ppc/xive: xive does not have a POWER7 interrupt model
[qemu/ar7.git] / hw / intc / xive.c
blobdaa7badc8492383b414bf5ef64eb856dac4e8400
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "hw/qdev-properties.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/xive.h"
19 #include "hw/ppc/xive_regs.h"
22 * XIVE Thread Interrupt Management context
26 * Convert a priority number to an Interrupt Pending Buffer (IPB)
27 * register, which indicates a pending interrupt at the priority
28 * corresponding to the bit number
30 static uint8_t priority_to_ipb(uint8_t priority)
32 return priority > XIVE_PRIORITY_MAX ?
33 0 : 1 << (XIVE_PRIORITY_MAX - priority);
37 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
38 * Interrupt Priority Register (PIPR), which contains the priority of
39 * the most favored pending notification.
41 static uint8_t ipb_to_pipr(uint8_t ibp)
43 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
46 static void ipb_update(uint8_t *regs, uint8_t priority)
48 regs[TM_IPB] |= priority_to_ipb(priority);
49 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
52 static uint8_t exception_mask(uint8_t ring)
54 switch (ring) {
55 case TM_QW1_OS:
56 return TM_QW1_NSR_EO;
57 default:
58 g_assert_not_reached();
62 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
64 uint8_t *regs = &tctx->regs[ring];
65 uint8_t nsr = regs[TM_NSR];
66 uint8_t mask = exception_mask(ring);
68 qemu_irq_lower(tctx->output);
70 if (regs[TM_NSR] & mask) {
71 uint8_t cppr = regs[TM_PIPR];
73 regs[TM_CPPR] = cppr;
75 /* Reset the pending buffer bit */
76 regs[TM_IPB] &= ~priority_to_ipb(cppr);
77 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
79 /* Drop Exception bit */
80 regs[TM_NSR] &= ~mask;
83 return (nsr << 8) | regs[TM_CPPR];
86 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
88 uint8_t *regs = &tctx->regs[ring];
90 if (regs[TM_PIPR] < regs[TM_CPPR]) {
91 regs[TM_NSR] |= exception_mask(ring);
92 qemu_irq_raise(tctx->output);
96 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
98 if (cppr > XIVE_PRIORITY_MAX) {
99 cppr = 0xff;
102 tctx->regs[ring + TM_CPPR] = cppr;
104 /* CPPR has changed, check if we need to raise a pending exception */
105 xive_tctx_notify(tctx, ring);
109 * XIVE Thread Interrupt Management Area (TIMA)
113 * Define an access map for each page of the TIMA that we will use in
114 * the memory region ops to filter values when doing loads and stores
115 * of raw registers values
117 * Registers accessibility bits :
119 * 0x0 - no access
120 * 0x1 - write only
121 * 0x2 - read only
122 * 0x3 - read/write
125 static const uint8_t xive_tm_hw_view[] = {
126 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
127 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
128 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
129 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 3, 0,
132 static const uint8_t xive_tm_hv_view[] = {
133 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
134 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
135 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0,
136 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0,
139 static const uint8_t xive_tm_os_view[] = {
140 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
141 /* QW-1 OS */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
142 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
143 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
146 static const uint8_t xive_tm_user_view[] = {
147 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
148 /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
149 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
150 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
154 * Overall TIMA access map for the thread interrupt management context
155 * registers
157 static const uint8_t *xive_tm_views[] = {
158 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
159 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
160 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
161 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
165 * Computes a register access mask for a given offset in the TIMA
167 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
169 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
170 uint8_t reg_offset = offset & 0x3F;
171 uint8_t reg_mask = write ? 0x1 : 0x2;
172 uint64_t mask = 0x0;
173 int i;
175 for (i = 0; i < size; i++) {
176 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
177 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
181 return mask;
184 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
185 unsigned size)
187 uint8_t ring_offset = offset & 0x30;
188 uint8_t reg_offset = offset & 0x3F;
189 uint64_t mask = xive_tm_mask(offset, size, true);
190 int i;
193 * Only 4 or 8 bytes stores are allowed and the User ring is
194 * excluded
196 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
197 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
198 HWADDR_PRIx"\n", offset);
199 return;
203 * Use the register offset for the raw values and filter out
204 * reserved values
206 for (i = 0; i < size; i++) {
207 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
208 if (byte_mask) {
209 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
210 byte_mask;
215 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
217 uint8_t ring_offset = offset & 0x30;
218 uint8_t reg_offset = offset & 0x3F;
219 uint64_t mask = xive_tm_mask(offset, size, false);
220 uint64_t ret;
221 int i;
224 * Only 4 or 8 bytes loads are allowed and the User ring is
225 * excluded
227 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
228 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
229 HWADDR_PRIx"\n", offset);
230 return -1;
233 /* Use the register offset for the raw values */
234 ret = 0;
235 for (i = 0; i < size; i++) {
236 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
239 /* filter out reserved values */
240 return ret & mask;
244 * The TM context is mapped twice within each page. Stores and loads
245 * to the first mapping below 2K write and read the specified values
246 * without modification. The second mapping above 2K performs specific
247 * state changes (side effects) in addition to setting/returning the
248 * interrupt management area context of the processor thread.
