4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
48 #include "sysemu/dirtylimit.h"
50 #include "hw/boards.h"
51 #include "monitor/stats.h"
53 /* This check must be after config-host.h is included */
55 #include <sys/eventfd.h>
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
64 #define PAGE_SIZE qemu_real_host_page_size()
66 #ifndef KVM_GUESTDBG_BLOCKIRQ
67 #define KVM_GUESTDBG_BLOCKIRQ 0
73 #define DPRINTF(fmt, ...) \
74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
76 #define DPRINTF(fmt, ...) \
80 #define KVM_MSI_HASHTAB_SIZE 256
82 struct KVMParkedVcpu
{
83 unsigned long vcpu_id
;
85 QLIST_ENTRY(KVMParkedVcpu
) node
;
88 enum KVMDirtyRingReaperState
{
89 KVM_DIRTY_RING_REAPER_NONE
= 0,
90 /* The reaper is sleeping */
91 KVM_DIRTY_RING_REAPER_WAIT
,
92 /* The reaper is reaping for dirty pages */
93 KVM_DIRTY_RING_REAPER_REAPING
,
97 * KVM reaper instance, responsible for collecting the KVM dirty bits
100 struct KVMDirtyRingReaper
{
101 /* The reaper thread */
102 QemuThread reaper_thr
;
103 volatile uint64_t reaper_iteration
; /* iteration number of reaper thr */
104 volatile enum KVMDirtyRingReaperState reaper_state
; /* reap thr state */
109 AccelState parent_obj
;
116 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
117 bool coalesced_flush_in_progress
;
119 int robust_singlestep
;
121 #ifdef KVM_CAP_SET_GUEST_DEBUG
122 QTAILQ_HEAD(, kvm_sw_breakpoint
) kvm_sw_breakpoints
;
124 int max_nested_state_len
;
128 bool kernel_irqchip_allowed
;
129 bool kernel_irqchip_required
;
130 OnOffAuto kernel_irqchip_split
;
132 uint64_t manual_dirty_log_protect
;
133 /* The man page (and posix) say ioctl numbers are signed int, but
134 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
135 * unsigned, and treating them as signed here can break things */
136 unsigned irq_set_ioctl
;
137 unsigned int sigmask_len
;
139 #ifdef KVM_CAP_IRQ_ROUTING
140 struct kvm_irq_routing
*irq_routes
;
141 int nr_allocated_irq_routes
;
142 unsigned long *used_gsi_bitmap
;
143 unsigned int gsi_count
;
144 QTAILQ_HEAD(, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
146 KVMMemoryListener memory_listener
;
147 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
149 /* For "info mtree -f" to tell if an MR is registered in KVM */
152 KVMMemoryListener
*ml
;
155 uint64_t kvm_dirty_ring_bytes
; /* Size of the per-vcpu dirty ring */
156 uint32_t kvm_dirty_ring_size
; /* Number of dirty GFNs per ring */
157 struct KVMDirtyRingReaper reaper
;
161 bool kvm_kernel_irqchip
;
162 bool kvm_split_irqchip
;
163 bool kvm_async_interrupts_allowed
;
164 bool kvm_halt_in_kernel_allowed
;
165 bool kvm_eventfds_allowed
;
166 bool kvm_irqfds_allowed
;
167 bool kvm_resamplefds_allowed
;
168 bool kvm_msi_via_irqfd_allowed
;
169 bool kvm_gsi_routing_allowed
;
170 bool kvm_gsi_direct_mapping
;
172 bool kvm_readonly_mem_allowed
;
173 bool kvm_vm_attributes_allowed
;
174 bool kvm_direct_msi_allowed
;
175 bool kvm_ioeventfd_any_length_allowed
;
176 bool kvm_msi_use_devid
;
177 bool kvm_has_guest_debug
;
178 static int kvm_sstep_flags
;
179 static bool kvm_immediate_exit
;
180 static hwaddr kvm_max_slot_size
= ~0;
182 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
183 KVM_CAP_INFO(USER_MEMORY
),
184 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
185 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
189 static NotifierList kvm_irqchip_change_notifiers
=
190 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers
);
192 struct KVMResampleFd
{
194 EventNotifier
*resample_event
;
195 QLIST_ENTRY(KVMResampleFd
) node
;
197 typedef struct KVMResampleFd KVMResampleFd
;
200 * Only used with split irqchip where we need to do the resample fd
201 * kick for the kernel from userspace.
203 static QLIST_HEAD(, KVMResampleFd
) kvm_resample_fd_list
=
204 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list
);
206 static QemuMutex kml_slots_lock
;
208 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
209 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
211 static void kvm_slot_init_dirty_bitmap(KVMSlot
*mem
);
213 static inline void kvm_resample_fd_remove(int gsi
)
217 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
218 if (rfd
->gsi
== gsi
) {
219 QLIST_REMOVE(rfd
, node
);
226 static inline void kvm_resample_fd_insert(int gsi
, EventNotifier
*event
)
228 KVMResampleFd
*rfd
= g_new0(KVMResampleFd
, 1);
231 rfd
->resample_event
= event
;
233 QLIST_INSERT_HEAD(&kvm_resample_fd_list
, rfd
, node
);
236 void kvm_resample_fd_notify(int gsi
)
240 QLIST_FOREACH(rfd
, &kvm_resample_fd_list
, node
) {
241 if (rfd
->gsi
== gsi
) {
242 event_notifier_set(rfd
->resample_event
);
243 trace_kvm_resample_fd_notify(gsi
);
249 int kvm_get_max_memslots(void)
251 KVMState
*s
= KVM_STATE(current_accel());
256 /* Called with KVMMemoryListener.slots_lock held */
257 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
259 KVMState
*s
= kvm_state
;
262 for (i
= 0; i
< s
->nr_slots
; i
++) {
263 if (kml
->slots
[i
].memory_size
== 0) {
264 return &kml
->slots
[i
];
271 bool kvm_has_free_slot(MachineState
*ms
)
273 KVMState
*s
= KVM_STATE(ms
->accelerator
);
275 KVMMemoryListener
*kml
= &s
->memory_listener
;
278 result
= !!kvm_get_free_slot(kml
);
284 /* Called with KVMMemoryListener.slots_lock held */
285 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
287 KVMSlot
*slot
= kvm_get_free_slot(kml
);
293 fprintf(stderr
, "%s: no free slot available\n", __func__
);
297 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
301 KVMState
*s
= kvm_state
;
304 for (i
= 0; i
< s
->nr_slots
; i
++) {
305 KVMSlot
*mem
= &kml
->slots
[i
];
307 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
316 * Calculate and align the start address and the size of the section.
317 * Return the size. If the size is 0, the aligned section is empty.
319 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
322 hwaddr size
= int128_get64(section
->size
);
323 hwaddr delta
, aligned
;
325 /* kvm works in page size chunks, but the function may be called
326 with sub-page size and unaligned start address. Pad the start
327 address to next and truncate size to previous page boundary. */
328 aligned
= ROUND_UP(section
->offset_within_address_space
,
329 qemu_real_host_page_size());
330 delta
= aligned
- section
->offset_within_address_space
;
336 return (size
- delta
) & qemu_real_host_page_mask();
339 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
342 KVMMemoryListener
*kml
= &s
->memory_listener
;
346 for (i
= 0; i
< s
->nr_slots
; i
++) {
347 KVMSlot
*mem
= &kml
->slots
[i
];
349 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
350 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
360 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
362 KVMState
*s
= kvm_state
;
363 struct kvm_userspace_memory_region mem
;
366 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
367 mem
.guest_phys_addr
= slot
->start_addr
;
368 mem
.userspace_addr
= (unsigned long)slot
->ram
;
369 mem
.flags
= slot
->flags
;
371 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
372 /* Set the slot size to 0 before setting the slot to the desired
373 * value. This is needed based on KVM commit 75d61fbc. */
375 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
380 mem
.memory_size
= slot
->memory_size
;
381 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
382 slot
->old_flags
= mem
.flags
;
384 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
385 mem
.memory_size
, mem
.userspace_addr
, ret
);
387 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
388 " start=0x%" PRIx64
", size=0x%" PRIx64
": %s",
389 __func__
, mem
.slot
, slot
->start_addr
,
390 (uint64_t)mem
.memory_size
, strerror(errno
));
395 static int do_kvm_destroy_vcpu(CPUState
*cpu
)
397 KVMState
*s
= kvm_state
;
399 struct KVMParkedVcpu
*vcpu
= NULL
;
402 DPRINTF("kvm_destroy_vcpu\n");
404 ret
= kvm_arch_destroy_vcpu(cpu
);
409 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
412 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
416 ret
= munmap(cpu
->kvm_run
, mmap_size
);
421 if (cpu
->kvm_dirty_gfns
) {
422 ret
= munmap(cpu
->kvm_dirty_gfns
, s
->kvm_dirty_ring_bytes
);
428 vcpu
= g_malloc0(sizeof(*vcpu
));
429 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
430 vcpu
->kvm_fd
= cpu
->kvm_fd
;
431 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
436 void kvm_destroy_vcpu(CPUState
*cpu
)
438 if (do_kvm_destroy_vcpu(cpu
) < 0) {
439 error_report("kvm_destroy_vcpu failed");
444 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
446 struct KVMParkedVcpu
*cpu
;
448 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
449 if (cpu
->vcpu_id
== vcpu_id
) {
452 QLIST_REMOVE(cpu
, node
);
453 kvm_fd
= cpu
->kvm_fd
;
459 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
462 int kvm_init_vcpu(CPUState
*cpu
, Error
**errp
)
464 KVMState
*s
= kvm_state
;
468 trace_kvm_init_vcpu(cpu
->cpu_index
, kvm_arch_vcpu_id(cpu
));
470 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
472 error_setg_errno(errp
, -ret
, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
473 kvm_arch_vcpu_id(cpu
));
479 cpu
->vcpu_dirty
= true;
480 cpu
->dirty_pages
= 0;
481 cpu
->throttle_us_per_full
= 0;
483 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
486 error_setg_errno(errp
, -mmap_size
,
487 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
491 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
493 if (cpu
->kvm_run
== MAP_FAILED
) {
495 error_setg_errno(errp
, ret
,
496 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
497 kvm_arch_vcpu_id(cpu
));
501 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
502 s
->coalesced_mmio_ring
=
503 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
506 if (s
->kvm_dirty_ring_size
) {
507 /* Use MAP_SHARED to share pages with the kernel */
508 cpu
->kvm_dirty_gfns
= mmap(NULL
, s
->kvm_dirty_ring_bytes
,
509 PROT_READ
| PROT_WRITE
, MAP_SHARED
,
511 PAGE_SIZE
* KVM_DIRTY_LOG_PAGE_OFFSET
);
512 if (cpu
->kvm_dirty_gfns
== MAP_FAILED
) {
514 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret
);
519 ret
= kvm_arch_init_vcpu(cpu
);
521 error_setg_errno(errp
, -ret
,
522 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
523 kvm_arch_vcpu_id(cpu
));
530 * dirty pages logging control
533 static int kvm_mem_flags(MemoryRegion
*mr
)
535 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
538 if (memory_region_get_dirty_log_mask(mr
) != 0) {
539 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
541 if (readonly
&& kvm_readonly_mem_allowed
) {
542 flags
|= KVM_MEM_READONLY
;
547 /* Called with KVMMemoryListener.slots_lock held */
548 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
551 mem
->flags
= kvm_mem_flags(mr
);
553 /* If nothing changed effectively, no need to issue ioctl */
554 if (mem
->flags
== mem
->old_flags
) {
558 kvm_slot_init_dirty_bitmap(mem
);
559 return kvm_set_user_memory_region(kml
, mem
, false);
562 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
563 MemoryRegionSection
*section
)
565 hwaddr start_addr
, size
, slot_size
;
569 size
= kvm_align_section(section
, &start_addr
);
576 while (size
&& !ret
) {
577 slot_size
= MIN(kvm_max_slot_size
, size
);
578 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
580 /* We don't have a slot if we want to trap every access. */
584 ret
= kvm_slot_update_flags(kml
, mem
, section
->mr
);
585 start_addr
+= slot_size
;
594 static void kvm_log_start(MemoryListener
*listener
,
595 MemoryRegionSection
*section
,
598 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
605 r
= kvm_section_update_flags(kml
, section
);
611 static void kvm_log_stop(MemoryListener
*listener
,
612 MemoryRegionSection
*section
,
615 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
622 r
= kvm_section_update_flags(kml
, section
);
628 /* get kvm's dirty pages bitmap and update qemu's */
629 static void kvm_slot_sync_dirty_pages(KVMSlot
*slot
)
631 ram_addr_t start
= slot
->ram_start_offset
;
632 ram_addr_t pages
= slot
->memory_size
/ qemu_real_host_page_size();
634 cpu_physical_memory_set_dirty_lebitmap(slot
->dirty_bmap
, start
, pages
);
637 static void kvm_slot_reset_dirty_pages(KVMSlot
*slot
)
639 memset(slot
->dirty_bmap
, 0, slot
->dirty_bmap_size
);
642 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
644 /* Allocate the dirty bitmap for a slot */
645 static void kvm_slot_init_dirty_bitmap(KVMSlot
*mem
)
647 if (!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) || mem
->dirty_bmap
) {
652 * XXX bad kernel interface alert
653 * For dirty bitmap, kernel allocates array of size aligned to
654 * bits-per-long. But for case when the kernel is 64bits and
655 * the userspace is 32bits, userspace can't align to the same
656 * bits-per-long, since sizeof(long) is different between kernel
657 * and user space. This way, userspace will provide buffer which
658 * may be 4 bytes less than the kernel will use, resulting in
659 * userspace memory corruption (which is not detectable by valgrind
660 * too, in most cases).
