kvm: allow target-specific accelerator properties
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob03a69cf053895026ac3a025a9f10dc40df518087
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48 #include "sysemu/dirtylimit.h"
50 #include "hw/boards.h"
51 #include "monitor/stats.h"
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
61 #ifdef PAGE_SIZE
62 #undef PAGE_SIZE
63 #endif
64 #define PAGE_SIZE qemu_real_host_page_size()
66 #ifndef KVM_GUESTDBG_BLOCKIRQ
67 #define KVM_GUESTDBG_BLOCKIRQ 0
68 #endif
70 //#define DEBUG_KVM
72 #ifdef DEBUG_KVM
73 #define DPRINTF(fmt, ...) \
74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
75 #else
76 #define DPRINTF(fmt, ...) \
77 do { } while (0)
78 #endif
80 #define KVM_MSI_HASHTAB_SIZE 256
82 struct KVMParkedVcpu {
83 unsigned long vcpu_id;
84 int kvm_fd;
85 QLIST_ENTRY(KVMParkedVcpu) node;
88 enum KVMDirtyRingReaperState {
89 KVM_DIRTY_RING_REAPER_NONE = 0,
90 /* The reaper is sleeping */
91 KVM_DIRTY_RING_REAPER_WAIT,
92 /* The reaper is reaping for dirty pages */
93 KVM_DIRTY_RING_REAPER_REAPING,
97 * KVM reaper instance, responsible for collecting the KVM dirty bits
98 * via the dirty ring.
100 struct KVMDirtyRingReaper {
101 /* The reaper thread */
102 QemuThread reaper_thr;
103 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
104 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
107 struct KVMState
109 AccelState parent_obj;
111 int nr_slots;
112 int fd;
113 int vmfd;
114 int coalesced_mmio;
115 int coalesced_pio;
116 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
117 bool coalesced_flush_in_progress;
118 int vcpu_events;
119 int robust_singlestep;
120 int debugregs;
121 #ifdef KVM_CAP_SET_GUEST_DEBUG
122 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
123 #endif
124 int max_nested_state_len;
125 int many_ioeventfds;
126 int intx_set_mask;
127 int kvm_shadow_mem;
128 bool kernel_irqchip_allowed;
129 bool kernel_irqchip_required;
130 OnOffAuto kernel_irqchip_split;
131 bool sync_mmu;
132 uint64_t manual_dirty_log_protect;
133 /* The man page (and posix) say ioctl numbers are signed int, but
134 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
135 * unsigned, and treating them as signed here can break things */
136 unsigned irq_set_ioctl;
137 unsigned int sigmask_len;
138 GHashTable *gsimap;
139 #ifdef KVM_CAP_IRQ_ROUTING
140 struct kvm_irq_routing *irq_routes;
141 int nr_allocated_irq_routes;
142 unsigned long *used_gsi_bitmap;
143 unsigned int gsi_count;
144 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
145 #endif
146 KVMMemoryListener memory_listener;
147 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
149 /* For "info mtree -f" to tell if an MR is registered in KVM */
150 int nr_as;
151 struct KVMAs {
152 KVMMemoryListener *ml;
153 AddressSpace *as;
154 } *as;
155 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */
156 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */
157 struct KVMDirtyRingReaper reaper;
160 KVMState *kvm_state;
161 bool kvm_kernel_irqchip;
162 bool kvm_split_irqchip;
163 bool kvm_async_interrupts_allowed;
164 bool kvm_halt_in_kernel_allowed;
165 bool kvm_eventfds_allowed;
166 bool kvm_irqfds_allowed;
167 bool kvm_resamplefds_allowed;
168 bool kvm_msi_via_irqfd_allowed;
169 bool kvm_gsi_routing_allowed;
170 bool kvm_gsi_direct_mapping;
171 bool kvm_allowed;
172 bool kvm_readonly_mem_allowed;
173 bool kvm_vm_attributes_allowed;
174 bool kvm_direct_msi_allowed;
175 bool kvm_ioeventfd_any_length_allowed;
176 bool kvm_msi_use_devid;
177 bool kvm_has_guest_debug;
178 static int kvm_sstep_flags;
179 static bool kvm_immediate_exit;
180 static hwaddr kvm_max_slot_size = ~0;
182 static const KVMCapabilityInfo kvm_required_capabilites[] = {
183 KVM_CAP_INFO(USER_MEMORY),
184 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
185 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
186 KVM_CAP_LAST_INFO
189 static NotifierList kvm_irqchip_change_notifiers =
190 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
192 struct KVMResampleFd {
193 int gsi;
194 EventNotifier *resample_event;
195 QLIST_ENTRY(KVMResampleFd) node;
197 typedef struct KVMResampleFd KVMResampleFd;
200 * Only used with split irqchip where we need to do the resample fd
201 * kick for the kernel from userspace.
203 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
204 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
206 static QemuMutex kml_slots_lock;
208 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
209 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
211 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
213 static inline void kvm_resample_fd_remove(int gsi)
215 KVMResampleFd *rfd;
217 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
218 if (rfd->gsi == gsi) {
219 QLIST_REMOVE(rfd, node);
220 g_free(rfd);
221 break;
226 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
228 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
230 rfd->gsi = gsi;
231 rfd->resample_event = event;
233 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
236 void kvm_resample_fd_notify(int gsi)
238 KVMResampleFd *rfd;
240 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
241 if (rfd->gsi == gsi) {
242 event_notifier_set(rfd->resample_event);
243 trace_kvm_resample_fd_notify(gsi);
244 return;
249 int kvm_get_max_memslots(void)
251 KVMState *s = KVM_STATE(current_accel());
253 return s->nr_slots;
256 /* Called with KVMMemoryListener.slots_lock held */
257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
259 KVMState *s = kvm_state;
260 int i;
262 for (i = 0; i < s->nr_slots; i++) {
263 if (kml->slots[i].memory_size == 0) {
264 return &kml->slots[i];
268 return NULL;
271 bool kvm_has_free_slot(MachineState *ms)
273 KVMState *s = KVM_STATE(ms->accelerator);
274 bool result;
275 KVMMemoryListener *kml = &s->memory_listener;
277 kvm_slots_lock();
278 result = !!kvm_get_free_slot(kml);
279 kvm_slots_unlock();
281 return result;
284 /* Called with KVMMemoryListener.slots_lock held */
285 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
287 KVMSlot *slot = kvm_get_free_slot(kml);
289 if (slot) {
290 return slot;
293 fprintf(stderr, "%s: no free slot available\n", __func__);
294 abort();
297 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
298 hwaddr start_addr,
299 hwaddr size)
301 KVMState *s = kvm_state;
302 int i;
304 for (i = 0; i < s->nr_slots; i++) {
305 KVMSlot *mem = &kml->slots[i];
307 if (start_addr == mem->start_addr && size == mem->memory_size) {
308 return mem;
312 return NULL;
316 * Calculate and align the start address and the size of the section.
317 * Return the size. If the size is 0, the aligned section is empty.
319 static hwaddr kvm_align_section(MemoryRegionSection *section,
320 hwaddr *start)
322 hwaddr size = int128_get64(section->size);
323 hwaddr delta, aligned;
325 /* kvm works in page size chunks, but the function may be called
326 with sub-page size and unaligned start address. Pad the start
327 address to next and truncate size to previous page boundary. */
328 aligned = ROUND_UP(section->offset_within_address_space,
329 qemu_real_host_page_size());
330 delta = aligned - section->offset_within_address_space;
331 *start = aligned;
332 if (delta > size) {
333 return 0;
336 return (size - delta) & qemu_real_host_page_mask();
339 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
340 hwaddr *phys_addr)
342 KVMMemoryListener *kml = &s->memory_listener;
343 int i, ret = 0;
345 kvm_slots_lock();
346 for (i = 0; i < s->nr_slots; i++) {
347 KVMSlot *mem = &kml->slots[i];
349 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
350 *phys_addr = mem->start_addr + (ram - mem->ram);
351 ret = 1;
352 break;
355 kvm_slots_unlock();
357 return ret;
360 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
362 KVMState *s = kvm_state;
363 struct kvm_userspace_memory_region mem;
364 int ret;
366 mem.slot = slot->slot | (kml->as_id << 16);
367 mem.guest_phys_addr = slot->start_addr;
368 mem.userspace_addr = (unsigned long)slot->ram;
369 mem.flags = slot->flags;
371 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
372 /* Set the slot size to 0 before setting the slot to the desired
373 * value. This is needed based on KVM commit 75d61fbc. */
374 mem.memory_size = 0;
375 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
376 if (ret < 0) {
377 goto err;
380 mem.memory_size = slot->memory_size;
381 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
382 slot->old_flags = mem.flags;
383 err:
384 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
385 mem.memory_size, mem.userspace_addr, ret);
386 if (ret < 0) {
387 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
388 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
389 __func__, mem.slot, slot->start_addr,
390 (uint64_t)mem.memory_size, strerror(errno));
392 return ret;
395 static int do_kvm_destroy_vcpu(CPUState *cpu)
397 KVMState *s = kvm_state;
398 long mmap_size;
399 struct KVMParkedVcpu *vcpu = NULL;
400 int ret = 0;
402 DPRINTF("kvm_destroy_vcpu\n");
404 ret = kvm_arch_destroy_vcpu(cpu);
405 if (ret < 0) {
406 goto err;
409 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
410 if (mmap_size < 0) {
411 ret = mmap_size;
412 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
413 goto err;
416 ret = munmap(cpu->kvm_run, mmap_size);
417 if (ret < 0) {
418 goto err;
421 if (cpu->kvm_dirty_gfns) {
422 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
423 if (ret < 0) {
424 goto err;
428 vcpu = g_malloc0(sizeof(*vcpu));
429 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
430 vcpu->kvm_fd = cpu->kvm_fd;
431 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
432 err:
433 return ret;
436 void kvm_destroy_vcpu(CPUState *cpu)
438 if (do_kvm_destroy_vcpu(cpu) < 0) {
439 error_report("kvm_destroy_vcpu failed");
440 exit(EXIT_FAILURE);
444 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
446 struct KVMParkedVcpu *cpu;
448 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
449 if (cpu->vcpu_id == vcpu_id) {
450 int kvm_fd;
452 QLIST_REMOVE(cpu, node);
453 kvm_fd = cpu->kvm_fd;
454 g_free(cpu);
455 return kvm_fd;
459 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
462 int kvm_init_vcpu(CPUState *cpu, Error **errp)
464 KVMState *s = kvm_state;
465 long mmap_size;
466 int ret;
468 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
470 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
471 if (ret < 0) {
472 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
473 kvm_arch_vcpu_id(cpu));
474 goto err;
477 cpu->kvm_fd = ret;
478 cpu->kvm_state = s;
479 cpu->vcpu_dirty = true;
480 cpu->dirty_pages = 0;
481 cpu->throttle_us_per_full = 0;
483 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
484 if (mmap_size < 0) {
485 ret = mmap_size;
486 error_setg_errno(errp, -mmap_size,
487 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
488 goto err;
491 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
492 cpu->kvm_fd, 0);
493 if (cpu->kvm_run == MAP_FAILED) {
494 ret = -errno;
495 error_setg_errno(errp, ret,
496 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
497 kvm_arch_vcpu_id(cpu));
498 goto err;
501 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
502 s->coalesced_mmio_ring =
503 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
506 if (s->kvm_dirty_ring_size) {
507 /* Use MAP_SHARED to share pages with the kernel */
508 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
509 PROT_READ | PROT_WRITE, MAP_SHARED,
510 cpu->kvm_fd,
511 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
512 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
513 ret = -errno;
514 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
515 goto err;
519 ret = kvm_arch_init_vcpu(cpu);
520 if (ret < 0) {
521 error_setg_errno(errp, -ret,
522 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
523 kvm_arch_vcpu_id(cpu));
525 err:
526 return ret;
530 * dirty pages logging control
533 static int kvm_mem_flags(MemoryRegion *mr)
535 bool readonly = mr->readonly || memory_region_is_romd(mr);
536 int flags = 0;
538 if (memory_region_get_dirty_log_mask(mr) != 0) {
539 flags |= KVM_MEM_LOG_DIRTY_PAGES;
541 if (readonly && kvm_readonly_mem_allowed) {
542 flags |= KVM_MEM_READONLY;
544 return flags;
547 /* Called with KVMMemoryListener.slots_lock held */
548 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
549 MemoryRegion *mr)
551 mem->flags = kvm_mem_flags(mr);
553 /* If nothing changed effectively, no need to issue ioctl */
554 if (mem->flags == mem->old_flags) {
555 return 0;
558 kvm_slot_init_dirty_bitmap(mem);
559 return kvm_set_user_memory_region(kml, mem, false);
562 static int kvm_section_update_flags(KVMMemoryListener *kml,
563 MemoryRegionSection *section)
565 hwaddr start_addr, size, slot_size;
566 KVMSlot *mem;
567 int ret = 0;
569 size = kvm_align_section(section, &start_addr);
570 if (!size) {
571 return 0;
574 kvm_slots_lock();
576 while (size && !ret) {
577 slot_size = MIN(kvm_max_slot_size, size);
578 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
579 if (!mem) {
580 /* We don't have a slot if we want to trap every access. */
581 goto out;
584 ret = kvm_slot_update_flags(kml, mem, section->mr);
585 start_addr += slot_size;
586 size -= slot_size;
589 out:
590 kvm_slots_unlock();
591 return ret;
594 static void kvm_log_start(MemoryListener *listener,
595 MemoryRegionSection *section,
596 int old, int new)
598 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
599 int r;
601 if (old != 0) {
602 return;
605 r = kvm_section_update_flags(kml, section);
606 if (r < 0) {
607 abort();
611 static void kvm_log_stop(MemoryListener *listener,
612 MemoryRegionSection *section,
613 int old, int new)
615 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
616 int r;
618 if (new != 0) {
619 return;
622 r = kvm_section_update_flags(kml, section);
623 if (r < 0) {
624 abort();
628 /* get kvm's dirty pages bitmap and update qemu's */
629 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
631 ram_addr_t start = slot->ram_start_offset;
632 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
634 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
637 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
639 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
642 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
644 /* Allocate the dirty bitmap for a slot */
645 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
647 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
648 return;
652 * XXX bad kernel interface alert
653 * For dirty bitmap, kernel allocates array of size aligned to
654 * bits-per-long. But for case when the kernel is 64bits and
655 * the userspace is 32bits, userspace can't align to the same
656 * bits-per-long, since sizeof(long) is different between kernel
657 * and user space. This way, userspace will provide buffer which
658 * may be 4 bytes less than the kernel will use, resulting in
659 * userspace memory corruption (which is not detectable by valgrind
660 * too, in most cases).