250 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
252 return xive_tctx_accept(tctx, TM_QW1_OS);
255 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
256 uint64_t value, unsigned size)
258 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
262 * Adjust the IPB to allow a CPU to process event queues of other
263 * priorities during one physical interrupt cycle.
265 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
266 uint64_t value, unsigned size)
268 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
269 xive_tctx_notify(tctx, TM_QW1_OS);
273 * Define a mapping of "special" operations depending on the TIMA page
274 * offset and the size of the operation.
276 typedef struct XiveTmOp {
277 uint8_t page_offset;
278 uint32_t op_offset;
279 unsigned size;
280 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
281 unsigned size);
282 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
283 } XiveTmOp;
285 static const XiveTmOp xive_tm_operations[] = {
287 * MMIOs below 2K : raw values and special operations without side
288 * effects
290 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
292 /* MMIOs above 2K : special operations with side effects */
293 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
294 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
297 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
299 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
300 uint32_t op_offset = offset & 0xFFF;
301 int i;
303 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
304 const XiveTmOp *xto = &xive_tm_operations[i];
306 /* Accesses done from a more privileged TIMA page is allowed */
307 if (xto->page_offset >= page_offset &&
308 xto->op_offset == op_offset &&
309 xto->size == size &&
310 ((write && xto->write_handler) || (!write && xto->read_handler))) {
311 return xto;
314 return NULL;
318 * TIMA MMIO handlers
320 static void xive_tm_write(void *opaque, hwaddr offset,
321 uint64_t value, unsigned size)
323 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
324 const XiveTmOp *xto;
327 * TODO: check V bit in Q[0-3]W2, check PTER bit associated with CPU
331 * First, check for special operations in the 2K region
333 if (offset & 0x800) {
334 xto = xive_tm_find_op(offset, size, true);
335 if (!xto) {
336 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
337 "@%"HWADDR_PRIx"\n", offset);
338 } else {
339 xto->write_handler(tctx, offset, value, size);
341 return;
345 * Then, for special operations in the region below 2K.
347 xto = xive_tm_find_op(offset, size, true);
348 if (xto) {
349 xto->write_handler(tctx, offset, value, size);
350 return;
354 * Finish with raw access to the register values
356 xive_tm_raw_write(tctx, offset, value, size);
359 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
361 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
362 const XiveTmOp *xto;
365 * TODO: check V bit in Q[0-3]W2, check PTER bit associated with CPU
369 * First, check for special operations in the 2K region
371 if (offset & 0x800) {
372 xto = xive_tm_find_op(offset, size, false);
373 if (!xto) {
374 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
375 "@%"HWADDR_PRIx"\n", offset);
376 return -1;
378 return xto->read_handler(tctx, offset, size);
382 * Then, for special operations in the region below 2K.
384 xto = xive_tm_find_op(offset, size, false);
385 if (xto) {
386 return xto->read_handler(tctx, offset, size);
390 * Finish with raw access to the register values
392 return xive_tm_raw_read(tctx, offset, size);
395 const MemoryRegionOps xive_tm_ops = {
396 .read = xive_tm_read,
397 .write = xive_tm_write,
398 .endianness = DEVICE_BIG_ENDIAN,
399 .valid = {
400 .min_access_size = 1,
401 .max_access_size = 8,
403 .impl = {
404 .min_access_size = 1,
405 .max_access_size = 8,
409 static inline uint32_t xive_tctx_word2(uint8_t *ring)
411 return *((uint32_t *) &ring[TM_WORD2]);
414 static char *xive_tctx_ring_print(uint8_t *ring)
416 uint32_t w2 = xive_tctx_word2(ring);
418 return g_strdup_printf("%02x %02x %02x %02x %02x "
419 "%02x %02x %02x %08x",
420 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
421 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
422 be32_to_cpu(w2));
425 static const char * const xive_tctx_ring_names[] = {
426 "USER", "OS", "POOL", "PHYS",
429 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
431 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
432 int i;
434 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
435 " W2\n", cpu_index);
437 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
438 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
439 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
440 xive_tctx_ring_names[i], s);
441 g_free(s);
445 static void xive_tctx_reset(void *dev)
447 XiveTCTX *tctx = XIVE_TCTX(dev);
449 memset(tctx->regs, 0, sizeof(tctx->regs));
451 /* Set some defaults */
452 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
453 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
454 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
457 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
458 * CPPR is first set.