661 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
662 * a hope that sizeof(long) won't become >8 any time soon.
664 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
665 * And mem->memory_size is aligned to it (otherwise this mem can't
666 * be registered to KVM).
668 hwaddr bitmap_size
= ALIGN(mem
->memory_size
/ qemu_real_host_page_size(),
669 /*HOST_LONG_BITS*/ 64) / 8;
670 mem
->dirty_bmap
= g_malloc0(bitmap_size
);
671 mem
->dirty_bmap_size
= bitmap_size
;
675 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
676 * succeeded, false otherwise
678 static bool kvm_slot_get_dirty_log(KVMState
*s
, KVMSlot
*slot
)
680 struct kvm_dirty_log d
= {};
683 d
.dirty_bitmap
= slot
->dirty_bmap
;
684 d
.slot
= slot
->slot
| (slot
->as_id
<< 16);
685 ret
= kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
);
687 if (ret
== -ENOENT
) {
688 /* kernel does not have dirty bitmap in this slot */
692 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
698 /* Should be with all slots_lock held for the address spaces. */
699 static void kvm_dirty_ring_mark_page(KVMState
*s
, uint32_t as_id
,
700 uint32_t slot_id
, uint64_t offset
)
702 KVMMemoryListener
*kml
;
705 if (as_id
>= s
->nr_as
) {
709 kml
= s
->as
[as_id
].ml
;
710 mem
= &kml
->slots
[slot_id
];
712 if (!mem
->memory_size
|| offset
>=
713 (mem
->memory_size
/ qemu_real_host_page_size())) {
717 set_bit(offset
, mem
->dirty_bmap
);
720 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn
*gfn
)
723 * Read the flags before the value. Pairs with barrier in
724 * KVM's kvm_dirty_ring_push() function.
726 return qatomic_load_acquire(&gfn
->flags
) == KVM_DIRTY_GFN_F_DIRTY
;
729 static void dirty_gfn_set_collected(struct kvm_dirty_gfn
*gfn
)
732 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
733 * sees the full content of the ring:
736 * ------------------------------------------------------------------------------
738 * store-rel flags for gfn0
739 * load-acq flags for gfn0
740 * store-rel RESET for gfn0
742 * load-acq flags for gfn0
743 * check if flags have RESET
745 * The synchronization goes from CPU2 to CPU0 to CPU1.
747 qatomic_store_release(&gfn
->flags
, KVM_DIRTY_GFN_F_RESET
);
751 * Should be with all slots_lock held for the address spaces. It returns the
752 * dirty page we've collected on this dirty ring.
754 static uint32_t kvm_dirty_ring_reap_one(KVMState
*s
, CPUState
*cpu
)
756 struct kvm_dirty_gfn
*dirty_gfns
= cpu
->kvm_dirty_gfns
, *cur
;
757 uint32_t ring_size
= s
->kvm_dirty_ring_size
;
758 uint32_t count
= 0, fetch
= cpu
->kvm_fetch_index
;
760 assert(dirty_gfns
&& ring_size
);
761 trace_kvm_dirty_ring_reap_vcpu(cpu
->cpu_index
);
764 cur
= &dirty_gfns
[fetch
% ring_size
];
765 if (!dirty_gfn_is_dirtied(cur
)) {
768 kvm_dirty_ring_mark_page(s
, cur
->slot
>> 16, cur
->slot
& 0xffff,
770 dirty_gfn_set_collected(cur
);
771 trace_kvm_dirty_ring_page(cpu
->cpu_index
, fetch
, cur
->offset
);
775 cpu
->kvm_fetch_index
= fetch
;
776 cpu
->dirty_pages
+= count
;
781 /* Must be with slots_lock held */
782 static uint64_t kvm_dirty_ring_reap_locked(KVMState
*s
, CPUState
* cpu
)
791 total
= kvm_dirty_ring_reap_one(s
, cpu
);
794 total
+= kvm_dirty_ring_reap_one(s
, cpu
);
799 ret
= kvm_vm_ioctl(s
, KVM_RESET_DIRTY_RINGS
);
800 assert(ret
== total
);
803 stamp
= get_clock() - stamp
;
806 trace_kvm_dirty_ring_reap(total
, stamp
/ 1000);
813 * Currently for simplicity, we must hold BQL before calling this. We can
814 * consider to drop the BQL if we're clear with all the race conditions.
816 static uint64_t kvm_dirty_ring_reap(KVMState
*s
, CPUState
*cpu
)
821 * We need to lock all kvm slots for all address spaces here,
824 * (1) We need to mark dirty for dirty bitmaps in multiple slots
825 * and for tons of pages, so it's better to take the lock here
826 * once rather than once per page. And more importantly,
828 * (2) We must _NOT_ publish dirty bits to the other threads
829 * (e.g., the migration thread) via the kvm memory slot dirty
830 * bitmaps before correctly re-protect those dirtied pages.
831 * Otherwise we can have potential risk of data corruption if
832 * the page data is read in the other thread before we do
836 total
= kvm_dirty_ring_reap_locked(s
, cpu
);
842 static void do_kvm_cpu_synchronize_kick(CPUState
*cpu
, run_on_cpu_data arg
)
844 /* No need to do anything */
848 * Kick all vcpus out in a synchronized way. When returned, we
849 * guarantee that every vcpu has been kicked and at least returned to
852 static void kvm_cpu_synchronize_kick_all(void)
857 run_on_cpu(cpu
, do_kvm_cpu_synchronize_kick
, RUN_ON_CPU_NULL
);
862 * Flush all the existing dirty pages to the KVM slot buffers. When
863 * this call returns, we guarantee that all the touched dirty pages
864 * before calling this function have been put into the per-kvmslot
867 * This function must be called with BQL held.
869 static void kvm_dirty_ring_flush(void)
871 trace_kvm_dirty_ring_flush(0);
873 * The function needs to be serialized. Since this function
874 * should always be with BQL held, serialization is guaranteed.
875 * However, let's be sure of it.
877 assert(qemu_mutex_iothread_locked());
879 * First make sure to flush the hardware buffers by kicking all
880 * vcpus out in a synchronous way.
882 kvm_cpu_synchronize_kick_all();
883 kvm_dirty_ring_reap(kvm_state
, NULL
);
884 trace_kvm_dirty_ring_flush(1);
888 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
890 * This function will first try to fetch dirty bitmap from the kernel,
891 * and then updates qemu's dirty bitmap.
893 * NOTE: caller must be with kml->slots_lock held.
895 * @kml: the KVM memory listener object
896 * @section: the memory section to sync the dirty bitmap with
898 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
899 MemoryRegionSection
*section
)
901 KVMState
*s
= kvm_state
;
903 hwaddr start_addr
, size
;
906 size
= kvm_align_section(section
, &start_addr
);
908 slot_size
= MIN(kvm_max_slot_size
, size
);
909 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
911 /* We don't have a slot if we want to trap every access. */
914 if (kvm_slot_get_dirty_log(s
, mem
)) {
915 kvm_slot_sync_dirty_pages(mem
);
917 start_addr
+= slot_size
;
922 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
923 #define KVM_CLEAR_LOG_SHIFT 6
924 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
925 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
927 static int kvm_log_clear_one_slot(KVMSlot
*mem
, int as_id
, uint64_t start
,
930 KVMState
*s
= kvm_state
;
931 uint64_t end
, bmap_start
, start_delta
, bmap_npages
;
932 struct kvm_clear_dirty_log d
;
933 unsigned long *bmap_clear
= NULL
, psize
= qemu_real_host_page_size();
937 * We need to extend either the start or the size or both to
938 * satisfy the KVM interface requirement. Firstly, do the start
939 * page alignment on 64 host pages
941 bmap_start
= start
& KVM_CLEAR_LOG_MASK
;
942 start_delta
= start
- bmap_start
;
946 * The kernel interface has restriction on the size too, that either:
948 * (1) the size is 64 host pages aligned (just like the start), or
949 * (2) the size fills up until the end of the KVM memslot.
951 bmap_npages
= DIV_ROUND_UP(size
+ start_delta
, KVM_CLEAR_LOG_ALIGN
)
952 << KVM_CLEAR_LOG_SHIFT
;
953 end
= mem
->memory_size
/ psize
;
954 if (bmap_npages
> end
- bmap_start
) {
955 bmap_npages
= end
- bmap_start
;
957 start_delta
/= psize
;
960 * Prepare the bitmap to clear dirty bits. Here we must guarantee
961 * that we won't clear any unknown dirty bits otherwise we might
962 * accidentally clear some set bits which are not yet synced from
963 * the kernel into QEMU's bitmap, then we'll lose track of the
964 * guest modifications upon those pages (which can directly lead
965 * to guest data loss or panic after migration).
967 * Layout of the KVMSlot.dirty_bmap:
969 * |<-------- bmap_npages -----------..>|
972 * |----------------|-------------|------------------|------------|
975 * start bmap_start (start) end
976 * of memslot of memslot
978 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
981 assert(bmap_start
% BITS_PER_LONG
== 0);
982 /* We should never do log_clear before log_sync */
983 assert(mem
->dirty_bmap
);
984 if (start_delta
|| bmap_npages
- size
/ psize
) {
985 /* Slow path - we need to manipulate a temp bitmap */
986 bmap_clear
= bitmap_new(bmap_npages
);
987 bitmap_copy_with_src_offset(bmap_clear
, mem
->dirty_bmap
,
988 bmap_start
, start_delta
+ size
/ psize
);
990 * We need to fill the holes at start because that was not
991 * specified by the caller and we extended the bitmap only for
994 bitmap_clear(bmap_clear
, 0, start_delta
);
995 d
.dirty_bitmap
= bmap_clear
;
998 * Fast path - both start and size align well with BITS_PER_LONG
999 * (or the end of memory slot)
1001 d
.dirty_bitmap
= mem
->dirty_bmap
+ BIT_WORD(bmap_start
);
1004 d
.first_page
= bmap_start
;
1005 /* It should never overflow. If it happens, say something */
1006 assert(bmap_npages
<= UINT32_MAX
);
1007 d
.num_pages
= bmap_npages
;
1008 d
.slot
= mem
->slot
| (as_id
<< 16);
1010 ret
= kvm_vm_ioctl(s
, KVM_CLEAR_DIRTY_LOG
, &d
);
1011 if (ret
< 0 && ret
!= -ENOENT
) {
1012 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1013 "start=0x%"PRIx64
", size=0x%"PRIx32
", errno=%d",
1014 __func__
, d
.slot
, (uint64_t)d
.first_page
,
1015 (uint32_t)d
.num_pages
, ret
);
1018 trace_kvm_clear_dirty_log(d
.slot
, d
.first_page
, d
.num_pages
);
1022 * After we have updated the remote dirty bitmap, we update the
1023 * cached bitmap as well for the memslot, then if another user
1024 * clears the same region we know we shouldn't clear it again on
1025 * the remote otherwise it's data loss as well.