661 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
662 * a hope that sizeof(long) won't become >8 any time soon.
664 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
665 * And mem->memory_size is aligned to it (otherwise this mem can't
666 * be registered to KVM).
668 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
669 /*HOST_LONG_BITS*/ 64) / 8;
670 mem->dirty_bmap = g_malloc0(bitmap_size);
671 mem->dirty_bmap_size = bitmap_size;
675 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
676 * succeeded, false otherwise
678 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
680 struct kvm_dirty_log d = {};
681 int ret;
683 d.dirty_bitmap = slot->dirty_bmap;
684 d.slot = slot->slot | (slot->as_id << 16);
685 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
687 if (ret == -ENOENT) {
688 /* kernel does not have dirty bitmap in this slot */
689 ret = 0;
691 if (ret) {
692 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
693 __func__, ret);
695 return ret == 0;
698 /* Should be with all slots_lock held for the address spaces. */
699 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
700 uint32_t slot_id, uint64_t offset)
702 KVMMemoryListener *kml;
703 KVMSlot *mem;
705 if (as_id >= s->nr_as) {
706 return;
709 kml = s->as[as_id].ml;
710 mem = &kml->slots[slot_id];
712 if (!mem->memory_size || offset >=
713 (mem->memory_size / qemu_real_host_page_size())) {
714 return;
717 set_bit(offset, mem->dirty_bmap);
720 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
723 * Read the flags before the value. Pairs with barrier in
724 * KVM's kvm_dirty_ring_push() function.
726 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
729 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
732 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
733 * sees the full content of the ring:
735 * CPU0 CPU1 CPU2
736 * ------------------------------------------------------------------------------
737 * fill gfn0
738 * store-rel flags for gfn0
739 * load-acq flags for gfn0
740 * store-rel RESET for gfn0
741 * ioctl(RESET_RINGS)
742 * load-acq flags for gfn0
743 * check if flags have RESET
745 * The synchronization goes from CPU2 to CPU0 to CPU1.
747 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
751 * Should be with all slots_lock held for the address spaces. It returns the
752 * dirty page we've collected on this dirty ring.
754 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
756 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
757 uint32_t ring_size = s->kvm_dirty_ring_size;
758 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
760 assert(dirty_gfns && ring_size);
761 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
763 while (true) {
764 cur = &dirty_gfns[fetch % ring_size];
765 if (!dirty_gfn_is_dirtied(cur)) {
766 break;
768 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
769 cur->offset);
770 dirty_gfn_set_collected(cur);
771 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
772 fetch++;
773 count++;
775 cpu->kvm_fetch_index = fetch;
776 cpu->dirty_pages += count;
778 return count;
781 /* Must be with slots_lock held */
782 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
784 int ret;
785 uint64_t total = 0;
786 int64_t stamp;
788 stamp = get_clock();
790 if (cpu) {
791 total = kvm_dirty_ring_reap_one(s, cpu);
792 } else {
793 CPU_FOREACH(cpu) {
794 total += kvm_dirty_ring_reap_one(s, cpu);
798 if (total) {
799 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
800 assert(ret == total);
803 stamp = get_clock() - stamp;
805 if (total) {
806 trace_kvm_dirty_ring_reap(total, stamp / 1000);
809 return total;
813 * Currently for simplicity, we must hold BQL before calling this. We can
814 * consider to drop the BQL if we're clear with all the race conditions.
816 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
818 uint64_t total;
821 * We need to lock all kvm slots for all address spaces here,
822 * because:
824 * (1) We need to mark dirty for dirty bitmaps in multiple slots
825 * and for tons of pages, so it's better to take the lock here
826 * once rather than once per page. And more importantly,
828 * (2) We must _NOT_ publish dirty bits to the other threads
829 * (e.g., the migration thread) via the kvm memory slot dirty
830 * bitmaps before correctly re-protect those dirtied pages.
831 * Otherwise we can have potential risk of data corruption if
832 * the page data is read in the other thread before we do
833 * reset below.
835 kvm_slots_lock();
836 total = kvm_dirty_ring_reap_locked(s, cpu);
837 kvm_slots_unlock();
839 return total;
842 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
844 /* No need to do anything */
848 * Kick all vcpus out in a synchronized way. When returned, we
849 * guarantee that every vcpu has been kicked and at least returned to
850 * userspace once.
852 static void kvm_cpu_synchronize_kick_all(void)
854 CPUState *cpu;
856 CPU_FOREACH(cpu) {
857 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
862 * Flush all the existing dirty pages to the KVM slot buffers. When
863 * this call returns, we guarantee that all the touched dirty pages
864 * before calling this function have been put into the per-kvmslot
865 * dirty bitmap.
867 * This function must be called with BQL held.
869 static void kvm_dirty_ring_flush(void)
871 trace_kvm_dirty_ring_flush(0);
873 * The function needs to be serialized. Since this function
874 * should always be with BQL held, serialization is guaranteed.
875 * However, let's be sure of it.
877 assert(qemu_mutex_iothread_locked());
879 * First make sure to flush the hardware buffers by kicking all
880 * vcpus out in a synchronous way.
882 kvm_cpu_synchronize_kick_all();
883 kvm_dirty_ring_reap(kvm_state, NULL);
884 trace_kvm_dirty_ring_flush(1);
888 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
890 * This function will first try to fetch dirty bitmap from the kernel,
891 * and then updates qemu's dirty bitmap.
893 * NOTE: caller must be with kml->slots_lock held.
895 * @kml: the KVM memory listener object
896 * @section: the memory section to sync the dirty bitmap with
898 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
899 MemoryRegionSection *section)
901 KVMState *s = kvm_state;
902 KVMSlot *mem;
903 hwaddr start_addr, size;
904 hwaddr slot_size;
906 size = kvm_align_section(section, &start_addr);
907 while (size) {
908 slot_size = MIN(kvm_max_slot_size, size);
909 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
910 if (!mem) {
911 /* We don't have a slot if we want to trap every access. */
912 return;
914 if (kvm_slot_get_dirty_log(s, mem)) {
915 kvm_slot_sync_dirty_pages(mem);
917 start_addr += slot_size;
918 size -= slot_size;
922 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
923 #define KVM_CLEAR_LOG_SHIFT 6
924 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
925 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
927 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
928 uint64_t size)
930 KVMState *s = kvm_state;
931 uint64_t end, bmap_start, start_delta, bmap_npages;
932 struct kvm_clear_dirty_log d;
933 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
934 int ret;
937 * We need to extend either the start or the size or both to
938 * satisfy the KVM interface requirement. Firstly, do the start
939 * page alignment on 64 host pages
941 bmap_start = start & KVM_CLEAR_LOG_MASK;
942 start_delta = start - bmap_start;
943 bmap_start /= psize;
946 * The kernel interface has restriction on the size too, that either:
948 * (1) the size is 64 host pages aligned (just like the start), or
949 * (2) the size fills up until the end of the KVM memslot.
951 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
952 << KVM_CLEAR_LOG_SHIFT;
953 end = mem->memory_size / psize;
954 if (bmap_npages > end - bmap_start) {
955 bmap_npages = end - bmap_start;
957 start_delta /= psize;
960 * Prepare the bitmap to clear dirty bits. Here we must guarantee
961 * that we won't clear any unknown dirty bits otherwise we might
962 * accidentally clear some set bits which are not yet synced from
963 * the kernel into QEMU's bitmap, then we'll lose track of the
964 * guest modifications upon those pages (which can directly lead
965 * to guest data loss or panic after migration).
967 * Layout of the KVMSlot.dirty_bmap:
969 * |<-------- bmap_npages -----------..>|
970 * [1]
971 * start_delta size
972 * |----------------|-------------|------------------|------------|
973 * ^ ^ ^ ^
974 * | | | |
975 * start bmap_start (start) end
976 * of memslot of memslot
978 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
981 assert(bmap_start % BITS_PER_LONG == 0);
982 /* We should never do log_clear before log_sync */
983 assert(mem->dirty_bmap);
984 if (start_delta || bmap_npages - size / psize) {
985 /* Slow path - we need to manipulate a temp bitmap */
986 bmap_clear = bitmap_new(bmap_npages);
987 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
988 bmap_start, start_delta + size / psize);
990 * We need to fill the holes at start because that was not
991 * specified by the caller and we extended the bitmap only for
992 * 64 pages alignment
994 bitmap_clear(bmap_clear, 0, start_delta);
995 d.dirty_bitmap = bmap_clear;
996 } else {
998 * Fast path - both start and size align well with BITS_PER_LONG
999 * (or the end of memory slot)
1001 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
1004 d.first_page = bmap_start;
1005 /* It should never overflow. If it happens, say something */
1006 assert(bmap_npages <= UINT32_MAX);
1007 d.num_pages = bmap_npages;
1008 d.slot = mem->slot | (as_id << 16);
1010 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
1011 if (ret < 0 && ret != -ENOENT) {
1012 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
1013 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
1014 __func__, d.slot, (uint64_t)d.first_page,
1015 (uint32_t)d.num_pages, ret);
1016 } else {
1017 ret = 0;
1018 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1022 * After we have updated the remote dirty bitmap, we update the
1023 * cached bitmap as well for the memslot, then if another user
1024 * clears the same region we know we shouldn't clear it again on
1025 * the remote otherwise it's data loss as well.
1027 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1028 size / psize);
1029 /* This handles the NULL case well */
1030 g_free(bmap_clear);
1031 return ret;
1036 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1038 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1039 * protection in the host kernel because in that case this operation
1040 * will be done within log_sync().