460 tctx->regs[TM_QW1_OS + TM_PIPR] =
461 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
464 static void xive_tctx_realize(DeviceState *dev, Error **errp)
466 XiveTCTX *tctx = XIVE_TCTX(dev);
467 PowerPCCPU *cpu;
468 CPUPPCState *env;
469 Object *obj;
470 Error *local_err = NULL;
472 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
473 if (!obj) {
474 error_propagate(errp, local_err);
475 error_prepend(errp, "required link 'cpu' not found: ");
476 return;
479 cpu = POWERPC_CPU(obj);
480 tctx->cs = CPU(obj);
482 env = &cpu->env;
483 switch (PPC_INPUT(env)) {
484 case PPC_FLAGS_INPUT_POWER9:
485 tctx->output = env->irq_inputs[POWER9_INPUT_INT];
486 break;
488 default:
489 error_setg(errp, "XIVE interrupt controller does not support "
490 "this CPU bus model");
491 return;
494 qemu_register_reset(xive_tctx_reset, dev);
497 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
499 qemu_unregister_reset(xive_tctx_reset, dev);
502 static const VMStateDescription vmstate_xive_tctx = {
503 .name = TYPE_XIVE_TCTX,
504 .version_id = 1,
505 .minimum_version_id = 1,
506 .fields = (VMStateField[]) {
507 VMSTATE_BUFFER(regs, XiveTCTX),
508 VMSTATE_END_OF_LIST()
512 static void xive_tctx_class_init(ObjectClass *klass, void *data)
514 DeviceClass *dc = DEVICE_CLASS(klass);
516 dc->desc = "XIVE Interrupt Thread Context";
517 dc->realize = xive_tctx_realize;
518 dc->unrealize = xive_tctx_unrealize;
519 dc->vmsd = &vmstate_xive_tctx;
522 static const TypeInfo xive_tctx_info = {
523 .name = TYPE_XIVE_TCTX,
524 .parent = TYPE_DEVICE,
525 .instance_size = sizeof(XiveTCTX),
526 .class_init = xive_tctx_class_init,
529 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
531 Error *local_err = NULL;
532 Object *obj;
534 obj = object_new(TYPE_XIVE_TCTX);
535 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
536 object_unref(obj);
537 object_property_add_const_link(obj, "cpu", cpu, &error_abort);
538 object_property_set_bool(obj, true, "realized", &local_err);
539 if (local_err) {
540 goto error;
543 return obj;
545 error:
546 object_unparent(obj);
547 error_propagate(errp, local_err);
548 return NULL;
552 * XIVE ESB helpers
555 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
557 uint8_t old_pq = *pq & 0x3;
559 *pq &= ~0x3;
560 *pq |= value & 0x3;
562 return old_pq;
565 static bool xive_esb_trigger(uint8_t *pq)
567 uint8_t old_pq = *pq & 0x3;
569 switch (old_pq) {
570 case XIVE_ESB_RESET:
571 xive_esb_set(pq, XIVE_ESB_PENDING);
572 return true;
573 case XIVE_ESB_PENDING:
574 case XIVE_ESB_QUEUED:
575 xive_esb_set(pq, XIVE_ESB_QUEUED);
576 return false;
577 case XIVE_ESB_OFF:
578 xive_esb_set(pq, XIVE_ESB_OFF);
579 return false;
580 default:
581 g_assert_not_reached();
585 static bool xive_esb_eoi(uint8_t *pq)
587 uint8_t old_pq = *pq & 0x3;
589 switch (old_pq) {
590 case XIVE_ESB_RESET:
591 case XIVE_ESB_PENDING:
592 xive_esb_set(pq, XIVE_ESB_RESET);
593 return false;
594 case XIVE_ESB_QUEUED:
595 xive_esb_set(pq, XIVE_ESB_PENDING);
596 return true;
597 case XIVE_ESB_OFF:
598 xive_esb_set(pq, XIVE_ESB_OFF);
599 return false;
600 default:
601 g_assert_not_reached();
606 * XIVE Interrupt Source (or IVSE)
609 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
611 assert(srcno < xsrc->nr_irqs);
613 return xsrc->status[srcno] & 0x3;
616 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
618 assert(srcno < xsrc->nr_irqs);
620 return xive_esb_set(&xsrc->status[srcno], pq);
624 * Returns whether the event notification should be forwarded.
