplug to memory-less
3108 * nodes, just prevent such attempts upfront in QEMU.
3110 if (nb_numa_nodes && !numa_info[node].node_mem) {
3111 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3112 node);
3113 return;
3116 spapr_memory_plug(hotplug_dev, dev, node, errp);
3117 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3118 spapr_core_plug(hotplug_dev, dev, errp);
3122 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3123 DeviceState *dev, Error **errp)
3125 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3126 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3128 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3129 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3130 spapr_memory_unplug(hotplug_dev, dev, errp);
3131 } else {
3132 error_setg(errp, "Memory hot unplug not supported for this guest");
3134 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3135 if (!mc->has_hotpluggable_cpus) {
3136 error_setg(errp, "CPU hot unplug not supported on this machine");
3137 return;
3139 spapr_core_unplug(hotplug_dev, dev, errp);
3143 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3144 DeviceState *dev, Error **errp)
3146 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3147 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3149 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3150 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3151 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3152 } else {
3153 /* NOTE: this means there is a window after guest reset, prior to
3154 * CAS negotiation, where unplug requests will fail due to the
3155 * capability not being detected yet. This is a bit different than
3156 * the case with PCI unplug, where the events will be queued and
3157 * eventually handled by the guest after boot
3159 error_setg(errp, "Memory hot unplug not supported for this guest");
3161 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3162 if (!mc->has_hotpluggable_cpus) {
3163 error_setg(errp, "CPU hot unplug not supported on this machine");
3164 return;
3166 spapr_core_unplug_request(hotplug_dev, dev, errp);
3170 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3171 DeviceState *dev, Error **errp)
3173 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3174 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3175 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3176 spapr_core_pre_plug(hotplug_dev, dev, errp);
3180 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3181 DeviceState *dev)
3183 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3184 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3185 return HOTPLUG_HANDLER(machine);
3187 return NULL;
3190 static CpuInstanceProperties
3191 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3193 CPUArchId *core_slot;
3194 MachineClass *mc = MACHINE_GET_CLASS(machine);
3196 /* make sure possible_cpu are intialized */
3197 mc->possible_cpu_arch_ids(machine);
3198 /* get CPU core slot containing thread that matches cpu_index */
3199 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3200 assert(core_slot);
3201 return core_slot->props;
3204 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3206 int i;
3207 int spapr_max_cores = max_cpus / smp_threads;
3208 MachineClass *mc = MACHINE_GET_CLASS(machine);
3210 if (!mc->has_hotpluggable_cpus) {
3211 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3213 if (machine->possible_cpus) {
3214 assert(machine->possible_cpus->len == spapr_max_cores);
3215 return machine->possible_cpus;
3218 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3219 sizeof(CPUArchId) * spapr_max_cores);
3220 machine->possible_cpus->len = spapr_max_cores;
3221 for (i = 0; i < machine->possible_cpus->len; i++) {
3222 int core_id = i * smp_threads;
3224 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3225 machine->possible_cpus->cpus[i].arch_id = core_id;
3226 machine->possible_cpus->cpus[i].props.has_core_id = true;
3227 machine->possible_cpus->cpus[i].props.core_id = core_id;
3229 /* default distribution of CPUs over NUMA nodes */
3230 if (nb_numa_nodes) {
3231 /* preset values but do not enable them i.e. 'has_node_id = false',
3232 * numa init code will enable them later if manual mapping wasn't
3233 * present on CLI */
3234 machine->possible_cpus->cpus[i].props.node_id =
3235 core_id / smp_threads / smp_cores % nb_numa_nodes;
3238 return machine->possible_cpus;
3241 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3242 uint64_t *buid, hwaddr *pio,
3243 hwaddr *mmio32, hwaddr *mmio64,
3244 unsigned n_dma, uint32_t *liobns, Error **errp)
3247 * New-style PHB window placement.
3249 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3250 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3251 * windows.
3253 * Some guest kernels can't work with MMIO windows above 1<<46
3254 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3256 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3257 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3258 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3259 * 1TiB 64-bit MMIO windows for each PHB.