1042 * @kml: the kvm memory listener
1043 * @section: the memory range to clear dirty bitmap
1045 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1046 MemoryRegionSection *section)
1048 KVMState *s = kvm_state;
1049 uint64_t start, size, offset, count;
1050 KVMSlot *mem;
1051 int ret = 0, i;
1053 if (!s->manual_dirty_log_protect) {
1054 /* No need to do explicit clear */
1055 return ret;
1058 start = section->offset_within_address_space;
1059 size = int128_get64(section->size);
1061 if (!size) {
1062 /* Nothing more we can do... */
1063 return ret;
1066 kvm_slots_lock();
1068 for (i = 0; i < s->nr_slots; i++) {
1069 mem = &kml->slots[i];
1070 /* Discard slots that are empty or do not overlap the section */
1071 if (!mem->memory_size ||
1072 mem->start_addr > start + size - 1 ||
1073 start > mem->start_addr + mem->memory_size - 1) {
1074 continue;
1077 if (start >= mem->start_addr) {
1078 /* The slot starts before section or is aligned to it. */
1079 offset = start - mem->start_addr;
1080 count = MIN(mem->memory_size - offset, size);
1081 } else {
1082 /* The slot starts after section. */
1083 offset = 0;
1084 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1086 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1087 if (ret < 0) {
1088 break;
1092 kvm_slots_unlock();
1094 return ret;
1097 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1098 MemoryRegionSection *secion,
1099 hwaddr start, hwaddr size)
1101 KVMState *s = kvm_state;
1103 if (s->coalesced_mmio) {
1104 struct kvm_coalesced_mmio_zone zone;
1106 zone.addr = start;
1107 zone.size = size;
1108 zone.pad = 0;
1110 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1114 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1115 MemoryRegionSection *secion,
1116 hwaddr start, hwaddr size)
1118 KVMState *s = kvm_state;
1120 if (s->coalesced_mmio) {
1121 struct kvm_coalesced_mmio_zone zone;
1123 zone.addr = start;
1124 zone.size = size;
1125 zone.pad = 0;
1127 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1131 static void kvm_coalesce_pio_add(MemoryListener *listener,
1132 MemoryRegionSection *section,
1133 hwaddr start, hwaddr size)
1135 KVMState *s = kvm_state;
1137 if (s->coalesced_pio) {
1138 struct kvm_coalesced_mmio_zone zone;
1140 zone.addr = start;
1141 zone.size = size;
1142 zone.pio = 1;
1144 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1148 static void kvm_coalesce_pio_del(MemoryListener *listener,
1149 MemoryRegionSection *section,
1150 hwaddr start, hwaddr size)
1152 KVMState *s = kvm_state;
1154 if (s->coalesced_pio) {
1155 struct kvm_coalesced_mmio_zone zone;
1157 zone.addr = start;
1158 zone.size = size;
1159 zone.pio = 1;
1161 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1165 static MemoryListener kvm_coalesced_pio_listener = {
1166 .name = "kvm-coalesced-pio",
1167 .coalesced_io_add = kvm_coalesce_pio_add,
1168 .coalesced_io_del = kvm_coalesce_pio_del,
1171 int kvm_check_extension(KVMState *s, unsigned int extension)
1173 int ret;
1175 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1176 if (ret < 0) {
1177 ret = 0;
1180 return ret;
1183 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1185 int ret;
1187 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1188 if (ret < 0) {
1189 /* VM wide version not implemented, use global one instead */
1190 ret = kvm_check_extension(s, extension);
1193 return ret;
1196 typedef struct HWPoisonPage {
1197 ram_addr_t ram_addr;
1198 QLIST_ENTRY(HWPoisonPage) list;
1199 } HWPoisonPage;
1201 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1202 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1204 static void kvm_unpoison_all(void *param)
1206 HWPoisonPage *page, *next_page;
1208 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1209 QLIST_REMOVE(page, list);
1210 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1211 g_free(page);
1215 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1217 HWPoisonPage *page;
1219 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1220 if (page->ram_addr == ram_addr) {
1221 return;
1224 page = g_new(HWPoisonPage, 1);
1225 page->ram_addr = ram_addr;
1226 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1229 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1231 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1232 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1233 * endianness, but the memory core hands them in target endianness.
1234 * For example, PPC is always treated as big-endian even if running
1235 * on KVM and on PPC64LE. Correct here.
1237 switch (size) {
1238 case 2:
1239 val = bswap16(val);
1240 break;
1241 case 4:
1242 val = bswap32(val);
1243 break;
1245 #endif
1246 return val;
1249 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1250 bool assign, uint32_t size, bool datamatch)
1252 int ret;
1253 struct kvm_ioeventfd iofd = {
1254 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1255 .addr = addr,
1256 .len = size,
1257 .flags = 0,
1258 .fd = fd,
1261 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1262 datamatch);
1263 if (!kvm_enabled()) {
1264 return -ENOSYS;
1267 if (datamatch) {
1268 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1270 if (!assign) {
1271 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1274 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1276 if (ret < 0) {
1277 return -errno;
1280 return 0;
1283 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1284 bool assign, uint32_t size, bool datamatch)
1286 struct kvm_ioeventfd kick = {
1287 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1288 .addr = addr,
1289 .flags = KVM_IOEVENTFD_FLAG_PIO,
1290 .len = size,
1291 .fd = fd,
1293 int r;
1294 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1295 if (!kvm_enabled()) {
1296 return -ENOSYS;
1298 if (datamatch) {
1299 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1301 if (!assign) {
1302 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1304 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1305 if (r < 0) {
1306 return r;
1308 return 0;
1312 static int kvm_check_many_ioeventfds(void)
1314 /* Userspace can use ioeventfd for io notification. This requires a host
1315 * that supports eventfd(2) and an I/O thread; since eventfd does not
1316 * support SIGIO it cannot interrupt the vcpu.
1318 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1319 * can avoid creating too many ioeventfds.
1321 #if defined(CONFIG_EVENTFD)
1322 int ioeventfds[7];
1323 int i, ret = 0;
1324 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1325 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1326 if (ioeventfds[i] < 0) {
1327 break;
1329 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1330 if (ret < 0) {
1331 close(ioeventfds[i]);
1332 break;
1336 /* Decide whether many devices are supported or not */
1337 ret = i == ARRAY_SIZE(ioeventfds);
1339 while (i-- > 0) {
1340 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1341 close(ioeventfds[i]);
1343 return ret;
1344 #else
1345 return 0;
1346 #endif
1349 static const KVMCapabilityInfo *
1350 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1352 while (list->name) {
1353 if (!kvm_check_extension(s, list->value)) {
1354 return list;
1356 list++;
1358 return NULL;
1361 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1363 g_assert(
1364 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1366 kvm_max_slot_size = max_slot_size;
1369 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1370 MemoryRegionSection *section, bool add)
1372 KVMSlot *mem;
1373 int err;
1374 MemoryRegion *mr = section->mr;
1375 bool writable = !mr->readonly && !mr->rom_device;
1376 hwaddr start_addr, size, slot_size, mr_offset;
1377 ram_addr_t ram_start_offset;
1378 void *ram;
1380 if (!memory_region_is_ram(mr)) {
1381 if (writable || !kvm_readonly_mem_allowed) {
1382 return;
1383 } else if (!mr->romd_mode) {
1384 /* If the memory device is not in romd_mode, then we actually want
1385 * to remove the kvm memory slot so all accesses will trap. */
1386 add = false;
1390 size = kvm_align_section(section, &start_addr);
1391 if (!size) {
1392 return;
1395 /* The offset of the kvmslot within the memory region */
1396 mr_offset = section->offset_within_region + start_addr -
1397 section->offset_within_address_space;
1399 /* use aligned delta to align the ram address and offset */
1400 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1401 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1403 kvm_slots_lock();
1405 if (!add) {
1406 do {
1407 slot_size = MIN(kvm_max_slot_size, size);
1408 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1409 if (!mem) {
1410 goto out;
1412 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1414 * NOTE: We should be aware of the fact that here we're only
1415 * doing a best effort to sync dirty bits. No matter whether
1416 * we're using dirty log or dirty ring, we ignored two facts:
1418 * (1) dirty bits can reside in hardware buffers (PML)
1420 * (2) after we collected dirty bits here, pages can be dirtied
1421 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1422 * remove the slot.
1424 * Not easy. Let's cross the fingers until it's fixed.
1426 if (kvm_state->kvm_dirty_ring_size) {
1427 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1428 } else {
1429 kvm_slot_get_dirty_log(kvm_state, mem);
1431 kvm_slot_sync_dirty_pages(mem);
1434 /* unregister the slot */
1435 g_free(mem->dirty_bmap);
1436 mem->dirty_bmap = NULL;
1437 mem->memory_size = 0;
1438 mem->flags = 0;
1439 err = kvm_set_user_memory_region(kml, mem, false);
1440 if (err) {
1441 fprintf(stderr, "%s: error unregistering slot: %s\n",
1442 __func__, strerror(-err));
1443 abort();
1445 start_addr += slot_size;
1446 size -= slot_size;
1447 } while (size);
1448 goto out;
1451 /* register the new slot */
1452 do {
1453 slot_size = MIN(kvm_max_slot_size, size);
1454 mem = kvm_alloc_slot(kml);
1455 mem->as_id = kml->as_id;
1456 mem->memory_size = slot_size;
1457 mem->start_addr = start_addr;
1458 mem->ram_start_offset = ram_start_offset;
1459 mem->ram = ram;
1460 mem->flags = kvm_mem_flags(mr);
1461 kvm_slot_init_dirty_bitmap(mem);
1462 err = kvm_set_user_memory_region(kml, mem, true);
1463 if (err) {
1464 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1465 strerror(-err));
1466 abort();
1468 start_addr += slot_size;
1469 ram_start_offset += slot_size;
1470 ram += slot_size;
1471 size -= slot_size;
1472 } while (size);
1474 out:
1475 kvm_slots_unlock();
1478 static void *kvm_dirty_ring_reaper_thread(void *data)
1480 KVMState *s = data;
1481 struct KVMDirtyRingReaper *r = &s->reaper;
1483 rcu_register_thread();
1485 trace_kvm_dirty_ring_reaper("init");
1487 while (true) {
1488 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1489 trace_kvm_dirty_ring_reaper("wait");
1491 * TODO: provide a smarter timeout rather than a constant?
1493 sleep(1);
1495 /* keep sleeping so that dirtylimit not be interfered by reaper */
1496 if (dirtylimit_in_service()) {
1497 continue;
1500 trace_kvm_dirty_ring_reaper("wakeup");
1501 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1503 qemu_mutex_lock_iothread();
1504 kvm_dirty_ring_reap(s, NULL);
1505 qemu_mutex_unlock_iothread();
1507 r->reaper_iteration++;
1510 trace_kvm_dirty_ring_reaper("exit");
1512 rcu_unregister_thread();
1514 return NULL;
1517 static int kvm_dirty_ring_reaper_init(KVMState *s)
1519 struct KVMDirtyRingReaper *r = &s->reaper;
1521 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1522 kvm_dirty_ring_reaper_thread,
1523 s, QEMU_THREAD_JOINABLE);
1525 return 0;
1528 static void kvm_region_add(MemoryListener *listener,
1529 MemoryRegionSection *section)
1531 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1533 memory_region_ref(section->mr);
1534 kvm_set_phys_mem(kml, section, true);
1537 static void kvm_region_del(MemoryListener *listener,
1538 MemoryRegionSection *section)
1540 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1542 kvm_set_phys_mem(kml, section, false);
1543 memory_region_unref(section->mr);
1546 static void kvm_log_sync(MemoryListener *listener,
1547 MemoryRegionSection *section)
1549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1551 kvm_slots_lock();
1552 kvm_physical_sync_dirty_bitmap(kml, section);
1553 kvm_slots_unlock();
1556 static void kvm_log_sync_global(MemoryListener *l)
1558 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1559 KVMState *s = kvm_state;
1560 KVMSlot *mem;
1561 int i;
1563 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1564 kvm_dirty_ring_flush();
1567 * TODO: make this faster when nr_slots is big while there are
1568 * only a few used slots (small VMs).
1570 kvm_slots_lock();
1571 for (i = 0; i < s->nr_slots; i++) {
1572 mem = &kml->slots[i];
1573 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1574 kvm_slot_sync_dirty_pages(mem);
1576 * This is not needed by KVM_GET_DIRTY_LOG because the
1577 * ioctl will unconditionally overwrite the whole region.
1578 * However kvm dirty ring has no such side effect.