626 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
628 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
630 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
632 switch (old_pq) {
633 case XIVE_ESB_RESET:
634 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
635 return true;
636 default:
637 return false;
642 * Returns whether the event notification should be forwarded.
644 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
646 bool ret;
648 assert(srcno < xsrc->nr_irqs);
650 ret = xive_esb_trigger(&xsrc->status[srcno]);
652 if (xive_source_irq_is_lsi(xsrc, srcno) &&
653 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
654 qemu_log_mask(LOG_GUEST_ERROR,
655 "XIVE: queued an event on LSI IRQ %d\n", srcno);
658 return ret;
662 * Returns whether the event notification should be forwarded.
664 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
666 bool ret;
668 assert(srcno < xsrc->nr_irqs);
670 ret = xive_esb_eoi(&xsrc->status[srcno]);
673 * LSI sources do not set the Q bit but they can still be
674 * asserted, in which case we should forward a new event
675 * notification
677 if (xive_source_irq_is_lsi(xsrc, srcno) &&
678 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
679 ret = xive_source_lsi_trigger(xsrc, srcno);
682 return ret;
686 * Forward the source event notification to the Router
688 static void xive_source_notify(XiveSource *xsrc, int srcno)
690 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
692 if (xnc->notify) {
693 xnc->notify(xsrc->xive, srcno);
698 * In a two pages ESB MMIO setting, even page is the trigger page, odd
699 * page is for management
701 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
703 return !((addr >> shift) & 1);
706 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
708 return xive_source_esb_has_2page(xsrc) &&
709 addr_is_even(addr, xsrc->esb_shift - 1);
713 * ESB MMIO loads
714 * Trigger page Management/EOI page
716 * ESB MMIO setting 2 pages 1 or 2 pages
718 * 0x000 .. 0x3FF -1 EOI and return 0|1
719 * 0x400 .. 0x7FF -1 EOI and return 0|1
720 * 0x800 .. 0xBFF -1 return PQ
721 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
722 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
723 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
724 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
726 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
728 XiveSource *xsrc = XIVE_SOURCE(opaque);
729 uint32_t offset = addr & 0xFFF;
730 uint32_t srcno = addr >> xsrc->esb_shift;
731 uint64_t ret = -1;
733 /* In a two pages ESB MMIO setting, trigger page should not be read */
734 if (xive_source_is_trigger_page(xsrc, addr)) {
735 qemu_log_mask(LOG_GUEST_ERROR,
736 "XIVE: invalid load on IRQ %d trigger page at "
737 "0x%"HWADDR_PRIx"\n", srcno, addr);
738 return -1;
741 switch (offset) {
742 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
743 ret = xive_source_esb_eoi(xsrc, srcno);
745 /* Forward the source event notification for routing */
746 if (ret) {
747 xive_source_notify(xsrc, srcno);
749 break;
751 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
752 ret = xive_source_esb_get(xsrc, srcno);
753 break;
755 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
756 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
757 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
758 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
759 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
760 break;
761 default:
762 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
763 offset);
766 return ret;
770 * ESB MMIO stores
771 * Trigger page Management/EOI page
773 * ESB MMIO setting 2 pages 1 or 2 pages
775 * 0x000 .. 0x3FF Trigger Trigger
776 * 0x400 .. 0x7FF Trigger EOI
777 * 0x800 .. 0xBFF Trigger undefined
778 * 0xC00 .. 0xCFF Trigger PQ=00
779 * 0xD00 .. 0xDFF Trigger PQ=01
780 * 0xE00 .. 0xDFF Trigger PQ=10
781 * 0xF00 .. 0xDFF Trigger PQ=11
783 static void xive_source_esb_write(void *opaque, hwaddr addr,
784 uint64_t value, unsigned size)
786 XiveSource *xsrc = XIVE_SOURCE(opaque);
787 uint32_t offset = addr & 0xFFF;
788 uint32_t srcno = addr >> xsrc->esb_shift;