3261 const uint64_t base_buid = 0x800000020000000ULL;
3262 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3263 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3264 int i;
3266 /* Sanity check natural alignments */
3267 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3268 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3269 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3270 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3271 /* Sanity check bounds */
3272 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3273 SPAPR_PCI_MEM32_WIN_SIZE);
3274 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3275 SPAPR_PCI_MEM64_WIN_SIZE);
3277 if (index >= SPAPR_MAX_PHBS) {
3278 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3279 SPAPR_MAX_PHBS - 1);
3280 return;
3283 *buid = base_buid + index;
3284 for (i = 0; i < n_dma; ++i) {
3285 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3288 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3289 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3290 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3293 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3295 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3297 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3300 static void spapr_ics_resend(XICSFabric *dev)
3302 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3304 ics_resend(spapr->ics);
3307 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3309 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3311 return cpu ? ICP(cpu->intc) : NULL;
3314 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3315 Monitor *mon)
3317 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3318 CPUState *cs;
3320 CPU_FOREACH(cs) {
3321 PowerPCCPU *cpu = POWERPC_CPU(cs);
3323 icp_pic_print_info(ICP(cpu->intc), mon);
3326 ics_pic_print_info(spapr->ics, mon);
3329 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3331 MachineClass *mc = MACHINE_CLASS(oc);
3332 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3333 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3334 NMIClass *nc = NMI_CLASS(oc);
3335 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3336 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3337 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3338 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3340 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3343 * We set up the default / latest behaviour here. The class_init
3344 * functions for the specific versioned machine types can override
3345 * these details for backwards compatibility
3347 mc->init = ppc_spapr_init;
3348 mc->reset = ppc_spapr_reset;
3349 mc->block_default_type = IF_SCSI;
3350 mc->max_cpus = 1024;
3351 mc->no_parallel = 1;
3352 mc->default_boot_order = "";
3353 mc->default_ram_size = 512 * M_BYTE;
3354 mc->kvm_type = spapr_kvm_type;
3355 mc->has_dynamic_sysbus = true;
3356 mc->pci_allow_0_address = true;
3357 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3358 hc->pre_plug = spapr_machine_device_pre_plug;
3359 hc->plug = spapr_machine_device_plug;
3360 hc->unplug = spapr_machine_device_unplug;
3361 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3362 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3363 hc->unplug_request = spapr_machine_device_unplug_request;
3365 smc->dr_lmb_enabled = true;
3366 smc->tcg_default_cpu = "POWER8";
3367 mc->has_hotpluggable_cpus = true;
3368 fwc->get_dev_path = spapr_get_fw_dev_path;
3369 nc->nmi_monitor_handler = spapr_nmi;
3370 smc->phb_placement = spapr_phb_placement;
3371 vhc->hypercall = emulate_spapr_hypercall;
3372 vhc->hpt_mask = spapr_hpt_mask;
3373 vhc->map_hptes = spapr_map_hptes;
3374 vhc->unmap_hptes = spapr_unmap_hptes;
3375 vhc->store_hpte = spapr_store_hpte;
3376 vhc->get_patbe = spapr_get_patbe;
3377 xic->ics_get = spapr_ics_get;
3378 xic->ics_resend = spapr_ics_resend;
3379 xic->icp_get = spapr_icp_get;
3380 ispc->print_info = spapr_pic_print_info;
3381 /* Force NUMA node memory size to be a multiple of
3382 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3383 * in which LMBs are represented and hot-added
3385 mc->numa_mem_align_shift = 28;
3388 static const TypeInfo spapr_machine_info = {
3389 .name = TYPE_SPAPR_MACHINE,
3390 .parent = TYPE_MACHINE,
3391 .abstract = true,
3392 .instance_size = sizeof(sPAPRMachineState),
3393 .instance_init = spapr_machine_initfn,
3394 .instance_finalize = spapr_machine_finalizefn,
3395 .class_size = sizeof(sPAPRMachineClass),