1027 bitmap_clear(mem
->dirty_bmap
, bmap_start
+ start_delta
,
1029 /* This handles the NULL case well */
1036 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1038 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1039 * protection in the host kernel because in that case this operation
1040 * will be done within log_sync().
1042 * @kml: the kvm memory listener
1043 * @section: the memory range to clear dirty bitmap
1045 static int kvm_physical_log_clear(KVMMemoryListener
*kml
,
1046 MemoryRegionSection
*section
)
1048 KVMState
*s
= kvm_state
;
1049 uint64_t start
, size
, offset
, count
;
1053 if (!s
->manual_dirty_log_protect
) {
1054 /* No need to do explicit clear */
1058 start
= section
->offset_within_address_space
;
1059 size
= int128_get64(section
->size
);
1062 /* Nothing more we can do... */
1068 for (i
= 0; i
< s
->nr_slots
; i
++) {
1069 mem
= &kml
->slots
[i
];
1070 /* Discard slots that are empty or do not overlap the section */
1071 if (!mem
->memory_size
||
1072 mem
->start_addr
> start
+ size
- 1 ||
1073 start
> mem
->start_addr
+ mem
->memory_size
- 1) {
1077 if (start
>= mem
->start_addr
) {
1078 /* The slot starts before section or is aligned to it. */
1079 offset
= start
- mem
->start_addr
;
1080 count
= MIN(mem
->memory_size
- offset
, size
);
1082 /* The slot starts after section. */
1084 count
= MIN(mem
->memory_size
, size
- (mem
->start_addr
- start
));
1086 ret
= kvm_log_clear_one_slot(mem
, kml
->as_id
, offset
, count
);
1097 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
1098 MemoryRegionSection
*secion
,
1099 hwaddr start
, hwaddr size
)
1101 KVMState
*s
= kvm_state
;
1103 if (s
->coalesced_mmio
) {
1104 struct kvm_coalesced_mmio_zone zone
;
1110 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
1114 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
1115 MemoryRegionSection
*secion
,
1116 hwaddr start
, hwaddr size
)
1118 KVMState
*s
= kvm_state
;
1120 if (s
->coalesced_mmio
) {
1121 struct kvm_coalesced_mmio_zone zone
;
1127 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
1131 static void kvm_coalesce_pio_add(MemoryListener
*listener
,
1132 MemoryRegionSection
*section
,
1133 hwaddr start
, hwaddr size
)
1135 KVMState
*s
= kvm_state
;
1137 if (s
->coalesced_pio
) {
1138 struct kvm_coalesced_mmio_zone zone
;
1144 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
1148 static void kvm_coalesce_pio_del(MemoryListener
*listener
,
1149 MemoryRegionSection
*section
,
1150 hwaddr start
, hwaddr size
)
1152 KVMState
*s
= kvm_state
;
1154 if (s
->coalesced_pio
) {
1155 struct kvm_coalesced_mmio_zone zone
;
1161 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
1165 static MemoryListener kvm_coalesced_pio_listener
= {
1166 .name
= "kvm-coalesced-pio",
1167 .coalesced_io_add
= kvm_coalesce_pio_add
,
1168 .coalesced_io_del
= kvm_coalesce_pio_del
,
1171 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
1175 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
1183 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
1187 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
1189 /* VM wide version not implemented, use global one instead */
1190 ret
= kvm_check_extension(s
, extension
);
1196 typedef struct HWPoisonPage
{
1197 ram_addr_t ram_addr
;
1198 QLIST_ENTRY(HWPoisonPage
) list
;
1201 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
1202 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
1204 static void kvm_unpoison_all(void *param
)
1206 HWPoisonPage
*page
, *next_page
;
1208 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
1209 QLIST_REMOVE(page
, list
);
1210 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
1215 void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
1219 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
1220 if (page
->ram_addr
== ram_addr
) {
1224 page
= g_new(HWPoisonPage
, 1);
1225 page
->ram_addr
= ram_addr
;
1226 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
1229 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
1231 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1232 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1233 * endianness, but the memory core hands them in target endianness.
1234 * For example, PPC is always treated as big-endian even if running
1235 * on KVM and on PPC64LE. Correct here.
1249 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
1250 bool assign
, uint32_t size
, bool datamatch
)
1253 struct kvm_ioeventfd iofd
= {
1254 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1261 trace_kvm_set_ioeventfd_mmio(fd
, (uint64_t)addr
, val
, assign
, size
,
1263 if (!kvm_enabled()) {
1268 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1271 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1274 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1283 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
1284 bool assign
, uint32_t size
, bool datamatch
)
1286 struct kvm_ioeventfd kick
= {
1287 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
1289 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
1294 trace_kvm_set_ioeventfd_pio(fd
, addr
, val
, assign
, size
, datamatch
);
1295 if (!kvm_enabled()) {
1299 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1302 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1304 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1312 static int kvm_check_many_ioeventfds(void)
1314 /* Userspace can use ioeventfd for io notification. This requires a host
1315 * that supports eventfd(2) and an I/O thread; since eventfd does not
1316 * support SIGIO it cannot interrupt the vcpu.
1318 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1319 * can avoid creating too many ioeventfds.
1321 #if defined(CONFIG_EVENTFD)
1324 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
1325 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
1326 if (ioeventfds
[i
] < 0) {
1329 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
1331 close(ioeventfds
[i
]);
1336 /* Decide whether many devices are supported or not */
1337 ret
= i
== ARRAY_SIZE(ioeventfds
);
1340 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
1341 close(ioeventfds
[i
]);
1349 static const KVMCapabilityInfo
*
1350 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
1352 while (list
->name
) {
1353 if (!kvm_check_extension(s
, list
->value
)) {
1361 void kvm_set_max_memslot_size(hwaddr max_slot_size
)
1364 ROUND_UP(max_slot_size
, qemu_real_host_page_size()) == max_slot_size
1366 kvm_max_slot_size
= max_slot_size
;
1369 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
1370 MemoryRegionSection
*section
, bool add
)
1374 MemoryRegion
*mr
= section
->mr
;
1375 bool writable
= !mr
->readonly
&& !mr
->rom_device
;
1376 hwaddr start_addr
, size
, slot_size
, mr_offset
;
1377 ram_addr_t ram_start_offset
;
1380 if (!memory_region_is_ram(mr
)) {
1381 if (writable
|| !kvm_readonly_mem_allowed
) {
1383 } else if (!mr
->romd_mode
) {
1384 /* If the memory device is not in romd_mode, then we actually want
1385 * to remove the kvm memory slot so all accesses will trap. */
1390 size
= kvm_align_section(section
, &start_addr
);
1395 /* The offset of the kvmslot within the memory region */
1396 mr_offset
= section
->offset_within_region
+ start_addr
-
1397 section
->offset_within_address_space
;
1399 /* use aligned delta to align the ram address and offset */
1400 ram
= memory_region_get_ram_ptr(mr
) + mr_offset
;
1401 ram_start_offset
= memory_region_get_ram_addr(mr
) + mr_offset
;
1407 slot_size
= MIN(kvm_max_slot_size
, size
);
1408 mem
= kvm_lookup_matching_slot(kml
, start_addr
, slot_size
);
1412 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1414 * NOTE: We should be aware of the fact that here we're only
1415 * doing a best effort to sync dirty bits. No matter whether
1416 * we're using dirty log or dirty ring, we ignored two facts:
1418 * (1) dirty bits can reside in hardware buffers (PML)
1420 * (2) after we collected dirty bits here, pages can be dirtied
1421 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1424 * Not easy. Let's cross the fingers until it's fixed.
1426 if (kvm_state
->kvm_dirty_ring_size
) {
1427 kvm_dirty_ring_reap_locked(kvm_state
, NULL
);
1429 kvm_slot_get_dirty_log(kvm_state
, mem
);
1431 kvm_slot_sync_dirty_pages(mem
);
1434 /* unregister the slot */
1435 g_free(mem
->dirty_bmap
);
1436 mem
->dirty_bmap
= NULL
;
1437 mem
->memory_size
= 0;
1439 err
= kvm_set_user_memory_region(kml
, mem
, false);
1441 fprintf(stderr
, "%s: error unregistering slot: %s\n",
1442 __func__
, strerror(-err
));
1445 start_addr
+= slot_size
;
1451 /* register the new slot */
1453 slot_size
= MIN(kvm_max_slot_size
, size
);
1454 mem
= kvm_alloc_slot(kml
);
1455 mem
->as_id
= kml
->as_id
;
1456 mem
->memory_size
= slot_size
;
1457 mem
->start_addr
= start_addr
;
1458 mem
->ram_start_offset
= ram_start_offset
;
1460 mem
->flags
= kvm_mem_flags(mr
);
1461 kvm_slot_init_dirty_bitmap(mem
);
1462 err
= kvm_set_user_memory_region(kml
, mem
, true);
1464 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
1468 start_addr
+= slot_size
;
1469 ram_start_offset
+= slot_size
;
1478 static void *kvm_dirty_ring_reaper_thread(void *data
)
1481 struct KVMDirtyRingReaper
*r
= &s
->reaper
;
1483 rcu_register_thread();
1485 trace_kvm_dirty_ring_reaper("init");
1488 r
->reaper_state
= KVM_DIRTY_RING_REAPER_WAIT
;
1489 trace_kvm_dirty_ring_reaper("wait");
1491 * TODO: provide a smarter timeout rather than a constant?
1495 /* keep sleeping so that dirtylimit not be interfered by reaper */
1496 if (dirtylimit_in_service()) {
1500 trace_kvm_dirty_ring_reaper("wakeup");
1501 r
->reaper_state
= KVM_DIRTY_RING_REAPER_REAPING
;
1503 qemu_mutex_lock_iothread();
1504 kvm_dirty_ring_reap(s
, NULL
);
1505 qemu_mutex_unlock_iothread();
1507 r
->reaper_iteration
++;
1510 trace_kvm_dirty_ring_reaper("exit");
1512 rcu_unregister_thread();
1517 static int kvm_dirty_ring_reaper_init(KVMState
*s
)
1519 struct KVMDirtyRingReaper
*r
= &s
->reaper
;
1521 qemu_thread_create(&r
->reaper_thr
, "kvm-reaper",
1522 kvm_dirty_ring_reaper_thread
,
1523 s
, QEMU_THREAD_JOINABLE
);
1528 static void kvm_region_add(MemoryListener
*listener
,
1529 MemoryRegionSection
*section
)
1531 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1533 memory_region_ref(section
->mr
);
1534 kvm_set_phys_mem(kml
, section
, true);
1537 static void kvm_region_del(MemoryListener
*listener
,
1538 MemoryRegionSection
*section
)
1540 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1542 kvm_set_phys_mem(kml
, section
, false);
1543 memory_region_unref(section
->mr
);
1546 static void kvm_log_sync(MemoryListener
*listener
,
1547 MemoryRegionSection
*section
)
1549 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1552 kvm_physical_sync_dirty_bitmap(kml
, section
);
1556 static void kvm_log_sync_global(MemoryListener
*l
)
1558 KVMMemoryListener
*kml
= container_of(l
, KVMMemoryListener
, listener
);
1559 KVMState
*s
= kvm_state
;
1563 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1564 kvm_dirty_ring_flush();
1567 * TODO: make this faster when nr_slots is big while there are
1568 * only a few used slots (small VMs).
1571 for (i
= 0; i
< s
->nr_slots
; i
++) {
1572 mem
= &kml
->slots
[i
];
1573 if (mem
->memory_size
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
1574 kvm_slot_sync_dirty_pages(mem
);
1576 * This is not needed by KVM_GET_DIRTY_LOG because the
1577 * ioctl will unconditionally overwrite the whole region.