789 bool notify = false;
791 /* In a two pages ESB MMIO setting, trigger page only triggers */
792 if (xive_source_is_trigger_page(xsrc, addr)) {
793 notify = xive_source_esb_trigger(xsrc, srcno);
794 goto out;
797 switch (offset) {
798 case 0 ... 0x3FF:
799 notify = xive_source_esb_trigger(xsrc, srcno);
800 break;
802 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
803 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
804 qemu_log_mask(LOG_GUEST_ERROR,
805 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
806 return;
809 notify = xive_source_esb_eoi(xsrc, srcno);
810 break;
812 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
813 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
814 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
815 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
816 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
817 break;
819 default:
820 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
821 offset);
822 return;
825 out:
826 /* Forward the source event notification for routing */
827 if (notify) {
828 xive_source_notify(xsrc, srcno);
832 static const MemoryRegionOps xive_source_esb_ops = {
833 .read = xive_source_esb_read,
834 .write = xive_source_esb_write,
835 .endianness = DEVICE_BIG_ENDIAN,
836 .valid = {
837 .min_access_size = 8,
838 .max_access_size = 8,
840 .impl = {
841 .min_access_size = 8,
842 .max_access_size = 8,
846 void xive_source_set_irq(void *opaque, int srcno, int val)
848 XiveSource *xsrc = XIVE_SOURCE(opaque);
849 bool notify = false;
851 if (xive_source_irq_is_lsi(xsrc, srcno)) {
852 if (val) {
853 notify = xive_source_lsi_trigger(xsrc, srcno);
854 } else {
855 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
857 } else {
858 if (val) {
859 notify = xive_source_esb_trigger(xsrc, srcno);
863 /* Forward the source event notification for routing */
864 if (notify) {
865 xive_source_notify(xsrc, srcno);
869 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
871 int i;
873 for (i = 0; i < xsrc->nr_irqs; i++) {
874 uint8_t pq = xive_source_esb_get(xsrc, i);
876 if (pq == XIVE_ESB_OFF) {
877 continue;
880 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
881 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
882 pq & XIVE_ESB_VAL_P ? 'P' : '-',
883 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
884 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
888 static void xive_source_reset(void *dev)
890 XiveSource *xsrc = XIVE_SOURCE(dev);
892 /* Do not clear the LSI bitmap */
894 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
895 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
898 static void xive_source_realize(DeviceState *dev, Error **errp)
900 XiveSource *xsrc = XIVE_SOURCE(dev);
901 Object *obj;
902 Error *local_err = NULL;
904 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
905 if (!obj) {
906 error_propagate(errp, local_err);
907 error_prepend(errp, "required link 'xive' not found: ");
908 return;
911 xsrc->xive = XIVE_NOTIFIER(obj);
913 if (!xsrc->nr_irqs) {
914 error_setg(errp, "Number of interrupt needs to be greater than 0");
915 return;
918 if (xsrc->esb_shift != XIVE_ESB_4K &&
919 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
920 xsrc->esb_shift != XIVE_ESB_64K &&
921 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
922 error_setg(errp, "Invalid ESB shift setting");
923 return;
926 xsrc->status = g_malloc0(xsrc->nr_irqs);
927 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
929 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
930 &xive_source_esb_ops, xsrc, "xive.esb",
931 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
933 qemu_register_reset(xive_source_reset, dev);
936 static const VMStateDescription vmstate_xive_source = {
937 .name = TYPE_XIVE_SOURCE,
938 .version_id = 1,
939 .minimum_version_id = 1,
940 .fields = (VMStateField[]) {
941 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
942 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
943 VMSTATE_END_OF_LIST()
948 * The default XIVE interrupt source setting for the ESB MMIOs is two
949 * 64k pages without Store EOI, to be in sync with KVM.