3396 .class_init = spapr_machine_class_init,
3397 .interfaces = (InterfaceInfo[]) {
3398 { TYPE_FW_PATH_PROVIDER },
3399 { TYPE_NMI },
3400 { TYPE_HOTPLUG_HANDLER },
3401 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3402 { TYPE_XICS_FABRIC },
3403 { TYPE_INTERRUPT_STATS_PROVIDER },
3408 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3409 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3410 void *data) \
3412 MachineClass *mc = MACHINE_CLASS(oc); \
3413 spapr_machine_##suffix##_class_options(mc); \
3414 if (latest) { \
3415 mc->alias = "pseries"; \
3416 mc->is_default = 1; \
3419 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3421 MachineState *machine = MACHINE(obj); \
3422 spapr_machine_##suffix##_instance_options(machine); \
3424 static const TypeInfo spapr_machine_##suffix##_info = { \
3425 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3426 .parent = TYPE_SPAPR_MACHINE, \
3427 .class_init = spapr_machine_##suffix##_class_init, \
3428 .instance_init = spapr_machine_##suffix##_instance_init, \
3429 }; \
3430 static void spapr_machine_register_##suffix(void) \
3432 type_register(&spapr_machine_##suffix##_info); \
3434 type_init(spapr_machine_register_##suffix)
3437 * pseries-2.10
3439 static void spapr_machine_2_10_instance_options(MachineState *machine)
3443 static void spapr_machine_2_10_class_options(MachineClass *mc)
3445 /* Defaults for the latest behaviour inherited from the base class */
3448 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3451 * pseries-2.9
3453 #define SPAPR_COMPAT_2_9 \
3454 HW_COMPAT_2_9 \
3456 .driver = TYPE_POWERPC_CPU, \
3457 .property = "pre-2.10-migration", \
3458 .value = "on", \
3459 }, \
3461 static void spapr_machine_2_9_instance_options(MachineState *machine)
3463 spapr_machine_2_10_instance_options(machine);
3466 static void spapr_machine_2_9_class_options(MachineClass *mc)
3468 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3470 spapr_machine_2_10_class_options(mc);
3471 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3472 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3473 smc->pre_2_10_has_unused_icps = true;
3476 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3479 * pseries-2.8
3481 #define SPAPR_COMPAT_2_8 \
3482 HW_COMPAT_2_8 \
3484 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3485 .property = "pcie-extended-configuration-space", \
3486 .value = "off", \
3489 static void spapr_machine_2_8_instance_options(MachineState *machine)
3491 spapr_machine_2_9_instance_options(machine);
3494 static void spapr_machine_2_8_class_options(MachineClass *mc)
3496 spapr_machine_2_9_class_options(mc);
3497 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3498 mc->numa_mem_align_shift = 23;
3501 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3504 * pseries-2.7
3506 #define SPAPR_COMPAT_2_7 \
3507 HW_COMPAT_2_7 \
3509 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3510 .property = "mem_win_size", \
3511 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3512 }, \
3514 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3515 .property = "mem64_win_size", \
3516 .value = "0", \
3517 }, \
3519 .driver = TYPE_POWERPC_CPU, \
3520 .property = "pre-2.8-migration", \
3521 .value = "on", \
3522 }, \
3524 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3525 .property = "pre-2.8-migration", \
3526 .value = "on", \
3529 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3530 uint64_t *buid, hwaddr *pio,
3531 hwaddr *mmio32, hwaddr *mmio64,
3532 unsigned n_dma, uint32_t *liobns, Error **errp)
3534 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3535 const uint64_t base_buid = 0x800000020000000ULL;
3536 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3537 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3538 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3539 const uint32_t max_index = 255;
3540 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3542 uint64_t ram_top = MACHINE(spapr)->ram_size;
3543 hwaddr phb0_base, phb_base;
3544 int i;
3546 /* Do we have hotpluggable memory? */
3547 if (MACHINE(spapr)->maxram_size > ram_top) {
3548 /* Can't just use maxram_size, because there may be an
3549 * alignment gap between normal and hotpluggable memory
3550 * regions */
3551 ram_top = spapr->hotplug_memory.base +
3552 memory_region_size(&spapr->hotplug_memory.mr);
3555 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3557 if (index > max_index) {