1580 kvm_slot_reset_dirty_pages(mem);
1583 kvm_slots_unlock();
1586 static void kvm_log_clear(MemoryListener *listener,
1587 MemoryRegionSection *section)
1589 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1590 int r;
1592 r = kvm_physical_log_clear(kml, section);
1593 if (r < 0) {
1594 error_report_once("%s: kvm log clear failed: mr=%s "
1595 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1596 section->mr->name, section->offset_within_region,
1597 int128_get64(section->size));
1598 abort();
1602 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1603 MemoryRegionSection *section,
1604 bool match_data, uint64_t data,
1605 EventNotifier *e)
1607 int fd = event_notifier_get_fd(e);
1608 int r;
1610 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1611 data, true, int128_get64(section->size),
1612 match_data);
1613 if (r < 0) {
1614 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1615 __func__, strerror(-r), -r);
1616 abort();
1620 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1621 MemoryRegionSection *section,
1622 bool match_data, uint64_t data,
1623 EventNotifier *e)
1625 int fd = event_notifier_get_fd(e);
1626 int r;
1628 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1629 data, false, int128_get64(section->size),
1630 match_data);
1631 if (r < 0) {
1632 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1633 __func__, strerror(-r), -r);
1634 abort();
1638 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1639 MemoryRegionSection *section,
1640 bool match_data, uint64_t data,
1641 EventNotifier *e)
1643 int fd = event_notifier_get_fd(e);
1644 int r;
1646 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1647 data, true, int128_get64(section->size),
1648 match_data);
1649 if (r < 0) {
1650 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1651 __func__, strerror(-r), -r);
1652 abort();
1656 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1657 MemoryRegionSection *section,
1658 bool match_data, uint64_t data,
1659 EventNotifier *e)
1662 int fd = event_notifier_get_fd(e);
1663 int r;
1665 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1666 data, false, int128_get64(section->size),
1667 match_data);
1668 if (r < 0) {
1669 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1670 __func__, strerror(-r), -r);
1671 abort();
1675 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1676 AddressSpace *as, int as_id, const char *name)
1678 int i;
1680 kml->slots = g_new0(KVMSlot, s->nr_slots);
1681 kml->as_id = as_id;
1683 for (i = 0; i < s->nr_slots; i++) {
1684 kml->slots[i].slot = i;
1687 kml->listener.region_add = kvm_region_add;
1688 kml->listener.region_del = kvm_region_del;
1689 kml->listener.log_start = kvm_log_start;
1690 kml->listener.log_stop = kvm_log_stop;
1691 kml->listener.priority = 10;
1692 kml->listener.name = name;
1694 if (s->kvm_dirty_ring_size) {
1695 kml->listener.log_sync_global = kvm_log_sync_global;
1696 } else {
1697 kml->listener.log_sync = kvm_log_sync;
1698 kml->listener.log_clear = kvm_log_clear;
1701 memory_listener_register(&kml->listener, as);
1703 for (i = 0; i < s->nr_as; ++i) {
1704 if (!s->as[i].as) {
1705 s->as[i].as = as;
1706 s->as[i].ml = kml;
1707 break;
1712 static MemoryListener kvm_io_listener = {
1713 .name = "kvm-io",
1714 .eventfd_add = kvm_io_ioeventfd_add,
1715 .eventfd_del = kvm_io_ioeventfd_del,
1716 .priority = 10,
1719 int kvm_set_irq(KVMState *s, int irq, int level)
1721 struct kvm_irq_level event;
1722 int ret;
1724 assert(kvm_async_interrupts_enabled());
1726 event.level = level;
1727 event.irq = irq;
1728 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1729 if (ret < 0) {
1730 perror("kvm_set_irq");
1731 abort();
1734 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1737 #ifdef KVM_CAP_IRQ_ROUTING
1738 typedef struct KVMMSIRoute {
1739 struct kvm_irq_routing_entry kroute;
1740 QTAILQ_ENTRY(KVMMSIRoute) entry;
1741 } KVMMSIRoute;
1743 static void set_gsi(KVMState *s, unsigned int gsi)
1745 set_bit(gsi, s->used_gsi_bitmap);
1748 static void clear_gsi(KVMState *s, unsigned int gsi)
1750 clear_bit(gsi, s->used_gsi_bitmap);
1753 void kvm_init_irq_routing(KVMState *s)
1755 int gsi_count, i;
1757 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1758 if (gsi_count > 0) {
1759 /* Round up so we can search ints using ffs */
1760 s->used_gsi_bitmap = bitmap_new(gsi_count);
1761 s->gsi_count = gsi_count;
1764 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1765 s->nr_allocated_irq_routes = 0;
1767 if (!kvm_direct_msi_allowed) {
1768 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1769 QTAILQ_INIT(&s->msi_hashtab[i]);
1773 kvm_arch_init_irq_routing(s);
1776 void kvm_irqchip_commit_routes(KVMState *s)
1778 int ret;
1780 if (kvm_gsi_direct_mapping()) {
1781 return;
1784 if (!kvm_gsi_routing_enabled()) {
1785 return;
1788 s->irq_routes->flags = 0;
1789 trace_kvm_irqchip_commit_routes();
1790 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1791 assert(ret == 0);
1794 static void kvm_add_routing_entry(KVMState *s,
1795 struct kvm_irq_routing_entry *entry)
1797 struct kvm_irq_routing_entry *new;
1798 int n, size;
1800 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1801 n = s->nr_allocated_irq_routes * 2;
1802 if (n < 64) {
1803 n = 64;
1805 size = sizeof(struct kvm_irq_routing);
1806 size += n * sizeof(*new);
1807 s->irq_routes = g_realloc(s->irq_routes, size);
1808 s->nr_allocated_irq_routes = n;
1810 n = s->irq_routes->nr++;
1811 new = &s->irq_routes->entries[n];
1813 *new = *entry;
1815 set_gsi(s, entry->gsi);
1818 static int kvm_update_routing_entry(KVMState *s,
1819 struct kvm_irq_routing_entry *new_entry)
1821 struct kvm_irq_routing_entry *entry;
1822 int n;
1824 for (n = 0; n < s->irq_routes->nr; n++) {
1825 entry = &s->irq_routes->entries[n];
1826 if (entry->gsi != new_entry->gsi) {
1827 continue;
1830 if(!memcmp(entry, new_entry, sizeof *entry)) {
1831 return 0;
1834 *entry = *new_entry;
1836 return 0;
1839 return -ESRCH;
1842 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1844 struct kvm_irq_routing_entry e = {};
1846 assert(pin < s->gsi_count);
1848 e.gsi = irq;
1849 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1850 e.flags = 0;
1851 e.u.irqchip.irqchip = irqchip;
1852 e.u.irqchip.pin = pin;
1853 kvm_add_routing_entry(s, &e);
1856 void kvm_irqchip_release_virq(KVMState *s, int virq)
1858 struct kvm_irq_routing_entry *e;
1859 int i;
1861 if (kvm_gsi_direct_mapping()) {
1862 return;
1865 for (i = 0; i < s->irq_routes->nr; i++) {
1866 e = &s->irq_routes->entries[i];
1867 if (e->gsi == virq) {
1868 s->irq_routes->nr--;
1869 *e = s->irq_routes->entries[s->irq_routes->nr];
1872 clear_gsi(s, virq);
1873 kvm_arch_release_virq_post(virq);
1874 trace_kvm_irqchip_release_virq(virq);
1877 void kvm_irqchip_add_change_notifier(Notifier *n)
1879 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1882 void kvm_irqchip_remove_change_notifier(Notifier *n)
1884 notifier_remove(n);
1887 void kvm_irqchip_change_notify(void)
1889 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1892 static unsigned int kvm_hash_msi(uint32_t data)
1894 /* This is optimized for IA32 MSI layout. However, no other arch shall
1895 * repeat the mistake of not providing a direct MSI injection API. */
1896 return data & 0xff;
1899 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1901 KVMMSIRoute *route, *next;
1902 unsigned int hash;
1904 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1905 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1906 kvm_irqchip_release_virq(s, route->kroute.gsi);
1907 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1908 g_free(route);
1913 static int kvm_irqchip_get_virq(KVMState *s)
1915 int next_virq;
1918 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1919 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1920 * number can succeed even though a new route entry cannot be added.
1921 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1923 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1924 kvm_flush_dynamic_msi_routes(s);
1927 /* Return the lowest unused GSI in the bitmap */
1928 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1929 if (next_virq >= s->gsi_count) {
1930 return -ENOSPC;
1931 } else {
1932 return next_virq;
1936 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1938 unsigned int hash = kvm_hash_msi(msg.data);
1939 KVMMSIRoute *route;
1941 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1942 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1943 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1944 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1945 return route;
1948 return NULL;
1951 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1953 struct kvm_msi msi;
1954 KVMMSIRoute *route;
1956 if (kvm_direct_msi_allowed) {
1957 msi.address_lo = (uint32_t)msg.address;
1958 msi.address_hi = msg.address >> 32;
1959 msi.data = le32_to_cpu(msg.data);
1960 msi.flags = 0;
1961 memset(msi.pad, 0, sizeof(msi.pad));
1963 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1966 route = kvm_lookup_msi_route(s, msg);
1967 if (!route) {
1968 int virq;
1970 virq = kvm_irqchip_get_virq(s);
1971 if (virq < 0) {
1972 return virq;
1975 route = g_new0(KVMMSIRoute, 1);
1976 route->kroute.gsi = virq;
1977 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1978 route->kroute.flags = 0;
1979 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1980 route->kroute.u.msi.address_hi = msg.address >> 32;
1981 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1983 kvm_add_routing_entry(s, &route->kroute);
1984 kvm_irqchip_commit_routes(s);
1986 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1987 entry);
1990 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1992 return kvm_set_irq(s, route->kroute.gsi, 1);
1995 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1997 struct kvm_irq_routing_entry kroute = {};
1998 int virq;
1999 KVMState *s = c->s;
2000 MSIMessage msg = {0, 0};
2002 if (pci_available && dev) {
2003 msg = pci_get_msi_message(dev, vector);
2006 if (kvm_gsi_direct_mapping()) {
2007 return kvm_arch_msi_data_to_gsi(msg.data);
2010 if (!kvm_gsi_routing_enabled()) {
2011 return -ENOSYS;
2014 virq = kvm_irqchip_get_virq(s);
2015 if (virq < 0) {
2016 return virq;
2019 kroute.gsi = virq;
2020 kroute.type = KVM_IRQ_ROUTING_MSI;
2021 kroute.flags = 0;
2022 kroute.u.msi.address_lo = (uint32_t)msg.address;
2023 kroute.u.msi.address_hi = msg.address >> 32;
2024 kroute.u.msi.data = le32_to_cpu(msg.data);
2025 if (pci_available && kvm_msi_devid_required()) {
2026 kroute.flags = KVM_MSI_VALID_DEVID;
2027 kroute.u.msi.devid = pci_requester_id(dev);
2029 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2030 kvm_irqchip_release_virq(s, virq);
2031 return -EINVAL;
2034 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2035 vector, virq);
2037 kvm_add_routing_entry(s, &kroute);
2038 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2039 c->changes++;
2041 return virq;
2044 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2045 PCIDevice *dev)
2047 struct kvm_irq_routing_entry kroute = {};
2049 if (kvm_gsi_direct_mapping()) {
2050 return 0;
2053 if (!kvm_irqchip_in_kernel()) {
2054 return -ENOSYS;
2057 kroute.gsi = virq;
2058 kroute.type = KVM_IRQ_ROUTING_MSI;
2059 kroute.flags = 0;
2060 kroute.u.msi.address_lo = (uint32_t)msg.address;
2061 kroute.u.msi.address_hi = msg.address >> 32;
2062 kroute.u.msi.data = le32_to_cpu(msg.data);
2063 if (pci_available && kvm_msi_devid_required()) {
2064 kroute.flags = KVM_MSI_VALID_DEVID;
2065 kroute.u.msi.devid = pci_requester_id(dev);
2067 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2068 return -EINVAL;
2071 trace_kvm_irqchip_update_msi_route(virq);
2073 return kvm_update_routing_entry(s, &kroute);
2076 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2077 EventNotifier *resample, int virq,
2078 bool assign)
2080 int fd = event_notifier_get_fd(event);
2081 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2083 struct kvm_irqfd irqfd = {
2084 .fd = fd,
2085 .gsi = virq,
2086 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2089 if (rfd != -1) {
2090 assert(assign);
2091 if (kvm_irqchip_is_split()) {
2093 * When the slow irqchip (e.g. IOAPIC) is in the
2094 * userspace, KVM kernel resamplefd will not work because
2095 * the EOI of the interrupt will be delivered to userspace
2096 * instead, so the KVM kernel resamplefd kick will be
2097 * skipped. The userspace here mimics what the kernel
2098 * provides with resamplefd, remember the resamplefd and
2099 * kick it when we receive EOI of this IRQ.