951 static Property xive_source_properties[] = {
952 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
953 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
954 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
955 DEFINE_PROP_END_OF_LIST(),
958 static void xive_source_class_init(ObjectClass *klass, void *data)
960 DeviceClass *dc = DEVICE_CLASS(klass);
962 dc->desc = "XIVE Interrupt Source";
963 dc->props = xive_source_properties;
964 dc->realize = xive_source_realize;
965 dc->vmsd = &vmstate_xive_source;
968 static const TypeInfo xive_source_info = {
969 .name = TYPE_XIVE_SOURCE,
970 .parent = TYPE_DEVICE,
971 .instance_size = sizeof(XiveSource),
972 .class_init = xive_source_class_init,
976 * XiveEND helpers
979 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
981 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
982 | be32_to_cpu(end->w3);
983 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
984 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
985 uint32_t qentries = 1 << (qsize + 10);
986 int i;
989 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
991 monitor_printf(mon, " [ ");
992 qindex = (qindex - (width - 1)) & (qentries - 1);
993 for (i = 0; i < width; i++) {
994 uint64_t qaddr = qaddr_base + (qindex << 2);
995 uint32_t qdata = -1;
997 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
998 sizeof(qdata))) {
999 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1000 HWADDR_PRIx "\n", qaddr);
1001 return;
1003 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1004 be32_to_cpu(qdata));
1005 qindex = (qindex + 1) & (qentries - 1);
1009 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1011 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1012 | be32_to_cpu(end->w3);
1013 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1014 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1015 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1016 uint32_t qentries = 1 << (qsize + 10);
1018 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1019 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1021 if (!xive_end_is_valid(end)) {
1022 return;
1025 monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1026 "% 6d/%5d ^%d", end_idx,
1027 xive_end_is_valid(end) ? 'v' : '-',
1028 xive_end_is_enqueue(end) ? 'q' : '-',
1029 xive_end_is_notify(end) ? 'n' : '-',
1030 xive_end_is_backlog(end) ? 'b' : '-',
1031 xive_end_is_escalate(end) ? 'e' : '-',
1032 priority, nvt, qaddr_base, qindex, qentries, qgen);
1034 xive_end_queue_pic_print_info(end, 6, mon);
1035 monitor_printf(mon, "]\n");
1038 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1040 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1041 | be32_to_cpu(end->w3);
1042 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1043 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1044 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1046 uint64_t qaddr = qaddr_base + (qindex << 2);
1047 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1048 uint32_t qentries = 1 << (qsize + 10);
1050 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1051 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1052 HWADDR_PRIx "\n", qaddr);
1053 return;
1056 qindex = (qindex + 1) & (qentries - 1);
1057 if (qindex == 0) {
1058 qgen ^= 1;
1059 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1061 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1065 * XIVE Router (aka. Virtualization Controller or IVRE)
1068 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1069 XiveEAS *eas)
1071 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1073 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1076 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1077 XiveEND *end)
1079 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1081 return xrc->get_end(xrtr, end_blk, end_idx, end);
1084 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1085 XiveEND *end, uint8_t word_number)
1087 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1089 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1092 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1093 XiveNVT *nvt)
1095 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1097 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1100 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1101 XiveNVT *nvt, uint8_t word_number)
1103 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1105 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1108 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1110 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1112 return xrc->get_tctx(xrtr, cs);
1116 * The thread context register words are in big-endian format.
1118 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1119 uint8_t nvt_blk, uint32_t nvt_idx,
1120 bool cam_ignore, uint32_t logic_serv)
1122 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1123 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1124 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1125 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1128 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1129 * identifier are ignored in the "CAM" match.
1132 if (format == 0) {
1133 if (cam_ignore == true) {
1135 * F=0 & i=1: Logical server notification (bits ignored at
1136 * the end of the NVT identifier)
1138 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1139 nvt_blk, nvt_idx);
1140 return -1;
1143 /* F=0 & i=0: Specific NVT notification */
1145 /* TODO (PowerNV) : PHYS ring */
1147 /* HV POOL ring */
1148 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1149 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1150 return TM_QW2_HV_POOL;
1153 /* OS ring */
1154 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1155 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1156 return TM_QW1_OS;
1158 } else {
1159 /* F=1 : User level Event-Based Branch (EBB) notification */
1161 /* USER ring */
1162 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1163 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1164 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1165 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1166 return TM_QW0_USER;
1169 return -1;
1172 typedef struct XiveTCTXMatch {
1173 XiveTCTX *tctx;
1174 uint8_t ring;
1175 } XiveTCTXMatch;
1177 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1178 uint8_t nvt_blk, uint32_t nvt_idx,
1179 bool cam_ignore, uint8_t priority,
1180 uint32_t logic_serv, XiveTCTXMatch *match)
1182 CPUState *cs;
1185 * TODO (PowerNV): handle chip_id overwrite of block field for
1186 * hardwired CAM compares
1189 CPU_FOREACH(cs) {
1190 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1191 int ring;
1194 * HW checks that the CPU is enabled in the Physical Thread
1195 * Enable Register (PTER).
1199 * Check the thread context CAM lines and record matches. We
1200 * will handle CPU exception delivery later
1202 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1203 cam_ignore, logic_serv);
1205 * Save the context and follow on to catch duplicates, that we
1206 * don't support yet.