1578 * However kvm dirty ring has no such side effect.
1580 kvm_slot_reset_dirty_pages(mem
);
1586 static void kvm_log_clear(MemoryListener
*listener
,
1587 MemoryRegionSection
*section
)
1589 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1592 r
= kvm_physical_log_clear(kml
, section
);
1594 error_report_once("%s: kvm log clear failed: mr=%s "
1595 "offset=%"HWADDR_PRIx
" size=%"PRIx64
, __func__
,
1596 section
->mr
->name
, section
->offset_within_region
,
1597 int128_get64(section
->size
));
1602 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
1603 MemoryRegionSection
*section
,
1604 bool match_data
, uint64_t data
,
1607 int fd
= event_notifier_get_fd(e
);
1610 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1611 data
, true, int128_get64(section
->size
),
1614 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1615 __func__
, strerror(-r
), -r
);
1620 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
1621 MemoryRegionSection
*section
,
1622 bool match_data
, uint64_t data
,
1625 int fd
= event_notifier_get_fd(e
);
1628 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1629 data
, false, int128_get64(section
->size
),
1632 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1633 __func__
, strerror(-r
), -r
);
1638 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
1639 MemoryRegionSection
*section
,
1640 bool match_data
, uint64_t data
,
1643 int fd
= event_notifier_get_fd(e
);
1646 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1647 data
, true, int128_get64(section
->size
),
1650 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1651 __func__
, strerror(-r
), -r
);
1656 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
1657 MemoryRegionSection
*section
,
1658 bool match_data
, uint64_t data
,
1662 int fd
= event_notifier_get_fd(e
);
1665 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1666 data
, false, int128_get64(section
->size
),
1669 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1670 __func__
, strerror(-r
), -r
);
1675 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
1676 AddressSpace
*as
, int as_id
, const char *name
)
1680 kml
->slots
= g_new0(KVMSlot
, s
->nr_slots
);
1683 for (i
= 0; i
< s
->nr_slots
; i
++) {
1684 kml
->slots
[i
].slot
= i
;
1687 kml
->listener
.region_add
= kvm_region_add
;
1688 kml
->listener
.region_del
= kvm_region_del
;
1689 kml
->listener
.log_start
= kvm_log_start
;
1690 kml
->listener
.log_stop
= kvm_log_stop
;
1691 kml
->listener
.priority
= 10;
1692 kml
->listener
.name
= name
;
1694 if (s
->kvm_dirty_ring_size
) {
1695 kml
->listener
.log_sync_global
= kvm_log_sync_global
;
1697 kml
->listener
.log_sync
= kvm_log_sync
;
1698 kml
->listener
.log_clear
= kvm_log_clear
;
1701 memory_listener_register(&kml
->listener
, as
);
1703 for (i
= 0; i
< s
->nr_as
; ++i
) {
1712 static MemoryListener kvm_io_listener
= {
1714 .eventfd_add
= kvm_io_ioeventfd_add
,
1715 .eventfd_del
= kvm_io_ioeventfd_del
,
1719 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
1721 struct kvm_irq_level event
;
1724 assert(kvm_async_interrupts_enabled());
1726 event
.level
= level
;
1728 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1730 perror("kvm_set_irq");
1734 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1737 #ifdef KVM_CAP_IRQ_ROUTING
1738 typedef struct KVMMSIRoute
{
1739 struct kvm_irq_routing_entry kroute
;
1740 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1743 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1745 set_bit(gsi
, s
->used_gsi_bitmap
);
1748 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1750 clear_bit(gsi
, s
->used_gsi_bitmap
);
1753 void kvm_init_irq_routing(KVMState
*s
)
1757 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1758 if (gsi_count
> 0) {
1759 /* Round up so we can search ints using ffs */
1760 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1761 s
->gsi_count
= gsi_count
;
1764 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1765 s
->nr_allocated_irq_routes
= 0;
1767 if (!kvm_direct_msi_allowed
) {
1768 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1769 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1773 kvm_arch_init_irq_routing(s
);
1776 void kvm_irqchip_commit_routes(KVMState
*s
)
1780 if (kvm_gsi_direct_mapping()) {
1784 if (!kvm_gsi_routing_enabled()) {
1788 s
->irq_routes
->flags
= 0;
1789 trace_kvm_irqchip_commit_routes();
1790 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1794 static void kvm_add_routing_entry(KVMState
*s
,
1795 struct kvm_irq_routing_entry
*entry
)
1797 struct kvm_irq_routing_entry
*new;
1800 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1801 n
= s
->nr_allocated_irq_routes
* 2;
1805 size
= sizeof(struct kvm_irq_routing
);
1806 size
+= n
* sizeof(*new);
1807 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1808 s
->nr_allocated_irq_routes
= n
;
1810 n
= s
->irq_routes
->nr
++;
1811 new = &s
->irq_routes
->entries
[n
];
1815 set_gsi(s
, entry
->gsi
);
1818 static int kvm_update_routing_entry(KVMState
*s
,
1819 struct kvm_irq_routing_entry
*new_entry
)
1821 struct kvm_irq_routing_entry
*entry
;
1824 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1825 entry
= &s
->irq_routes
->entries
[n
];
1826 if (entry
->gsi
!= new_entry
->gsi
) {
1830 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1834 *entry
= *new_entry
;
1842 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1844 struct kvm_irq_routing_entry e
= {};
1846 assert(pin
< s
->gsi_count
);
1849 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1851 e
.u
.irqchip
.irqchip
= irqchip
;
1852 e
.u
.irqchip
.pin
= pin
;
1853 kvm_add_routing_entry(s
, &e
);
1856 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1858 struct kvm_irq_routing_entry
*e
;
1861 if (kvm_gsi_direct_mapping()) {
1865 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1866 e
= &s
->irq_routes
->entries
[i
];
1867 if (e
->gsi
== virq
) {
1868 s
->irq_routes
->nr
--;
1869 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1873 kvm_arch_release_virq_post(virq
);
1874 trace_kvm_irqchip_release_virq(virq
);
1877 void kvm_irqchip_add_change_notifier(Notifier
*n
)
1879 notifier_list_add(&kvm_irqchip_change_notifiers
, n
);
1882 void kvm_irqchip_remove_change_notifier(Notifier
*n
)
1887 void kvm_irqchip_change_notify(void)
1889 notifier_list_notify(&kvm_irqchip_change_notifiers
, NULL
);
1892 static unsigned int kvm_hash_msi(uint32_t data
)
1894 /* This is optimized for IA32 MSI layout. However, no other arch shall
1895 * repeat the mistake of not providing a direct MSI injection API. */
1899 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1901 KVMMSIRoute
*route
, *next
;
1904 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1905 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1906 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1907 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1913 static int kvm_irqchip_get_virq(KVMState
*s
)
1918 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1919 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1920 * number can succeed even though a new route entry cannot be added.
1921 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1923 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1924 kvm_flush_dynamic_msi_routes(s
);
1927 /* Return the lowest unused GSI in the bitmap */
1928 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1929 if (next_virq
>= s
->gsi_count
) {
1936 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1938 unsigned int hash
= kvm_hash_msi(msg
.data
);
1941 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1942 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1943 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1944 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1951 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1956 if (kvm_direct_msi_allowed
) {
1957 msi
.address_lo
= (uint32_t)msg
.address
;
1958 msi
.address_hi
= msg
.address
>> 32;
1959 msi
.data
= le32_to_cpu(msg
.data
);
1961 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1963 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1966 route
= kvm_lookup_msi_route(s
, msg
);
1970 virq
= kvm_irqchip_get_virq(s
);
1975 route
= g_new0(KVMMSIRoute
, 1);
1976 route
->kroute
.gsi
= virq
;
1977 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1978 route
->kroute
.flags
= 0;
1979 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1980 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1981 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1983 kvm_add_routing_entry(s
, &route
->kroute
);
1984 kvm_irqchip_commit_routes(s
);
1986 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1990 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1992 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1995 int kvm_irqchip_add_msi_route(KVMRouteChange
*c
, int vector
, PCIDevice
*dev
)
1997 struct kvm_irq_routing_entry kroute
= {};
2000 MSIMessage msg
= {0, 0};
2002 if (pci_available
&& dev
) {
2003 msg
= pci_get_msi_message(dev
, vector
);
2006 if (kvm_gsi_direct_mapping()) {
2007 return kvm_arch_msi_data_to_gsi(msg
.data
);
2010 if (!kvm_gsi_routing_enabled()) {
2014 virq
= kvm_irqchip_get_virq(s
);
2020 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
2022 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
2023 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
2024 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
2025 if (pci_available
&& kvm_msi_devid_required()) {
2026 kroute
.flags
= KVM_MSI_VALID_DEVID
;
2027 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
2029 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
2030 kvm_irqchip_release_virq(s
, virq
);
2034 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
2037 kvm_add_routing_entry(s
, &kroute
);
2038 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
2044 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
2047 struct kvm_irq_routing_entry kroute
= {};
2049 if (kvm_gsi_direct_mapping()) {
2053 if (!kvm_irqchip_in_kernel()) {
2058 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
2060 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
2061 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
2062 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
2063 if (pci_available
&& kvm_msi_devid_required()) {
2064 kroute
.flags
= KVM_MSI_VALID_DEVID
;
2065 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
2067 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
2071 trace_kvm_irqchip_update_msi_route(virq
);
2073 return kvm_update_routing_entry(s
, &kroute
);
2076 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
2077 EventNotifier
*resample
, int virq
,
2080 int fd
= event_notifier_get_fd(event
);
2081 int rfd
= resample
? event_notifier_get_fd(resample
) : -1;
2083 struct kvm_irqfd irqfd
= {
2086 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
2091 if (kvm_irqchip_is_split()) {
2093 * When the slow irqchip (e.g. IOAPIC) is in the
2094 * userspace, KVM kernel resamplefd will not work because
2095 * the EOI of the interrupt will be delivered to userspace
2096 * instead, so the KVM kernel resamplefd kick will be
2097 * skipped. The userspace here mimics what the kernel
2098 * provides with resamplefd, remember the resamplefd and
2099 * kick it when we receive EOI of this IRQ.
2101 * This is hackery because IOAPIC is mostly bypassed
2102 * (except EOI broadcasts) when irqfd is used. However
2103 * this can bring much performance back for split irqchip
2104 * with INTx IRQs (for VFIO, this gives 93% perf of the
2105 * full fast path, which is 46% perf boost comparing to
2106 * the INTx slow path).
2108 kvm_resample_fd_insert(virq
, resample
);
2110 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
2111 irqfd
.resamplefd
= rfd
;
2113 } else if (!assign
) {
2114 if (kvm_irqchip_is_split()) {
2115 kvm_resample_fd_remove(virq
);
2119 if (!kvm_irqfds_enabled()) {
2123 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
2126 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
2128 struct kvm_irq_routing_entry kroute
= {};
2131 if (!kvm_gsi_routing_enabled()) {
2135 virq
= kvm_irqchip_get_virq(s
);
2141 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2143 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
2144 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
2145 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
2146 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
2147 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
2149 kvm_add_routing_entry(s
, &kroute
);
2154 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
2156 struct kvm_irq_routing_entry kroute
= {};
2159 if (!kvm_gsi_routing_enabled()) {
2162 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
2165 virq
= kvm_irqchip_get_virq(s
);
2171 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
2173 kroute
.u
.hv_sint
.vcpu
= vcpu
;
2174 kroute
.u
.hv_sint
.sint
= sint
;
2176 kvm_add_routing_entry(s
, &kroute
);
2177 kvm_irqchip_commit_routes(s
);
2182 #else /* !KVM_CAP_IRQ_ROUTING */
2184 void kvm_init_irq_routing(KVMState
*s
)
2188 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
2192 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
2197 int kvm_irqchip_add_msi_route(KVMRouteChange
*c
, int vector
, PCIDevice
*dev
)
2202 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
2207 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
2212 static int kvm_irqchip_assign_irqfd(KVMState
*s
, EventNotifier
*event
,
2213 EventNotifier
*resample
, int virq
,
2219 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
2223 #endif /* !KVM_CAP_IRQ_ROUTING */
2225 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
2226 EventNotifier
*rn
, int virq
)
2228 return kvm_irqchip_assign_irqfd(s
, n
, rn
, virq
, true);
2231 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
2234 return kvm_irqchip_assign_irqfd(s
, n
, NULL
, virq
, false);
2237 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
2238 EventNotifier
*rn
, qemu_irq irq
)
2241 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
2246 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
2249 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
2253 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
2258 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
2261 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
2263 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
2266 static void kvm_irqchip_create(KVMState
*s
)
2270 assert(s
->kernel_irqchip_split
!= ON_OFF_AUTO_AUTO
);
2271 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
2273 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
2274 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
2276 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
2283 /* First probe and see if there's a arch-specific hook to create the
2284 * in-kernel irqchip for us */
2285 ret
= kvm_arch_irqchip_create(s
);
2287 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_ON
) {
2288 error_report("Split IRQ chip mode not supported.");
2291 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
2295 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
2299 kvm_kernel_irqchip
= true;
2300 /* If we have an in-kernel IRQ chip then we must have asynchronous
2301 * interrupt delivery (though the reverse is not necessarily true)
2303 kvm_async_interrupts_allowed
= true;
2304 kvm_halt_in_kernel_allowed
= true;
2306 kvm_init_irq_routing(s
);
2308 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2311 /* Find number of supported CPUs using the recommended
2312 * procedure from the kernel API documentation to cope with
2313 * older kernels that may be missing capabilities.