2101 * This is hackery because IOAPIC is mostly bypassed
2102 * (except EOI broadcasts) when irqfd is used. However
2103 * this can bring much performance back for split irqchip
2104 * with INTx IRQs (for VFIO, this gives 93% perf of the
2105 * full fast path, which is 46% perf boost comparing to
2106 * the INTx slow path).
2108 kvm_resample_fd_insert(virq, resample);
2109 } else {
2110 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2111 irqfd.resamplefd = rfd;
2113 } else if (!assign) {
2114 if (kvm_irqchip_is_split()) {
2115 kvm_resample_fd_remove(virq);
2119 if (!kvm_irqfds_enabled()) {
2120 return -ENOSYS;
2123 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2126 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2128 struct kvm_irq_routing_entry kroute = {};
2129 int virq;
2131 if (!kvm_gsi_routing_enabled()) {
2132 return -ENOSYS;
2135 virq = kvm_irqchip_get_virq(s);
2136 if (virq < 0) {
2137 return virq;
2140 kroute.gsi = virq;
2141 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2142 kroute.flags = 0;
2143 kroute.u.adapter.summary_addr = adapter->summary_addr;
2144 kroute.u.adapter.ind_addr = adapter->ind_addr;
2145 kroute.u.adapter.summary_offset = adapter->summary_offset;
2146 kroute.u.adapter.ind_offset = adapter->ind_offset;
2147 kroute.u.adapter.adapter_id = adapter->adapter_id;
2149 kvm_add_routing_entry(s, &kroute);
2151 return virq;
2154 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2156 struct kvm_irq_routing_entry kroute = {};
2157 int virq;
2159 if (!kvm_gsi_routing_enabled()) {
2160 return -ENOSYS;
2162 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2163 return -ENOSYS;
2165 virq = kvm_irqchip_get_virq(s);
2166 if (virq < 0) {
2167 return virq;
2170 kroute.gsi = virq;
2171 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2172 kroute.flags = 0;
2173 kroute.u.hv_sint.vcpu = vcpu;
2174 kroute.u.hv_sint.sint = sint;
2176 kvm_add_routing_entry(s, &kroute);
2177 kvm_irqchip_commit_routes(s);
2179 return virq;
2182 #else /* !KVM_CAP_IRQ_ROUTING */
2184 void kvm_init_irq_routing(KVMState *s)
2188 void kvm_irqchip_release_virq(KVMState *s, int virq)
2192 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2194 abort();
2197 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2199 return -ENOSYS;
2202 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2204 return -ENOSYS;
2207 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2209 return -ENOSYS;
2212 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2213 EventNotifier *resample, int virq,
2214 bool assign)
2216 abort();
2219 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2221 return -ENOSYS;
2223 #endif /* !KVM_CAP_IRQ_ROUTING */
2225 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2226 EventNotifier *rn, int virq)
2228 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2231 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2232 int virq)
2234 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2237 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2238 EventNotifier *rn, qemu_irq irq)
2240 gpointer key, gsi;
2241 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2243 if (!found) {
2244 return -ENXIO;
2246 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2249 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2250 qemu_irq irq)
2252 gpointer key, gsi;
2253 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2255 if (!found) {
2256 return -ENXIO;
2258 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2261 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2263 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2266 static void kvm_irqchip_create(KVMState *s)
2268 int ret;
2270 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2271 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2273 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2274 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2275 if (ret < 0) {
2276 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2277 exit(1);
2279 } else {
2280 return;
2283 /* First probe and see if there's a arch-specific hook to create the
2284 * in-kernel irqchip for us */
2285 ret = kvm_arch_irqchip_create(s);
2286 if (ret == 0) {
2287 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2288 error_report("Split IRQ chip mode not supported.");
2289 exit(1);
2290 } else {
2291 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2294 if (ret < 0) {
2295 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2296 exit(1);
2299 kvm_kernel_irqchip = true;
2300 /* If we have an in-kernel IRQ chip then we must have asynchronous
2301 * interrupt delivery (though the reverse is not necessarily true)
2303 kvm_async_interrupts_allowed = true;
2304 kvm_halt_in_kernel_allowed = true;
2306 kvm_init_irq_routing(s);
2308 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2311 /* Find number of supported CPUs using the recommended
2312 * procedure from the kernel API documentation to cope with
2313 * older kernels that may be missing capabilities.
2315 static int kvm_recommended_vcpus(KVMState *s)
2317 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2318 return (ret) ? ret : 4;
2321 static int kvm_max_vcpus(KVMState *s)
2323 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2324 return (ret) ? ret : kvm_recommended_vcpus(s);
2327 static int kvm_max_vcpu_id(KVMState *s)
2329 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2330 return (ret) ? ret : kvm_max_vcpus(s);
2333 bool kvm_vcpu_id_is_valid(int vcpu_id)
2335 KVMState *s = KVM_STATE(current_accel());
2336 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2339 bool kvm_dirty_ring_enabled(void)
2341 return kvm_state->kvm_dirty_ring_size ? true : false;
2344 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2345 strList *names, strList *targets, Error **errp);
2346 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2348 uint32_t kvm_dirty_ring_size(void)
2350 return kvm_state->kvm_dirty_ring_size;
2353 static int kvm_init(MachineState *ms)
2355 MachineClass *mc = MACHINE_GET_CLASS(ms);
2356 static const char upgrade_note[] =
2357 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2358 "(see http://sourceforge.net/projects/kvm).\n";
2359 struct {
2360 const char *name;
2361 int num;
2362 } num_cpus[] = {
2363 { "SMP", ms->smp.cpus },
2364 { "hotpluggable", ms->smp.max_cpus },
2365 { NULL, }
2366 }, *nc = num_cpus;
2367 int soft_vcpus_limit, hard_vcpus_limit;
2368 KVMState *s;
2369 const KVMCapabilityInfo *missing_cap;
2370 int ret;
2371 int type = 0;
2372 uint64_t dirty_log_manual_caps;
2374 qemu_mutex_init(&kml_slots_lock);
2376 s = KVM_STATE(ms->accelerator);
2379 * On systems where the kernel can support different base page
2380 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2381 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2382 * page size for the system though.
2384 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2386 s->sigmask_len = 8;
2388 #ifdef KVM_CAP_SET_GUEST_DEBUG
2389 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2390 #endif
2391 QLIST_INIT(&s->kvm_parked_vcpus);
2392 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2393 if (s->fd == -1) {
2394 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2395 ret = -errno;
2396 goto err;
2399 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2400 if (ret < KVM_API_VERSION) {
2401 if (ret >= 0) {
2402 ret = -EINVAL;
2404 fprintf(stderr, "kvm version too old\n");
2405 goto err;
2408 if (ret > KVM_API_VERSION) {
2409 ret = -EINVAL;
2410 fprintf(stderr, "kvm version not supported\n");
2411 goto err;
2414 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2415 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2417 /* If unspecified, use the default value */
2418 if (!s->nr_slots) {
2419 s->nr_slots = 32;
2422 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2423 if (s->nr_as <= 1) {
2424 s->nr_as = 1;
2426 s->as = g_new0(struct KVMAs, s->nr_as);
2428 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2429 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2430 "kvm-type",
2431 &error_abort);
2432 type = mc->kvm_type(ms, kvm_type);
2433 } else if (mc->kvm_type) {
2434 type = mc->kvm_type(ms, NULL);
2437 do {
2438 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2439 } while (ret == -EINTR);
2441 if (ret < 0) {
2442 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2443 strerror(-ret));
2445 #ifdef TARGET_S390X
2446 if (ret == -EINVAL) {
2447 fprintf(stderr,
2448 "Host kernel setup problem detected. Please verify:\n");
2449 fprintf(stderr, "- for kernels supporting the switch_amode or"
2450 " user_mode parameters, whether\n");
2451 fprintf(stderr,
2452 " user space is running in primary address space\n");
2453 fprintf(stderr,
2454 "- for kernels supporting the vm.allocate_pgste sysctl, "
2455 "whether it is enabled\n");
2457 #elif defined(TARGET_PPC)
2458 if (ret == -EINVAL) {
2459 fprintf(stderr,
2460 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2461 (type == 2) ? "pr" : "hv");
2463 #endif
2464 goto err;
2467 s->vmfd = ret;
2469 /* check the vcpu limits */
2470 soft_vcpus_limit = kvm_recommended_vcpus(s);
2471 hard_vcpus_limit = kvm_max_vcpus(s);
2473 while (nc->name) {
2474 if (nc->num > soft_vcpus_limit) {
2475 warn_report("Number of %s cpus requested (%d) exceeds "
2476 "the recommended cpus supported by KVM (%d)",
2477 nc->name, nc->num, soft_vcpus_limit);
2479 if (nc->num > hard_vcpus_limit) {
2480 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2481 "the maximum cpus supported by KVM (%d)\n",
2482 nc->name, nc->num, hard_vcpus_limit);
2483 exit(1);
2486 nc++;
2489 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2490 if (!missing_cap) {
2491 missing_cap =
2492 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2494 if (missing_cap) {
2495 ret = -EINVAL;
2496 fprintf(stderr, "kvm does not support %s\n%s",
2497 missing_cap->name, upgrade_note);
2498 goto err;
2501 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2502 s->coalesced_pio = s->coalesced_mmio &&
2503 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2506 * Enable KVM dirty ring if supported, otherwise fall back to
2507 * dirty logging mode
2509 if (s->kvm_dirty_ring_size > 0) {
2510 uint64_t ring_bytes;
2512 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2514 /* Read the max supported pages */
2515 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2516 if (ret > 0) {
2517 if (ring_bytes > ret) {
2518 error_report("KVM dirty ring size %" PRIu32 " too big "
2519 "(maximum is %ld). Please use a smaller value.",
2520 s->kvm_dirty_ring_size,
2521 (long)ret / sizeof(struct kvm_dirty_gfn));
2522 ret = -EINVAL;
2523 goto err;
2526 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2527 if (ret) {
2528 error_report("Enabling of KVM dirty ring failed: %s. "
2529 "Suggested minimum value is 1024.", strerror(-ret));
2530 goto err;
2533 s->kvm_dirty_ring_bytes = ring_bytes;
2534 } else {
2535 warn_report("KVM dirty ring not available, using bitmap method");
2536 s->kvm_dirty_ring_size = 0;
2541 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2542 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2543 * page is wr-protected initially, which is against how kvm dirty ring is
2544 * usage - kvm dirty ring requires all pages are wr-protected at the very
2545 * beginning. Enabling this feature for dirty ring causes data corruption.
2547 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2548 * we may expect a higher stall time when starting the migration. In the
2549 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2550 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2551 * guest pages.