3558 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3559 max_index);
3560 return;
3563 *buid = base_buid + index;
3564 for (i = 0; i < n_dma; ++i) {
3565 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3568 phb_base = phb0_base + index * phb_spacing;
3569 *pio = phb_base + pio_offset;
3570 *mmio32 = phb_base + mmio_offset;
3572 * We don't set the 64-bit MMIO window, relying on the PHB's
3573 * fallback behaviour of automatically splitting a large "32-bit"
3574 * window into contiguous 32-bit and 64-bit windows
3578 static void spapr_machine_2_7_instance_options(MachineState *machine)
3580 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3582 spapr_machine_2_8_instance_options(machine);
3583 spapr->use_hotplug_event_source = false;
3586 static void spapr_machine_2_7_class_options(MachineClass *mc)
3588 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3590 spapr_machine_2_8_class_options(mc);
3591 smc->tcg_default_cpu = "POWER7";
3592 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3593 smc->phb_placement = phb_placement_2_7;
3596 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3599 * pseries-2.6
3601 #define SPAPR_COMPAT_2_6 \
3602 HW_COMPAT_2_6 \
3604 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3605 .property = "ddw",\
3606 .value = stringify(off),\
3609 static void spapr_machine_2_6_instance_options(MachineState *machine)
3611 spapr_machine_2_7_instance_options(machine);
3614 static void spapr_machine_2_6_class_options(MachineClass *mc)
3616 spapr_machine_2_7_class_options(mc);
3617 mc->has_hotpluggable_cpus = false;
3618 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3621 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3624 * pseries-2.5
3626 #define SPAPR_COMPAT_2_5 \
3627 HW_COMPAT_2_5 \
3629 .driver = "spapr-vlan", \
3630 .property = "use-rx-buffer-pools", \
3631 .value = "off", \
3634 static void spapr_machine_2_5_instance_options(MachineState *machine)
3636 spapr_machine_2_6_instance_options(machine);
3639 static void spapr_machine_2_5_class_options(MachineClass *mc)
3641 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3643 spapr_machine_2_6_class_options(mc);
3644 smc->use_ohci_by_default = true;
3645 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3648 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3651 * pseries-2.4
3653 #define SPAPR_COMPAT_2_4 \
3654 HW_COMPAT_2_4
3656 static void spapr_machine_2_4_instance_options(MachineState *machine)
3658 spapr_machine_2_5_instance_options(machine);
3661 static void spapr_machine_2_4_class_options(MachineClass *mc)
3663 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3665 spapr_machine_2_5_class_options(mc);
3666 smc->dr_lmb_enabled = false;
3667 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3670 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3673 * pseries-2.3
3675 #define SPAPR_COMPAT_2_3 \
3676 HW_COMPAT_2_3 \
3678 .driver = "spapr-pci-host-bridge",\
3679 .property = "dynamic-reconfiguration",\
3680 .value = "off",\
3683 static void spapr_machine_2_3_instance_options(MachineState *machine)
3685 spapr_machine_2_4_instance_options(machine);
3688 static void spapr_machine_2_3_class_options(MachineClass *mc)
3690 spapr_machine_2_4_class_options(mc);
3691 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3693 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3696 * pseries-2.2
3699 #define SPAPR_COMPAT_2_2 \
3700 HW_COMPAT_2_2 \
3702 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3703 .property = "mem_win_size",\
3704 .value = "0x20000000",\
3707 static void spapr_machine_2_2_instance_options(MachineState *machine)
3709 spapr_machine_2_3_instance_options(machine);
3710 machine->suppress_vmdesc = true;
3713 static void spapr_machine_2_2_class_options(MachineClass *mc)
3715 spapr_machine_2_3_class_options(mc);
3716 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3718 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3721 * pseries-2.1
3723 #define SPAPR_COMPAT_2_1 \
3724 HW_COMPAT_2_1
3726 static void spapr_machine_2_1_instance_options(MachineState *machine)
3728 spapr_machine_2_2_instance_options(machine);
3731 static void spapr_machine_2_1_class_options(MachineClass *mc)
3733 spapr_machine_2_2_class_options(mc);
3734 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3736 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3738 static void spapr_machine_register_types(void)
3740 type_register_static(&spapr_machine_info);
3743 type_init(spapr_machine_register_types)