2315 static int kvm_recommended_vcpus(KVMState
*s
)
2317 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
2318 return (ret
) ? ret
: 4;
2321 static int kvm_max_vcpus(KVMState
*s
)
2323 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
2324 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
2327 static int kvm_max_vcpu_id(KVMState
*s
)
2329 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
2330 return (ret
) ? ret
: kvm_max_vcpus(s
);
2333 bool kvm_vcpu_id_is_valid(int vcpu_id
)
2335 KVMState
*s
= KVM_STATE(current_accel());
2336 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
2339 bool kvm_dirty_ring_enabled(void)
2341 return kvm_state
->kvm_dirty_ring_size
? true : false;
2344 static void query_stats_cb(StatsResultList
**result
, StatsTarget target
,
2345 strList
*names
, strList
*targets
, Error
**errp
);
2346 static void query_stats_schemas_cb(StatsSchemaList
**result
, Error
**errp
);
2348 uint32_t kvm_dirty_ring_size(void)
2350 return kvm_state
->kvm_dirty_ring_size
;
2353 static int kvm_init(MachineState
*ms
)
2355 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2356 static const char upgrade_note
[] =
2357 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2358 "(see http://sourceforge.net/projects/kvm).\n";
2363 { "SMP", ms
->smp
.cpus
},
2364 { "hotpluggable", ms
->smp
.max_cpus
},
2367 int soft_vcpus_limit
, hard_vcpus_limit
;
2369 const KVMCapabilityInfo
*missing_cap
;
2372 uint64_t dirty_log_manual_caps
;
2374 qemu_mutex_init(&kml_slots_lock
);
2376 s
= KVM_STATE(ms
->accelerator
);
2379 * On systems where the kernel can support different base page
2380 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2381 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2382 * page size for the system though.
2384 assert(TARGET_PAGE_SIZE
<= qemu_real_host_page_size());
2388 #ifdef KVM_CAP_SET_GUEST_DEBUG
2389 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
2391 QLIST_INIT(&s
->kvm_parked_vcpus
);
2392 s
->fd
= qemu_open_old("/dev/kvm", O_RDWR
);
2394 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
2399 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
2400 if (ret
< KVM_API_VERSION
) {
2404 fprintf(stderr
, "kvm version too old\n");
2408 if (ret
> KVM_API_VERSION
) {
2410 fprintf(stderr
, "kvm version not supported\n");
2414 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
2415 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2417 /* If unspecified, use the default value */
2422 s
->nr_as
= kvm_check_extension(s
, KVM_CAP_MULTI_ADDRESS_SPACE
);
2423 if (s
->nr_as
<= 1) {
2426 s
->as
= g_new0(struct KVMAs
, s
->nr_as
);
2428 if (object_property_find(OBJECT(current_machine
), "kvm-type")) {
2429 g_autofree
char *kvm_type
= object_property_get_str(OBJECT(current_machine
),
2432 type
= mc
->kvm_type(ms
, kvm_type
);
2433 } else if (mc
->kvm_type
) {
2434 type
= mc
->kvm_type(ms
, NULL
);
2438 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
2439 } while (ret
== -EINTR
);
2442 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
2446 if (ret
== -EINVAL
) {
2448 "Host kernel setup problem detected. Please verify:\n");
2449 fprintf(stderr
, "- for kernels supporting the switch_amode or"
2450 " user_mode parameters, whether\n");
2452 " user space is running in primary address space\n");
2454 "- for kernels supporting the vm.allocate_pgste sysctl, "
2455 "whether it is enabled\n");
2457 #elif defined(TARGET_PPC)
2458 if (ret
== -EINVAL
) {
2460 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2461 (type
== 2) ? "pr" : "hv");
2469 /* check the vcpu limits */
2470 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
2471 hard_vcpus_limit
= kvm_max_vcpus(s
);
2474 if (nc
->num
> soft_vcpus_limit
) {
2475 warn_report("Number of %s cpus requested (%d) exceeds "
2476 "the recommended cpus supported by KVM (%d)",
2477 nc
->name
, nc
->num
, soft_vcpus_limit
);
2479 if (nc
->num
> hard_vcpus_limit
) {
2480 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
2481 "the maximum cpus supported by KVM (%d)\n",
2482 nc
->name
, nc
->num
, hard_vcpus_limit
);
2489 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
2492 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
2496 fprintf(stderr
, "kvm does not support %s\n%s",
2497 missing_cap
->name
, upgrade_note
);
2501 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
2502 s
->coalesced_pio
= s
->coalesced_mmio
&&
2503 kvm_check_extension(s
, KVM_CAP_COALESCED_PIO
);
2506 * Enable KVM dirty ring if supported, otherwise fall back to
2507 * dirty logging mode
2509 if (s
->kvm_dirty_ring_size
> 0) {
2510 uint64_t ring_bytes
;
2512 ring_bytes
= s
->kvm_dirty_ring_size
* sizeof(struct kvm_dirty_gfn
);
2514 /* Read the max supported pages */
2515 ret
= kvm_vm_check_extension(s
, KVM_CAP_DIRTY_LOG_RING
);
2517 if (ring_bytes
> ret
) {
2518 error_report("KVM dirty ring size %" PRIu32
" too big "
2519 "(maximum is %ld). Please use a smaller value.",
2520 s
->kvm_dirty_ring_size
,
2521 (long)ret
/ sizeof(struct kvm_dirty_gfn
));
2526 ret
= kvm_vm_enable_cap(s
, KVM_CAP_DIRTY_LOG_RING
, 0, ring_bytes
);
2528 error_report("Enabling of KVM dirty ring failed: %s. "
2529 "Suggested minimum value is 1024.", strerror(-ret
));
2533 s
->kvm_dirty_ring_bytes
= ring_bytes
;
2535 warn_report("KVM dirty ring not available, using bitmap method");
2536 s
->kvm_dirty_ring_size
= 0;
2541 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2542 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2543 * page is wr-protected initially, which is against how kvm dirty ring is
2544 * usage - kvm dirty ring requires all pages are wr-protected at the very
2545 * beginning. Enabling this feature for dirty ring causes data corruption.
2547 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2548 * we may expect a higher stall time when starting the migration. In the
2549 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2550 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2553 if (!s
->kvm_dirty_ring_size
) {
2554 dirty_log_manual_caps
=
2555 kvm_check_extension(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
);
2556 dirty_log_manual_caps
&= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
|
2557 KVM_DIRTY_LOG_INITIALLY_SET
);
2558 s
->manual_dirty_log_protect
= dirty_log_manual_caps
;
2559 if (dirty_log_manual_caps
) {
2560 ret
= kvm_vm_enable_cap(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
, 0,
2561 dirty_log_manual_caps
);
2563 warn_report("Trying to enable capability %"PRIu64
" of "
2564 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2565 "Falling back to the legacy mode. ",
2566 dirty_log_manual_caps
);
2567 s
->manual_dirty_log_protect
= 0;
2572 #ifdef KVM_CAP_VCPU_EVENTS
2573 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
2576 s
->robust_singlestep
=
2577 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
2579 #ifdef KVM_CAP_DEBUGREGS
2580 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
2583 s
->max_nested_state_len
= kvm_check_extension(s
, KVM_CAP_NESTED_STATE
);
2585 #ifdef KVM_CAP_IRQ_ROUTING
2586 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
2589 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
2591 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
2592 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
2593 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
2596 kvm_readonly_mem_allowed
=
2597 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
2599 kvm_eventfds_allowed
=
2600 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
2602 kvm_irqfds_allowed
=
2603 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
2605 kvm_resamplefds_allowed
=
2606 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
2608 kvm_vm_attributes_allowed
=
2609 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
2611 kvm_ioeventfd_any_length_allowed
=
2612 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
2614 #ifdef KVM_CAP_SET_GUEST_DEBUG
2615 kvm_has_guest_debug
=
2616 (kvm_check_extension(s
, KVM_CAP_SET_GUEST_DEBUG
) > 0);
2619 kvm_sstep_flags
= 0;
2620 if (kvm_has_guest_debug
) {
2621 kvm_sstep_flags
= SSTEP_ENABLE
;
2623 #if defined KVM_CAP_SET_GUEST_DEBUG2
2624 int guest_debug_flags
=
2625 kvm_check_extension(s
, KVM_CAP_SET_GUEST_DEBUG2
);
2627 if (guest_debug_flags
& KVM_GUESTDBG_BLOCKIRQ
) {
2628 kvm_sstep_flags
|= SSTEP_NOIRQ
;
2635 ret
= kvm_arch_init(ms
, s
);
2640 if (s
->kernel_irqchip_split
== ON_OFF_AUTO_AUTO
) {
2641 s
->kernel_irqchip_split
= mc
->default_kernel_irqchip_split
? ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
2644 qemu_register_reset(kvm_unpoison_all
, NULL
);
2646 if (s
->kernel_irqchip_allowed
) {
2647 kvm_irqchip_create(s
);
2650 if (kvm_eventfds_allowed
) {
2651 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
2652 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
2654 s
->memory_listener
.listener
.coalesced_io_add
= kvm_coalesce_mmio_region
;
2655 s
->memory_listener
.listener
.coalesced_io_del
= kvm_uncoalesce_mmio_region
;
2657 kvm_memory_listener_register(s
, &s
->memory_listener
,
2658 &address_space_memory
, 0, "kvm-memory");
2659 if (kvm_eventfds_allowed
) {
2660 memory_listener_register(&kvm_io_listener
,
2663 memory_listener_register(&kvm_coalesced_pio_listener
,
2666 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
2668 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2670 ret
= ram_block_discard_disable(true);
2674 if (s
->kvm_dirty_ring_size
) {
2675 ret
= kvm_dirty_ring_reaper_init(s
);
2681 if (kvm_check_extension(kvm_state
, KVM_CAP_BINARY_STATS_FD
)) {
2682 add_stats_callbacks(STATS_PROVIDER_KVM
, query_stats_cb
,
2683 query_stats_schemas_cb
);
2696 g_free(s
->memory_listener
.slots
);
2701 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
2703 s
->sigmask_len
= sigmask_len
;
2706 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
2707 int size
, uint32_t count
)
2710 uint8_t *ptr
= data
;
2712 for (i
= 0; i
< count
; i
++) {
2713 address_space_rw(&address_space_io
, port
, attrs
,
2715 direction
== KVM_EXIT_IO_OUT
);
2720 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
2722 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
2723 run
->internal
.suberror
);
2725 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
2728 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
2729 fprintf(stderr
, "extra data[%d]: 0x%016"PRIx64
"\n",
2730 i
, (uint64_t)run
->internal
.data
[i
]);
2733 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
2734 fprintf(stderr
, "emulation failure\n");
2735 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
2736 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2737 return EXCP_INTERRUPT
;
2740 /* FIXME: Should trigger a qmp message to let management know
2741 * something went wrong.