2553 if (!s->kvm_dirty_ring_size) {
2554 dirty_log_manual_caps =
2555 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2556 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2557 KVM_DIRTY_LOG_INITIALLY_SET);
2558 s->manual_dirty_log_protect = dirty_log_manual_caps;
2559 if (dirty_log_manual_caps) {
2560 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2561 dirty_log_manual_caps);
2562 if (ret) {
2563 warn_report("Trying to enable capability %"PRIu64" of "
2564 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2565 "Falling back to the legacy mode. ",
2566 dirty_log_manual_caps);
2567 s->manual_dirty_log_protect = 0;
2572 #ifdef KVM_CAP_VCPU_EVENTS
2573 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2574 #endif
2576 s->robust_singlestep =
2577 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2579 #ifdef KVM_CAP_DEBUGREGS
2580 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2581 #endif
2583 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2585 #ifdef KVM_CAP_IRQ_ROUTING
2586 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2587 #endif
2589 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2591 s->irq_set_ioctl = KVM_IRQ_LINE;
2592 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2593 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2596 kvm_readonly_mem_allowed =
2597 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2599 kvm_eventfds_allowed =
2600 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2602 kvm_irqfds_allowed =
2603 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2605 kvm_resamplefds_allowed =
2606 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2608 kvm_vm_attributes_allowed =
2609 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2611 kvm_ioeventfd_any_length_allowed =
2612 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2614 #ifdef KVM_CAP_SET_GUEST_DEBUG
2615 kvm_has_guest_debug =
2616 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2617 #endif
2619 kvm_sstep_flags = 0;
2620 if (kvm_has_guest_debug) {
2621 kvm_sstep_flags = SSTEP_ENABLE;
2623 #if defined KVM_CAP_SET_GUEST_DEBUG2
2624 int guest_debug_flags =
2625 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2627 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2628 kvm_sstep_flags |= SSTEP_NOIRQ;
2630 #endif
2633 kvm_state = s;
2635 ret = kvm_arch_init(ms, s);
2636 if (ret < 0) {
2637 goto err;
2640 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2641 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2644 qemu_register_reset(kvm_unpoison_all, NULL);
2646 if (s->kernel_irqchip_allowed) {
2647 kvm_irqchip_create(s);
2650 if (kvm_eventfds_allowed) {
2651 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2652 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2654 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2655 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2657 kvm_memory_listener_register(s, &s->memory_listener,
2658 &address_space_memory, 0, "kvm-memory");
2659 if (kvm_eventfds_allowed) {
2660 memory_listener_register(&kvm_io_listener,
2661 &address_space_io);
2663 memory_listener_register(&kvm_coalesced_pio_listener,
2664 &address_space_io);
2666 s->many_ioeventfds = kvm_check_many_ioeventfds();
2668 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2669 if (!s->sync_mmu) {
2670 ret = ram_block_discard_disable(true);
2671 assert(!ret);
2674 if (s->kvm_dirty_ring_size) {
2675 ret = kvm_dirty_ring_reaper_init(s);
2676 if (ret) {
2677 goto err;
2681 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2682 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2683 query_stats_schemas_cb);
2686 return 0;
2688 err:
2689 assert(ret < 0);
2690 if (s->vmfd >= 0) {
2691 close(s->vmfd);
2693 if (s->fd != -1) {
2694 close(s->fd);
2696 g_free(s->memory_listener.slots);
2698 return ret;
2701 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2703 s->sigmask_len = sigmask_len;
2706 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2707 int size, uint32_t count)
2709 int i;
2710 uint8_t *ptr = data;
2712 for (i = 0; i < count; i++) {
2713 address_space_rw(&address_space_io, port, attrs,
2714 ptr, size,
2715 direction == KVM_EXIT_IO_OUT);
2716 ptr += size;
2720 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2722 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2723 run->internal.suberror);
2725 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2726 int i;
2728 for (i = 0; i < run->internal.ndata; ++i) {
2729 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2730 i, (uint64_t)run->internal.data[i]);
2733 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2734 fprintf(stderr, "emulation failure\n");
2735 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2736 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2737 return EXCP_INTERRUPT;
2740 /* FIXME: Should trigger a qmp message to let management know
2741 * something went wrong.
2743 return -1;
2746 void kvm_flush_coalesced_mmio_buffer(void)
2748 KVMState *s = kvm_state;
2750 if (s->coalesced_flush_in_progress) {
2751 return;
2754 s->coalesced_flush_in_progress = true;
2756 if (s->coalesced_mmio_ring) {
2757 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2758 while (ring->first != ring->last) {
2759 struct kvm_coalesced_mmio *ent;
2761 ent = &ring->coalesced_mmio[ring->first];
2763 if (ent->pio == 1) {
2764 address_space_write(&address_space_io, ent->phys_addr,
2765 MEMTXATTRS_UNSPECIFIED, ent->data,
2766 ent->len);
2767 } else {
2768 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2770 smp_wmb();
2771 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2775 s->coalesced_flush_in_progress = false;
2778 bool kvm_cpu_check_are_resettable(void)
2780 return kvm_arch_cpu_check_are_resettable();
2783 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2785 if (!cpu->vcpu_dirty) {
2786 kvm_arch_get_registers(cpu);
2787 cpu->vcpu_dirty = true;
2791 void kvm_cpu_synchronize_state(CPUState *cpu)
2793 if (!cpu->vcpu_dirty) {
2794 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2798 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2800 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2801 cpu->vcpu_dirty = false;
2804 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2806 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2809 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2811 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2812 cpu->vcpu_dirty = false;
2815 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2817 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2820 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2822 cpu->vcpu_dirty = true;
2825 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2827 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2830 #ifdef KVM_HAVE_MCE_INJECTION
2831 static __thread void *pending_sigbus_addr;
2832 static __thread int pending_sigbus_code;
2833 static __thread bool have_sigbus_pending;
2834 #endif
2836 static void kvm_cpu_kick(CPUState *cpu)
2838 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2841 static void kvm_cpu_kick_self(void)
2843 if (kvm_immediate_exit) {
2844 kvm_cpu_kick(current_cpu);
2845 } else {
2846 qemu_cpu_kick_self();
2850 static void kvm_eat_signals(CPUState *cpu)
2852 struct timespec ts = { 0, 0 };
2853 siginfo_t siginfo;
2854 sigset_t waitset;
2855 sigset_t chkset;
2856 int r;
2858 if (kvm_immediate_exit) {
2859 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2860 /* Write kvm_run->immediate_exit before the cpu->exit_request
2861 * write in kvm_cpu_exec.
2863 smp_wmb();
2864 return;
2867 sigemptyset(&waitset);
2868 sigaddset(&waitset, SIG_IPI);
2870 do {
2871 r = sigtimedwait(&waitset, &siginfo, &ts);
2872 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2873 perror("sigtimedwait");
2874 exit(1);
2877 r = sigpending(&chkset);
2878 if (r == -1) {
2879 perror("sigpending");
2880 exit(1);
2882 } while (sigismember(&chkset, SIG_IPI));
2885 int kvm_cpu_exec(CPUState *cpu)
2887 struct kvm_run *run = cpu->kvm_run;
2888 int ret, run_ret;
2890 DPRINTF("kvm_cpu_exec()\n");
2892 if (kvm_arch_process_async_events(cpu)) {
2893 qatomic_set(&cpu->exit_request, 0);
2894 return EXCP_HLT;
2897 qemu_mutex_unlock_iothread();
2898 cpu_exec_start(cpu);
2900 do {
2901 MemTxAttrs attrs;
2903 if (cpu->vcpu_dirty) {
2904 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2905 cpu->vcpu_dirty = false;
2908 kvm_arch_pre_run(cpu, run);
2909 if (qatomic_read(&cpu->exit_request)) {
2910 DPRINTF("interrupt exit requested\n");
2912 * KVM requires us to reenter the kernel after IO exits to complete
2913 * instruction emulation. This self-signal will ensure that we
2914 * leave ASAP again.
2916 kvm_cpu_kick_self();
2919 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2920 * Matching barrier in kvm_eat_signals.
2922 smp_rmb();
2924 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2926 attrs = kvm_arch_post_run(cpu, run);
2928 #ifdef KVM_HAVE_MCE_INJECTION
2929 if (unlikely(have_sigbus_pending)) {
2930 qemu_mutex_lock_iothread();
2931 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2932 pending_sigbus_addr);
2933 have_sigbus_pending = false;
2934 qemu_mutex_unlock_iothread();
2936 #endif
2938 if (run_ret < 0) {
2939 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2940 DPRINTF("io window exit\n");
2941 kvm_eat_signals(cpu);
2942 ret = EXCP_INTERRUPT;
2943 break;
2945 fprintf(stderr, "error: kvm run failed %s\n",
2946 strerror(-run_ret));
2947 #ifdef TARGET_PPC
2948 if (run_ret == -EBUSY) {
2949 fprintf(stderr,
2950 "This is probably because your SMT is enabled.\n"
2951 "VCPU can only run on primary threads with all "
2952 "secondary threads offline.\n");
2954 #endif
2955 ret = -1;
2956 break;
2959 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2960 switch (run->exit_reason) {
2961 case KVM_EXIT_IO:
2962 DPRINTF("handle_io\n");
2963 /* Called outside BQL */
2964 kvm_handle_io(run->io.port, attrs,
2965 (uint8_t *)run + run->io.data_offset,
2966 run->io.direction,
2967 run->io.size,
2968 run->io.count);
2969 ret = 0;
2970 break;
2971 case KVM_EXIT_MMIO:
2972 DPRINTF("handle_mmio\n");
2973 /* Called outside BQL */
2974 address_space_rw(&address_space_memory,
2975 run->mmio.phys_addr, attrs,
2976 run->mmio.data,
2977 run->mmio.len,
2978 run->mmio.is_write);
2979 ret = 0;
2980 break;
2981 case KVM_EXIT_IRQ_WINDOW_OPEN:
2982 DPRINTF("irq_window_open\n");
2983 ret = EXCP_INTERRUPT;
2984 break;
2985 case KVM_EXIT_SHUTDOWN:
2986 DPRINTF("shutdown\n");
2987 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2988 ret = EXCP_INTERRUPT;
2989 break;
2990 case KVM_EXIT_UNKNOWN:
2991 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2992 (uint64_t)run->hw.hardware_exit_reason);
2993 ret = -1;
2994 break;
2995 case KVM_EXIT_INTERNAL_ERROR:
2996 ret = kvm_handle_internal_error(cpu, run);
2997 break;
2998 case KVM_EXIT_DIRTY_RING_FULL:
3000 * We shouldn't continue if the dirty ring of this vcpu is
3001 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3003 trace_kvm_dirty_ring_full(cpu->cpu_index);
3004 qemu_mutex_lock_iothread();
3006 * We throttle vCPU by making it sleep once it exit from kernel
3007 * due to dirty ring full. In the dirtylimit scenario, reaping
3008 * all vCPUs after a single vCPU dirty ring get full result in
3009 * the miss of sleep, so just reap the ring-fulled vCPU.
3011 if (dirtylimit_in_service()) {
3012 kvm_dirty_ring_reap(kvm_state, cpu);
3013 } else {
3014 kvm_dirty_ring_reap(kvm_state, NULL);
3016 qemu_mutex_unlock_iothread();
3017 dirtylimit_vcpu_execute(cpu);
3018 ret = 0;
3019 break;
3020 case KVM_EXIT_SYSTEM_EVENT:
3021 switch (run->system_event.type) {
3022 case KVM_SYSTEM_EVENT_SHUTDOWN:
3023 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3024 ret = EXCP_INTERRUPT;
3025 break;
3026 case KVM_SYSTEM_EVENT_RESET:
3027 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3028 ret = EXCP_INTERRUPT;
3029 break;
3030 case KVM_SYSTEM_EVENT_CRASH:
3031 kvm_cpu_synchronize_state(cpu);
3032 qemu_mutex_lock_iothread();
3033 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3034 qemu_mutex_unlock_iothread();
3035 ret = 0;
3036 break;
3037 default:
3038 DPRINTF("kvm_arch_handle_exit\n");
3039 ret = kvm_arch_handle_exit(cpu, run);
3040 break;
3042 break;
3043 default:
3044 DPRINTF("kvm_arch_handle_exit\n");
3045 ret = kvm_arch_handle_exit(cpu, run);
3046 break;
3048 } while (ret == 0);
3050 cpu_exec_end(cpu);
3051 qemu_mutex_lock_iothread();
3053 if (ret < 0) {
3054 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3055 vm_stop(RUN_STATE_INTERNAL_ERROR);
3058 qatomic_set(&cpu->exit_request, 0);
3059 return ret;
3062 int kvm_ioctl(KVMState *s, int type, ...)
3064 int ret;
3065 void *arg;
3066 va_list ap;
3068 va_start(ap, type);
3069 arg = va_arg(ap, void *);
3070 va_end(ap);
3072 trace_kvm_ioctl(type, arg);
3073 ret = ioctl(s->fd, type, arg);
3074 if (ret == -1) {
3075 ret = -errno;
3077 return ret;
3080 int kvm_vm_ioctl(KVMState *s, int type, ...)
3082 int ret;
3083 void *arg;
3084 va_list ap;
3086 va_start(ap, type);
3087 arg = va_arg(ap, void *);
3088 va_end(ap);
3090 trace_kvm_vm_ioctl(type, arg);
3091 ret = ioctl(s->vmfd, type, arg);
3092 if (ret == -1) {
3093 ret = -errno;
3095 return ret;
3098 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3100 int ret;
3101 void *arg;
3102 va_list ap;
3104 va_start(ap, type);
3105 arg = va_arg(ap, void *);
3106 va_end(ap);
3108 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3109 ret = ioctl(cpu->kvm_fd, type, arg);
3110 if (ret == -1) {
3111 ret = -errno;
3113 return ret;
3116 int kvm_device_ioctl(int fd, int type, ...)