1208 if (ring != -1) {
1209 if (match->tctx) {
1210 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1211 "context NVT %x/%x\n", nvt_blk, nvt_idx);
1212 return false;
1215 match->ring = ring;
1216 match->tctx = tctx;
1220 if (!match->tctx) {
1221 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1222 nvt_blk, nvt_idx);
1223 return false;
1226 return true;
1230 * This is our simple Xive Presenter Engine model. It is merged in the
1231 * Router as it does not require an extra object.
1233 * It receives notification requests sent by the IVRE to find one
1234 * matching NVT (or more) dispatched on the processor threads. In case
1235 * of a single NVT notification, the process is abreviated and the
1236 * thread is signaled if a match is found. In case of a logical server
1237 * notification (bits ignored at the end of the NVT identifier), the
1238 * IVPE and IVRE select a winning thread using different filters. This
1239 * involves 2 or 3 exchanges on the PowerBus that the model does not
1240 * support.
1242 * The parameters represent what is sent on the PowerBus
1244 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1245 uint8_t nvt_blk, uint32_t nvt_idx,
1246 bool cam_ignore, uint8_t priority,
1247 uint32_t logic_serv)
1249 XiveNVT nvt;
1250 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1251 bool found;
1253 /* NVT cache lookup */
1254 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1255 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1256 nvt_blk, nvt_idx);
1257 return;
1260 if (!xive_nvt_is_valid(&nvt)) {
1261 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1262 nvt_blk, nvt_idx);
1263 return;
1266 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1267 priority, logic_serv, &match);
1268 if (found) {
1269 ipb_update(&match.tctx->regs[match.ring], priority);
1270 xive_tctx_notify(match.tctx, match.ring);
1271 return;
1274 /* Record the IPB in the associated NVT structure */
1275 ipb_update((uint8_t *) &nvt.w4, priority);
1276 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1279 * If no matching NVT is dispatched on a HW thread :
1280 * - update the NVT structure if backlog is activated
1281 * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1282 * activated
1287 * An END trigger can come from an event trigger (IPI or HW) or from
1288 * another chip. We don't model the PowerBus but the END trigger
1289 * message has the same parameters than in the function below.
1291 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1292 uint32_t end_idx, uint32_t end_data)
1294 XiveEND end;
1295 uint8_t priority;
1296 uint8_t format;
1298 /* END cache lookup */
1299 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1300 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1301 end_idx);
1302 return;
1305 if (!xive_end_is_valid(&end)) {
1306 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1307 end_blk, end_idx);
1308 return;
1311 if (xive_end_is_enqueue(&end)) {
1312 xive_end_enqueue(&end, end_data);
1313 /* Enqueuing event data modifies the EQ toggle and index */
1314 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1318 * The W7 format depends on the F bit in W6. It defines the type
1319 * of the notification :
1321 * F=0 : single or multiple NVT notification
1322 * F=1 : User level Event-Based Branch (EBB) notification, no
1323 * priority
1325 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1326 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1328 /* The END is masked */
1329 if (format == 0 && priority == 0xff) {
1330 return;
1334 * Check the END ESn (Event State Buffer for notification) for
1335 * even futher coalescing in the Router
1337 if (!xive_end_is_notify(&end)) {
1338 uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1339 bool notify = xive_esb_trigger(&pq);
1341 if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1342 end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1343 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1346 /* ESn[Q]=1 : end of notification */
1347 if (!notify) {
1348 return;
1353 * Follows IVPE notification
1355 xive_presenter_notify(xrtr, format,
1356 xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1357 xive_get_field32(END_W6_NVT_INDEX, end.w6),
1358 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1359 priority,
1360 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1362 /* TODO: Auto EOI. */
1365 static void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1367 XiveRouter *xrtr = XIVE_ROUTER(xn);
1368 uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1369 uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1370 XiveEAS eas;
1372 /* EAS cache lookup */
1373 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1374 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1375 return;
1379 * The IVRE checks the State Bit Cache at this point. We skip the
1380 * SBC lookup because the state bits of the sources are modeled
1381 * internally in QEMU.