2746 void kvm_flush_coalesced_mmio_buffer(void)
2748 KVMState
*s
= kvm_state
;
2750 if (s
->coalesced_flush_in_progress
) {
2754 s
->coalesced_flush_in_progress
= true;
2756 if (s
->coalesced_mmio_ring
) {
2757 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
2758 while (ring
->first
!= ring
->last
) {
2759 struct kvm_coalesced_mmio
*ent
;
2761 ent
= &ring
->coalesced_mmio
[ring
->first
];
2763 if (ent
->pio
== 1) {
2764 address_space_write(&address_space_io
, ent
->phys_addr
,
2765 MEMTXATTRS_UNSPECIFIED
, ent
->data
,
2768 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
2771 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
2775 s
->coalesced_flush_in_progress
= false;
2778 bool kvm_cpu_check_are_resettable(void)
2780 return kvm_arch_cpu_check_are_resettable();
2783 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
2785 if (!cpu
->vcpu_dirty
) {
2786 kvm_arch_get_registers(cpu
);
2787 cpu
->vcpu_dirty
= true;
2791 void kvm_cpu_synchronize_state(CPUState
*cpu
)
2793 if (!cpu
->vcpu_dirty
) {
2794 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
2798 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
2800 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
2801 cpu
->vcpu_dirty
= false;
2804 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
2806 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
2809 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
2811 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
2812 cpu
->vcpu_dirty
= false;
2815 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
2817 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
2820 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
2822 cpu
->vcpu_dirty
= true;
2825 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
2827 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
2830 #ifdef KVM_HAVE_MCE_INJECTION
2831 static __thread
void *pending_sigbus_addr
;
2832 static __thread
int pending_sigbus_code
;
2833 static __thread
bool have_sigbus_pending
;
2836 static void kvm_cpu_kick(CPUState
*cpu
)
2838 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
2841 static void kvm_cpu_kick_self(void)
2843 if (kvm_immediate_exit
) {
2844 kvm_cpu_kick(current_cpu
);
2846 qemu_cpu_kick_self();
2850 static void kvm_eat_signals(CPUState
*cpu
)
2852 struct timespec ts
= { 0, 0 };
2858 if (kvm_immediate_exit
) {
2859 qatomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
2860 /* Write kvm_run->immediate_exit before the cpu->exit_request
2861 * write in kvm_cpu_exec.
2867 sigemptyset(&waitset
);
2868 sigaddset(&waitset
, SIG_IPI
);
2871 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
2872 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
2873 perror("sigtimedwait");
2877 r
= sigpending(&chkset
);
2879 perror("sigpending");
2882 } while (sigismember(&chkset
, SIG_IPI
));
2885 int kvm_cpu_exec(CPUState
*cpu
)
2887 struct kvm_run
*run
= cpu
->kvm_run
;
2890 DPRINTF("kvm_cpu_exec()\n");
2892 if (kvm_arch_process_async_events(cpu
)) {
2893 qatomic_set(&cpu
->exit_request
, 0);
2897 qemu_mutex_unlock_iothread();
2898 cpu_exec_start(cpu
);
2903 if (cpu
->vcpu_dirty
) {
2904 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
2905 cpu
->vcpu_dirty
= false;
2908 kvm_arch_pre_run(cpu
, run
);
2909 if (qatomic_read(&cpu
->exit_request
)) {
2910 DPRINTF("interrupt exit requested\n");
2912 * KVM requires us to reenter the kernel after IO exits to complete
2913 * instruction emulation. This self-signal will ensure that we
2916 kvm_cpu_kick_self();
2919 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2920 * Matching barrier in kvm_eat_signals.
2924 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
2926 attrs
= kvm_arch_post_run(cpu
, run
);
2928 #ifdef KVM_HAVE_MCE_INJECTION
2929 if (unlikely(have_sigbus_pending
)) {
2930 qemu_mutex_lock_iothread();
2931 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
2932 pending_sigbus_addr
);
2933 have_sigbus_pending
= false;
2934 qemu_mutex_unlock_iothread();
2939 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
2940 DPRINTF("io window exit\n");
2941 kvm_eat_signals(cpu
);
2942 ret
= EXCP_INTERRUPT
;
2945 fprintf(stderr
, "error: kvm run failed %s\n",
2946 strerror(-run_ret
));
2948 if (run_ret
== -EBUSY
) {
2950 "This is probably because your SMT is enabled.\n"
2951 "VCPU can only run on primary threads with all "
2952 "secondary threads offline.\n");
2959 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
2960 switch (run
->exit_reason
) {
2962 DPRINTF("handle_io\n");
2963 /* Called outside BQL */
2964 kvm_handle_io(run
->io
.port
, attrs
,
2965 (uint8_t *)run
+ run
->io
.data_offset
,
2972 DPRINTF("handle_mmio\n");
2973 /* Called outside BQL */
2974 address_space_rw(&address_space_memory
,
2975 run
->mmio
.phys_addr
, attrs
,
2978 run
->mmio
.is_write
);
2981 case KVM_EXIT_IRQ_WINDOW_OPEN
:
2982 DPRINTF("irq_window_open\n");
2983 ret
= EXCP_INTERRUPT
;
2985 case KVM_EXIT_SHUTDOWN
:
2986 DPRINTF("shutdown\n");
2987 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2988 ret
= EXCP_INTERRUPT
;
2990 case KVM_EXIT_UNKNOWN
:
2991 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
2992 (uint64_t)run
->hw
.hardware_exit_reason
);
2995 case KVM_EXIT_INTERNAL_ERROR
:
2996 ret
= kvm_handle_internal_error(cpu
, run
);
2998 case KVM_EXIT_DIRTY_RING_FULL
:
3000 * We shouldn't continue if the dirty ring of this vcpu is
3001 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3003 trace_kvm_dirty_ring_full(cpu
->cpu_index
);
3004 qemu_mutex_lock_iothread();
3006 * We throttle vCPU by making it sleep once it exit from kernel
3007 * due to dirty ring full. In the dirtylimit scenario, reaping
3008 * all vCPUs after a single vCPU dirty ring get full result in
3009 * the miss of sleep, so just reap the ring-fulled vCPU.
3011 if (dirtylimit_in_service()) {
3012 kvm_dirty_ring_reap(kvm_state
, cpu
);
3014 kvm_dirty_ring_reap(kvm_state
, NULL
);
3016 qemu_mutex_unlock_iothread();
3017 dirtylimit_vcpu_execute(cpu
);
3020 case KVM_EXIT_SYSTEM_EVENT
:
3021 switch (run
->system_event
.type
) {
3022 case KVM_SYSTEM_EVENT_SHUTDOWN
:
3023 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
3024 ret
= EXCP_INTERRUPT
;
3026 case KVM_SYSTEM_EVENT_RESET
:
3027 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
3028 ret
= EXCP_INTERRUPT
;
3030 case KVM_SYSTEM_EVENT_CRASH
:
3031 kvm_cpu_synchronize_state(cpu
);
3032 qemu_mutex_lock_iothread();
3033 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
3034 qemu_mutex_unlock_iothread();
3038 DPRINTF("kvm_arch_handle_exit\n");
3039 ret
= kvm_arch_handle_exit(cpu
, run
);
3044 DPRINTF("kvm_arch_handle_exit\n");
3045 ret
= kvm_arch_handle_exit(cpu
, run
);
3051 qemu_mutex_lock_iothread();
3054 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
3055 vm_stop(RUN_STATE_INTERNAL_ERROR
);
3058 qatomic_set(&cpu
->exit_request
, 0);
3062 int kvm_ioctl(KVMState
*s
, int type
, ...)
3069 arg
= va_arg(ap
, void *);
3072 trace_kvm_ioctl(type
, arg
);
3073 ret
= ioctl(s
->fd
, type
, arg
);
3080 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
3087 arg
= va_arg(ap
, void *);
3090 trace_kvm_vm_ioctl(type
, arg
);
3091 ret
= ioctl(s
->vmfd
, type
, arg
);
3098 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
3105 arg
= va_arg(ap
, void *);
3108 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
3109 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
3116 int kvm_device_ioctl(int fd
, int type
, ...)
3123 arg
= va_arg(ap
, void *);
3126 trace_kvm_device_ioctl(fd
, type
, arg
);
3127 ret
= ioctl(fd
, type
, arg
);
3134 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
3137 struct kvm_device_attr attribute
= {
3142 if (!kvm_vm_attributes_allowed
) {
3146 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
3147 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3151 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
3153 struct kvm_device_attr attribute
= {
3159 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
3162 int kvm_device_access(int fd
, int group
, uint64_t attr
,
3163 void *val
, bool write
, Error
**errp
)
3165 struct kvm_device_attr kvmattr
;
3169 kvmattr
.group
= group
;
3170 kvmattr
.attr
= attr
;
3171 kvmattr
.addr
= (uintptr_t)val
;
3173 err
= kvm_device_ioctl(fd
,
3174 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
3177 error_setg_errno(errp
, -err
,
3178 "KVM_%s_DEVICE_ATTR failed: Group %d "
3179 "attr 0x%016" PRIx64
,
3180 write
? "SET" : "GET", group
, attr
);
3185 bool kvm_has_sync_mmu(void)
3187 return kvm_state
->sync_mmu
;
3190 int kvm_has_vcpu_events(void)
3192 return kvm_state
->vcpu_events
;
3195 int kvm_has_robust_singlestep(void)
3197 return kvm_state
->robust_singlestep
;
3200 int kvm_has_debugregs(void)
3202 return kvm_state
->debugregs
;
3205 int kvm_max_nested_state_length(void)
3207 return kvm_state
->max_nested_state_len
;
3210 int kvm_has_many_ioeventfds(void)
3212 if (!kvm_enabled()) {
3215 return kvm_state
->many_ioeventfds
;
3218 int kvm_has_gsi_routing(void)
3220 #ifdef KVM_CAP_IRQ_ROUTING
3221 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
3227 int kvm_has_intx_set_mask(void)
3229 return kvm_state
->intx_set_mask
;
3232 bool kvm_arm_supports_user_irq(void)
3234 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
3237 #ifdef KVM_CAP_SET_GUEST_DEBUG
3238 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
3241 struct kvm_sw_breakpoint
*bp
;
3243 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
3251 int kvm_sw_breakpoints_active(CPUState
*cpu
)
3253 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
3256 struct kvm_set_guest_debug_data
{
3257 struct kvm_guest_debug dbg
;
3261 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
3263 struct kvm_set_guest_debug_data
*dbg_data
=
3264 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
3266 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
3270 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
3272 struct kvm_set_guest_debug_data data
;
3274 data
.dbg
.control
= reinject_trap
;
3276 if (cpu
->singlestep_enabled
) {
3277 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
3279 if (cpu
->singlestep_enabled
& SSTEP_NOIRQ
) {
3280 data
.dbg
.control
|= KVM_GUESTDBG_BLOCKIRQ
;
3283 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
3285 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
3286 RUN_ON_CPU_HOST_PTR(&data
));
3290 bool kvm_supports_guest_debug(void)
3292 /* probed during kvm_init() */
3293 return kvm_has_guest_debug
;
3296 int kvm_insert_breakpoint(CPUState
*cpu
, int type
, hwaddr addr
, hwaddr len
)
3298 struct kvm_sw_breakpoint
*bp
;
3301 if (type
== GDB_BREAKPOINT_SW
) {
3302 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
3308 bp
= g_new(struct kvm_sw_breakpoint
, 1);
3311 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
3317 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
3319 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
3326 err
= kvm_update_guest_debug(cpu
, 0);
3334 int kvm_remove_breakpoint(CPUState
*cpu
, int type
, hwaddr addr
, hwaddr len
)
3336 struct kvm_sw_breakpoint
*bp
;
3339 if (type
== GDB_BREAKPOINT_SW
) {
3340 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
3345 if (bp
->use_count
> 1) {
3350 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
3355 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
3358 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
3365 err
= kvm_update_guest_debug(cpu
, 0);
3373 void kvm_remove_all_breakpoints(CPUState
*cpu
)
3375 struct kvm_sw_breakpoint
*bp
, *next
;
3376 KVMState
*s
= cpu
->kvm_state
;
3379 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
3380 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
3381 /* Try harder to find a CPU that currently sees the breakpoint. */
3382 CPU_FOREACH(tmpcpu
) {
3383 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
3388 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
3391 kvm_arch_remove_all_hw_breakpoints();
3394 kvm_update_guest_debug(cpu
, 0);
3398 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3400 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
3402 KVMState
*s
= kvm_state
;
3403 struct kvm_signal_mask
*sigmask
;
3406 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
3408 sigmask
->len
= s
->sigmask_len
;
3409 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
3410 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
3416 static void kvm_ipi_signal(int sig
)
3419 assert(kvm_immediate_exit
);
3420 kvm_cpu_kick(current_cpu
);
3424 void kvm_init_cpu_signals(CPUState
*cpu
)
3428 struct sigaction sigact
;
3430 memset(&sigact
, 0, sizeof(sigact
));
3431 sigact
.sa_handler
= kvm_ipi_signal
;
3432 sigaction(SIG_IPI
, &sigact
, NULL
);
3434 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
3435 #if defined KVM_HAVE_MCE_INJECTION
3436 sigdelset(&set
, SIGBUS
);
3437 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
3439 sigdelset(&set
, SIG_IPI
);
3440 if (kvm_immediate_exit
) {
3441 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
3443 r
= kvm_set_signal_mask(cpu
, &set
);
3446 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
3451 /* Called asynchronously in VCPU thread. */
3452 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
3454 #ifdef KVM_HAVE_MCE_INJECTION
3455 if (have_sigbus_pending
) {
3458 have_sigbus_pending
= true;
3459 pending_sigbus_addr
= addr
;
3460 pending_sigbus_code
= code
;
3461 qatomic_set(&cpu
->exit_request
, 1);
3468 /* Called synchronously (via signalfd) in main thread. */
3469 int kvm_on_sigbus(int code
, void *addr
)
3471 #ifdef KVM_HAVE_MCE_INJECTION
3472 /* Action required MCE kills the process if SIGBUS is blocked. Because
3473 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3474 * we can only get action optional here.