3118 int ret;
3119 void *arg;
3120 va_list ap;
3122 va_start(ap, type);
3123 arg = va_arg(ap, void *);
3124 va_end(ap);
3126 trace_kvm_device_ioctl(fd, type, arg);
3127 ret = ioctl(fd, type, arg);
3128 if (ret == -1) {
3129 ret = -errno;
3131 return ret;
3134 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3136 int ret;
3137 struct kvm_device_attr attribute = {
3138 .group = group,
3139 .attr = attr,
3142 if (!kvm_vm_attributes_allowed) {
3143 return 0;
3146 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3147 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3148 return ret ? 0 : 1;
3151 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3153 struct kvm_device_attr attribute = {
3154 .group = group,
3155 .attr = attr,
3156 .flags = 0,
3159 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3162 int kvm_device_access(int fd, int group, uint64_t attr,
3163 void *val, bool write, Error **errp)
3165 struct kvm_device_attr kvmattr;
3166 int err;
3168 kvmattr.flags = 0;
3169 kvmattr.group = group;
3170 kvmattr.attr = attr;
3171 kvmattr.addr = (uintptr_t)val;
3173 err = kvm_device_ioctl(fd,
3174 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3175 &kvmattr);
3176 if (err < 0) {
3177 error_setg_errno(errp, -err,
3178 "KVM_%s_DEVICE_ATTR failed: Group %d "
3179 "attr 0x%016" PRIx64,
3180 write ? "SET" : "GET", group, attr);
3182 return err;
3185 bool kvm_has_sync_mmu(void)
3187 return kvm_state->sync_mmu;
3190 int kvm_has_vcpu_events(void)
3192 return kvm_state->vcpu_events;
3195 int kvm_has_robust_singlestep(void)
3197 return kvm_state->robust_singlestep;
3200 int kvm_has_debugregs(void)
3202 return kvm_state->debugregs;
3205 int kvm_max_nested_state_length(void)
3207 return kvm_state->max_nested_state_len;
3210 int kvm_has_many_ioeventfds(void)
3212 if (!kvm_enabled()) {
3213 return 0;
3215 return kvm_state->many_ioeventfds;
3218 int kvm_has_gsi_routing(void)
3220 #ifdef KVM_CAP_IRQ_ROUTING
3221 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3222 #else
3223 return false;
3224 #endif
3227 int kvm_has_intx_set_mask(void)
3229 return kvm_state->intx_set_mask;
3232 bool kvm_arm_supports_user_irq(void)
3234 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3237 #ifdef KVM_CAP_SET_GUEST_DEBUG
3238 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3239 target_ulong pc)
3241 struct kvm_sw_breakpoint *bp;
3243 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3244 if (bp->pc == pc) {
3245 return bp;
3248 return NULL;
3251 int kvm_sw_breakpoints_active(CPUState *cpu)
3253 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3256 struct kvm_set_guest_debug_data {
3257 struct kvm_guest_debug dbg;
3258 int err;
3261 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3263 struct kvm_set_guest_debug_data *dbg_data =
3264 (struct kvm_set_guest_debug_data *) data.host_ptr;
3266 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3267 &dbg_data->dbg);
3270 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3272 struct kvm_set_guest_debug_data data;
3274 data.dbg.control = reinject_trap;
3276 if (cpu->singlestep_enabled) {
3277 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3279 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3280 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3283 kvm_arch_update_guest_debug(cpu, &data.dbg);
3285 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3286 RUN_ON_CPU_HOST_PTR(&data));
3287 return data.err;
3290 bool kvm_supports_guest_debug(void)
3292 /* probed during kvm_init() */
3293 return kvm_has_guest_debug;
3296 int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3298 struct kvm_sw_breakpoint *bp;
3299 int err;
3301 if (type == GDB_BREAKPOINT_SW) {
3302 bp = kvm_find_sw_breakpoint(cpu, addr);
3303 if (bp) {
3304 bp->use_count++;
3305 return 0;
3308 bp = g_new(struct kvm_sw_breakpoint, 1);
3309 bp->pc = addr;
3310 bp->use_count = 1;
3311 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3312 if (err) {
3313 g_free(bp);
3314 return err;
3317 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3318 } else {
3319 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3320 if (err) {
3321 return err;
3325 CPU_FOREACH(cpu) {
3326 err = kvm_update_guest_debug(cpu, 0);
3327 if (err) {
3328 return err;
3331 return 0;
3334 int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3336 struct kvm_sw_breakpoint *bp;
3337 int err;
3339 if (type == GDB_BREAKPOINT_SW) {
3340 bp = kvm_find_sw_breakpoint(cpu, addr);
3341 if (!bp) {
3342 return -ENOENT;
3345 if (bp->use_count > 1) {
3346 bp->use_count--;
3347 return 0;
3350 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3351 if (err) {
3352 return err;
3355 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3356 g_free(bp);
3357 } else {
3358 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3359 if (err) {
3360 return err;
3364 CPU_FOREACH(cpu) {
3365 err = kvm_update_guest_debug(cpu, 0);
3366 if (err) {
3367 return err;
3370 return 0;
3373 void kvm_remove_all_breakpoints(CPUState *cpu)
3375 struct kvm_sw_breakpoint *bp, *next;
3376 KVMState *s = cpu->kvm_state;
3377 CPUState *tmpcpu;
3379 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3380 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3381 /* Try harder to find a CPU that currently sees the breakpoint. */
3382 CPU_FOREACH(tmpcpu) {
3383 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3384 break;
3388 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3389 g_free(bp);
3391 kvm_arch_remove_all_hw_breakpoints();
3393 CPU_FOREACH(cpu) {
3394 kvm_update_guest_debug(cpu, 0);
3398 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3400 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3402 KVMState *s = kvm_state;
3403 struct kvm_signal_mask *sigmask;
3404 int r;
3406 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3408 sigmask->len = s->sigmask_len;
3409 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3410 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3411 g_free(sigmask);
3413 return r;
3416 static void kvm_ipi_signal(int sig)
3418 if (current_cpu) {
3419 assert(kvm_immediate_exit);
3420 kvm_cpu_kick(current_cpu);
3424 void kvm_init_cpu_signals(CPUState *cpu)
3426 int r;
3427 sigset_t set;
3428 struct sigaction sigact;
3430 memset(&sigact, 0, sizeof(sigact));
3431 sigact.sa_handler = kvm_ipi_signal;
3432 sigaction(SIG_IPI, &sigact, NULL);
3434 pthread_sigmask(SIG_BLOCK, NULL, &set);
3435 #if defined KVM_HAVE_MCE_INJECTION
3436 sigdelset(&set, SIGBUS);
3437 pthread_sigmask(SIG_SETMASK, &set, NULL);
3438 #endif
3439 sigdelset(&set, SIG_IPI);
3440 if (kvm_immediate_exit) {
3441 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3442 } else {
3443 r = kvm_set_signal_mask(cpu, &set);
3445 if (r) {
3446 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3447 exit(1);
3451 /* Called asynchronously in VCPU thread. */
3452 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3454 #ifdef KVM_HAVE_MCE_INJECTION
3455 if (have_sigbus_pending) {
3456 return 1;
3458 have_sigbus_pending = true;
3459 pending_sigbus_addr = addr;
3460 pending_sigbus_code = code;
3461 qatomic_set(&cpu->exit_request, 1);
3462 return 0;
3463 #else
3464 return 1;
3465 #endif
3468 /* Called synchronously (via signalfd) in main thread. */
3469 int kvm_on_sigbus(int code, void *addr)
3471 #ifdef KVM_HAVE_MCE_INJECTION
3472 /* Action required MCE kills the process if SIGBUS is blocked. Because
3473 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3474 * we can only get action optional here.
3476 assert(code != BUS_MCEERR_AR);
3477 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3478 return 0;
3479 #else
3480 return 1;
3481 #endif
3484 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3486 int ret;
3487 struct kvm_create_device create_dev;
3489 create_dev.type = type;
3490 create_dev.fd = -1;
3491 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3493 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3494 return -ENOTSUP;
3497 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3498 if (ret) {
3499 return ret;
3502 return test ? 0 : create_dev.fd;
3505 bool kvm_device_supported(int vmfd, uint64_t type)
3507 struct kvm_create_device create_dev = {
3508 .type = type,
3509 .fd = -1,
3510 .flags = KVM_CREATE_DEVICE_TEST,
3513 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3514 return false;
3517 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3520 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3522 struct kvm_one_reg reg;
3523 int r;
3525 reg.id = id;
3526 reg.addr = (uintptr_t) source;
3527 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3528 if (r) {
3529 trace_kvm_failed_reg_set(id, strerror(-r));
3531 return r;
3534 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3536 struct kvm_one_reg reg;
3537 int r;
3539 reg.id = id;
3540 reg.addr = (uintptr_t) target;
3541 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3542 if (r) {
3543 trace_kvm_failed_reg_get(id, strerror(-r));
3545 return r;
3548 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3549 hwaddr start_addr, hwaddr size)
3551 KVMState *kvm = KVM_STATE(ms->accelerator);
3552 int i;
3554 for (i = 0; i < kvm->nr_as; ++i) {
3555 if (kvm->as[i].as == as && kvm->as[i].ml) {
3556 size = MIN(kvm_max_slot_size, size);
3557 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3558 start_addr, size);
3562 return false;
3565 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3566 const char *name, void *opaque,
3567 Error **errp)
3569 KVMState *s = KVM_STATE(obj);
3570 int64_t value = s->kvm_shadow_mem;
3572 visit_type_int(v, name, &value, errp);
3575 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3576 const char *name, void *opaque,
3577 Error **errp)
3579 KVMState *s = KVM_STATE(obj);
3580 int64_t value;
3582 if (s->fd != -1) {
3583 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3584 return;
3587 if (!visit_type_int(v, name, &value, errp)) {
3588 return;
3591 s->kvm_shadow_mem = value;
3594 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3595 const char *name, void *opaque,
3596 Error **errp)
3598 KVMState *s = KVM_STATE(obj);
3599 OnOffSplit mode;
3601 if (s->fd != -1) {
3602 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3603 return;
3606 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3607 return;
3609 switch (mode) {
3610 case ON_OFF_SPLIT_ON:
3611 s->kernel_irqchip_allowed = true;
3612 s->kernel_irqchip_required = true;
3613 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3614 break;
3615 case ON_OFF_SPLIT_OFF:
3616 s->kernel_irqchip_allowed = false;
3617 s->kernel_irqchip_required = false;
3618 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3619 break;
3620 case ON_OFF_SPLIT_SPLIT:
3621 s->kernel_irqchip_allowed = true;
3622 s->kernel_irqchip_required = true;
3623 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3624 break;
3625 default:
3626 /* The value was checked in visit_type_OnOffSplit() above. If
3627 * we get here, then something is wrong in QEMU.