1384 if (!xive_eas_is_valid(&eas)) {
1385 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1386 return;
1389 if (xive_eas_is_masked(&eas)) {
1390 /* Notification completed */
1391 return;
1395 * The event trigger becomes an END trigger
1397 xive_router_end_notify(xrtr,
1398 xive_get_field64(EAS_END_BLOCK, eas.w),
1399 xive_get_field64(EAS_END_INDEX, eas.w),
1400 xive_get_field64(EAS_END_DATA, eas.w));
1403 static void xive_router_class_init(ObjectClass *klass, void *data)
1405 DeviceClass *dc = DEVICE_CLASS(klass);
1406 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1408 dc->desc = "XIVE Router Engine";
1409 xnc->notify = xive_router_notify;
1412 static const TypeInfo xive_router_info = {
1413 .name = TYPE_XIVE_ROUTER,
1414 .parent = TYPE_SYS_BUS_DEVICE,
1415 .abstract = true,
1416 .class_size = sizeof(XiveRouterClass),
1417 .class_init = xive_router_class_init,
1418 .interfaces = (InterfaceInfo[]) {
1419 { TYPE_XIVE_NOTIFIER },
1424 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1426 if (!xive_eas_is_valid(eas)) {
1427 return;
1430 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1431 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1432 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1433 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1434 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1438 * END ESB MMIO loads
1440 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1442 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1443 uint32_t offset = addr & 0xFFF;
1444 uint8_t end_blk;
1445 uint32_t end_idx;
1446 XiveEND end;
1447 uint32_t end_esmask;
1448 uint8_t pq;
1449 uint64_t ret = -1;
1451 end_blk = xsrc->block_id;
1452 end_idx = addr >> (xsrc->esb_shift + 1);
1454 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1455 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1456 end_idx);
1457 return -1;
1460 if (!xive_end_is_valid(&end)) {
1461 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1462 end_blk, end_idx);
1463 return -1;
1466 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1467 pq = xive_get_field32(end_esmask, end.w1);
1469 switch (offset) {
1470 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1471 ret = xive_esb_eoi(&pq);
1473 /* Forward the source event notification for routing ?? */
1474 break;
1476 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1477 ret = pq;
1478 break;
1480 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1481 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1482 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1483 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1484 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1485 break;
1486 default:
1487 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1488 offset);
1489 return -1;
1492 if (pq != xive_get_field32(end_esmask, end.w1)) {
1493 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1494 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1497 return ret;
1501 * END ESB MMIO stores are invalid
1503 static void xive_end_source_write(void *opaque, hwaddr addr,
1504 uint64_t value, unsigned size)
1506 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1507 HWADDR_PRIx"\n", addr);
1510 static const MemoryRegionOps xive_end_source_ops = {
1511 .read = xive_end_source_read,
1512 .write = xive_end_source_write,
1513 .endianness = DEVICE_BIG_ENDIAN,
1514 .valid = {
1515 .min_access_size = 8,
1516 .max_access_size = 8,
1518 .impl = {
1519 .min_access_size = 8,
1520 .max_access_size = 8,
1524 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1526 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1527 Object *obj;
1528 Error *local_err = NULL;
1530 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1531 if (!obj) {
1532 error_propagate(errp, local_err);
1533 error_prepend(errp, "required link 'xive' not found: ");
1534 return;
1537 xsrc->xrtr = XIVE_ROUTER(obj);
1539 if (!xsrc->nr_ends) {
1540 error_setg(errp, "Number of interrupt needs to be greater than 0");
1541 return;
1544 if (xsrc->esb_shift != XIVE_ESB_4K &&
1545 xsrc->esb_shift != XIVE_ESB_64K) {
1546 error_setg(errp, "Invalid ESB shift setting");
1547 return;
1551 * Each END is assigned an even/odd pair of MMIO pages, the even page
1552 * manages the ESn field while the odd page manages the ESe field.
1554 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1555 &xive_end_source_ops, xsrc, "xive.end",
1556 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1559 static Property xive_end_source_properties[] = {
1560 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1561 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1562 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1563 DEFINE_PROP_END_OF_LIST(),
1566 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1568 DeviceClass *dc = DEVICE_CLASS(klass);
1570 dc->desc = "XIVE END Source";
1571 dc->props = xive_end_source_properties;
1572 dc->realize = xive_end_source_realize;
1575 static const TypeInfo xive_end_source_info = {
1576 .name = TYPE_XIVE_END_SOURCE,
1577 .parent = TYPE_DEVICE,
1578 .instance_size = sizeof(XiveENDSource),
1579 .class_init = xive_end_source_class_init,
1583 * XIVE Notifier
1585 static const TypeInfo xive_notifier_info = {
1586 .name = TYPE_XIVE_NOTIFIER,
1587 .parent = TYPE_INTERFACE,
1588 .class_size = sizeof(XiveNotifierClass),
1591 static void xive_register_types(void)
1593 type_register_static(&xive_source_info);
1594 type_register_static(&xive_notifier_info);
1595 type_register_static(&xive_router_info);
1596 type_register_static(&xive_end_source_info);
1597 type_register_static(&xive_tctx_info);
1600 type_init(xive_register_types)