3476 assert(code
!= BUS_MCEERR_AR
);
3477 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
3484 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
3487 struct kvm_create_device create_dev
;
3489 create_dev
.type
= type
;
3491 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
3493 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
3497 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
3502 return test
? 0 : create_dev
.fd
;
3505 bool kvm_device_supported(int vmfd
, uint64_t type
)
3507 struct kvm_create_device create_dev
= {
3510 .flags
= KVM_CREATE_DEVICE_TEST
,
3513 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
3517 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
3520 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
3522 struct kvm_one_reg reg
;
3526 reg
.addr
= (uintptr_t) source
;
3527 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
3529 trace_kvm_failed_reg_set(id
, strerror(-r
));
3534 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
3536 struct kvm_one_reg reg
;
3540 reg
.addr
= (uintptr_t) target
;
3541 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
3543 trace_kvm_failed_reg_get(id
, strerror(-r
));
3548 static bool kvm_accel_has_memory(MachineState
*ms
, AddressSpace
*as
,
3549 hwaddr start_addr
, hwaddr size
)
3551 KVMState
*kvm
= KVM_STATE(ms
->accelerator
);
3554 for (i
= 0; i
< kvm
->nr_as
; ++i
) {
3555 if (kvm
->as
[i
].as
== as
&& kvm
->as
[i
].ml
) {
3556 size
= MIN(kvm_max_slot_size
, size
);
3557 return NULL
!= kvm_lookup_matching_slot(kvm
->as
[i
].ml
,
3565 static void kvm_get_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3566 const char *name
, void *opaque
,
3569 KVMState
*s
= KVM_STATE(obj
);
3570 int64_t value
= s
->kvm_shadow_mem
;
3572 visit_type_int(v
, name
, &value
, errp
);
3575 static void kvm_set_kvm_shadow_mem(Object
*obj
, Visitor
*v
,
3576 const char *name
, void *opaque
,
3579 KVMState
*s
= KVM_STATE(obj
);
3583 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3587 if (!visit_type_int(v
, name
, &value
, errp
)) {
3591 s
->kvm_shadow_mem
= value
;
3594 static void kvm_set_kernel_irqchip(Object
*obj
, Visitor
*v
,
3595 const char *name
, void *opaque
,
3598 KVMState
*s
= KVM_STATE(obj
);
3602 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3606 if (!visit_type_OnOffSplit(v
, name
, &mode
, errp
)) {
3610 case ON_OFF_SPLIT_ON
:
3611 s
->kernel_irqchip_allowed
= true;
3612 s
->kernel_irqchip_required
= true;
3613 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3615 case ON_OFF_SPLIT_OFF
:
3616 s
->kernel_irqchip_allowed
= false;
3617 s
->kernel_irqchip_required
= false;
3618 s
->kernel_irqchip_split
= ON_OFF_AUTO_OFF
;
3620 case ON_OFF_SPLIT_SPLIT
:
3621 s
->kernel_irqchip_allowed
= true;
3622 s
->kernel_irqchip_required
= true;
3623 s
->kernel_irqchip_split
= ON_OFF_AUTO_ON
;
3626 /* The value was checked in visit_type_OnOffSplit() above. If
3627 * we get here, then something is wrong in QEMU.
3633 bool kvm_kernel_irqchip_allowed(void)
3635 return kvm_state
->kernel_irqchip_allowed
;
3638 bool kvm_kernel_irqchip_required(void)
3640 return kvm_state
->kernel_irqchip_required
;
3643 bool kvm_kernel_irqchip_split(void)
3645 return kvm_state
->kernel_irqchip_split
== ON_OFF_AUTO_ON
;
3648 static void kvm_get_dirty_ring_size(Object
*obj
, Visitor
*v
,
3649 const char *name
, void *opaque
,
3652 KVMState
*s
= KVM_STATE(obj
);
3653 uint32_t value
= s
->kvm_dirty_ring_size
;
3655 visit_type_uint32(v
, name
, &value
, errp
);
3658 static void kvm_set_dirty_ring_size(Object
*obj
, Visitor
*v
,
3659 const char *name
, void *opaque
,
3662 KVMState
*s
= KVM_STATE(obj
);
3663 Error
*error
= NULL
;
3667 error_setg(errp
, "Cannot set properties after the accelerator has been initialized");
3671 visit_type_uint32(v
, name
, &value
, &error
);
3673 error_propagate(errp
, error
);
3676 if (value
& (value
- 1)) {
3677 error_setg(errp
, "dirty-ring-size must be a power of two.");
3681 s
->kvm_dirty_ring_size
= value
;
3684 static void kvm_accel_instance_init(Object
*obj
)
3686 KVMState
*s
= KVM_STATE(obj
);
3690 s
->kvm_shadow_mem
= -1;
3691 s
->kernel_irqchip_allowed
= true;
3692 s
->kernel_irqchip_split
= ON_OFF_AUTO_AUTO
;
3693 /* KVM dirty ring is by default off */
3694 s
->kvm_dirty_ring_size
= 0;
3698 * kvm_gdbstub_sstep_flags():
3700 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3701 * support is probed during kvm_init()
3703 static int kvm_gdbstub_sstep_flags(void)
3705 return kvm_sstep_flags
;
3708 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
3710 AccelClass
*ac
= ACCEL_CLASS(oc
);
3712 ac
->init_machine
= kvm_init
;
3713 ac
->has_memory
= kvm_accel_has_memory
;
3714 ac
->allowed
= &kvm_allowed
;
3715 ac
->gdbstub_supported_sstep_flags
= kvm_gdbstub_sstep_flags
;
3717 object_class_property_add(oc
, "kernel-irqchip", "on|off|split",
3718 NULL
, kvm_set_kernel_irqchip
,
3720 object_class_property_set_description(oc
, "kernel-irqchip",
3721 "Configure KVM in-kernel irqchip");
3723 object_class_property_add(oc
, "kvm-shadow-mem", "int",
3724 kvm_get_kvm_shadow_mem
, kvm_set_kvm_shadow_mem
,
3726 object_class_property_set_description(oc
, "kvm-shadow-mem",
3727 "KVM shadow MMU size");
3729 object_class_property_add(oc
, "dirty-ring-size", "uint32",
3730 kvm_get_dirty_ring_size
, kvm_set_dirty_ring_size
,
3732 object_class_property_set_description(oc
, "dirty-ring-size",
3733 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3735 kvm_arch_accel_class_init(oc
);
3738 static const TypeInfo kvm_accel_type
= {
3739 .name
= TYPE_KVM_ACCEL
,
3740 .parent
= TYPE_ACCEL
,
3741 .instance_init
= kvm_accel_instance_init
,
3742 .class_init
= kvm_accel_class_init
,
3743 .instance_size
= sizeof(KVMState
),
3746 static void kvm_type_init(void)
3748 type_register_static(&kvm_accel_type
);
3751 type_init(kvm_type_init
);
3753 typedef struct StatsArgs
{
3754 union StatsResultsType
{
3755 StatsResultList
**stats
;
3756 StatsSchemaList
**schema
;
3762 static StatsList
*add_kvmstat_entry(struct kvm_stats_desc
*pdesc
,
3763 uint64_t *stats_data
,
3764 StatsList
*stats_list
,
3769 uint64List
*val_list
= NULL
;
3771 /* Only add stats that we understand. */
3772 switch (pdesc
->flags
& KVM_STATS_TYPE_MASK
) {
3773 case KVM_STATS_TYPE_CUMULATIVE
:
3774 case KVM_STATS_TYPE_INSTANT
:
3775 case KVM_STATS_TYPE_PEAK
:
3776 case KVM_STATS_TYPE_LINEAR_HIST
:
3777 case KVM_STATS_TYPE_LOG_HIST
:
3783 switch (pdesc
->flags
& KVM_STATS_UNIT_MASK
) {
3784 case KVM_STATS_UNIT_NONE
:
3785 case KVM_STATS_UNIT_BYTES
:
3786 case KVM_STATS_UNIT_CYCLES
:
3787 case KVM_STATS_UNIT_SECONDS
:
3788 case KVM_STATS_UNIT_BOOLEAN
:
3794 switch (pdesc
->flags
& KVM_STATS_BASE_MASK
) {
3795 case KVM_STATS_BASE_POW10
:
3796 case KVM_STATS_BASE_POW2
:
3802 /* Alloc and populate data list */
3803 stats
= g_new0(Stats
, 1);
3804 stats
->name
= g_strdup(pdesc
->name
);
3805 stats
->value
= g_new0(StatsValue
, 1);;
3807 if ((pdesc
->flags
& KVM_STATS_UNIT_MASK
) == KVM_STATS_UNIT_BOOLEAN
) {
3808 stats
->value
->u
.boolean
= *stats_data
;
3809 stats
->value
->type
= QTYPE_QBOOL
;
3810 } else if (pdesc
->size
== 1) {
3811 stats
->value
->u
.scalar
= *stats_data
;
3812 stats
->value
->type
= QTYPE_QNUM
;
3815 for (i
= 0; i
< pdesc
->size
; i
++) {
3816 QAPI_LIST_PREPEND(val_list
, stats_data
[i
]);
3818 stats
->value
->u
.list
= val_list
;
3819 stats
->value
->type
= QTYPE_QLIST
;
3822 QAPI_LIST_PREPEND(stats_list
, stats
);
3826 static StatsSchemaValueList
*add_kvmschema_entry(struct kvm_stats_desc
*pdesc
,
3827 StatsSchemaValueList
*list
,
3830 StatsSchemaValueList
*schema_entry
= g_new0(StatsSchemaValueList
, 1);
3831 schema_entry
->value
= g_new0(StatsSchemaValue
, 1);
3833 switch (pdesc
->flags
& KVM_STATS_TYPE_MASK
) {
3834 case KVM_STATS_TYPE_CUMULATIVE
:
3835 schema_entry
->value
->type
= STATS_TYPE_CUMULATIVE
;
3837 case KVM_STATS_TYPE_INSTANT
:
3838 schema_entry
->value
->type
= STATS_TYPE_INSTANT
;
3840 case KVM_STATS_TYPE_PEAK
:
3841 schema_entry
->value
->type
= STATS_TYPE_PEAK
;
3843 case KVM_STATS_TYPE_LINEAR_HIST
:
3844 schema_entry
->value
->type
= STATS_TYPE_LINEAR_HISTOGRAM
;
3845 schema_entry
->value
->bucket_size
= pdesc
->bucket_size
;
3846 schema_entry
->value
->has_bucket_size
= true;
3848 case KVM_STATS_TYPE_LOG_HIST
:
3849 schema_entry
->value
->type
= STATS_TYPE_LOG2_HISTOGRAM
;
3855 switch (pdesc
->flags
& KVM_STATS_UNIT_MASK
) {
3856 case KVM_STATS_UNIT_NONE
:
3858 case KVM_STATS_UNIT_BOOLEAN
:
3859 schema_entry
->value
->has_unit
= true;
3860 schema_entry
->value
->unit
= STATS_UNIT_BOOLEAN
;
3862 case KVM_STATS_UNIT_BYTES
:
3863 schema_entry
->value
->has_unit
= true;
3864 schema_entry
->value
->unit
= STATS_UNIT_BYTES
;
3866 case KVM_STATS_UNIT_CYCLES
:
3867 schema_entry
->value
->has_unit
= true;
3868 schema_entry
->value
->unit
= STATS_UNIT_CYCLES
;
3870 case KVM_STATS_UNIT_SECONDS
:
3871 schema_entry
->value
->has_unit
= true;
3872 schema_entry
->value
->unit
= STATS_UNIT_SECONDS
;
3878 schema_entry
->value
->exponent
= pdesc
->exponent
;
3879 if (pdesc
->exponent
) {
3880 switch (pdesc
->flags
& KVM_STATS_BASE_MASK
) {
3881 case KVM_STATS_BASE_POW10
:
3882 schema_entry
->value
->has_base
= true;
3883 schema_entry
->value
->base
= 10;
3885 case KVM_STATS_BASE_POW2
:
3886 schema_entry
->value
->has_base
= true;
3887 schema_entry
->value
->base
= 2;
3894 schema_entry
->value
->name
= g_strdup(pdesc
->name
);
3895 schema_entry
->next
= list
;
3896 return schema_entry
;
3898 g_free(schema_entry
->value
);
3899 g_free(schema_entry
);
3903 /* Cached stats descriptors */
3904 typedef struct StatsDescriptors
{
3905 const char *ident
; /* cache key, currently the StatsTarget */
3906 struct kvm_stats_desc
*kvm_stats_desc
;
3907 struct kvm_stats_header kvm_stats_header
;
3908 QTAILQ_ENTRY(StatsDescriptors
) next
;
3911 static QTAILQ_HEAD(, StatsDescriptors
) stats_descriptors
=
3912 QTAILQ_HEAD_INITIALIZER(stats_descriptors
);
3915 * Return the descriptors for 'target', that either have already been read
3916 * or are retrieved from 'stats_fd'.