3629 abort();
3633 bool kvm_kernel_irqchip_allowed(void)
3635 return kvm_state->kernel_irqchip_allowed;
3638 bool kvm_kernel_irqchip_required(void)
3640 return kvm_state->kernel_irqchip_required;
3643 bool kvm_kernel_irqchip_split(void)
3645 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3648 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3649 const char *name, void *opaque,
3650 Error **errp)
3652 KVMState *s = KVM_STATE(obj);
3653 uint32_t value = s->kvm_dirty_ring_size;
3655 visit_type_uint32(v, name, &value, errp);
3658 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3659 const char *name, void *opaque,
3660 Error **errp)
3662 KVMState *s = KVM_STATE(obj);
3663 Error *error = NULL;
3664 uint32_t value;
3666 if (s->fd != -1) {
3667 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3668 return;
3671 visit_type_uint32(v, name, &value, &error);
3672 if (error) {
3673 error_propagate(errp, error);
3674 return;
3676 if (value & (value - 1)) {
3677 error_setg(errp, "dirty-ring-size must be a power of two.");
3678 return;
3681 s->kvm_dirty_ring_size = value;
3684 static void kvm_accel_instance_init(Object *obj)
3686 KVMState *s = KVM_STATE(obj);
3688 s->fd = -1;
3689 s->vmfd = -1;
3690 s->kvm_shadow_mem = -1;
3691 s->kernel_irqchip_allowed = true;
3692 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3693 /* KVM dirty ring is by default off */
3694 s->kvm_dirty_ring_size = 0;
3698 * kvm_gdbstub_sstep_flags():
3700 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3701 * support is probed during kvm_init()
3703 static int kvm_gdbstub_sstep_flags(void)
3705 return kvm_sstep_flags;
3708 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3710 AccelClass *ac = ACCEL_CLASS(oc);
3711 ac->name = "KVM";
3712 ac->init_machine = kvm_init;
3713 ac->has_memory = kvm_accel_has_memory;
3714 ac->allowed = &kvm_allowed;
3715 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3717 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3718 NULL, kvm_set_kernel_irqchip,
3719 NULL, NULL);
3720 object_class_property_set_description(oc, "kernel-irqchip",
3721 "Configure KVM in-kernel irqchip");
3723 object_class_property_add(oc, "kvm-shadow-mem", "int",
3724 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3725 NULL, NULL);
3726 object_class_property_set_description(oc, "kvm-shadow-mem",
3727 "KVM shadow MMU size");
3729 object_class_property_add(oc, "dirty-ring-size", "uint32",
3730 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3731 NULL, NULL);
3732 object_class_property_set_description(oc, "dirty-ring-size",
3733 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3735 kvm_arch_accel_class_init(oc);
3738 static const TypeInfo kvm_accel_type = {
3739 .name = TYPE_KVM_ACCEL,
3740 .parent = TYPE_ACCEL,
3741 .instance_init = kvm_accel_instance_init,
3742 .class_init = kvm_accel_class_init,
3743 .instance_size = sizeof(KVMState),
3746 static void kvm_type_init(void)
3748 type_register_static(&kvm_accel_type);
3751 type_init(kvm_type_init);
3753 typedef struct StatsArgs {
3754 union StatsResultsType {
3755 StatsResultList **stats;
3756 StatsSchemaList **schema;
3757 } result;
3758 strList *names;
3759 Error **errp;
3760 } StatsArgs;
3762 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3763 uint64_t *stats_data,
3764 StatsList *stats_list,
3765 Error **errp)
3768 Stats *stats;
3769 uint64List *val_list = NULL;
3771 /* Only add stats that we understand. */
3772 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3773 case KVM_STATS_TYPE_CUMULATIVE:
3774 case KVM_STATS_TYPE_INSTANT:
3775 case KVM_STATS_TYPE_PEAK:
3776 case KVM_STATS_TYPE_LINEAR_HIST:
3777 case KVM_STATS_TYPE_LOG_HIST:
3778 break;
3779 default:
3780 return stats_list;
3783 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3784 case KVM_STATS_UNIT_NONE:
3785 case KVM_STATS_UNIT_BYTES:
3786 case KVM_STATS_UNIT_CYCLES:
3787 case KVM_STATS_UNIT_SECONDS:
3788 case KVM_STATS_UNIT_BOOLEAN:
3789 break;
3790 default:
3791 return stats_list;
3794 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3795 case KVM_STATS_BASE_POW10:
3796 case KVM_STATS_BASE_POW2:
3797 break;
3798 default:
3799 return stats_list;
3802 /* Alloc and populate data list */
3803 stats = g_new0(Stats, 1);
3804 stats->name = g_strdup(pdesc->name);
3805 stats->value = g_new0(StatsValue, 1);;
3807 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3808 stats->value->u.boolean = *stats_data;
3809 stats->value->type = QTYPE_QBOOL;
3810 } else if (pdesc->size == 1) {
3811 stats->value->u.scalar = *stats_data;
3812 stats->value->type = QTYPE_QNUM;
3813 } else {
3814 int i;
3815 for (i = 0; i < pdesc->size; i++) {
3816 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3818 stats->value->u.list = val_list;
3819 stats->value->type = QTYPE_QLIST;
3822 QAPI_LIST_PREPEND(stats_list, stats);
3823 return stats_list;
3826 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3827 StatsSchemaValueList *list,
3828 Error **errp)
3830 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3831 schema_entry->value = g_new0(StatsSchemaValue, 1);
3833 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3834 case KVM_STATS_TYPE_CUMULATIVE:
3835 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3836 break;
3837 case KVM_STATS_TYPE_INSTANT:
3838 schema_entry->value->type = STATS_TYPE_INSTANT;
3839 break;
3840 case KVM_STATS_TYPE_PEAK:
3841 schema_entry->value->type = STATS_TYPE_PEAK;
3842 break;
3843 case KVM_STATS_TYPE_LINEAR_HIST:
3844 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3845 schema_entry->value->bucket_size = pdesc->bucket_size;
3846 schema_entry->value->has_bucket_size = true;
3847 break;
3848 case KVM_STATS_TYPE_LOG_HIST:
3849 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3850 break;
3851 default:
3852 goto exit;
3855 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3856 case KVM_STATS_UNIT_NONE:
3857 break;
3858 case KVM_STATS_UNIT_BOOLEAN:
3859 schema_entry->value->has_unit = true;
3860 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3861 break;
3862 case KVM_STATS_UNIT_BYTES:
3863 schema_entry->value->has_unit = true;
3864 schema_entry->value->unit = STATS_UNIT_BYTES;
3865 break;
3866 case KVM_STATS_UNIT_CYCLES:
3867 schema_entry->value->has_unit = true;
3868 schema_entry->value->unit = STATS_UNIT_CYCLES;
3869 break;
3870 case KVM_STATS_UNIT_SECONDS:
3871 schema_entry->value->has_unit = true;
3872 schema_entry->value->unit = STATS_UNIT_SECONDS;
3873 break;
3874 default:
3875 goto exit;
3878 schema_entry->value->exponent = pdesc->exponent;
3879 if (pdesc->exponent) {
3880 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3881 case KVM_STATS_BASE_POW10:
3882 schema_entry->value->has_base = true;
3883 schema_entry->value->base = 10;
3884 break;
3885 case KVM_STATS_BASE_POW2:
3886 schema_entry->value->has_base = true;
3887 schema_entry->value->base = 2;
3888 break;
3889 default:
3890 goto exit;
3894 schema_entry->value->name = g_strdup(pdesc->name);
3895 schema_entry->next = list;
3896 return schema_entry;
3897 exit:
3898 g_free(schema_entry->value);
3899 g_free(schema_entry);
3900 return list;
3903 /* Cached stats descriptors */
3904 typedef struct StatsDescriptors {
3905 const char *ident; /* cache key, currently the StatsTarget */
3906 struct kvm_stats_desc *kvm_stats_desc;
3907 struct kvm_stats_header kvm_stats_header;
3908 QTAILQ_ENTRY(StatsDescriptors) next;
3909 } StatsDescriptors;
3911 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3912 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3915 * Return the descriptors for 'target', that either have already been read
3916 * or are retrieved from 'stats_fd'.
3918 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3919 Error **errp)
3921 StatsDescriptors *descriptors;
3922 const char *ident;
3923 struct kvm_stats_desc *kvm_stats_desc;
3924 struct kvm_stats_header *kvm_stats_header;
3925 size_t size_desc;
3926 ssize_t ret;
3928 ident = StatsTarget_str(target);
3929 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3930 if (g_str_equal(descriptors->ident, ident)) {
3931 return descriptors;
3935 descriptors = g_new0(StatsDescriptors, 1);
3937 /* Read stats header */
3938 kvm_stats_header = &descriptors->kvm_stats_header;
3939 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3940 if (ret != sizeof(*kvm_stats_header)) {
3941 error_setg(errp, "KVM stats: failed to read stats header: "
3942 "expected %zu actual %zu",
3943 sizeof(*kvm_stats_header), ret);
3944 g_free(descriptors);
3945 return NULL;
3947 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3949 /* Read stats descriptors */
3950 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3951 ret = pread(stats_fd, kvm_stats_desc,
3952 size_desc * kvm_stats_header->num_desc,
3953 kvm_stats_header->desc_offset);
3955 if (ret != size_desc * kvm_stats_header->num_desc) {
3956 error_setg(errp, "KVM stats: failed to read stats descriptors: "
3957 "expected %zu actual %zu",
3958 size_desc * kvm_stats_header->num_desc, ret);
3959 g_free(descriptors);
3960 g_free(kvm_stats_desc);
3961 return NULL;
3963 descriptors->kvm_stats_desc = kvm_stats_desc;
3964 descriptors->ident = ident;
3965 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3966 return descriptors;
3969 static void query_stats(StatsResultList **result, StatsTarget target,
3970 strList *names, int stats_fd, Error **errp)
3972 struct kvm_stats_desc *kvm_stats_desc;
3973 struct kvm_stats_header *kvm_stats_header;
3974 StatsDescriptors *descriptors;
3975 g_autofree uint64_t *stats_data = NULL;
3976 struct kvm_stats_desc *pdesc;
3977 StatsList *stats_list = NULL;
3978 size_t size_desc, size_data = 0;
3979 ssize_t ret;
3980 int i;
3982 descriptors = find_stats_descriptors(target, stats_fd, errp);
3983 if (!descriptors) {
3984 return;
3987 kvm_stats_header = &descriptors->kvm_stats_header;
3988 kvm_stats_desc = descriptors->kvm_stats_desc;
3989 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3991 /* Tally the total data size; read schema data */
3992 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3993 pdesc = (void *)kvm_stats_desc + i * size_desc;
3994 size_data += pdesc->size * sizeof(*stats_data);
3997 stats_data = g_malloc0(size_data);
3998 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4000 if (ret != size_data) {
4001 error_setg(errp, "KVM stats: failed to read data: "
4002 "expected %zu actual %zu", size_data, ret);
4003 return;
4006 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4007 uint64_t *stats;
4008 pdesc = (void *)kvm_stats_desc + i * size_desc;
4010 /* Add entry to the list */
4011 stats = (void *)stats_data + pdesc->offset;
4012 if (!apply_str_list_filter(pdesc->name, names)) {
4013 continue;
4015 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4018 if (!stats_list) {
4019 return;
4022 switch (target) {
4023 case STATS_TARGET_VM:
4024 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4025 break;
4026 case STATS_TARGET_VCPU:
4027 add_stats_entry(result, STATS_PROVIDER_KVM,
4028 current_cpu->parent_obj.canonical_path,
4029 stats_list);
4030 break;
4031 default:
4032 g_assert_not_reached();
4036 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4037 int stats_fd, Error **errp)
4039 struct kvm_stats_desc *kvm_stats_desc;
4040 struct kvm_stats_header *kvm_stats_header;
4041 StatsDescriptors *descriptors;
4042 struct kvm_stats_desc *pdesc;
4043 StatsSchemaValueList *stats_list = NULL;
4044 size_t size_desc;
4045 int i;
4047 descriptors = find_stats_descriptors(target, stats_fd, errp);
4048 if (!descriptors) {
4049 return;
4052 kvm_stats_header = &descriptors->kvm_stats_header;
4053 kvm_stats_desc = descriptors->kvm_stats_desc;
4054 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4056 /* Tally the total data size; read schema data */
4057 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4058 pdesc = (void *)kvm_stats_desc + i * size_desc;
4059 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4062 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4065 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
4067 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4068 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4069 Error *local_err = NULL;
4071 if (stats_fd == -1) {
4072 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4073 error_propagate(kvm_stats_args->errp, local_err);
4074 return;
4076 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4077 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4078 close(stats_fd);
4081 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4083 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4084 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4085 Error *local_err = NULL;
4087 if (stats_fd == -1) {
4088 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4089 error_propagate(kvm_stats_args->errp, local_err);
4090 return;
4092 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4093 kvm_stats_args->errp);
4094 close(stats_fd);
4097 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4098 strList *names, strList *targets, Error **errp)
4100 KVMState *s = kvm_state;
4101 CPUState *cpu;
4102 int stats_fd;
4104 switch (target) {
4105 case STATS_TARGET_VM:
4107 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4108 if (stats_fd == -1) {
4109 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4110 return;
4112 query_stats(result, target, names, stats_fd, errp);
4113 close(stats_fd);
4114 break;
4116 case STATS_TARGET_VCPU:
4118 StatsArgs stats_args;
4119 stats_args.result.stats = result;
4120 stats_args.names = names;
4121 stats_args.errp = errp;
4122 CPU_FOREACH(cpu) {
4123 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4124 continue;
4126 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4128 break;
4130 default:
4131 break;
4135 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4137 StatsArgs stats_args;
4138 KVMState *s = kvm_state;
4139 int stats_fd;
4141 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4142 if (stats_fd == -1) {
4143 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4144 return;
4146 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4147 close(stats_fd);
4149 if (first_cpu) {
4150 stats_args.result.schema = result;
4151 stats_args.errp = errp;
4152 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));