3918 static StatsDescriptors
*find_stats_descriptors(StatsTarget target
, int stats_fd
,
3921 StatsDescriptors
*descriptors
;
3923 struct kvm_stats_desc
*kvm_stats_desc
;
3924 struct kvm_stats_header
*kvm_stats_header
;
3928 ident
= StatsTarget_str(target
);
3929 QTAILQ_FOREACH(descriptors
, &stats_descriptors
, next
) {
3930 if (g_str_equal(descriptors
->ident
, ident
)) {
3935 descriptors
= g_new0(StatsDescriptors
, 1);
3937 /* Read stats header */
3938 kvm_stats_header
= &descriptors
->kvm_stats_header
;
3939 ret
= read(stats_fd
, kvm_stats_header
, sizeof(*kvm_stats_header
));
3940 if (ret
!= sizeof(*kvm_stats_header
)) {
3941 error_setg(errp
, "KVM stats: failed to read stats header: "
3942 "expected %zu actual %zu",
3943 sizeof(*kvm_stats_header
), ret
);
3944 g_free(descriptors
);
3947 size_desc
= sizeof(*kvm_stats_desc
) + kvm_stats_header
->name_size
;
3949 /* Read stats descriptors */
3950 kvm_stats_desc
= g_malloc0_n(kvm_stats_header
->num_desc
, size_desc
);
3951 ret
= pread(stats_fd
, kvm_stats_desc
,
3952 size_desc
* kvm_stats_header
->num_desc
,
3953 kvm_stats_header
->desc_offset
);
3955 if (ret
!= size_desc
* kvm_stats_header
->num_desc
) {
3956 error_setg(errp
, "KVM stats: failed to read stats descriptors: "
3957 "expected %zu actual %zu",
3958 size_desc
* kvm_stats_header
->num_desc
, ret
);
3959 g_free(descriptors
);
3960 g_free(kvm_stats_desc
);
3963 descriptors
->kvm_stats_desc
= kvm_stats_desc
;
3964 descriptors
->ident
= ident
;
3965 QTAILQ_INSERT_TAIL(&stats_descriptors
, descriptors
, next
);
3969 static void query_stats(StatsResultList
**result
, StatsTarget target
,
3970 strList
*names
, int stats_fd
, Error
**errp
)
3972 struct kvm_stats_desc
*kvm_stats_desc
;
3973 struct kvm_stats_header
*kvm_stats_header
;
3974 StatsDescriptors
*descriptors
;
3975 g_autofree
uint64_t *stats_data
= NULL
;
3976 struct kvm_stats_desc
*pdesc
;
3977 StatsList
*stats_list
= NULL
;
3978 size_t size_desc
, size_data
= 0;
3982 descriptors
= find_stats_descriptors(target
, stats_fd
, errp
);
3987 kvm_stats_header
= &descriptors
->kvm_stats_header
;
3988 kvm_stats_desc
= descriptors
->kvm_stats_desc
;
3989 size_desc
= sizeof(*kvm_stats_desc
) + kvm_stats_header
->name_size
;
3991 /* Tally the total data size; read schema data */
3992 for (i
= 0; i
< kvm_stats_header
->num_desc
; ++i
) {
3993 pdesc
= (void *)kvm_stats_desc
+ i
* size_desc
;
3994 size_data
+= pdesc
->size
* sizeof(*stats_data
);
3997 stats_data
= g_malloc0(size_data
);
3998 ret
= pread(stats_fd
, stats_data
, size_data
, kvm_stats_header
->data_offset
);
4000 if (ret
!= size_data
) {
4001 error_setg(errp
, "KVM stats: failed to read data: "
4002 "expected %zu actual %zu", size_data
, ret
);
4006 for (i
= 0; i
< kvm_stats_header
->num_desc
; ++i
) {
4008 pdesc
= (void *)kvm_stats_desc
+ i
* size_desc
;
4010 /* Add entry to the list */
4011 stats
= (void *)stats_data
+ pdesc
->offset
;
4012 if (!apply_str_list_filter(pdesc
->name
, names
)) {
4015 stats_list
= add_kvmstat_entry(pdesc
, stats
, stats_list
, errp
);
4023 case STATS_TARGET_VM
:
4024 add_stats_entry(result
, STATS_PROVIDER_KVM
, NULL
, stats_list
);
4026 case STATS_TARGET_VCPU
:
4027 add_stats_entry(result
, STATS_PROVIDER_KVM
,
4028 current_cpu
->parent_obj
.canonical_path
,
4032 g_assert_not_reached();
4036 static void query_stats_schema(StatsSchemaList
**result
, StatsTarget target
,
4037 int stats_fd
, Error
**errp
)
4039 struct kvm_stats_desc
*kvm_stats_desc
;
4040 struct kvm_stats_header
*kvm_stats_header
;
4041 StatsDescriptors
*descriptors
;
4042 struct kvm_stats_desc
*pdesc
;
4043 StatsSchemaValueList
*stats_list
= NULL
;
4047 descriptors
= find_stats_descriptors(target
, stats_fd
, errp
);
4052 kvm_stats_header
= &descriptors
->kvm_stats_header
;
4053 kvm_stats_desc
= descriptors
->kvm_stats_desc
;
4054 size_desc
= sizeof(*kvm_stats_desc
) + kvm_stats_header
->name_size
;
4056 /* Tally the total data size; read schema data */
4057 for (i
= 0; i
< kvm_stats_header
->num_desc
; ++i
) {
4058 pdesc
= (void *)kvm_stats_desc
+ i
* size_desc
;
4059 stats_list
= add_kvmschema_entry(pdesc
, stats_list
, errp
);
4062 add_stats_schema(result
, STATS_PROVIDER_KVM
, target
, stats_list
);
4065 static void query_stats_vcpu(CPUState
*cpu
, run_on_cpu_data data
)
4067 StatsArgs
*kvm_stats_args
= (StatsArgs
*) data
.host_ptr
;
4068 int stats_fd
= kvm_vcpu_ioctl(cpu
, KVM_GET_STATS_FD
, NULL
);
4069 Error
*local_err
= NULL
;
4071 if (stats_fd
== -1) {
4072 error_setg_errno(&local_err
, errno
, "KVM stats: ioctl failed");
4073 error_propagate(kvm_stats_args
->errp
, local_err
);
4076 query_stats(kvm_stats_args
->result
.stats
, STATS_TARGET_VCPU
,
4077 kvm_stats_args
->names
, stats_fd
, kvm_stats_args
->errp
);
4081 static void query_stats_schema_vcpu(CPUState
*cpu
, run_on_cpu_data data
)
4083 StatsArgs
*kvm_stats_args
= (StatsArgs
*) data
.host_ptr
;
4084 int stats_fd
= kvm_vcpu_ioctl(cpu
, KVM_GET_STATS_FD
, NULL
);
4085 Error
*local_err
= NULL
;
4087 if (stats_fd
== -1) {
4088 error_setg_errno(&local_err
, errno
, "KVM stats: ioctl failed");
4089 error_propagate(kvm_stats_args
->errp
, local_err
);
4092 query_stats_schema(kvm_stats_args
->result
.schema
, STATS_TARGET_VCPU
, stats_fd
,
4093 kvm_stats_args
->errp
);
4097 static void query_stats_cb(StatsResultList
**result
, StatsTarget target
,
4098 strList
*names
, strList
*targets
, Error
**errp
)
4100 KVMState
*s
= kvm_state
;
4105 case STATS_TARGET_VM
:
4107 stats_fd
= kvm_vm_ioctl(s
, KVM_GET_STATS_FD
, NULL
);
4108 if (stats_fd
== -1) {
4109 error_setg_errno(errp
, errno
, "KVM stats: ioctl failed");
4112 query_stats(result
, target
, names
, stats_fd
, errp
);
4116 case STATS_TARGET_VCPU
:
4118 StatsArgs stats_args
;
4119 stats_args
.result
.stats
= result
;
4120 stats_args
.names
= names
;
4121 stats_args
.errp
= errp
;
4123 if (!apply_str_list_filter(cpu
->parent_obj
.canonical_path
, targets
)) {
4126 run_on_cpu(cpu
, query_stats_vcpu
, RUN_ON_CPU_HOST_PTR(&stats_args
));
4135 void query_stats_schemas_cb(StatsSchemaList
**result
, Error
**errp
)
4137 StatsArgs stats_args
;
4138 KVMState
*s
= kvm_state
;
4141 stats_fd
= kvm_vm_ioctl(s
, KVM_GET_STATS_FD
, NULL
);
4142 if (stats_fd
== -1) {
4143 error_setg_errno(errp
, errno
, "KVM stats: ioctl failed");
4146 query_stats_schema(result
, STATS_TARGET_VM
, stats_fd
, errp
);
4150 stats_args
.result
.schema
= result
;
4151 stats_args
.errp
= errp
;
4152 run_on_cpu(first_cpu
, query_stats_schema_vcpu
, RUN_ON_CPU_HOST_PTR(&stats_args
));